WO2017122606A1 - Stator, motor, and method for manufacturing stator - Google Patents

Stator, motor, and method for manufacturing stator Download PDF

Info

Publication number
WO2017122606A1
WO2017122606A1 PCT/JP2017/000391 JP2017000391W WO2017122606A1 WO 2017122606 A1 WO2017122606 A1 WO 2017122606A1 JP 2017000391 W JP2017000391 W JP 2017000391W WO 2017122606 A1 WO2017122606 A1 WO 2017122606A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
teeth
stator according
insulator
yoke
Prior art date
Application number
PCT/JP2017/000391
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 達也
康之 新井
Original Assignee
日本電産テクノモータ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産テクノモータ株式会社 filed Critical 日本電産テクノモータ株式会社
Priority to JP2017561607A priority Critical patent/JPWO2017122606A1/en
Priority to CN201780007455.8A priority patent/CN108475947B/en
Publication of WO2017122606A1 publication Critical patent/WO2017122606A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures

Definitions

  • the present invention relates to a stator, a motor, and a stator manufacturing method.
  • a motor having an annular stator is known.
  • a manufacturing method of an annular stator a manufacturing method having the following first to third steps is known.
  • the first step is a step of obtaining an annular core made of a magnetic material.
  • the annular core is obtained, for example, by punching a magnetic steel sheet in an annular shape using a press machine.
  • the second step is a step of covering the annular core with an insulator.
  • the annular core is covered with the insulator, for example, by insert molding using resin.
  • a 3rd step is a step which winds conducting wire around an annular core via an insulator.
  • a stator coupling body is obtained in which a plurality of stator blocks are coupled by thin portions.
  • the stator block includes a teeth portion having thin portions at both side ends, a winding portion, and a core support portion.
  • the winding portion is obtained by winding a coil around each stator block in a state where the interval between the core support portions is open.
  • the annular stator is obtained by bending the stator coupling body and coupling the core support portions to each other.
  • an object of the present invention is to provide an annular stator and a motor that can reduce the manufacturing cost and work load. Another object of the present invention is to provide a method of manufacturing an annular stator that can reduce cost and work load.
  • An exemplary stator of the present invention is a stator arranged in an annular shape around a central axis, and includes a plurality of divided cores made of a magnetic material, an insulator covering at least a part of the divided cores, and the divided cores. A conducting wire wound through the insulator. The plurality of divided cores are arranged in the circumferential direction. The insulator has a connecting piece portion that connects the divided cores adjacent to each other.
  • the exemplary motor of the present invention has the exemplary stator of the present invention described above.
  • An exemplary method for manufacturing an annular stator of the present invention includes a first step of stacking magnetic steel plates to form a plurality of divided cores, and covering and connecting the plurality of divided cores with an insulator. A second step of forming a connecting core in which the split cores are connected in a straight line, a third step of winding a conducting wire around each of the split cores of the connecting core via the insulator, and the conducting wire are wound. And a fourth step of making the linear stator annular.
  • annular stator and motor that can reduce the manufacturing cost and work load.
  • annular stator manufacturing method capable of reducing the cost and the work load.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a motor according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the configuration of the annular stator according to the embodiment of the present invention.
  • FIG. 3 is a schematic plan view of the stator shown in FIG.
  • FIG. 4 is a schematic cross-sectional view at the position AA in FIG.
  • FIG. 5 is an enlarged schematic plan view showing one divided core covered with an insulator.
  • FIG. 6 is a schematic plan view showing the split core from which the insulator in FIG. 5 is removed.
  • FIG. 7 is a schematic plan view for explaining a first step of the manufacturing method of the annular stator according to the embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a motor according to an embodiment of the present invention.
  • FIG. 2 is a schematic plan view showing the configuration of the annular stator according to the embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 8 is a schematic plan view for explaining a second step of the manufacturing method of the annular stator according to the embodiment of the present invention.
  • FIG. 9 is a schematic plan view for explaining a third step of the method for manufacturing the annular stator according to the embodiment of the present invention.
  • FIG. 10 is a schematic enlarged view of one end of the linear stator shown in FIG. 9 as viewed along the B direction.
  • FIG. 11 is a schematic plan view for explaining a preferred embodiment of the third step.
  • FIG. 12 is a schematic plan view for explaining a fourth step of the method for manufacturing an annular stator according to the embodiment of the present invention.
  • FIG. 13 is a schematic diagram for explaining a first modification of the annular stator according to the embodiment of the present invention.
  • FIG. 14 is a schematic plan view for explaining a second modification of the annular stator according to the embodiment of the present invention.
  • FIG. 15 is a partial schematic diagram illustrating a first configuration example of a stator according to a second modification.
  • FIG. 16 is a partial schematic diagram illustrating a second configuration example of the stator according to the second modification.
  • FIG. 17 is a partial schematic diagram illustrating a third configuration example of the stator according to the second modification.
  • FIG. 18 is a partial schematic diagram illustrating a fourth configuration example of the stator according to the second modification.
  • FIG. 19 is a partial schematic diagram illustrating a fifth configuration example of the stator according to the second modification.
  • FIG. 20 is a partial schematic diagram illustrating a sixth configuration example of the stator according to the second modification.
  • the direction of the central axis CA (see FIG. 1) of the motor is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis CA of the motor are simply “radial direction” and “ It will be called “circumferential direction”.
  • the directions that coincide with the axial direction, radial direction, and circumferential direction of the motor when incorporated in the motor are simply referred to as “axial direction”, “radial direction”, and “circumferential direction”. To do.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a motor 1 according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view taken along a cutting plane including the central axis CA of the motor 1.
  • a motor 1 shown in FIG. 1 is an outer rotor type fan motor included in an outdoor unit of an air conditioner.
  • the motor 1 has a stationary part 2 including an annular stator 3.
  • the stator 3 is an armature of the motor 1. Details of the stator 3 of the motor 1 will be described later.
  • the stationary part 2 has a resin casing 4 that covers at least a part of the stator 3.
  • the casing 4 is integrated with the stator 3 by insert molding, for example.
  • the casing 4 holds a bearing portion 5 that rotatably supports a shaft 71 described later.
  • the bearing portion 5 is not particularly limited in form, but is configured by, for example, a ball bearing or a sleeve bearing.
  • a circuit board 6 facing the stator 3 in the axial direction is fixed to the outer surface of the casing 4.
  • An electronic circuit for supplying a drive current to the stator 3 is formed on the circuit board 6.
  • An opening through which the shaft 71 is inserted is formed at the center of the circuit board 6.
  • the motor 1 has a rotating part 7.
  • the rotating unit 7 has a shaft 71.
  • the shaft 71 is a columnar member extending in the axial direction.
  • the shaft 71 is made of a metal such as stainless steel.
  • the shaft 71 is supported by the bearing portion 5 and rotates about the central axis CA.
  • the rotating unit 7 includes a rotor 72 that holds a plurality of magnets 73.
  • the rotor 72 is fixed with respect to the shaft 71 and rotates together with the shaft 71.
  • the rotor 72 has a cylindrical portion 72 a and surrounds the outer periphery of the stator 3.
  • the plurality of magnets 73 are fixed to the inner peripheral surface of the cylindrical portion 72a.
  • the plurality of magnets 73 are located on the radially outer side of the stator 3.
  • the plurality of magnets 73 are arranged at equal intervals in the circumferential direction, and N pole magnetic pole faces and S pole magnetic pole faces are alternately arranged.
  • one annular magnet in which N poles and S poles are alternately magnetized in the circumferential direction may be used.
  • a plurality of blades 8 are provided on the outer peripheral surface of the rotor 72.
  • the plurality of blades 8 are the same member as the rotor 72 and rotate together with the rotor 72.
  • the plurality of blades 8 may be separate members from the rotor 72.
  • FIG. 2 is a schematic plan view showing the configuration of the annular stator 3 according to the embodiment of the present invention.
  • stator 3 includes a plurality of split cores 30, an insulator 31, and a conducting wire 32.
  • FIG. 3 is a schematic plan view of the stator shown in FIG. 2 with the conducting wire 32 removed.
  • FIG. 4 is a schematic cross-sectional view at the position AA in FIG.
  • FIG. 5 is an enlarged schematic plan view showing one divided core 30 covered with the insulator 31.
  • FIG. 6 is a schematic plan view showing the split core 30 from which the insulator 31 in FIG. 5 is removed.
  • the plurality of divided cores 30 are divided from each other.
  • the number of divided cores 30 is twelve, but this is merely an example, and the number of divided cores 30 may be changed as appropriate.
  • Each divided core 30 is made of a magnetic material.
  • the split core 30 has a yoke portion 301 extending in the circumferential direction.
  • the split core 30 has a teeth portion 302 that protrudes radially outward from the yoke portion 301 and is wound with a conducting wire 32.
  • the tooth portion 302 has a teeth base portion 302a that extends in the radial direction from the yoke portion 301 and around which the conductive wire 32 is wound.
  • the teeth portion 302 has a tooth tip portion 302b provided at the tip of the tooth base portion 302a and extending in the circumferential direction.
  • the plurality of divided cores 30 are arranged in the circumferential direction.
  • Adjacent yoke portions 301 are fixed to each other. Specifically, the adjacent yoke portions 301 are in contact with each other at their circumferential end surfaces.
  • a protruding portion 301 a is formed on one circumferential end surface of each yoke portion 301.
  • a concave portion 301 b is formed on the other circumferential end surface of each yoke portion 301.
  • the protruding portion 301a and the recessed portion 301b of the adjacent yoke portions 301 are engaged with each other. Thereby, it can prevent that the division
  • the protruding portion 301a is formed in a substantially trapezoidal shape in plan view.
  • the recess 301a has a shape corresponding to the shape of the protrusion 301a.
  • the shapes of the protrusions 301a and the recesses 301b in this embodiment are merely examples.
  • the shape of the protrusion part 301a and the recessed part 301b should just be a shape which can prevent the position shift of the division
  • the protrusion 301a may have a substantially semicircular shape in plan view.
  • the insulator 31 covers at least a part of the divided core 30.
  • the insulator 31 is a resin insulating member that electrically insulates the split core 30 from the conductive wire 32.
  • the insulator 31 has a connecting piece portion 310 that connects adjacent split cores 30 to each other.
  • the connecting piece 310 is preferably thin. Thereby, the connection piece part 310 can be bent easily.
  • the stator 3 has at least one location where the adjacent split cores 30 are not connected by the connecting piece portion 310. In this example, there is one location P where the adjacent split cores 30 are not connected by the connecting piece portion 310.
  • production of the location P which is not connected by the connection piece part 310 originates in the cyclic
  • the insulator 31 has a yoke cover portion 311 that covers at least a part of the yoke portion 301.
  • the insulator 31 has a teeth cover portion 312 that covers at least a part of the teeth portion 302.
  • the yoke cover portion 311 and the tooth cover portion 312 are provided for each divided core 30.
  • the teeth cover portion 312 has a teeth base cover portion 312a that covers at least a part of the teeth base portion 302a.
  • the teeth cover portion 312 has a teeth tip cover portion 312b that covers at least a part of the teeth tip portion 302b.
  • the connecting piece portion 310 is preferably located between adjacent tooth cover portions 312. In this example, as a more preferable aspect, the connecting piece portion 310 is located between the adjacent tooth tip cover portions 312b. In this configuration, since the position of the connecting piece portion 310 is on the distal end side in the radial direction, a large space for winding the conducting wire 32 can be secured.
  • the stator 3 has an annular fixing ring 33.
  • the annular fixing ring 33 is annular. 4 and 5, the yoke cover portion 311 is formed with an insertion portion 313 into which the fixing ring 33 is inserted.
  • the yoke cover portion 311 is formed with a first arc wall portion 313a having a substantially arc shape extending in the axial direction.
  • the yoke cover portion 311 is formed with a second ring wall portion 313b having a substantially arc shape that is provided radially outward from the first ring wall portion 313a and extends in the axial direction.
  • the insertion portion 313 is a space portion formed between the first ring wall portion 313a and the second ring wall portion 313b.
  • the end portions of the insertion portions 313 are connected to each other to form an annular space portion.
  • the fixing ring 33 may be inserted into both the insertion portions 313, or the fixing ring 33 may be inserted into only one of the insertion portions 313.
  • the insertion portion 313 may be formed only on one side in the axial direction.
  • the conducting wire 32 is composed of a metal wire covered with an insulating member such as an enamel-coated copper wire.
  • the conducting wire 32 is wound around the split core 30 via an insulator 31.
  • the conducting wire 32 has a winding portion 321 wound around each of the plurality of split cores 30.
  • the conducting wire 32 has a crossover portion 322 (see FIG. 10 described later) that relays between the plurality of winding portions 321.
  • Winding portion 321 is wound around teeth base portion 302a via teeth base cover portion 312a.
  • the crossover portion 322 is wired on the radially outer side of each divided core 30.
  • the motor 1 is a three-phase motor.
  • the conducting wire 32 includes three types of conducting wires corresponding to the U phase, the V phase, and the W phase.
  • the conducting wire 32 of each phase is wound around the plurality of divided cores 30 arranged in a ring in order. That is, every two conducting wires 32 of each phase are wound around a plurality of divided cores 30 arranged in an annular shape.
  • the tooth tip cover portion 312b has a tooth tip wall portion 314 extending in the axial direction. Specifically, the teeth tip wall portion 314 protrudes in both axial directions with respect to the split core 30.
  • a connecting wire groove portion 314 a to which the connecting wire portion 322 is wired is formed on the radially outer surface of the tooth tip wall portion 314.
  • the crossover groove portion 314 a is formed only on one side of the tooth tip wall portion 314 protruding in two directions. Three crossover groove portions 314a are provided at intervals in the axial direction.
  • tooth tip wall portion 314 is provided in each divided core 30.
  • the number of crossover groove portions 314a provided on each tooth tip wall portion 314 may be the same.
  • the number of crossover groove portions 314 a provided in each tooth tip wall portion 314 may be changed according to the circumferential position of the split core 30.
  • a terminal pin 34 is provided at the axial end of the tooth tip wall 314.
  • the terminal pin 34 is provided in the side in which the crossover groove part 314a is not formed among the teeth front-end
  • the terminal pin 34 is inserted into a terminal hole 314 b provided in the axial front end surface of the tooth front end wall portion 314.
  • the conducting wire 32 is connected to the terminal pin 34.
  • four terminal pins 34 are provided corresponding to the U-phase, V-phase, and W-phase three phases and the common. That is, in this example, among the plurality of tooth tip wall portions 314, the terminal pins 34 are provided on the four tooth tip wall portions 314, and the terminal pins 34 are not provided on the other tooth tip wall portions 314.
  • the terminal pin 34 is provided near the place where the crossover portion 322 is disposed. For this reason, the conducting wire 32 can be efficiently routed.
  • the terminal pins 34 are connected to the circuit board 6 (see FIG. 1) of the motor 1.
  • the terminal pin 34 may be provided on the same side as the side on which the crossover groove 314a is provided. In this case, the tooth front end wall portion 314 may be configured to protrude only on one side in the axial direction with the split core 30 as a reference.
  • Each of the plurality of divided cores 30 has exposed portions 35 to 38 that are exposed without being covered by the insulator 31.
  • the first exposed portion 35 exposes both end surfaces of the yoke portion 301 in the circumferential direction.
  • the protrusion part 301a produced by press molding and the recessed part 301b can be fitted. Since press molding can form irregularities with higher accuracy than resin molding, the fitting accuracy between the protrusion 301a and the recess 301b can be improved.
  • the second exposed portion 36 exposes both end portions in the circumferential direction of the tooth tip portion 302b. The effect of adopting this configuration will be described later.
  • the third exposed portion 37 exposes the radial end surface of the tooth tip portion 302b. Thereby, the distance of the stator 3 and the magnet 73 can be shortened, and motor efficiency can be improved.
  • the fourth exposed portion 38 exposes at least one axial end surface of the split core 30. Specifically, in the present example, the fourth exposed portion 38 exposes part of both end surfaces in the axial direction of the yoke portion 301 and the tooth tip portion 302b. According to this structure, when insert-molding the insulator 31 with respect to the split core 30, the place which positions a metal mold
  • a plurality of divided cores 30 are connected by an insulator 31.
  • the plurality of split cores 30 are connected by a connecting piece 310 made of resin that is easy to bend. For this reason, the stator 3 and the motor 1 can reduce the manufacturing cost and work load.
  • several teeth part 302 is isolate
  • FIG. 7 is a schematic plan view for explaining a first step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention.
  • a first process is performed in which magnetic steel plates are laminated to form a plurality (12 in this example) of divided cores 30.
  • Examples of magnetic steel plates include silicon steel plates. Magnetic steel plates are laminated in the axial direction. Pressing is used to form the split core 30.
  • the plurality of divided cores 30 may be formed separately one by one or may be formed collectively.
  • the formed divided cores 30 are arranged in the same direction and arranged in a straight line (see FIG. 7).
  • FIG. 8 is a schematic plan view for explaining a second step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention.
  • a second step of covering and connecting the plurality of split cores 30 with the insulator 31 is performed.
  • the connecting core 9 in which the plurality of divided cores 30 are connected in a straight line is formed.
  • the plurality of split cores 30 are connected by a connecting piece portion 310.
  • the connecting piece portion 310 is disposed between the adjacent tooth cover portions 312 and connects the adjacent divided cores 30 to each other. More specifically, the connecting piece portion 310 is disposed between the adjacent tooth tip cover portions 312b.
  • the plurality of split cores 30 may be insert-molded with resin and covered with the insulator 31.
  • a method for integrating the plurality of split cores 30 and the insulator 31 a method other than insert molding may be used.
  • a method in which an insulator is constituted by two members and a plurality of split cores 30 are sandwiched between the two members may be used.
  • a fixing member may be used, or a fitting structure such as a snap fit may be used.
  • the fixing member may include an adhesive in addition to a fastener such as a screw.
  • FIG. 9 is a schematic plan view for explaining a third step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention.
  • a third step of winding the conducting wire 32 around each split core 30 of the linear connecting core 9 via the insulator 31 is performed.
  • the conductive wire 32 is wound around the tooth portion 302 via the tooth cover portion 312.
  • the conducting wire 32 is wound around the teeth base 302a via the teeth base cover 312a.
  • the conducting wire 32 includes three types of conducting wires corresponding to the U phase, the V phase, and the W phase.
  • FIG. 10 is a schematic enlarged view of one end portion of the linear stator 3 ′ shown in FIG. 9 as viewed along the B direction.
  • the conducting wire 32 of each phase is first wound around the first split core 30 in the direction from the yoke portion 301 toward the tip portion of the tooth portion 302. Thereby, the first winding part 321 is formed in the conducting wire 32 of each phase.
  • the connecting wire portion 322 drawn to the tip end side of the tooth portion 302 is wired to the connecting wire groove portion 314a. Thereby, the conducting wire 32 of each phase is supplied to the next split core 30.
  • the lead wires 32 of each phase are wound in the same manner as the first split core 30. After this operation is repeated and the last winding portion 321 is wound, the leading end portion of the conducting wire 32 of each phase is wound around each terminal pin 34.
  • solder bonding is used to fix the lead wires 32 to the terminal pins 34. Electrical connection between the conductive wire 32 and the terminal pin 34 is obtained by soldering.
  • FIG. 11 is a schematic plan view for explaining a preferred mode of the third step.
  • the connecting core 9 is preferably attached with a fixture 10 that is disposed on the tip end side of the tooth portion 302 and maintains the connecting core 9 in a straight line.
  • the conducting wire 32 can be wound around each division
  • the fixture 10 may be a part of a winding machine for winding the conducting wire 32 around each divided core 30, for example.
  • the fixture 10 has a claw portion 10 a that engages with a space portion 11 surrounded by two adjacent tooth portions 302 and a connecting piece portion 310. Specifically, the claw portion 10a is sandwiched between the third exposed portions 36 of the two tooth tip portions 302b. That is, the nail
  • a fourth step is performed in which the linear stator 3 ′ around which the conducting wire 32 is wound is formed into an annular shape. Specifically, the yoke portion 301 is directed radially inward, and the linear stator 3 ′ is bent in an annular shape. The protrusion 301a and the recess 301b can be fitted together while being bent in an annular shape, and the annular shape can be easily maintained.
  • FIG. 12 is a schematic plan view for explaining a fourth step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention.
  • the split core 30 moves in the direction of arrow C with the curved portion 301ba of the recess 301b serving as a fulcrum. For this reason, the protrusion part 301a and the recessed part 301b can be easily fitted.
  • the connecting piece 310 is formed of a resin that can be easily bent, the linear stator 3 ′ can be easily bent.
  • the crossover portion 322 is disposed on the outer peripheral side. For this reason, it can prevent that the conducting wire 32 bends, when bending linear stator 3 'cyclically
  • the fixing ring 33 is inserted into the insertion portion 313 after the linear stator 3 ′ is formed into an annular shape.
  • the annular stator 3 having a high roundness shown in FIG. 2 is obtained.
  • the stator 3 is integrated with the casing 4 by, for example, insert molding. That is, the casing 4 covers the plurality of divided cores 30, the insulator 31, and the conductive wire 32. Since each divided core 30 is firmly fixed by the casing 4, the circular shape of the stator 3 can be maintained.
  • the core forming the stator is the split core 30.
  • the part which becomes unnecessary at the time of stamping can be reduced compared with the case where a core is made into a round shape.
  • the pressing mold and the press can be downsized compared to the case where the core is a round shape.
  • die for a press and a press machine can be reduced in size.
  • the divided cores 30 can be arranged in a straight line and the conductive wire 32 can be wound, the winding work is easy to perform. That is, according to the manufacturing method of the annular stator 3 of the present embodiment, the cost and work load can be reduced. Furthermore, it is possible to easily secure a space for arranging the press equipment.
  • FIG. 13 is a schematic diagram for explaining a first modification of the annular stator 3 according to the embodiment of the present invention.
  • the stator 3 includes a connector 12 that connects adjacent yoke portions 301.
  • the yoke portion 301 is formed with an attachment portion 301c for attaching the connector 12.
  • the connector 12 may be a U-shaped member, for example.
  • the connector 12 may be formed of, for example, metal or resin.
  • the attachment portion 301c may be a hole extending in the axial direction. According to the configuration of the first modified example, it is possible to further reduce the possibility that the plurality of divided cores 30 are displaced.
  • the configuration of the first modification is suitable for a motor other than a molded motor.
  • the annular stator 3 is obtained by bending one linear stator 3 ′ into an annular shape.
  • the annular stator 3 may be obtained by bending a plurality of linear stators into an arc shape and connecting them. In the case of this configuration, a plurality of portions where the adjacent split cores 30 are not connected by the connecting piece 310 are formed.
  • FIG. 14 is a schematic plan view for explaining a second modification of the annular stator 3 according to the embodiment of the present invention.
  • FIG. 14 shows an enlarged part of the annular stator 3.
  • At least one of the plurality of tooth portions 302 is provided with a first connecting portion 41 at an end portion on one circumferential side.
  • the second connecting portion 42 is provided in the tooth portion 302 adjacent to the tooth portion 302 provided with the first connecting portion 41 on one side in the circumferential direction.
  • the 1st connection part 41 and the 2nd connection part 42 are connected.
  • connection structure having the first connection portion 41 and the second connection portion 42 is provided at a location P where the adjacent split cores 30 are not connected by the connection piece portion 310.
  • connection structure of this modification is used together with the structure which ensures the roundness of the stator 3 by the fixing ring 33. Thereby, the annular state of the stator 3 can be more reliably maintained.
  • the connection structure of this modification may be used in combination with a configuration (see FIG. 13) using the connector 12 that connects adjacent yoke portions 301. Further, when the annular stator 3 is configured by bending a plurality of linear stators 3 ′ in an arc shape and connecting them, a plurality of connection structures of this modification may be provided.
  • the annular stator 3 is obtained by performing the fourth step of making the linear stator 3 ′ (see FIG. 9) annular.
  • the first connecting portion 41 is provided on one of the two teeth portions 302 located at both ends of the linear stator 3 ′, and the second connecting portion 42 is provided on the other.
  • the fourth step the first connecting portion 41 and the second connecting portion 42 are connected. This makes it possible to keep the stator 3 annular.
  • each of the conductive wires 32 wound around the two teeth portions 302 provided with the first connecting portion 41 or the second connecting portion 42 has an end portion at the start or end of winding.
  • the tooth portion 302 provided with the first connecting portion 41 has an end portion at the start of winding
  • the tooth portion 302 provided with the second connecting portion 42 has an end portion at the end of winding.
  • the conducting wire 32 is wound around the linear connecting core 9 (see FIG. 8). Assuming that the end of the winding start or end of winding of the conducting wire 32 is located at the end of the linear connecting core 9 where the first connecting portion 41 or the second connecting portion 42 is provided, the arrangement order of the teeth portions 302 is as follows.
  • the conducting wire 32 can be wound around the teeth portion 302 in order. That is, it is possible to avoid the operation of winding the conducting wire 32 from becoming complicated. Further, according to the configuration of the present modification, the crossover portion 322 can be avoided from being disposed across the two tooth portions 302 provided with the first connecting portion 41 or the second connecting portion 42. For this reason, it is possible to avoid interference between the connecting structure having the first connecting portion 41 and the second connecting portion 42 and the crossover portion 322.
  • the two teeth portions 302 provided with the first connecting portion 41 or the second connecting portion 42 are provided with terminal pins 34 connected to the end of the winding wire 32 at the start or end of winding.
  • the terminal pin 34 is attached to the teeth front-end
  • FIG. 15 is a partial schematic diagram illustrating a first configuration example of the stator 3 according to the second modification.
  • the vertical direction of FIG. 15 is parallel to the axial direction, and a plurality of magnetic steel plates constituting the split core 30 are laminated in the vertical direction of FIG. This also applies to FIGS. 16 to 18 and FIG. 20 described later.
  • the first connecting portion 41 and the second connecting portion 42 are both provided in the insulator 31.
  • the 1st connection part 41 and the 2nd connection part 42 are not provided in the teeth part 302 directly, but are provided in the teeth part 302 indirectly.
  • both the 1st connection part 41 and the 2nd connection part 42 are provided in the teeth front-end
  • first connecting part 41 and the second connecting part 42 one has a through hole or a concave part, and the other has a convex part.
  • the 1st connection part 41 and the 2nd connection part 42 are connected by the fitting of a through-hole or a recessed part, and a convex part.
  • the two connecting portions 41 and 42 can be connected with a small number of parts.
  • the first connecting portion 41 has a convex portion 411.
  • the 1st connection part 41 has the arm part 412 extended toward the adjacent teeth part 302 from the circumferential direction one side of the teeth part 302.
  • the arm portion 412 is the same member as the tooth tip cover portion 312b.
  • the convex portion 411 is provided on the arm portion 412.
  • the arm part 412 and the convex part 411 are the same member.
  • the convex part 411 protrudes in the axial direction. Specifically, the convex portion 411 extends in the axial direction from the arm portion 412 toward the split core 30.
  • the first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
  • the second connecting part 42 has a through hole 421.
  • the through hole 421 extends in the axial direction. Specifically, the through hole 421 passes through the teeth tip cover portion 312b in the axial direction.
  • the through hole 421 is provided near the end on the other circumferential side of the tooth tip cover portion 312b.
  • the second connecting portions 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
  • the first connecting part 41 and the second connecting part 42 are connected by fitting the convex part 411 into the through hole 421.
  • the teeth tip cover part 312b provided with the first connection part 41 has a step structure S1 so that the convex part 411 is easily fitted into the through hole 421.
  • the convex portion 411 is spherical and the through hole 421 is preferably circular in plan view.
  • the structure which has the recessed part dented in the axial direction instead of the through-hole 421 may be sufficient as the 2nd connection part 42.
  • the recess is preferably spherical.
  • the first connecting part 41 having the arm part 412 may be provided with a through hole or a concave part, and the second connecting part 42 may be provided with a convex part.
  • the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction.
  • FIG. 16 is a partial schematic diagram illustrating a second configuration example of the stator 3 according to the second modification.
  • FIG. 16 the state before the 1st connection part 41 and the 2nd connection part 42 are connected is shown.
  • the second configuration example is almost the same as the first configuration example. The following description will be focused on differences from the first configuration example.
  • the first connecting portion 41 and the second connecting portion 42 has the inclined surface portion 43 on the surface side facing the other connecting portion at the distal end portion in the circumferential direction.
  • the inclined surface portion 43 narrows the axial width toward the tip.
  • the first connecting portion 41 has a first inclined surface portion 431 on the surface side facing the second connecting portion 42, which is the distal end portion of the arm portion 412 in the circumferential direction.
  • the first connecting portions 41 are provided on both sides in the axial direction across the split core 30, and each first connecting portion 41 has a first inclined surface portion 431. Due to the presence of the first inclined surface portion 431, the interval between the two first connecting portions 41 arranged in the axial direction becomes wider toward the distal end side in the circumferential direction.
  • the second connecting portion 42 has a second inclined surface portion 432 on the surface side facing the first connecting portion 41, which is a tip portion in the circumferential direction of the tooth tip cover portion 312 b.
  • the second connecting portions 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween, and each second connecting portion 42 has a second inclined surface portion 432. Due to the presence of the second inclined surface portion 432, the axial width of the tooth portion 302 including the tooth tip cover portion 312 b becomes narrower toward the tip end side in the circumferential direction. Therefore, the tooth portion 302 having the two second connecting portions 42 arranged in the axial direction can be inserted between the two first connecting portions 41 arranged in the axial direction while being caught.
  • FIG. 17 is a partial schematic diagram illustrating a third configuration example of the stator 3 according to the second modification.
  • one of the first connecting portion 41 and the second connecting portion 42 is provided in the insulator 31, and the other is provided in the split core 30.
  • one of the first connecting part 41 and the second connecting part 42 is indirectly provided on the tooth part 302, and the other is directly provided on the tooth part 302.
  • the first connecting portion 41 is provided in the insulator 31, and the second connecting portion 42 is provided in the split core 30. According to this configuration example, the thickness of the portion where the connection structure is provided can be suppressed as compared with the case where both the first connection portion 41 and the second connection portion 42 are provided in the insulator 31.
  • the 1st connection part 41 is provided in teeth tip cover part 312b similarly to the 1st example of composition, and has convex part 413 and arm part 414.
  • the 2nd connection part 42 is provided in the part exposed without being covered with the teeth front-end
  • the second connecting portion 42 has a through hole 422.
  • the through-hole 422 is provided in one magnetic steel plate located at least at the end in the axial direction.
  • the through hole 422 extends in the axial direction.
  • the first connecting portion 41 and the second connecting portion 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween. By fitting the convex portion 413 into the through-hole 422, the first connecting portion 41 and the second connecting portion 42 are connected.
  • the convex portion 413 has a spherical shape
  • the through hole 422 has a circular shape in plan view.
  • the 2nd connection part 42 may be the structure which has a recessed part dented in the axial direction instead of the through-hole 422.
  • FIG. the recess is preferably spherical.
  • the 1st connection part 41 which has the arm part 414 is good also as a structure which has a through-hole or a recessed part, and the 2nd connection part 42 has a convex part.
  • the split core 30 is configured by a core piece.
  • the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction.
  • the 1st connection part 41 and the 2nd connection part 42 may be the structure which has an inclined surface part similarly to the 2nd structural example.
  • FIG. 18 is a partial schematic diagram illustrating a fourth configuration example of the stator 3 according to the second modification.
  • one of the first connection portion 41 and the second connection portion 42 is provided in the insulator 31 and the other is provided in the split core 30.
  • the first connection portion 41 is provided in the split core 30, and the second connection portion 42 is provided in the insulator 31.
  • the first connecting portion 41 has a through hole 415 extending in the axial direction.
  • the 1st connection part 41 has the arm part 416 extended from one magnetic steel plate located in the axial endmost part.
  • the arm part 416 extends from one side in the circumferential direction of the tooth part 302 toward the adjacent tooth part 302.
  • the arm part 416 is the same member as the magnetic steel plate.
  • the arm portion 416 may be composed of a plurality of magnetic steel plates.
  • the 2nd connection part 42 has the convex part 423 extended in an axial direction.
  • the convex portion 423 is the same member as the tooth tip cover portion 312b.
  • the first connecting portion 41 and the second connecting portion 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
  • the first connecting part 41 and the second connecting part 42 are connected by fitting the convex part 423 into the through hole 415.
  • the teeth tip cover part 312b in which the 2nd connection part 42 is provided has step structure S2 so that the convex part 423 may be engage
  • the through-hole 415 is preferably circular in plan view, and the convex portion 423 is preferably spherical.
  • the 1st connection part 41 may be the structure which has a recessed part dented in the axial direction instead of the through-hole 415.
  • the recess is preferably spherical.
  • the 1st connection part 41 which has the arm part 416 is good also as a structure which has a convex part, and the 2nd connection part 42 has a through-hole or a recessed part.
  • the split core 30 is configured by a core piece.
  • the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the division
  • the 1st connection part 41 and the 2nd connection part 42 may be the structure which has an inclined surface part similarly to the 2nd structural example.
  • FIG. 19 is a partial schematic diagram illustrating a fifth configuration example of the stator 3 according to the second modification.
  • the first connection portion 41 and the second connection portion 42 are both provided in the insulator 31 as in the first configuration example.
  • both the 1st connection part 41 and the 2nd connection part 42 are provided in the teeth front-end
  • the first connecting part 41 has a convex part 417.
  • the 1st connection part 41 has the arm part 418 extended toward the teeth part 302 adjacent in the circumferential direction one side from the circumferential direction one side of the teeth part 302. As shown in FIG.
  • the arm part 418 is the same member as the tooth tip cover part 312b.
  • the convex portion 417 is provided at the distal end of the arm portion 418 in the circumferential direction.
  • the arm part 418 and the convex part 417 are the same member.
  • the convex part 417 protrudes in a direction orthogonal to the axial direction.
  • the convex portion 417 has an arcuate outer periphery in plan view.
  • the 2nd connection part 42 has the recessed part 424 dented in the direction orthogonal to an axial direction.
  • the recess 424 has an arc shape in plan view.
  • the convex portion 417 can be fitted into the concave portion 424 by moving the arm portion 418 with respect to the concave portion 424 in a predetermined direction orthogonal to the axial direction. By this fitting, the first connecting part 41 and the second connecting part 42 are connected.
  • the predetermined direction may be, for example, a circumferential direction or a radial direction.
  • the 2nd connection part 42 may be the structure which has not the recessed part 424 but the through-hole extended in the direction orthogonal to an axial direction. Moreover, the 1st connection part 41 which has the arm part 416 is good also as a structure which has a recessed part or a through-hole, and the 2nd connection part 42 has a convex part. Moreover, the 1st connection part 41 and the 2nd connection part 42 may be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction.
  • FIG. 20 is a partial schematic diagram illustrating a sixth configuration example of the stator 3 according to the second modification.
  • the first connecting portion 41 and the second connecting portion 42 are connected via a pin 44.
  • the connection strength can be improved.
  • the first connecting portion 41 has an arm portion 419 that extends from one circumferential side of the tooth portion 302 toward the adjacent tooth portion 302.
  • the arm portion 419 is the same member as the tooth tip cover portion 312b.
  • the first connecting portion 41 has a through hole 410 provided on the distal end side of the arm portion 419 in the circumferential direction.
  • the through hole 410 extends in the axial direction.
  • the first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
  • the 1st connection part 41 is indirectly provided in the teeth part 302.
  • the second connecting portion 42 has a through hole 425.
  • the through hole 425 extends in the axial direction and penetrates the tooth tip cover portion 312 b and the split core 30.
  • a part of the second connecting portion 42 is directly provided on the tooth portion 302, and the other portion is indirectly provided on the tooth portion 302.
  • the pin 44 extends in the axial direction. The pin 44 is inserted into the through holes 410 and 425 aligned in the axial direction in a state where the through hole 410 of the first connecting part 41 and the through hole 425 of the second connecting part 42 are overlapped in the axial direction. Thereby, the 1st connection part 41 and the 2nd connection part 42 are connected.
  • the teeth tip cover part 312b in which the 1st connection part 41 is provided has the level
  • the pin 44 may be provided in a T shape, for example.
  • the pin 44 may be linear, in this case, after the pin 44 is inserted into the through holes 410 and 425, at least one end is deformed by, for example, mechanical or heat treatment. This can prevent the pin 44 from falling off.
  • the first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween, but may be provided only on one side in the axial direction.
  • the 2nd connection part 42 may be a recessed part instead of a through-hole.
  • the 2nd connection part 42 is good also as a structure which has an arm part extended in the circumferential direction other side, and a pin is good also as a structure which connects the arm parts which the two connection parts 41 and 42 have.
  • the pins 44 extend in the axial direction.
  • the pin that connects the first connecting portion 41 and the second connecting portion 42 may extend, for example, in a direction orthogonal to the axial direction. In this case, it is necessary to change the direction of the hole into which the pin is inserted. However, it is easier to improve the connection strength between the first connection part and the second connection part when the pin 44 is configured to extend in the axial direction.
  • the present invention is applied to a molded motor, but the present invention may be applied to a motor other than a molded motor.
  • the present invention is applied to an outer rotor type motor.
  • the present invention may be applied to an inner rotor type motor.
  • the present invention can also be applied to devices other than outdoor unit motors.
  • the present invention can be used in, for example, a stator, a motor, and a stator manufacturing method.
  • crossover groove portion 314b ... terminal hole, 321 ... winding portion, 322 ...
  • Crossover part 411, 413, 417, 423 ... convex part, 412, 414, 416, 418, 419 ... arm part, 410, 415, 421, 422, 425 ... through hole, 424 ..Recesses

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

A stator provided annularly around a central axis has a plurality of split cores of magnetic material, an insulator that covers at least a part of the split core, and a conducting wire that is wound around the split core via the insulator. The plurality of split cores are arranged in the circumferential direction. The insulator has a coupling piece that couples adjacent split cores with each other.

Description

ステータ、モータ及びステータの製造方法Stator, motor, and stator manufacturing method
 本発明は、ステータ、モータ及びステータの製造方法に関する。 The present invention relates to a stator, a motor, and a stator manufacturing method.
 従来、環状のステータを有するモータが知られる。環状のステータの製造方法として、次の第1から第3のステップを有する製造方法が知られる。第1のステップは、磁性体よりなる環状のコアを得るステップである。環状のコアは、例えばプレス機を用いて磁性鋼板を環状に打ち抜いて得られる。第2のステップは、環状のコアをインシュレータで覆うステップである。環状のコアは、例えば樹脂を用いたインサート成型によってインシュレータに覆われる。第3のステップは、環状のコアにインシュレータを介して導線を巻回するステップである。 Conventionally, a motor having an annular stator is known. As a manufacturing method of an annular stator, a manufacturing method having the following first to third steps is known. The first step is a step of obtaining an annular core made of a magnetic material. The annular core is obtained, for example, by punching a magnetic steel sheet in an annular shape using a press machine. The second step is a step of covering the annular core with an insulator. The annular core is covered with the insulator, for example, by insert molding using resin. A 3rd step is a step which winds conducting wire around an annular core via an insulator.
 従来の方法では、打ち抜き時に不要となる部分が多く、鋼板使用量が多くなる。また、プレス用金型及びプレス機が大型化する。また、インサート成型に使用する金型が複雑になる。また、導線を巻き付ける際に、スペースが狭い箇所が存在し、作業性が悪くなる。 In the conventional method, there are many parts that are not required at the time of punching, and the amount of steel sheet used increases. In addition, the press mold and the press are increased in size. Moreover, the metal mold | die used for insert molding becomes complicated. Moreover, when winding a conducting wire, there exists a location with a narrow space, and workability | operativity worsens.
 特許文献1に開示される環状のステータの製造方法によれば、上述の問題点を解消することが可能である。特許文献1の製造方法では、まず、複数個のステータブロックを薄肉部で連結したステータ連結体を得る。ステータブロックは、両脇端に薄肉部を備えるティース部、巻線部、コア支持部からなる。巻線部は、コア支持部同士の間隔が開いた状態で各ステータブロックにコイルを巻回して得られる。環状のステータは、ステータ連結体を折り曲げて、コア支持部同士を連結することによって得られる。 According to the annular stator manufacturing method disclosed in Patent Document 1, it is possible to solve the above-described problems. In the manufacturing method of Patent Document 1, first, a stator coupling body is obtained in which a plurality of stator blocks are coupled by thin portions. The stator block includes a teeth portion having thin portions at both side ends, a winding portion, and a core support portion. The winding portion is obtained by winding a coil around each stator block in a state where the interval between the core support portions is open. The annular stator is obtained by bending the stator coupling body and coupling the core support portions to each other.
特開2000-197319号公報JP 2000-197319 A
 特許文献1のステータにおいては、隣り合うティース部が電磁鋼板の薄肉部で連結されている。このために、隣り合うティース部の間で磁束が漏れ、モータ効率が低下する。また、鋼板をプレスで打ち抜いて、複数のステータブロックが繋がった状態を得る必要がある。このため、プレス金型やプレス機が大きくなり、コストの増加及び設備のスペース確保の問題が生じる。 In the stator of Patent Document 1, adjacent tooth portions are connected by thin portions of electromagnetic steel sheets. For this reason, a magnetic flux leaks between adjacent teeth parts, and motor efficiency falls. Moreover, it is necessary to punch the steel plate with a press to obtain a state in which a plurality of stator blocks are connected. For this reason, a press die and a press machine will become large, and the problem of an increase in cost and securing of the space of an installation will arise.
 以上の点に鑑みて、本発明は、製造時のコスト及び作業負担を低減できる環状のステータ及びモータを提供することを目的とする。また、本発明は、コスト及び作業負担を低減できる環状のステータの製造方法を提供することを他の目的とする。 In view of the above, an object of the present invention is to provide an annular stator and a motor that can reduce the manufacturing cost and work load. Another object of the present invention is to provide a method of manufacturing an annular stator that can reduce cost and work load.
 本発明の例示的なステータは、中心軸を中心に環状に配置されたステータであって、磁性体よりなる複数の分割コアと、前記分割コアの少なくとも一部を覆うインシュレータと、前記分割コアに前記インシュレータを介して巻回される導線と、を有する。前記複数の分割コアは周方向に配列されている。前記インシュレータは、隣り合う前記分割コアを互いに連結している連結片部を有する。 An exemplary stator of the present invention is a stator arranged in an annular shape around a central axis, and includes a plurality of divided cores made of a magnetic material, an insulator covering at least a part of the divided cores, and the divided cores. A conducting wire wound through the insulator. The plurality of divided cores are arranged in the circumferential direction. The insulator has a connecting piece portion that connects the divided cores adjacent to each other.
 本発明の例示的なモータは、上述した本発明の例示的なステータを有する。 The exemplary motor of the present invention has the exemplary stator of the present invention described above.
 本発明の例示的な環状のステータの製造方法は、磁性鋼板を積層して複数の分割コアを形成する第1の工程と、前記複数の分割コアをインシュレータによって覆うとともに連結して、前記複数の分割コアが直線状に繋がった連結コアを形成する第2の工程と、前記連結コアの各分割コアに、前記インシュレータを介して導線を巻回する第3の工程と、前記導線が巻回された直線状のステータを環状にする第4の工程と、を有する。 An exemplary method for manufacturing an annular stator of the present invention includes a first step of stacking magnetic steel plates to form a plurality of divided cores, and covering and connecting the plurality of divided cores with an insulator. A second step of forming a connecting core in which the split cores are connected in a straight line, a third step of winding a conducting wire around each of the split cores of the connecting core via the insulator, and the conducting wire are wound. And a fourth step of making the linear stator annular.
 例示的な本発明によれば、製造時のコスト及び作業負担を低減できる環状のステータ及びモータを提供できる。また、例示的な本発明によれば、コスト及び作業負担を低減できる環状のステータの製造方法を提供できる。 According to the exemplary present invention, it is possible to provide an annular stator and motor that can reduce the manufacturing cost and work load. In addition, according to the exemplary present invention, it is possible to provide an annular stator manufacturing method capable of reducing the cost and the work load.
図1は、本発明の実施形態に係るモータの構成を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing a configuration of a motor according to an embodiment of the present invention. 図2は、本発明の実施形態に係る環状のステータの構成を示す概略平面図である。FIG. 2 is a schematic plan view showing the configuration of the annular stator according to the embodiment of the present invention. 図3は、図2に示すステータから導線を取り除いた概略平面図である。FIG. 3 is a schematic plan view of the stator shown in FIG. 図4は、図3のA-A位置における概略断面図である。FIG. 4 is a schematic cross-sectional view at the position AA in FIG. 図5は、インシュレータで覆われた1つの分割コアを拡大して示す概略平面図である。FIG. 5 is an enlarged schematic plan view showing one divided core covered with an insulator. 図6は、図5におけるインシュレータを取り除いた分割コアを示す概略平面図である。FIG. 6 is a schematic plan view showing the split core from which the insulator in FIG. 5 is removed. 図7は、本発明の実施形態に係る環状のステータの製造方法が有する第1の工程を説明するための概略平面図である。FIG. 7 is a schematic plan view for explaining a first step of the manufacturing method of the annular stator according to the embodiment of the present invention. 図8は、本発明の実施形態に係る環状のステータの製造方法が有する第2の工程を説明するための概略平面図である。FIG. 8 is a schematic plan view for explaining a second step of the manufacturing method of the annular stator according to the embodiment of the present invention. 図9は、本発明の実施形態に係る環状のステータの製造方法が有する第3の工程を説明するための概略平面図である。FIG. 9 is a schematic plan view for explaining a third step of the method for manufacturing the annular stator according to the embodiment of the present invention. 図10は、図9に示す直線状のステータの一端部側をB方向に沿って見た概略拡大図である。FIG. 10 is a schematic enlarged view of one end of the linear stator shown in FIG. 9 as viewed along the B direction. 図11は、第3の工程の好ましい態様を説明するための概略平面図である。FIG. 11 is a schematic plan view for explaining a preferred embodiment of the third step. 図12は、本発明の実施形態に係る環状のステータの製造方法が有する第4の工程を説明するための概略平面図である。FIG. 12 is a schematic plan view for explaining a fourth step of the method for manufacturing an annular stator according to the embodiment of the present invention. 図13は、本発明の実施形態に係る環状のステータの第1変形例を説明するための概略図である。FIG. 13 is a schematic diagram for explaining a first modification of the annular stator according to the embodiment of the present invention. 図14は、本発明の実施形態に係る環状のステータの第2変形例を説明するための概略平面図である。FIG. 14 is a schematic plan view for explaining a second modification of the annular stator according to the embodiment of the present invention. 図15は、第2変形例のステータの第1構成例を示す部分的な模式図である。FIG. 15 is a partial schematic diagram illustrating a first configuration example of a stator according to a second modification. 図16は、第2変形例のステータの第2構成例を示す部分的な模式図である。FIG. 16 is a partial schematic diagram illustrating a second configuration example of the stator according to the second modification. 図17は、第2変形例のステータの第3構成例を示す部分的な模式図である。FIG. 17 is a partial schematic diagram illustrating a third configuration example of the stator according to the second modification. 図18は、第2変形例のステータの第4構成例を示す部分的な模式図である。FIG. 18 is a partial schematic diagram illustrating a fourth configuration example of the stator according to the second modification. 図19は、第2変形例のステータの第5構成例を示す部分的な模式図である。FIG. 19 is a partial schematic diagram illustrating a fifth configuration example of the stator according to the second modification. 図20は、第2変形例のステータの第6構成例を示す部分的な模式図である。FIG. 20 is a partial schematic diagram illustrating a sixth configuration example of the stator according to the second modification.
 以下、本発明の例示的な実施形態について、図面を参照しながら詳細に説明する。なお、本明細書では、モータの中心軸CA(図1参照)の方向を単に「軸方向」と呼び、モータの中心軸CAを中心とする径方向及び周方向を単に「径方向」及び「周方向」と呼ぶことにする。同様にして、ステータについても、モータ内に組み込まれた状態においてモータの軸方向、径方向及び周方向と一致する方向を単に「軸方向」、「径方向」及び「周方向」と呼ぶことにする。 Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. In this specification, the direction of the central axis CA (see FIG. 1) of the motor is simply referred to as “axial direction”, and the radial direction and the circumferential direction around the central axis CA of the motor are simply “radial direction” and “ It will be called “circumferential direction”. Similarly, with regard to the stator, the directions that coincide with the axial direction, radial direction, and circumferential direction of the motor when incorporated in the motor are simply referred to as “axial direction”, “radial direction”, and “circumferential direction”. To do.
<1.モータの構成>
 まず、本発明の例示的な実施形態に係るモータの概略構成について説明する。図1は、本発明の実施形態に係るモータ1の構成を示す概略断面図である。図1は、モータ1の中心軸CAを含む切断面で切断した断面図である。図1に示すモータ1は、空気調和機の室外機が有するアウターロータ型のファンモータである。
<1. Motor configuration>
First, a schematic configuration of a motor according to an exemplary embodiment of the present invention will be described. FIG. 1 is a schematic cross-sectional view showing a configuration of a motor 1 according to an embodiment of the present invention. FIG. 1 is a cross-sectional view taken along a cutting plane including the central axis CA of the motor 1. A motor 1 shown in FIG. 1 is an outer rotor type fan motor included in an outdoor unit of an air conditioner.
 モータ1は、環状のステータ3を含む静止部2を有する。ステータ3はモータ1の電機子である。モータ1が有するステータ3の詳細については後述する。静止部2は、ステータ3の少なくとも一部を覆う樹脂製のケーシング4を有する。ケーシング4は、例えばインサート成型によってステータ3と一体化される。ケーシング4は、後述のシャフト71を回転可能に支持する軸受部5を保持する。軸受部5は、特に形態を限定する趣旨ではないが、例えばボールベアリング又はスリーブ軸受等によって構成される。ケーシング4の外面には、ステータ3と軸方向に対向する回路基板6が固定される。回路基板6には、ステータ3に駆動電流を供給するための電子回路が形成される。回路基板6の中央部には、シャフト71を挿通する開口が形成されている。 The motor 1 has a stationary part 2 including an annular stator 3. The stator 3 is an armature of the motor 1. Details of the stator 3 of the motor 1 will be described later. The stationary part 2 has a resin casing 4 that covers at least a part of the stator 3. The casing 4 is integrated with the stator 3 by insert molding, for example. The casing 4 holds a bearing portion 5 that rotatably supports a shaft 71 described later. The bearing portion 5 is not particularly limited in form, but is configured by, for example, a ball bearing or a sleeve bearing. A circuit board 6 facing the stator 3 in the axial direction is fixed to the outer surface of the casing 4. An electronic circuit for supplying a drive current to the stator 3 is formed on the circuit board 6. An opening through which the shaft 71 is inserted is formed at the center of the circuit board 6.
 モータ1は回転部7を有する。回転部7はシャフト71を有する。シャフト71は、軸方向に延びる柱状の部材である。シャフト71は、例えばステンレス等の金属で形成される。シャフト71は、軸受部5に支持されて中心軸CAを中心として回転する。回転部7は、複数のマグネット73を保持するロータ72を有する。ロータ72は、シャフト71に対して固定され、シャフト71とともに回転する。ロータ72は、円筒部72aを有し、ステータ3の外周を囲む。複数のマグネット73は、円筒部72aの内周面に固定される。複数のマグネット73は、ステータ3の径方向外側に位置する。複数のマグネット73は周方向に等間隔に配列され、N極の磁極面とS極の磁極面とが交互に並ぶ。なお、複数のマグネット73に代えて、N極とS極とが周方向に交互に着磁された1つの円環状のマグネットが使用されてもよい。 The motor 1 has a rotating part 7. The rotating unit 7 has a shaft 71. The shaft 71 is a columnar member extending in the axial direction. The shaft 71 is made of a metal such as stainless steel. The shaft 71 is supported by the bearing portion 5 and rotates about the central axis CA. The rotating unit 7 includes a rotor 72 that holds a plurality of magnets 73. The rotor 72 is fixed with respect to the shaft 71 and rotates together with the shaft 71. The rotor 72 has a cylindrical portion 72 a and surrounds the outer periphery of the stator 3. The plurality of magnets 73 are fixed to the inner peripheral surface of the cylindrical portion 72a. The plurality of magnets 73 are located on the radially outer side of the stator 3. The plurality of magnets 73 are arranged at equal intervals in the circumferential direction, and N pole magnetic pole faces and S pole magnetic pole faces are alternately arranged. Instead of the plurality of magnets 73, one annular magnet in which N poles and S poles are alternately magnetized in the circumferential direction may be used.
 ロータ72の外周面には、複数の羽根8が設けられる。複数の羽根8は、ロータ72と同一部材とされ、ロータ72とともに回転する。複数の羽根8は、ロータ72と別部材であってもよい。 A plurality of blades 8 are provided on the outer peripheral surface of the rotor 72. The plurality of blades 8 are the same member as the rotor 72 and rotate together with the rotor 72. The plurality of blades 8 may be separate members from the rotor 72.
<2.ステータの構成>
 本発明の例示的な実施形態に係るモータ1用の環状のステータ3の構成について更に詳細に説明する。ステータ3は、中心軸CAを中心に環状に配置される。図2は、本発明の実施形態に係る環状のステータ3の構成を示す概略平面図である。図2を参照して、ステータ3は、複数の分割コア30と、インシュレータ31と、導線32と、を有する。図3は、図2に示すステータから導線32を取り除いた概略平面図である。図4は、図3のA-A位置における概略断面図である。図5は、インシュレータ31で覆われた1つの分割コア30を拡大して示す概略平面図である。図6は、図5におけるインシュレータ31を取り除いた分割コア30を示す概略平面図である。
<2. Structure of stator>
The structure of the annular stator 3 for the motor 1 according to an exemplary embodiment of the present invention will be described in more detail. The stator 3 is arranged in an annular shape around the central axis CA. FIG. 2 is a schematic plan view showing the configuration of the annular stator 3 according to the embodiment of the present invention. Referring to FIG. 2, stator 3 includes a plurality of split cores 30, an insulator 31, and a conducting wire 32. FIG. 3 is a schematic plan view of the stator shown in FIG. 2 with the conducting wire 32 removed. FIG. 4 is a schematic cross-sectional view at the position AA in FIG. FIG. 5 is an enlarged schematic plan view showing one divided core 30 covered with the insulator 31. FIG. 6 is a schematic plan view showing the split core 30 from which the insulator 31 in FIG. 5 is removed.
 複数の分割コア30は互いに分割されている。本例では分割コア30の数は12個であるが、これは例示にすぎず、分割コア30の数は適宜変更されてもよい。各分割コア30は磁性体よりなる。図6を参照して、分割コア30は、周方向に延びるヨーク部301を有する。分割コア30は、ヨーク部301から径方向外方に突出して導線32が巻回されるティース部302を有する。詳細には、ティース部302は、ヨーク部301から径方向に延び、導線32が巻回されるティース基部302aを有する。ティース部302は、ティース基部302aの先端に設けられて周方向に延びるティース先端部302bを有する。 The plurality of divided cores 30 are divided from each other. In this example, the number of divided cores 30 is twelve, but this is merely an example, and the number of divided cores 30 may be changed as appropriate. Each divided core 30 is made of a magnetic material. With reference to FIG. 6, the split core 30 has a yoke portion 301 extending in the circumferential direction. The split core 30 has a teeth portion 302 that protrudes radially outward from the yoke portion 301 and is wound with a conducting wire 32. Specifically, the tooth portion 302 has a teeth base portion 302a that extends in the radial direction from the yoke portion 301 and around which the conductive wire 32 is wound. The teeth portion 302 has a tooth tip portion 302b provided at the tip of the tooth base portion 302a and extending in the circumferential direction.
 図2及び図3を参照して、複数の分割コア30は周方向に配列される。隣り合うヨーク部301は互いに固定される。詳細には、隣り合うヨーク部301は、周方向端面が互いに接触する。各ヨーク部301の一方の周方向端面には突出部301aが形成される。各ヨーク部301の他方の周方向端面には凹部301bが形成される。隣り合うヨーク部301の突出部301aと凹部301bとが互いに係合する。これにより、隣り合う分割コア30が径方向及び周方向に位置ずれを起こすことを防止できる。 2 and 3, the plurality of divided cores 30 are arranged in the circumferential direction. Adjacent yoke portions 301 are fixed to each other. Specifically, the adjacent yoke portions 301 are in contact with each other at their circumferential end surfaces. A protruding portion 301 a is formed on one circumferential end surface of each yoke portion 301. A concave portion 301 b is formed on the other circumferential end surface of each yoke portion 301. The protruding portion 301a and the recessed portion 301b of the adjacent yoke portions 301 are engaged with each other. Thereby, it can prevent that the division | segmentation core 30 which adjoins raise | generates a positional shift in radial direction and the circumferential direction.
 本実施形態では、突出部301aは平面視において略台形状に形成される。凹部301aは、突出部301aの形状に対応した形状とされる。ただし、本実施形態における突出部301a及び凹部301bの形状は例示にすぎない。突出部301a及び凹部301bの形状は、分割コア30の位置ずれ防止をできる形状あればよく、その形状は適宜変更されてよい。例えば、突出部301aは平面視おいて略半円形状等とされてもよい。 In the present embodiment, the protruding portion 301a is formed in a substantially trapezoidal shape in plan view. The recess 301a has a shape corresponding to the shape of the protrusion 301a. However, the shapes of the protrusions 301a and the recesses 301b in this embodiment are merely examples. The shape of the protrusion part 301a and the recessed part 301b should just be a shape which can prevent the position shift of the division | segmentation core 30, and the shape may be changed suitably. For example, the protrusion 301a may have a substantially semicircular shape in plan view.
 図2及び図3を参照して、インシュレータ31は、分割コア30の少なくとも一部を覆う。インシュレータ31は、分割コア30と導線32とを電気的に絶縁する樹脂製の絶縁部材である。インシュレータ31は、隣り合う分割コア30を互いに連結する連結片部310を有する。連結片部310は薄肉であるのが好ましい。これにより、連結片部310の折り曲げを容易に行うことができる。 2 and 3, the insulator 31 covers at least a part of the divided core 30. The insulator 31 is a resin insulating member that electrically insulates the split core 30 from the conductive wire 32. The insulator 31 has a connecting piece portion 310 that connects adjacent split cores 30 to each other. The connecting piece 310 is preferably thin. Thereby, the connection piece part 310 can be bent easily.
 なお、ステータ3は、隣り合う分割コア30が連結片部310で繋がっていない箇所を少なくとも一つ有する。本例では、隣り合う分割コア30が連結片部310で繋がっていない箇所Pは一つである。連結片部310によって繋がらない箇所Pの発生は、環状のステータ3が直線状のステータを折り曲げて得られることに由来する。ステータ3の製造方法については後述する。 Note that the stator 3 has at least one location where the adjacent split cores 30 are not connected by the connecting piece portion 310. In this example, there is one location P where the adjacent split cores 30 are not connected by the connecting piece portion 310. Generation | occurrence | production of the location P which is not connected by the connection piece part 310 originates in the cyclic | annular stator 3 being obtained by bending a linear stator. A method for manufacturing the stator 3 will be described later.
 図4及び図5を参照して、インシュレータ31は、ヨーク部301の少なくとも一部を覆うヨークカバー部311を有する。インシュレータ31は、ティース部302の少なくとも一部を覆うティースカバー部312を有する。ヨークカバー部311及びティースカバー部312は、各分割コア30に対して設けられる。ティースカバー部312は、ティース基部302aの少なくとも一部を覆うティース基部カバー部312aを有する。ティースカバー部312は、ティース先端部302bの少なくとも一部を覆うティース先端カバー部312bを有する。 4 and 5, the insulator 31 has a yoke cover portion 311 that covers at least a part of the yoke portion 301. The insulator 31 has a teeth cover portion 312 that covers at least a part of the teeth portion 302. The yoke cover portion 311 and the tooth cover portion 312 are provided for each divided core 30. The teeth cover portion 312 has a teeth base cover portion 312a that covers at least a part of the teeth base portion 302a. The teeth cover portion 312 has a teeth tip cover portion 312b that covers at least a part of the teeth tip portion 302b.
 連結片部310は、好ましくは、隣り合うティースカバー部312の間に位置する。本例では、より好ましい態様として、連結片部310は隣り合うティース先端カバー部312bの間に位置する。この構成では、連結片部310の位置が径方向先端側になるために、導線32を巻き回すスペースを多く確保することができる。 The connecting piece portion 310 is preferably located between adjacent tooth cover portions 312. In this example, as a more preferable aspect, the connecting piece portion 310 is located between the adjacent tooth tip cover portions 312b. In this configuration, since the position of the connecting piece portion 310 is on the distal end side in the radial direction, a large space for winding the conducting wire 32 can be secured.
 図2及び図3を参照して、ステータ3は、環状の固定リング33を有する。詳細には、環状の固定リング33は円環状である。図4及び図5を参照して、ヨークカバー部311には、固定リング33が挿入される挿入部313が形成される。詳細には、ヨークカバー部311には、軸方向に延びる略円弧状の第1のリング用壁部313aが形成される。ヨークカバー部311には、第1のリング用壁部313aより径方向外方に設けられ、軸方向に延びる略円弧状の第2のリング用壁部313bが形成される。挿入部313は、第1のリング用壁部313aと第2のリング用壁部313bとの間に形成される空間部である。 Referring to FIGS. 2 and 3, the stator 3 has an annular fixing ring 33. Specifically, the annular fixing ring 33 is annular. 4 and 5, the yoke cover portion 311 is formed with an insertion portion 313 into which the fixing ring 33 is inserted. Specifically, the yoke cover portion 311 is formed with a first arc wall portion 313a having a substantially arc shape extending in the axial direction. The yoke cover portion 311 is formed with a second ring wall portion 313b having a substantially arc shape that is provided radially outward from the first ring wall portion 313a and extends in the axial direction. The insertion portion 313 is a space portion formed between the first ring wall portion 313a and the second ring wall portion 313b.
 隣り合うヨーク部301の周方向端面が互いに接触した状態において、各挿入部313の端部が互いに繋がり、円環状の空間部が形成される。この空間部に固定リング33が挿入されることによって、ステータ3の高い真円度を確保することができる。なお、本実施形態では、分割コア30を基準として軸方向の両側に挿入部313が形成される。両方の挿入部313に固定リング33が挿入されてもよいし、片方の挿入部313のみに固定リング33が挿入されてもよい。片方のみに固定リング33が挿入される場合には、軸方向の片側にのみ挿入部313を形成してよい。 In a state where the circumferential end surfaces of the adjacent yoke portions 301 are in contact with each other, the end portions of the insertion portions 313 are connected to each other to form an annular space portion. By inserting the fixing ring 33 into this space, high roundness of the stator 3 can be ensured. In the present embodiment, the insertion portions 313 are formed on both sides in the axial direction with the split core 30 as a reference. The fixing ring 33 may be inserted into both the insertion portions 313, or the fixing ring 33 may be inserted into only one of the insertion portions 313. When the fixing ring 33 is inserted into only one side, the insertion portion 313 may be formed only on one side in the axial direction.
 導線32は、例えばエナメル被覆銅線等、絶縁部材で被覆された金属線で構成される。導線32は、分割コア30にインシュレータ31を介して巻回される。詳細には、導線32は、複数の分割コア30のそれぞれに巻回される巻線部321を有する。導線32は、複数の巻線部321の間を中継する渡り線部322(後述の図10参照)を有する。巻線部321は、ティース基部カバー部312aを介してティース基部302aに巻回される。渡り線部322は、各分割コア30の径方向外側寄りに配線される。導線32に駆動電流を供給すれば、分割コア30に径方向の磁束が発生する。これを利用して、回転部7に周方向のトルクを発生させ、回転軸CAを中心として回転部7を回転させることができる。 The conducting wire 32 is composed of a metal wire covered with an insulating member such as an enamel-coated copper wire. The conducting wire 32 is wound around the split core 30 via an insulator 31. Specifically, the conducting wire 32 has a winding portion 321 wound around each of the plurality of split cores 30. The conducting wire 32 has a crossover portion 322 (see FIG. 10 described later) that relays between the plurality of winding portions 321. Winding portion 321 is wound around teeth base portion 302a via teeth base cover portion 312a. The crossover portion 322 is wired on the radially outer side of each divided core 30. When a drive current is supplied to the conducting wire 32, a radial magnetic flux is generated in the split core 30. By utilizing this, a torque in the circumferential direction can be generated in the rotating unit 7 and the rotating unit 7 can be rotated about the rotation axis CA.
 なお、詳細には、モータ1は3相モータである。このために、導線32はU相、V相、W相に対応した3種類の導線を含む。各相の導線32は、環状に配置される複数の分割コア30に順番に巻回される。すなわち、各相の導線32は、環状に配置される複数の分割コア30に2つおきに巻回される。 In detail, the motor 1 is a three-phase motor. For this reason, the conducting wire 32 includes three types of conducting wires corresponding to the U phase, the V phase, and the W phase. The conducting wire 32 of each phase is wound around the plurality of divided cores 30 arranged in a ring in order. That is, every two conducting wires 32 of each phase are wound around a plurality of divided cores 30 arranged in an annular shape.
 図4及び図5を参照して、ティース先端カバー部312bは、軸方向に延びるティース先端壁部314を有する。詳細には、ティース先端壁部314は、分割コア30を基準として、軸方向の両方の向きに突出している。ティース先端壁部314の径方向外側の面には、渡り線部322が配線される渡り線溝部314aが形成される。図4に示す例では、渡り線溝部314aは、2方向に突出するティース先端壁部314の一方にのみ形成される。渡り線溝部314aは、軸方向に間隔をあけて3つ設けられる。これにより、各相の導線32を分離して配置でき、各相の導線32が短絡するのを防ぐ。 4 and 5, the tooth tip cover portion 312b has a tooth tip wall portion 314 extending in the axial direction. Specifically, the teeth tip wall portion 314 protrudes in both axial directions with respect to the split core 30. A connecting wire groove portion 314 a to which the connecting wire portion 322 is wired is formed on the radially outer surface of the tooth tip wall portion 314. In the example shown in FIG. 4, the crossover groove portion 314 a is formed only on one side of the tooth tip wall portion 314 protruding in two directions. Three crossover groove portions 314a are provided at intervals in the axial direction. Thereby, the conducting wire 32 of each phase can be arrange | positioned separately, and it prevents that the conducting wire 32 of each phase short-circuits.
 なお、ティース先端壁部314は、各分割コア30に設けられる。各ティース先端壁部314に設ける渡り線溝部314aの数は全て同じでもよい。また、別の態様として、各ティース先端壁部314に設ける渡り線溝部314aの数は、分割コア30の周方向の位置に応じて変更されてもよい。 Note that the tooth tip wall portion 314 is provided in each divided core 30. The number of crossover groove portions 314a provided on each tooth tip wall portion 314 may be the same. As another aspect, the number of crossover groove portions 314 a provided in each tooth tip wall portion 314 may be changed according to the circumferential position of the split core 30.
 図4及び図5を参照して、ティース先端壁部314の軸方向端部には、端子ピン34が設けられる。詳細には、2方向に突出するティース先端壁部314のうち、渡り線溝部314aが形成されない側に端子ピン34が設けられる。端子ピン34は、ティース先端壁部314の軸方向の先端面に設けられる端子孔314bに挿入される。導線32は端子ピン34と接続される。なお、本例では、端子ピン34は、U相、V相、W相の3相及びコモンに対応して4つ設けられる。すなわち、本例では、複数のティース先端壁部314のうち、4つのティース先端壁部314に端子ピン34が設けられ、他のティース先端壁部314には端子ピン34は設けられていない。 4 and 5, a terminal pin 34 is provided at the axial end of the tooth tip wall 314. As shown in FIG. In detail, the terminal pin 34 is provided in the side in which the crossover groove part 314a is not formed among the teeth front-end | tip wall parts 314 which protrude in two directions. The terminal pin 34 is inserted into a terminal hole 314 b provided in the axial front end surface of the tooth front end wall portion 314. The conducting wire 32 is connected to the terminal pin 34. In this example, four terminal pins 34 are provided corresponding to the U-phase, V-phase, and W-phase three phases and the common. That is, in this example, among the plurality of tooth tip wall portions 314, the terminal pins 34 are provided on the four tooth tip wall portions 314, and the terminal pins 34 are not provided on the other tooth tip wall portions 314.
 本実施形態では、渡り線部322が配置される箇所の近くに端子ピン34が設けられる。このために、導線32の引き回しを効率良く行うことができる。端子ピン34は、モータ1が有する回路基板6(図1参照)に接続される。なお、端子ピン34は、渡り線溝部314aが設けられる側と同じ側に設けられてもよい。この場合、ティース先端壁部314は、分割コア30を基準として、軸方向の片側にのみ突出する構成としてよい。 In this embodiment, the terminal pin 34 is provided near the place where the crossover portion 322 is disposed. For this reason, the conducting wire 32 can be efficiently routed. The terminal pins 34 are connected to the circuit board 6 (see FIG. 1) of the motor 1. The terminal pin 34 may be provided on the same side as the side on which the crossover groove 314a is provided. In this case, the tooth front end wall portion 314 may be configured to protrude only on one side in the axial direction with the split core 30 as a reference.
 複数の分割コア30のそれぞれは、インシュレータ31に覆われることなく露出する露出部35~38を有する。第1の露出部35は、ヨーク部301の周方向の両端面を露出させる。これにより、プレス成型によって作製した突出部301aと凹部301bとを嵌め合せることができる。プレス成型の方が樹脂成型に比べて精度良く凹凸を形成することができるために、突出部301aと凹部301bとの嵌め合せ精度を向上できる。 Each of the plurality of divided cores 30 has exposed portions 35 to 38 that are exposed without being covered by the insulator 31. The first exposed portion 35 exposes both end surfaces of the yoke portion 301 in the circumferential direction. Thereby, the protrusion part 301a produced by press molding and the recessed part 301b can be fitted. Since press molding can form irregularities with higher accuracy than resin molding, the fitting accuracy between the protrusion 301a and the recess 301b can be improved.
 第2の露出部36は、ティース先端部302bの周方向の両端部を露出させる。この構成を採用する効果については後述する。第3の露出部37は、ティース先端部302bの径方向の端面を露出させる。これにより、ステータ3とマグネット73との距離を近づけることができ、モータ効率を向上させることができる。 The second exposed portion 36 exposes both end portions in the circumferential direction of the tooth tip portion 302b. The effect of adopting this configuration will be described later. The third exposed portion 37 exposes the radial end surface of the tooth tip portion 302b. Thereby, the distance of the stator 3 and the magnet 73 can be shortened, and motor efficiency can be improved.
 第4の露出部38は、分割コア30の少なくとも一方の軸方向端面を露出させる。本例では、詳細には、第4の露出部38は、ヨーク部301及びティース先端部302bの軸方向の両端面の一部を露出させる。この構成によれば、インシュレータ31を分割コア30に対してインサート成型する際に、金型を位置決めする場所を確保することができる。 The fourth exposed portion 38 exposes at least one axial end surface of the split core 30. Specifically, in the present example, the fourth exposed portion 38 exposes part of both end surfaces in the axial direction of the yoke portion 301 and the tooth tip portion 302b. According to this structure, when insert-molding the insulator 31 with respect to the split core 30, the place which positions a metal mold | die can be ensured.
 以上の構成の環状のステータ3においては、複数の分割コア30がインシュレータ31によって連結される。詳細には、複数の分割コア30が折り曲げ易い樹脂製の連結片部310で連結される。このために、ステータ3及びモータ1は、製造時のコスト及び作業負担を低減することができる。また、複数のティース部302は互いに分離されているために、隣り合うティース部302の間で磁束漏れが生じることを抑制できる。 In the annular stator 3 having the above configuration, a plurality of divided cores 30 are connected by an insulator 31. Specifically, the plurality of split cores 30 are connected by a connecting piece 310 made of resin that is easy to bend. For this reason, the stator 3 and the motor 1 can reduce the manufacturing cost and work load. Moreover, since several teeth part 302 is isolate | separated from each other, it can suppress that magnetic flux leakage arises between the adjacent teeth parts 302. FIG.
<3.ステータの製造方法>
 次に、本発明の例示的な実施形態に係る環状のステータ3の製造方法について説明する。図7は、本発明の実施形態に係る環状のステータ3の製造方法が有する第1の工程を説明するための概略平面図である。環状のステータ3の製造にあたっては、まず、磁性鋼板を積層して複数(本例では12個)の分割コア30を形成する第1の工程が行われる。磁性鋼板としては、例えばケイ素鋼板等が挙げられる。磁性鋼板は軸方向に積層される。分割コア30の形成にはプレス加工が用いられる。複数の分割コア30は、1つずつ別々に形成されてもよいし、複数個纏めて形成されてもよい。形成された複数の分割コア30は、同一の向きに配置されて直線状に並べられる(図7参照)。
<3. Manufacturing method of stator>
Next, a method for manufacturing the annular stator 3 according to an exemplary embodiment of the present invention will be described. FIG. 7 is a schematic plan view for explaining a first step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention. In manufacturing the annular stator 3, first, a first process is performed in which magnetic steel plates are laminated to form a plurality (12 in this example) of divided cores 30. Examples of magnetic steel plates include silicon steel plates. Magnetic steel plates are laminated in the axial direction. Pressing is used to form the split core 30. The plurality of divided cores 30 may be formed separately one by one or may be formed collectively. The formed divided cores 30 are arranged in the same direction and arranged in a straight line (see FIG. 7).
 図8は、本発明の実施形態に係る環状のステータ3の製造方法が有する第2の工程を説明するための概略平面図である。第1の工程の後、複数の分割コア30をインシュレータ31によって覆うとともに連結する第2の工程が行われる。第2の工程により、複数の分割コア30が直線状に繋がった連結コア9が形成される。複数の分割コア30は、連結片部310によって連結される。連結片部310は、隣り合うティースカバー部312の間に配置されて隣り合う分割コア30を互いに連結する。より詳細には、連結片部310は、隣り合うティース先端カバー部312bの間に配置される。 FIG. 8 is a schematic plan view for explaining a second step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention. After the first step, a second step of covering and connecting the plurality of split cores 30 with the insulator 31 is performed. By the second step, the connecting core 9 in which the plurality of divided cores 30 are connected in a straight line is formed. The plurality of split cores 30 are connected by a connecting piece portion 310. The connecting piece portion 310 is disposed between the adjacent tooth cover portions 312 and connects the adjacent divided cores 30 to each other. More specifically, the connecting piece portion 310 is disposed between the adjacent tooth tip cover portions 312b.
 複数の分割コア30は、樹脂によってインサート成型されてインシュレータ31に覆われてよい。ただし、複数の分割コア30とインシュレータ31とを一体化する手法は、インサート成型以外の方法が用いられてもよい。例えば、インシュレータを2つの部材で構成し、当該2つの部材で複数の分割コア30を挟み込む手法等が用いられてよい。2つの部材の結合は、固定部材が用いられてもよいし、スナップフィット等の嵌め合い構造が用いられてもよい。固定部材には、ネジ等の締結具の他、接着剤が含まれてよい。 The plurality of split cores 30 may be insert-molded with resin and covered with the insulator 31. However, as a method for integrating the plurality of split cores 30 and the insulator 31, a method other than insert molding may be used. For example, a method in which an insulator is constituted by two members and a plurality of split cores 30 are sandwiched between the two members may be used. For the connection of the two members, a fixing member may be used, or a fitting structure such as a snap fit may be used. The fixing member may include an adhesive in addition to a fastener such as a screw.
 図9は、本発明の実施形態に係る環状のステータ3の製造方法が有する第3の工程を説明するための概略平面図である。第2の工程の後、直線状の連結コア9の各分割コア30に、インシュレータ31を介して導線32を巻回する第3の工程が行われる。詳細には、導線32は、ティースカバー部312を介してティース部302に巻回される。より詳細には、導線32は、ティース基部カバー部312aを介してティース基部302aに巻回される。導線32の巻き付けを完了することによって直線状のステータ3´が得られる。 FIG. 9 is a schematic plan view for explaining a third step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention. After the second step, a third step of winding the conducting wire 32 around each split core 30 of the linear connecting core 9 via the insulator 31 is performed. Specifically, the conductive wire 32 is wound around the tooth portion 302 via the tooth cover portion 312. More specifically, the conducting wire 32 is wound around the teeth base 302a via the teeth base cover 312a. By completing the winding of the conducting wire 32, a linear stator 3 'is obtained.
 本実施形態では、導線32はU相、V相、W相に対応して3種類の導線を含む。図10は、図9に示す直線状のステータ3´の一端部側をB方向に沿って見た概略拡大図である。各相の導線32は、まず、最初の分割コア30に、ヨーク部301からティース部302の先端部に向かう方向に巻き付けられる。これにより、各相の導線32において、最初の巻線部321が形成される。ティース部302の先端部側に引き出された渡り線部322は、渡り線溝部314aに配線される。これにより、各相の導線32は、次の分割コア30に供給される。2つの目の分割コア30においても、各相の導線32は、最初の分割コア30と同様にして巻き付けられる。この操作を繰り返して最後の巻線部321が巻き付けられた後、各相の導線32の先端部は各端子ピン34に巻き付けられる。各端子ピン34への導線32の固定には、例えば半田接合が利用される。半田接合により、導線32と端子ピン34との電気的な接続が得られる。 In this embodiment, the conducting wire 32 includes three types of conducting wires corresponding to the U phase, the V phase, and the W phase. FIG. 10 is a schematic enlarged view of one end portion of the linear stator 3 ′ shown in FIG. 9 as viewed along the B direction. The conducting wire 32 of each phase is first wound around the first split core 30 in the direction from the yoke portion 301 toward the tip portion of the tooth portion 302. Thereby, the first winding part 321 is formed in the conducting wire 32 of each phase. The connecting wire portion 322 drawn to the tip end side of the tooth portion 302 is wired to the connecting wire groove portion 314a. Thereby, the conducting wire 32 of each phase is supplied to the next split core 30. Also in the second split core 30, the lead wires 32 of each phase are wound in the same manner as the first split core 30. After this operation is repeated and the last winding portion 321 is wound, the leading end portion of the conducting wire 32 of each phase is wound around each terminal pin 34. For example, solder bonding is used to fix the lead wires 32 to the terminal pins 34. Electrical connection between the conductive wire 32 and the terminal pin 34 is obtained by soldering.
 図11は、第3の工程の好ましい態様を説明する概略平面図である。第3の工程において、連結コア9には、ティース部302の先端部側に配置されて連結コア9を直線状に維持する固定具10が取り付けられるのが好ましい。これにより、導線32を安定した状態で各分割コア30に巻き付けることができる。固定具10は、例えば導線32を各分割コア30に巻き付けるための巻線機の一部であってよい。 FIG. 11 is a schematic plan view for explaining a preferred mode of the third step. In the third step, the connecting core 9 is preferably attached with a fixture 10 that is disposed on the tip end side of the tooth portion 302 and maintains the connecting core 9 in a straight line. Thereby, the conducting wire 32 can be wound around each division | segmentation core 30 in the stable state. The fixture 10 may be a part of a winding machine for winding the conducting wire 32 around each divided core 30, for example.
 固定具10は、隣り合う2つのティース部302と連結片部310とに囲まれる空間部11に係合する爪部10aを有する。詳細には、爪部10aは、2つのティース先端部302bの第3の露出部36に挟まれる。すなわち、爪部10aはプレス成型によって形成される部材によって挟むことができる。プレス成型の方が樹脂成型に比べて精度が良いために、固定具10による連結コア9の固定を精度良く行うことができる。 The fixture 10 has a claw portion 10 a that engages with a space portion 11 surrounded by two adjacent tooth portions 302 and a connecting piece portion 310. Specifically, the claw portion 10a is sandwiched between the third exposed portions 36 of the two tooth tip portions 302b. That is, the nail | claw part 10a can be pinched | interposed by the member formed by press molding. Since the press molding is more accurate than the resin molding, the connecting core 9 can be fixed with the fixing tool 10 with high accuracy.
 第3の工程の後、導線32が巻回された直線状のステータ3´を環状にする第4の工程が行われる。詳細には、ヨーク部301が径方向内側に向けられて、直線状のステータ3´が環状に折り曲げられる。環状に折り曲げながら、突出部301aと凹部301bとを嵌め合わすことができ、容易に環状を維持できる。図12は、本発明の実施形態に係る環状のステータ3の製造方法が有する第4の工程を説明するための概略平面図である。凹部301bの湾曲部301baが支点となって、矢印C方向に分割コア30が移動する。このために、突出部301aと凹部301bとを容易に嵌め合せることができる。 After the third step, a fourth step is performed in which the linear stator 3 ′ around which the conducting wire 32 is wound is formed into an annular shape. Specifically, the yoke portion 301 is directed radially inward, and the linear stator 3 ′ is bent in an annular shape. The protrusion 301a and the recess 301b can be fitted together while being bent in an annular shape, and the annular shape can be easily maintained. FIG. 12 is a schematic plan view for explaining a fourth step of the method for manufacturing the annular stator 3 according to the embodiment of the present invention. The split core 30 moves in the direction of arrow C with the curved portion 301ba of the recess 301b serving as a fulcrum. For this reason, the protrusion part 301a and the recessed part 301b can be easily fitted.
 連結片部310が折り曲げ易い樹脂によって形成されているために、直線状のステータ3´を容易に折り曲げることができる。渡り線部322は外周側に配置される。このために、直線状のステータ3´を環状に折り曲げる際に導線32が撓むことを防止できる。 Since the connecting piece 310 is formed of a resin that can be easily bent, the linear stator 3 ′ can be easily bent. The crossover portion 322 is disposed on the outer peripheral side. For this reason, it can prevent that the conducting wire 32 bends, when bending linear stator 3 'cyclically | annularly.
 第4の工程においては、直線状のステータ3´を環状にした後、固定リング33が挿入部313に挿入される。これにより、図2に示す高い真円度を有する環状のステータ3が得られる。なお、ステータ3は、例えばインサート成型によってケーシング4と一体化される。すなわち、ケーシング4は、複数の分割コア30、インシュレータ31及び導線32を覆う。ケーシング4によって各分割コア30が強固に固定されるために、ステータ3の円形を保つことができる。 In the fourth step, the fixing ring 33 is inserted into the insertion portion 313 after the linear stator 3 ′ is formed into an annular shape. Thereby, the annular stator 3 having a high roundness shown in FIG. 2 is obtained. The stator 3 is integrated with the casing 4 by, for example, insert molding. That is, the casing 4 covers the plurality of divided cores 30, the insulator 31, and the conductive wire 32. Since each divided core 30 is firmly fixed by the casing 4, the circular shape of the stator 3 can be maintained.
 本実施形態の環状のステータ3の製造方法では、ステータを形成するコアを分割コア30としている。このために、コアを丸型とする場合に比べて打ち抜き時に不要となる部分を低減することができる。また、コアを丸型とする場合に比べてプレス用の金型やプレス機を小型化することができる。また、隣り合うティース部を電磁鋼板の薄肉部で連結して直線状のコアを形成する場合に比べても、プレス用の金型やプレス機を小型化することができる。更に、分割コア30を直線状に並べて導線32の巻き付けを行うことができるために、巻き付け作業が行い易い。すなわち、本実施形態の環状のステータ3の製造方法によれば、コスト及び作業負担を低減できる。更に、プレス設備を配置するスペースを確保し易くできる。 In the manufacturing method of the annular stator 3 according to the present embodiment, the core forming the stator is the split core 30. For this reason, the part which becomes unnecessary at the time of stamping can be reduced compared with the case where a core is made into a round shape. In addition, the pressing mold and the press can be downsized compared to the case where the core is a round shape. Moreover, even if it adjoins the teeth part with the thin part of an electromagnetic steel plate, and forms a linear core, the metal mold | die for a press and a press machine can be reduced in size. Furthermore, since the divided cores 30 can be arranged in a straight line and the conductive wire 32 can be wound, the winding work is easy to perform. That is, according to the manufacturing method of the annular stator 3 of the present embodiment, the cost and work load can be reduced. Furthermore, it is possible to easily secure a space for arranging the press equipment.
<4.変形例等>
 図13は、本発明の実施形態に係る環状のステータ3の第1変形例を説明するための概略図である。第1変形例においては、ステータ3は隣り合うヨーク部301を連結する連結具12を有する。ヨーク部301には、連結具12を取り付ける取付部301cが形成される。連結具12は、例えばコの字型の部材であってよい。連結具12は、例えば金属や樹脂で形成してよい。取付部301cは、軸方向に延びる孔であってよい。第1変形例の構成によれば、複数の分割コア30が位置ずれを起こす可能性をより低減できる。また、第1変形例の構成は、モールドモータ以外のモータに好適である。
<4. Modified example>
FIG. 13 is a schematic diagram for explaining a first modification of the annular stator 3 according to the embodiment of the present invention. In the first modified example, the stator 3 includes a connector 12 that connects adjacent yoke portions 301. The yoke portion 301 is formed with an attachment portion 301c for attaching the connector 12. The connector 12 may be a U-shaped member, for example. The connector 12 may be formed of, for example, metal or resin. The attachment portion 301c may be a hole extending in the axial direction. According to the configuration of the first modified example, it is possible to further reduce the possibility that the plurality of divided cores 30 are displaced. The configuration of the first modification is suitable for a motor other than a molded motor.
 また、以上においては、環状のステータ3は、1つの直線状のステータ3´を環状に折り曲げることによって得られる構成とした。しかし、これは例示にすぎない。環状のステータ3は、複数の直線状のステータを弧状に折り曲げ、これらを連結することによって得てもよい。なお、この構成の場合には、隣り合う分割コア30が連結片部310で繋がっていない箇所が複数形成される。 In the above description, the annular stator 3 is obtained by bending one linear stator 3 ′ into an annular shape. However, this is only an example. The annular stator 3 may be obtained by bending a plurality of linear stators into an arc shape and connecting them. In the case of this configuration, a plurality of portions where the adjacent split cores 30 are not connected by the connecting piece 310 are formed.
 図14は、本発明の実施形態に係る環状のステータ3の第2変形例を説明するための概略平面図である。図14には、環状のステータ3の一部が拡大して示されている。複数のティース部302のうちの少なくとも1つには、周方向一方側の端部に第1連結部41が設けられる。第1連結部41が設けられるティース部302と周方向一方側において隣り合うティース部302には、第2連結部42が設けられる。第1連結部41と第2連結部42とは連結される。 FIG. 14 is a schematic plan view for explaining a second modification of the annular stator 3 according to the embodiment of the present invention. FIG. 14 shows an enlarged part of the annular stator 3. At least one of the plurality of tooth portions 302 is provided with a first connecting portion 41 at an end portion on one circumferential side. The second connecting portion 42 is provided in the tooth portion 302 adjacent to the tooth portion 302 provided with the first connecting portion 41 on one side in the circumferential direction. The 1st connection part 41 and the 2nd connection part 42 are connected.
 第1連結部41と第2連結部42との連結によって、ステータ3を環状に保つことが可能になる。本変形例では、第1連結部41と第2連結部42とを有する連結構造は、隣り合う分割コア30が連結片部310で繋がっていない箇所Pに設けられる。なお、本変形例の連結構造は、固定リング33によってステータ3の真円度を確保する構成と併用されるのが好ましい。これにより、ステータ3の環状状態をより確実に維持することができる。また、本変形例の連結構造は、隣り合うヨーク部301を連結する連結具12を用いる構成(図13参照)と併用されてよい。また、環状のステータ3が、複数の直線状のステータ3´を弧状に折り曲げ、これらを連結することによって構成される場合、本変形例の連結構造は複数設けられてよい。 It is possible to keep the stator 3 annular by connecting the first connecting portion 41 and the second connecting portion 42. In this modification, the connection structure having the first connection portion 41 and the second connection portion 42 is provided at a location P where the adjacent split cores 30 are not connected by the connection piece portion 310. In addition, it is preferable that the connection structure of this modification is used together with the structure which ensures the roundness of the stator 3 by the fixing ring 33. Thereby, the annular state of the stator 3 can be more reliably maintained. Moreover, the connection structure of this modification may be used in combination with a configuration (see FIG. 13) using the connector 12 that connects adjacent yoke portions 301. Further, when the annular stator 3 is configured by bending a plurality of linear stators 3 ′ in an arc shape and connecting them, a plurality of connection structures of this modification may be provided.
 上述のように、環状のステータ3は、直線状のステータ3´(図9参照)を環状にする第4の工程を行うことによって得られる。本変形例では、直線状のステータ3´の両端部に位置する2つのティース部302のうち、一方に第1連結部41が設けられ、他方に第2連結部42が設けられる。そして、第4の工程において、第1連結部41と第2連結部42とが連結される。これによって、ステータ3を環状に保つことが可能になる。 As described above, the annular stator 3 is obtained by performing the fourth step of making the linear stator 3 ′ (see FIG. 9) annular. In the present modification, the first connecting portion 41 is provided on one of the two teeth portions 302 located at both ends of the linear stator 3 ′, and the second connecting portion 42 is provided on the other. In the fourth step, the first connecting portion 41 and the second connecting portion 42 are connected. This makes it possible to keep the stator 3 annular.
 本変形例では、第1連結部41又は第2連結部42が設けられる2つのティース部302に巻かれる導線32は、それぞれ、巻き始め又は巻き終わりの端部を有する。例えば、第1連結部41が設けられるティース部302は巻き始めの端部を有し、第2連結部42が設けられるティース部302は巻き終わりの端部を有する。導線32は、上述のように、直線状の連結コア9(図8参照)に対して巻かれる。第1連結部41又は第2連結部42が設けられる直線状の連結コア9の端部に、導線32の巻き始め又は巻き終わりの端部が位置する構成とすると、各ティース部302の並び順に従って導線32を順番にティース部302に巻くことができる。すなわち、導線32を巻く作業が複雑になることを避けられる。また、本変形例の構成によると、渡り線部322が、第1連結部41又は第2連結部42が設けられる2つのティース部302に跨って配置されることを避けられる。このために、第1連結部41と第2連結部42とを有する連結構造と、渡り線部322とが干渉することを避けられる。 In this modification, each of the conductive wires 32 wound around the two teeth portions 302 provided with the first connecting portion 41 or the second connecting portion 42 has an end portion at the start or end of winding. For example, the tooth portion 302 provided with the first connecting portion 41 has an end portion at the start of winding, and the tooth portion 302 provided with the second connecting portion 42 has an end portion at the end of winding. As described above, the conducting wire 32 is wound around the linear connecting core 9 (see FIG. 8). Assuming that the end of the winding start or end of winding of the conducting wire 32 is located at the end of the linear connecting core 9 where the first connecting portion 41 or the second connecting portion 42 is provided, the arrangement order of the teeth portions 302 is as follows. Thus, the conducting wire 32 can be wound around the teeth portion 302 in order. That is, it is possible to avoid the operation of winding the conducting wire 32 from becoming complicated. Further, according to the configuration of the present modification, the crossover portion 322 can be avoided from being disposed across the two tooth portions 302 provided with the first connecting portion 41 or the second connecting portion 42. For this reason, it is possible to avoid interference between the connecting structure having the first connecting portion 41 and the second connecting portion 42 and the crossover portion 322.
 本変形例では、第1連結部41又は第2連結部42が設けられる2つのティース部302には、導線32の巻き始め又は巻き終わりの端部と接続される端子ピン34が設けられる。端子ピン34は、詳細には、ティース先端カバー部312bに取り付けられる。本変形例の構成によれば、導線32の巻き始め又は巻き終わりの端部を有するティース部302と、端子ピン34が設けられるティース部302とが一致するために、導線32の端部を簡単に端子ピン34に絡げることができる。 In the present modification, the two teeth portions 302 provided with the first connecting portion 41 or the second connecting portion 42 are provided with terminal pins 34 connected to the end of the winding wire 32 at the start or end of winding. In detail, the terminal pin 34 is attached to the teeth front-end | tip cover part 312b. According to the configuration of the present modified example, since the tooth portion 302 having the winding start or winding end portion of the conducting wire 32 and the teeth portion 302 provided with the terminal pin 34 coincide with each other, the end portion of the conducting wire 32 is simplified. Can be tied to the terminal pin 34.
 以下、第2変形例の構成を更に具体化した構成例を複数示す。 Hereinafter, a plurality of configuration examples in which the configuration of the second modification example is further embodied will be shown.
(A.第1構成例)
 図15は、第2変形例のステータ3の第1構成例を示す部分的な模式図である。図15の上下方向は軸方向と平行であり、図15の上下方向に、分割コア30を構成する複数の磁性鋼板が積層される。この点は、後述の図16~図18、及び、図20についても同様である。
(A. First configuration example)
FIG. 15 is a partial schematic diagram illustrating a first configuration example of the stator 3 according to the second modification. The vertical direction of FIG. 15 is parallel to the axial direction, and a plurality of magnetic steel plates constituting the split core 30 are laminated in the vertical direction of FIG. This also applies to FIGS. 16 to 18 and FIG. 20 described later.
 第1構成例では、第1連結部41及び第2連結部42は、いずれもインシュレータ31に設けられる。換言すると、第1連結部41及び第2連結部42は、ティース部302に直接的に設けられるのではなく、ティース部302に間接的に設けられる。詳細には、第1連結部41及び第2連結部42は、いずれもティース先端カバー部312bに設けられる。本構成例によれば、例えばインシュレータ31の成型時に、2つの連結部41、42を簡単に形成することができる。 In the first configuration example, the first connecting portion 41 and the second connecting portion 42 are both provided in the insulator 31. In other words, the 1st connection part 41 and the 2nd connection part 42 are not provided in the teeth part 302 directly, but are provided in the teeth part 302 indirectly. In detail, both the 1st connection part 41 and the 2nd connection part 42 are provided in the teeth front-end | tip cover part 312b. According to this configuration example, for example, when the insulator 31 is molded, the two connecting portions 41 and 42 can be easily formed.
 第1連結部41及び第2連結部42のうち、一方は貫通孔又は凹部を有し、他方は凸部を有する。第1連結部41と第2連結部42とは、貫通孔又は凹部と、凸部との嵌め合せで連結される。本構成例では、少ない部品点数で2つの連結部41、42を連結することができる。 Among the first connecting part 41 and the second connecting part 42, one has a through hole or a concave part, and the other has a convex part. The 1st connection part 41 and the 2nd connection part 42 are connected by the fitting of a through-hole or a recessed part, and a convex part. In this configuration example, the two connecting portions 41 and 42 can be connected with a small number of parts.
 本構成例では、詳細には、第1連結部41は凸部411を有する。第1連結部41は、ティース部302の周方向一方側から、隣り合うティース部302に向けて延びるアーム部412を有する。アーム部412は、ティース先端カバー部312bと同一部材である。凸部411は、アーム部412に設けられる。アーム部412と凸部411とは同一部材である。凸部411は軸方向に突出する。詳細には、凸部411は、アーム部412から分割コア30に向けて軸方向に延びる。本構成例では、分割コア30を挟んで軸方向の両側に第1連結部41が設けられる。 In the present configuration example, in detail, the first connecting portion 41 has a convex portion 411. The 1st connection part 41 has the arm part 412 extended toward the adjacent teeth part 302 from the circumferential direction one side of the teeth part 302. As shown in FIG. The arm portion 412 is the same member as the tooth tip cover portion 312b. The convex portion 411 is provided on the arm portion 412. The arm part 412 and the convex part 411 are the same member. The convex part 411 protrudes in the axial direction. Specifically, the convex portion 411 extends in the axial direction from the arm portion 412 toward the split core 30. In this configuration example, the first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
 第2連結部42は貫通孔421を有する。貫通孔421は軸方向に延びる。詳細には、貫通孔421は、ティース先端カバー部312bを軸方向に貫通する。貫通孔421は、ティース先端カバー部312bの周方向他方側の端部の近くに設けられる。本構成例では、分割コア30を挟んで軸方向の両側に第2連結部42が設けられる。 The second connecting part 42 has a through hole 421. The through hole 421 extends in the axial direction. Specifically, the through hole 421 passes through the teeth tip cover portion 312b in the axial direction. The through hole 421 is provided near the end on the other circumferential side of the tooth tip cover portion 312b. In the present configuration example, the second connecting portions 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween.
 凸部411が貫通孔421に嵌められることによって、第1連結部41と第2連結部42とは連結される。なお、凸部411が貫通孔421に嵌め込まれやすいように、第1連結部41が設けられるティース先端カバー部312bは段差構造S1を有する。第1連結部41及び第2連結部42のうち少なくとも一方を軸方向と直交する方向に動かすことによって、凸部411と貫通孔421とは簡単に嵌め合せることができる。凸部411は球面状であり、貫通孔421は、平面視において円形状であるのが好ましい。これにより、第1連結部41と第2連結部42を連結した後において、連結箇所が回転可能となり、ステータ3に無理な力が加わることを防止することができる。 The first connecting part 41 and the second connecting part 42 are connected by fitting the convex part 411 into the through hole 421. In addition, the teeth tip cover part 312b provided with the first connection part 41 has a step structure S1 so that the convex part 411 is easily fitted into the through hole 421. By moving at least one of the first connecting portion 41 and the second connecting portion 42 in a direction orthogonal to the axial direction, the convex portion 411 and the through hole 421 can be easily fitted. The convex portion 411 is spherical and the through hole 421 is preferably circular in plan view. Thereby, after connecting the 1st connection part 41 and the 2nd connection part 42, a connection location becomes rotatable and it can prevent that an excessive force is added to the stator 3. FIG.
 なお、第2連結部42は、貫通孔421ではなく、軸方向に凹む凹部を有する構成であってもよい。この場合、凹部は球面状であるのが好ましい。また、アーム部412を有する第1連結部41に貫通孔又は凹部が設けられ、第2連結部42に凸部が設けられる構成としてもよい。更に、第1連結部41及び第2連結部42は、分割コア30を挟んで軸方向の両側に設けられなくてもよく、軸方向のいずれか一方側にのみ設けられてもよい。 In addition, the structure which has the recessed part dented in the axial direction instead of the through-hole 421 may be sufficient as the 2nd connection part 42. FIG. In this case, the recess is preferably spherical. Further, the first connecting part 41 having the arm part 412 may be provided with a through hole or a concave part, and the second connecting part 42 may be provided with a convex part. Furthermore, the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction.
(B.第2構成例)
 図16は、第2変形例のステータ3の第2構成例を示す部分的な模式図である。図16では、第1連結部41と第2連結部42とが連結される前の状態が示されている。第2構成例は、第1構成例とほぼ同じである。以下、第1構成例と異なる点に絞って説明する。
(B. Second configuration example)
FIG. 16 is a partial schematic diagram illustrating a second configuration example of the stator 3 according to the second modification. In FIG. 16, the state before the 1st connection part 41 and the 2nd connection part 42 are connected is shown. The second configuration example is almost the same as the first configuration example. The following description will be focused on differences from the first configuration example.
 第2構成例では、第1連結部41及び第2連結部42のうちの少なくとも一方は、周方向の先端部で他方の連結部と対向する面側に傾斜面部43を有する。傾斜面部43は、先端に向けて軸方向の幅を狭くする。詳細には、第1連結部41は、アーム部412の周方向の先端部であって第2連結部42と対向する面側に第1傾斜面部431を有する。第1連結部41は分割コア30を挟んで軸方向の両側に設けられ、各第1連結部41が第1傾斜面部431を有する。第1傾斜面部431の存在により、軸方向に並ぶ2つの第1連結部41の間隔は、周方向の先端側にいくにつれて広くなる。 In the second configuration example, at least one of the first connecting portion 41 and the second connecting portion 42 has the inclined surface portion 43 on the surface side facing the other connecting portion at the distal end portion in the circumferential direction. The inclined surface portion 43 narrows the axial width toward the tip. Specifically, the first connecting portion 41 has a first inclined surface portion 431 on the surface side facing the second connecting portion 42, which is the distal end portion of the arm portion 412 in the circumferential direction. The first connecting portions 41 are provided on both sides in the axial direction across the split core 30, and each first connecting portion 41 has a first inclined surface portion 431. Due to the presence of the first inclined surface portion 431, the interval between the two first connecting portions 41 arranged in the axial direction becomes wider toward the distal end side in the circumferential direction.
第2連結部42は、ティース先端カバー部312bの周方向の先端部であって第1連結部41と対向する面側に第2傾斜面部432を有する。第2連結部42は、分割コア30を挟んで軸方向の両側に設けられ、各第2連結部42が第2傾斜面部432を有する。第2傾斜面部432の存在により、ティース先端カバー部312bを含むティース部302の軸方向の幅は、周方向の先端側にいくにつれて狭くなる。このために、軸方向に並ぶ2つの第1連結部41の間に、軸方向に並ぶ2つの第2連結部42を有するティース部302を引っ掛かり減らして挿入することができる。 The second connecting portion 42 has a second inclined surface portion 432 on the surface side facing the first connecting portion 41, which is a tip portion in the circumferential direction of the tooth tip cover portion 312 b. The second connecting portions 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween, and each second connecting portion 42 has a second inclined surface portion 432. Due to the presence of the second inclined surface portion 432, the axial width of the tooth portion 302 including the tooth tip cover portion 312 b becomes narrower toward the tip end side in the circumferential direction. Therefore, the tooth portion 302 having the two second connecting portions 42 arranged in the axial direction can be inserted between the two first connecting portions 41 arranged in the axial direction while being caught.
なお、第2構成例では、第1連結部41と第2連結部42との両方に傾斜面部43を設ける構成としているが、いずれか一方にのみ設けてもよい。傾斜面部43が設けられない側の先端が傾斜面部43に当たった場合、当該先端は傾斜面部43の傾斜面を滑りながら移動する。このために、第1連結部41と第2連結部42の連結作業の作業性を向上できる。 In addition, in the 2nd structural example, although it is set as the structure which provides the inclined surface part 43 in both the 1st connection part 41 and the 2nd connection part 42, you may provide only in any one. When the tip on the side where the inclined surface portion 43 is not provided hits the inclined surface portion 43, the tip moves while sliding on the inclined surface of the inclined surface portion 43. For this reason, the workability | operativity of the connection operation | work of the 1st connection part 41 and the 2nd connection part 42 can be improved.
(C.第3構成例)
 図17は、第2変形例のステータ3の第3構成例を示す部分的な模式図である。第3構成例では、第1連結部41及び第2連結部42のうち、一方はインシュレータ31に設けられ、他方は分割コア30に設けられる。換言すると、第1連結部41及び第2連結部42のうち、一方はティース部302に間接的に設けられ、他方はティース部302に直接的に設けられる。本構成例では、第1連結部41はインシュレータ31に設けられ、第2連結部42は分割コア30に設けられる。本構成例によれば、第1連結部41及び第2連結部42をいずれもインシュレータ31に設ける場合に比べて、連結構造が設けられる部分の厚みを抑制することができる。
(C. Third configuration example)
FIG. 17 is a partial schematic diagram illustrating a third configuration example of the stator 3 according to the second modification. In the third configuration example, one of the first connecting portion 41 and the second connecting portion 42 is provided in the insulator 31, and the other is provided in the split core 30. In other words, one of the first connecting part 41 and the second connecting part 42 is indirectly provided on the tooth part 302, and the other is directly provided on the tooth part 302. In this configuration example, the first connecting portion 41 is provided in the insulator 31, and the second connecting portion 42 is provided in the split core 30. According to this configuration example, the thickness of the portion where the connection structure is provided can be suppressed as compared with the case where both the first connection portion 41 and the second connection portion 42 are provided in the insulator 31.
 詳細には、第1連結部41は、第1構成例と同様に、ティース先端カバー部312bに設けられ、凸部413及びアーム部414を有する。第2連結部42は、分割コア30のティース先端カバー部312bによって覆われることなく露出した部分に設けられる。第2連結部42は貫通孔422を有する。貫通孔422は、少なくとも軸方向の最端部に位置する1枚の磁性鋼板に設けられる。貫通孔422は軸方向に延びる。本構成例では、分割コア30を挟んで軸方向の両側に第1連結部41及び第2連結部42が設けられる。凸部413が貫通孔422に嵌められることによって、第1連結部41と第2連結部42とは連結される。 In detail, the 1st connection part 41 is provided in teeth tip cover part 312b similarly to the 1st example of composition, and has convex part 413 and arm part 414. The 2nd connection part 42 is provided in the part exposed without being covered with the teeth front-end | tip cover part 312b of the split core 30. As shown in FIG. The second connecting portion 42 has a through hole 422. The through-hole 422 is provided in one magnetic steel plate located at least at the end in the axial direction. The through hole 422 extends in the axial direction. In this configuration example, the first connecting portion 41 and the second connecting portion 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween. By fitting the convex portion 413 into the through-hole 422, the first connecting portion 41 and the second connecting portion 42 are connected.
 第1構成例の場合と同様に、凸部413は球面状であり、貫通孔422は、平面視において円形状であるのが好ましい。第2連結部42は、貫通孔422ではなく、軸方向に凹む凹部を有する構成であってもよい。この場合、凹部は球面状であるのが好ましい。また、アーム部414を有する第1連結部41は貫通孔又は凹部を有し、第2連結部42は凸部を有する構成としてもよい。第2連結部42が凸部を有する構成では、分割コア30はコアピースで構成されるのが好ましい。また、第1連結部41及び第2連結部42は、分割コア30を挟んで軸方向の両側に設けられなくてもよく、軸方向のいずれか一方側にのみ設けられてもよい。また、第1連結部41及び第2連結部42は、第2構成例と同様に、傾斜面部を有する構成であってよい。 As in the case of the first configuration example, it is preferable that the convex portion 413 has a spherical shape, and the through hole 422 has a circular shape in plan view. The 2nd connection part 42 may be the structure which has a recessed part dented in the axial direction instead of the through-hole 422. FIG. In this case, the recess is preferably spherical. Moreover, the 1st connection part 41 which has the arm part 414 is good also as a structure which has a through-hole or a recessed part, and the 2nd connection part 42 has a convex part. In the configuration in which the second connecting portion 42 has a convex portion, it is preferable that the split core 30 is configured by a core piece. Moreover, the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction. Moreover, the 1st connection part 41 and the 2nd connection part 42 may be the structure which has an inclined surface part similarly to the 2nd structural example.
(D.第4構成例)
 図18は、第2変形例のステータ3の第4構成例を示す部分的な模式図である。第4構成例は、第3構成例と同様に、第1連結部41及び第2連結部42のうち、一方はインシュレータ31に設けられ、他方は分割コア30に設けられる。ただし、本構成例では、第3構成例と異なり、第1連結部41は分割コア30に設けられ、第2連結部42はインシュレータ31に設けられる。
(D. Fourth configuration example)
FIG. 18 is a partial schematic diagram illustrating a fourth configuration example of the stator 3 according to the second modification. As in the third configuration example, in the fourth configuration example, one of the first connection portion 41 and the second connection portion 42 is provided in the insulator 31 and the other is provided in the split core 30. However, in this configuration example, unlike the third configuration example, the first connection portion 41 is provided in the split core 30, and the second connection portion 42 is provided in the insulator 31.
 詳細には、第1連結部41は、軸方向に延びる貫通孔415を有する。第1連結部41は、軸方向の最端部に位置する1枚の磁性鋼板から延びるアーム部416を有する。アーム部416は、ティース部302の周方向一方側から、隣り合うティース部302に向けて延びる。アーム部416は、磁性鋼板と同一部材である。なお、アーム部416は、複数枚の磁性鋼板で構成されてもよい。第2連結部42は、軸方向に延びる凸部423を有する。凸部423は、ティース先端カバー部312bと同一部材である。本構成例では、分割コア30を挟んで軸方向の両側に第1連結部41及び第2連結部42が設けられる。凸部423が貫通孔415に嵌められることによって、第1連結部41と第2連結部42とは連結される。なお、凸部423が貫通孔415に嵌め込まれるように、第2連結部42が設けられるティース先端カバー部312bは段差構造S2を有する。 Specifically, the first connecting portion 41 has a through hole 415 extending in the axial direction. The 1st connection part 41 has the arm part 416 extended from one magnetic steel plate located in the axial endmost part. The arm part 416 extends from one side in the circumferential direction of the tooth part 302 toward the adjacent tooth part 302. The arm part 416 is the same member as the magnetic steel plate. The arm portion 416 may be composed of a plurality of magnetic steel plates. The 2nd connection part 42 has the convex part 423 extended in an axial direction. The convex portion 423 is the same member as the tooth tip cover portion 312b. In this configuration example, the first connecting portion 41 and the second connecting portion 42 are provided on both sides in the axial direction with the split core 30 interposed therebetween. The first connecting part 41 and the second connecting part 42 are connected by fitting the convex part 423 into the through hole 415. In addition, the teeth tip cover part 312b in which the 2nd connection part 42 is provided has step structure S2 so that the convex part 423 may be engage | inserted by the through-hole 415. FIG.
 貫通孔415は、平面視において円形状であり、凸部423は球面状であるのが好ましい。第1連結部41は、貫通孔415ではなく、軸方向に凹む凹部を有する構成であってもよい。この場合、凹部は球面状であるのが好ましい。また、アーム部416を有する第1連結部41は凸部を有し、第2連結部42は貫通孔又は凹部を有する構成としてもよい。第1連結部41が凸部を有する構成では、分割コア30はコアピースで構成されるのが好ましい。また、第1連結部41及び第2連結部42は、分割コア30を挟んで軸方向の両側に設けられなくてよく、軸方向のいずれか一方側にのみ設けられてもよい。また、第1連結部41及び第2連結部42は、第2構成例と同様に、傾斜面部を有する構成であってよい。 The through-hole 415 is preferably circular in plan view, and the convex portion 423 is preferably spherical. The 1st connection part 41 may be the structure which has a recessed part dented in the axial direction instead of the through-hole 415. FIG. In this case, the recess is preferably spherical. Moreover, the 1st connection part 41 which has the arm part 416 is good also as a structure which has a convex part, and the 2nd connection part 42 has a through-hole or a recessed part. In the configuration in which the first connecting portion 41 has a convex portion, it is preferable that the split core 30 is configured by a core piece. Moreover, the 1st connection part 41 and the 2nd connection part 42 do not need to be provided in the both sides of an axial direction on both sides of the division | segmentation core 30, and may be provided only in either one side of an axial direction. Moreover, the 1st connection part 41 and the 2nd connection part 42 may be the structure which has an inclined surface part similarly to the 2nd structural example.
(E.第5構成例)
 図19は、第2変形例のステータ3の第5構成例を示す部分的な模式図である。第5構成例においては、第1構成例と同様に、第1連結部41及び第2連結部42は、いずれもインシュレータ31に設けられる。詳細には、第1連結部41及び第2連結部42は、いずれもティース先端カバー部312bに設けられる。
(E. Fifth Configuration Example)
FIG. 19 is a partial schematic diagram illustrating a fifth configuration example of the stator 3 according to the second modification. In the fifth configuration example, the first connection portion 41 and the second connection portion 42 are both provided in the insulator 31 as in the first configuration example. In detail, both the 1st connection part 41 and the 2nd connection part 42 are provided in the teeth front-end | tip cover part 312b.
 第1連結部41は凸部417を有する。第1連結部41は、ティース部302の周方向一方側から、周方向一方側において隣り合うティース部302に向けて延びるアーム部418を有する。アーム部418は、ティース先端カバー部312bと同一部材である。凸部417は、アーム部418の周方向の先端に設けられる。アーム部418と凸部417とは同一部材である。凸部417は軸方向と直交する方向に突出する。凸部417は、平面視において外周が円弧状である。第2連結部42は、軸方向と直交する方向に凹む凹部424を有する。凹部424は、平面視において円弧状である。凹部424に対してアーム部418を軸方向と直交する所定方向に動かすことによって、凸部417を凹部424に嵌め込むことができる。この嵌め合せによって、第1連結部41と第2連結部42とが連結する。上記所定方向は、例えば周方向又は径方向であってよい。 The first connecting part 41 has a convex part 417. The 1st connection part 41 has the arm part 418 extended toward the teeth part 302 adjacent in the circumferential direction one side from the circumferential direction one side of the teeth part 302. As shown in FIG. The arm part 418 is the same member as the tooth tip cover part 312b. The convex portion 417 is provided at the distal end of the arm portion 418 in the circumferential direction. The arm part 418 and the convex part 417 are the same member. The convex part 417 protrudes in a direction orthogonal to the axial direction. The convex portion 417 has an arcuate outer periphery in plan view. The 2nd connection part 42 has the recessed part 424 dented in the direction orthogonal to an axial direction. The recess 424 has an arc shape in plan view. The convex portion 417 can be fitted into the concave portion 424 by moving the arm portion 418 with respect to the concave portion 424 in a predetermined direction orthogonal to the axial direction. By this fitting, the first connecting part 41 and the second connecting part 42 are connected. The predetermined direction may be, for example, a circumferential direction or a radial direction.
 第2連結部42は、凹部424ではなく、軸方向と直交する方向に延びる貫通孔を有する構成であってもよい。また、アーム部416を有する第1連結部41は凹部又は貫通孔を有し、第2連結部42は凸部を有する構成としてもよい。また、第1連結部41及び第2連結部42は、分割コア30を挟んで軸方向の両側に設けられてもよいし、軸方向のいずれか一方側にのみ設けられてもよい。 The 2nd connection part 42 may be the structure which has not the recessed part 424 but the through-hole extended in the direction orthogonal to an axial direction. Moreover, the 1st connection part 41 which has the arm part 416 is good also as a structure which has a recessed part or a through-hole, and the 2nd connection part 42 has a convex part. Moreover, the 1st connection part 41 and the 2nd connection part 42 may be provided in the both sides of an axial direction on both sides of the split core 30, and may be provided only in either one side of an axial direction.
(F.第6構成例)
 図20は、第2変形例のステータ3の第6構成例を示す部分的な模式図である。第6構成例では、第1連結部41と第2連結部42とは、ピン44を介して連結される。ピン44を用いて第1連結部41と第2連結部42とを連結することによって、連結強度の向上を図ることができる。詳細には、第1連結部41は、ティース部302の周方向一方側から、隣り合うティース部302に向けて延びるアーム部419を有する。アーム部419は、ティース先端カバー部312bと同一部材である。第1連結部41は、アーム部419の周方向の先端側に設けられる貫通孔410を有する。貫通孔410は軸方向に延びる。第1連結部41は、分割コア30を挟んで軸方向の両側に設けられる。第1連結部41は、ティース部302に間接的に設けられる。
(F. Sixth configuration example)
FIG. 20 is a partial schematic diagram illustrating a sixth configuration example of the stator 3 according to the second modification. In the sixth configuration example, the first connecting portion 41 and the second connecting portion 42 are connected via a pin 44. By connecting the first connecting portion 41 and the second connecting portion 42 using the pins 44, the connection strength can be improved. Specifically, the first connecting portion 41 has an arm portion 419 that extends from one circumferential side of the tooth portion 302 toward the adjacent tooth portion 302. The arm portion 419 is the same member as the tooth tip cover portion 312b. The first connecting portion 41 has a through hole 410 provided on the distal end side of the arm portion 419 in the circumferential direction. The through hole 410 extends in the axial direction. The first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween. The 1st connection part 41 is indirectly provided in the teeth part 302. FIG.
 第2連結部42は貫通孔425を有する。貫通孔425は、軸方向に延びて、ティース先端カバー部312bと分割コア30とを貫通する。第2連結部42は、一部の構成がティース部302に直接的に設けられ、他の一部がティース部302に間接的に設けられる。ピン44は、軸方向に延びる。第1連結部41の貫通孔410と、第2連結部42の貫通孔425とが軸方向に重ね合された状態で、ピン44は軸方向に並ぶ貫通孔410、425に挿入される。これにより、第1連結部41と第2連結部42とが連結される。なお、2つの貫通孔410、425が重なり合うように、第1連結部41が設けられるティース先端カバー部312bは段差構造S3を有する。ピン44は、例えばT字形状に設けられてよい。また、ピン44は直線状でもよいが、この場合、ピン44は、貫通孔410、425に挿入された後に、少なくとも一方の端部が例えば機械的あるいは熱処理によって変形される。これによって、ピン44が抜け落ちることを防止できる。 The second connecting portion 42 has a through hole 425. The through hole 425 extends in the axial direction and penetrates the tooth tip cover portion 312 b and the split core 30. A part of the second connecting portion 42 is directly provided on the tooth portion 302, and the other portion is indirectly provided on the tooth portion 302. The pin 44 extends in the axial direction. The pin 44 is inserted into the through holes 410 and 425 aligned in the axial direction in a state where the through hole 410 of the first connecting part 41 and the through hole 425 of the second connecting part 42 are overlapped in the axial direction. Thereby, the 1st connection part 41 and the 2nd connection part 42 are connected. In addition, the teeth tip cover part 312b in which the 1st connection part 41 is provided has the level | step difference structure S3 so that the two through- holes 410 and 425 may overlap. The pin 44 may be provided in a T shape, for example. Moreover, although the pin 44 may be linear, in this case, after the pin 44 is inserted into the through holes 410 and 425, at least one end is deformed by, for example, mechanical or heat treatment. This can prevent the pin 44 from falling off.
 なお、本構成例では、第1連結部41は、分割コア30を挟んで軸方向の両側に設けられているが、軸方向の片側にのみ設けられてもよい。この場合、第2連結部42は、貫通孔でなく凹部であってよい。また、第2連結部42も周方向他方側に延びるアーム部を有する構成として、ピンは、2つの連結部41、42が有するアーム部同士を連結する構成としてもよい。また、本構成例では、ピン44が軸方向に延びる構成とした。これは例示であり、第1連結部41と第2連結部42とを連結するピンは、例えば軸方向と直交する方向に延びてもよい。この場合、ピンが挿入される孔の方向も変更する必要がある。ただし、ピン44が軸方向に延びる構成とした方が、第1連結部と第2連結部との連結強度を向上させ易い。 In this configuration example, the first connecting portions 41 are provided on both sides in the axial direction with the split core 30 interposed therebetween, but may be provided only on one side in the axial direction. In this case, the 2nd connection part 42 may be a recessed part instead of a through-hole. Moreover, the 2nd connection part 42 is good also as a structure which has an arm part extended in the circumferential direction other side, and a pin is good also as a structure which connects the arm parts which the two connection parts 41 and 42 have. In this configuration example, the pins 44 extend in the axial direction. This is an example, and the pin that connects the first connecting portion 41 and the second connecting portion 42 may extend, for example, in a direction orthogonal to the axial direction. In this case, it is necessary to change the direction of the hole into which the pin is inserted. However, it is easier to improve the connection strength between the first connection part and the second connection part when the pin 44 is configured to extend in the axial direction.
 以上に示した実施形態や変形例の構成は、本発明の例示にすぎない。実施形態や変形例の構成は、本発明の技術的思想を超えない範囲で適宜変更されてもよい。また、複数の実施形態及び変形例は、可能な範囲で組み合わせて実施されてよい。 The configurations of the embodiment and the modification described above are merely examples of the present invention. The configuration of the embodiment and the modification may be changed as appropriate without departing from the technical idea of the present invention. In addition, a plurality of embodiments and modifications may be implemented in combination within a possible range.
 以上においては、本発明がモールドモータに適用される場合を示したが、本発明はモールドモータ以外のモータに適用されてもよい。また、以上においては、本発明がアウターロータ型のモータに適用される場合を示したが、本発明はインナーロータ型のモータに適用されてもよい。また、本発明は室外機のモータ以外にも適用できる。 In the above, the case where the present invention is applied to a molded motor has been shown, but the present invention may be applied to a motor other than a molded motor. In the above description, the present invention is applied to an outer rotor type motor. However, the present invention may be applied to an inner rotor type motor. The present invention can also be applied to devices other than outdoor unit motors.
 本発明は、例えば、ステータ、モータ、およびステータの製造方法に利用できる。 The present invention can be used in, for example, a stator, a motor, and a stator manufacturing method.
1・・・モータ、2・・・静止部、3・・・環状のステータ、3´・・・直線状のステータ、4・・・ケーシング、5・・・軸受部、6・・・回路基板、7・・・回転部、8・・・羽根、9・・・連結コア、10・・・固定具、10a・・・爪部、11・・・空間部、12・・・連結具、30・・・分割コア、31・・・インシュレータ、32・・・導線、33・・・固定リング、34・・・端子ピン、35・・・第1の露出部、36・・・第2の露出部、37・・・第3の露出部、38・・・第4の露出部、41・・・第1連結部、42・・・第2連結部、43・・・傾斜面部、44・・・ピン、71・・・シャフト、72・・・ロータ、72a・・・円筒部、73・・・マグネット、301・・・ヨーク部、301a・・・突出部、301b・・・凹部、301ba・・・湾曲部、301c・・・取付部、302・・・ティース部、302a・・・ティース基部、302b・・・ティース先端部、310・・・連結片部、311・・・ヨークカバー部、312・・・ティースカバー部、312a・・・ティース基部カバー部、312b・・・ティース先端カバー部、313・・・挿入部、313a・・・第1のリング用壁部、313b・・・第2のリング用壁部、314・・・ティース先端壁部、314a・・・渡り線溝部、314b・・・端子孔、321・・・巻線部、322・・・渡り線部、411,413,417,423・・・凸部、412,414,416,418,419・・・アーム部、410,415,421,422,425・・・貫通孔、424・・・凹部 DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Static part, 3 ... Ring-shaped stator, 3 '... Linear stator, 4 ... Casing, 5 ... Bearing part, 6 ... Circuit board , 7 ... rotating part, 8 ... blade, 9 ... connecting core, 10 ... fixing tool, 10a ... claw part, 11 ... space part, 12 ... connecting tool, 30 ... Split core, 31 ... Insulator, 32 ... Conductor, 33 ... Fixing ring, 34 ... Terminal pin, 35 ... First exposed part, 36 ... Second exposed 37, third exposed portion, 38 ... fourth exposed portion, 41 ... first connecting portion, 42 ... second connecting portion, 43 ... inclined surface portion, 44 ... Pin, 71 ... shaft, 72 ... rotor, 72a ... cylindrical part, 73 ... magnet, 301 ... yoke part, 301a ... projecting part, 30 b ... concave portion, 301ba ... curved portion, 301c ... mounting portion, 302 ... teeth portion, 302a ... teeth base portion, 302b ... teeth tip portion, 310 ... connecting piece portion, 311 ... Yoke cover part, 312 ... Teeth cover part, 312a ... Teeth base cover part, 312b ... Teeth tip cover part, 313 ... Insertion part, 313a ... For the first ring Wall portion, 313b ... second ring wall portion, 314 ... teeth tip wall portion, 314a ... crossover groove portion, 314b ... terminal hole, 321 ... winding portion, 322 ... Crossover part, 411, 413, 417, 423 ... convex part, 412, 414, 416, 418, 419 ... arm part, 410, 415, 421, 422, 425 ... through hole, 424 ..Recesses

Claims (34)

  1. 中心軸を中心に環状に配置されたステータであって、
     磁性体よりなる複数の分割コアと、
     前記分割コアの少なくとも一部を覆うインシュレータと、
     前記分割コアに前記インシュレータを介して巻回される導線と、
    を有し、
     前記複数の分割コアは周方向に配列され、
     前記インシュレータは、隣り合う前記分割コアを互いに連結している連結片部を有する、ステータ。
    A stator arranged annularly around a central axis,
    A plurality of split cores made of magnetic material;
    An insulator covering at least a part of the split core;
    A conducting wire wound around the split core via the insulator;
    Have
    The plurality of divided cores are arranged in a circumferential direction,
    The insulator includes a connecting piece portion that connects the divided cores adjacent to each other.
  2.  前記分割コアは、
      周方向に延びるヨーク部と、
      前記ヨーク部から径方向外方に突出して前記導線が巻回されるティース部と、
     を有し、
     前記インシュレータは、
      前記ヨーク部の少なくとも一部を覆うヨークカバー部と、
      前記ティース部の少なくとも一部を覆うティースカバー部と、
     を有し、
     前記連結片部は、隣り合う前記ティースカバー部の間に位置する、請求項1に記載のステータ。
    The split core is
    A yoke portion extending in the circumferential direction;
    A teeth portion projecting radially outward from the yoke portion and wound with the conducting wire;
    Have
    The insulator is
    A yoke cover portion covering at least a part of the yoke portion;
    A teeth cover portion covering at least a part of the teeth portion;
    Have
    The stator according to claim 1, wherein the connecting piece portion is located between the adjacent tooth cover portions.
  3.  前記ティース部は、
      前記ヨーク部から径方向に延び、前記導線が巻回されるティース基部と、
      前記ティース基部の先端に設けられて周方向に延びるティース先端部と、
     を有し、
     前記ティースカバー部は、
      前記ティース基部の少なくとも一部を覆うティース基部カバー部と、
      前記ティース先端部の少なくとも一部を覆うティース先端カバー部と、
     を有し、
     前記連結片部は、隣り合う前記ティース先端カバー部の間に位置する、請求項2に記載のステータ。
    The teeth part is
    A teeth base extending in a radial direction from the yoke portion and around which the conductive wire is wound;
    A teeth tip provided at the tip of the teeth base and extending in the circumferential direction;
    Have
    The teeth cover part is
    A teeth base cover that covers at least a portion of the teeth base;
    A teeth tip cover portion covering at least a part of the teeth tip portion;
    Have
    The stator according to claim 2, wherein the connecting piece portion is located between the adjacent tooth tip cover portions.
  4.  隣り合う前記ヨーク部は互いに固定されている、請求項2又は3に記載のステータ。 The stator according to claim 2 or 3, wherein the adjacent yoke portions are fixed to each other.
  5.  隣り合う前記ヨーク部の周方向端面が互いに接触しており、
     前記ヨーク部の一方の周方向端面には突出部が形成され、
     前記ヨーク部の他方の周方向端面には前記突出部と係合する凹部が形成されている、請求項4に記載のステータ。
    The circumferential end surfaces of the adjacent yoke portions are in contact with each other,
    A protruding portion is formed on one circumferential end surface of the yoke portion,
    The stator according to claim 4, wherein a concave portion that engages with the protruding portion is formed on the other circumferential end surface of the yoke portion.
  6.  隣り合う前記ヨーク部を連結する連結具を更に有し、
     前記ヨーク部には、前記連結具を取り付ける取付部が形成されている、請求項4又は5に記載のステータ。
    It further has a connector for connecting adjacent yoke parts,
    The stator according to claim 4 or 5, wherein an attachment portion for attaching the connector is formed on the yoke portion.
  7.  環状の固定リングを更に有し、
     前記ヨークカバー部には、前記固定リングが挿入される挿入部が形成されている、請求項2から6いずれか1項に記載のステータ。
    An annular fixing ring;
    The stator according to any one of claims 2 to 6, wherein an insertion portion into which the fixing ring is inserted is formed in the yoke cover portion.
  8.  前記導線は、
      前記複数の分割コアのそれぞれに巻回される複数の巻線部と、
      前記複数の巻線部の間を中継する渡り線部と
     を有し、
     前記ティース先端カバー部は、軸方向に延びるティース先端壁部を有し、
     前記ティース先端壁部の径方向外側の面には、前記渡り線部が配線される渡り線溝部が形成されている、請求項3に記載のステータ。
    The conducting wire is
    A plurality of winding portions wound around each of the plurality of divided cores;
    A crossover portion that relays between the plurality of winding portions, and
    The teeth tip cover portion has a teeth tip wall portion extending in the axial direction,
    The stator according to claim 3, wherein a connecting wire groove portion to which the connecting wire portion is wired is formed on a radially outer surface of the tooth tip wall portion.
  9.  前記ティース先端壁部の軸方向端部には、端子ピンが設けられ、
     前記導線が端子ピンと接続される、請求項8に記載のステータ。
    A terminal pin is provided at the axial end of the tooth tip wall,
    The stator according to claim 8, wherein the conducting wire is connected to a terminal pin.
  10.  前記複数の分割コアのそれぞれは、前記インシュレータに覆われることなく露出する露出部を有する、請求項1から9のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 9, wherein each of the plurality of divided cores has an exposed portion that is exposed without being covered by the insulator.
  11.  前記露出部は、前記分割コアの少なくとも一方の軸方向端面を露出させている、請求項10に記載のステータ。 The stator according to claim 10, wherein the exposed portion exposes at least one axial end surface of the divided core.
  12.  隣り合う前記分割コアが前記連結片部で繋がっていない箇所を少なくとも1つ有する、請求項1から11のいずれか1項に記載のステータ。 The stator according to any one of claims 1 to 11, wherein at least one portion where the adjacent divided cores are not connected by the connecting piece portion.
  13.  複数の前記ティース部のうち少なくとも1つには、周方向一方側の端部に第1連結部が設けられ、
     前記第1連結部が設けられる前記ティース部と周方向一方側において隣り合う前記ティース部には第2連結部が設けられ、
     前記第1連結部と前記第2連結部とが連結されている、請求項2から8のいずれか1項に記載のステータ。
    At least one of the plurality of tooth portions is provided with a first connecting portion at an end on one side in the circumferential direction,
    The teeth portion adjacent to the teeth portion on the one side in the circumferential direction provided with the first connecting portion is provided with a second connecting portion,
    The stator according to any one of claims 2 to 8, wherein the first connecting portion and the second connecting portion are connected.
  14.  前記第1連結部及び前記第2連結部は、いずれも前記インシュレータに設けられる、請求項13に記載のステータ。 The stator according to claim 13, wherein both of the first connecting part and the second connecting part are provided in the insulator.
  15.  前記第1連結部及び前記第2連結部のうち、一方は前記インシュレータに設けられ、他方は前記分割コアに設けられる、請求項13に記載のステータ。 The stator according to claim 13, wherein one of the first connecting part and the second connecting part is provided in the insulator, and the other is provided in the split core.
  16.  前記第1連結部及び前記第2連結部のうち、一方は貫通孔又は凹部を有し、他方は凸部を有し、
     前記第1連結部と前記第2連結部とは、前記貫通孔又は前記凹部と、前記凸部との嵌め合せで連結されている、請求項13から15のいずれか1項に記載のステータ。
    Of the first connecting part and the second connecting part, one has a through hole or a concave part, and the other has a convex part,
    The stator according to any one of claims 13 to 15, wherein the first connecting portion and the second connecting portion are connected by fitting the through hole or the concave portion and the convex portion.
  17.  前記貫通孔は平面視において円形状であり、あるいは、前記凹部は球面状であり、
     前記凸部は球面状である、請求項16に記載のステータ。
    The through hole is circular in plan view, or the concave portion is spherical.
    The stator according to claim 16, wherein the convex portion has a spherical shape.
  18.  前記貫通孔は軸方向に延び、あるいは、前記凹部は軸方向に凹み、
     前記凸部は軸方向に突出する、請求項16又は17に記載のステータ。
    The through hole extends in the axial direction, or the concave portion is recessed in the axial direction,
    The stator according to claim 16 or 17, wherein the convex portion protrudes in an axial direction.
  19.  前記第1連結部及び前記第2連結部のうち少なくとも一方は、周方向の先端部で他方の連結部と対向する面側に傾斜面部を有し、
     前記傾斜面部は、先端に向けて軸方向の幅を狭くする、請求項18に記載のステータ。
    At least one of the first connecting portion and the second connecting portion has an inclined surface portion on the surface side facing the other connecting portion at the distal end portion in the circumferential direction,
    The stator according to claim 18, wherein the inclined surface portion narrows in the axial width toward the tip.
  20.  前記貫通孔は軸方向と直交する方向に延び、あるいは、前記凹部は軸方向と直交する方向に凹み、
     前記凸部は軸方向と直交する方向に突出する、請求項16に記載のステータ。
    The through hole extends in a direction orthogonal to the axial direction, or the concave portion is recessed in a direction orthogonal to the axial direction,
    The stator according to claim 16, wherein the convex portion projects in a direction orthogonal to the axial direction.
  21.  前記第1連結部と前記第2連結部とは、ピンを介して連結されている、請求項13から15のいずれか1項に記載のステータ。 The stator according to any one of claims 13 to 15, wherein the first connecting portion and the second connecting portion are connected via a pin.
  22.  前記ピンは軸方向に延びる、請求項21に記載のステータ。 The stator according to claim 21, wherein the pin extends in an axial direction.
  23.  前記第1連結部及び前記第2連結部のうち少なくとも一方は、周方向の先端部で他方の連結部と対向する面側に傾斜面部を有し、
     前記傾斜面部は、先端に向けて軸方向の幅を狭くする、請求項22に記載のステータ。
    At least one of the first connecting portion and the second connecting portion has an inclined surface portion on the surface side facing the other connecting portion at the distal end portion in the circumferential direction,
    The stator according to claim 22, wherein the inclined surface portion narrows in the axial direction toward the tip.
  24.  前記第1連結部又は前記第2連結部が設けられる2つの前記ティース部に巻かれる前記導線は、それぞれ、巻き始め又は巻き終わりの端部を有する、請求項13から22のいずれか1項に記載のステータ。 23. The conductor according to any one of claims 13 to 22, wherein each of the conductive wires wound around the two tooth portions provided with the first connection portion or the second connection portion has an end portion of winding start or winding end, respectively. The stator described.
  25.  前記2つのティース部には、前記導線の巻き始め又は巻き終わりの端部と接続される端子ピンが設けられる、請求項24に記載のステータ。 25. The stator according to claim 24, wherein the two teeth portions are provided with terminal pins connected to ends of winding start or winding end of the conducting wire.
  26.  請求項1から25のいずれか1項に記載のステータを有することを特徴とするモータ。 A motor comprising the stator according to any one of claims 1 to 25.
  27.  前記ステータを含む静止部を更に有し、
     前記静止部は、前記分割コア、前記インシュレータ、および前記導線を覆う樹脂製のケーシングを有することを特徴とする請求項26に記載のモータ。
    A stationary portion including the stator;
    27. The motor according to claim 26, wherein the stationary portion includes a resin casing that covers the split core, the insulator, and the conductive wire.
  28.  磁性鋼板を積層して複数の分割コアを形成する第1の工程と、
     前記複数の分割コアをインシュレータによって覆うとともに連結して、前記複数の分割コアが直線状に繋がった連結コアを形成する第2の工程と、
     前記連結コアの各分割コアに、前記インシュレータを介して導線を巻回する第3の工程と、
     前記導線が巻回された直線状のステータを環状にする第4の工程と、
     を有することを特徴とする環状のステータの製造方法。
    A first step of laminating magnetic steel plates to form a plurality of split cores;
    A second step of covering and connecting the plurality of divided cores with an insulator to form a connecting core in which the plurality of divided cores are connected in a straight line;
    A third step of winding a conductive wire around each of the split cores of the connecting core via the insulator;
    A fourth step of forming a linear stator around which the conducting wire is wound;
    The manufacturing method of the cyclic | annular stator characterized by having.
  29.  前記第2の工程において、前記分割コアは、樹脂によってインサート成型されて前記インシュレータに覆われることを特徴とする請求項28に記載のステータの製造方法。 29. The stator manufacturing method according to claim 28, wherein, in the second step, the divided core is insert-molded with a resin and covered with the insulator.
  30.  前記分割コアは、
      ヨーク部と、
      前記ヨーク部から突出するティース部と
     を有し、
     前記インシュレータは、
      前記ヨーク部の少なくとも一部を覆うヨークカバー部と、
      前記ティース部の少なくとも一部を覆うティースカバー部と、
     を有し、
     前記第3の工程において、前記導線は、前記ティースカバー部を介して前記ティース部に巻き付けられることを特徴とする請求項28又は29に記載のステータの製造方法。
    The split core is
    The yoke part,
    A teeth portion protruding from the yoke portion,
    The insulator is
    A yoke cover portion covering at least a part of the yoke portion;
    A teeth cover portion covering at least a part of the teeth portion;
    Have
    30. The method of manufacturing a stator according to claim 28, wherein, in the third step, the conductive wire is wound around the teeth portion via the teeth cover portion.
  31.  前記第3の工程において、前記連結コアには、前記ティース部の先端部側に配置されて当該連結コアを直線状に維持する固定具が取り付けられることを特徴とする請求項30に記載のステータの製造方法。 31. The stator according to claim 30, wherein, in the third step, the connecting core is attached with a fixture that is arranged on a distal end side of the teeth portion and maintains the connecting core in a straight line. Manufacturing method.
  32.  前記インシュレータは、隣り合う前記ティースカバー部の間に配置されて隣り合う前記分割コアを互いに連結する連結片部を有し、
     前記固定具は、隣り合う2つの前記ティース部と前記連結片部とに囲まれる空間部に係合する爪部を有することを特徴とする請求項31に記載のステータの製造方法。
    The insulator has a connecting piece portion that is disposed between the adjacent tooth cover portions and connects the adjacent divided cores to each other.
    32. The stator manufacturing method according to claim 31, wherein the fixing member has a claw portion that engages with a space portion surrounded by the two adjacent tooth portions and the connecting piece portion.
  33.  前記ヨークカバー部には、挿入部が形成され、
     前記第4の工程において、前記直線状のステータを環状にした後、固定リングを前記挿入部に挿入することを特徴とする請求項30から32いずれか1項に記載のステータの製造方法。
    The yoke cover part is formed with an insertion part,
    The method of manufacturing a stator according to any one of claims 30 to 32, wherein, in the fourth step, the fixing ring is inserted into the insertion portion after the linear stator is annular.
  34.  前記直線状のステータの両端部に位置する2つの前記ティース部のうち、一方には第1連結部が設けられ、他方には第2連結部が設けられ、
     前記第4の工程において、前記第1連結部と前記第2連結部が連結される、請求項30から33のいずれか1項に記載のステータの製造方法。
    Of the two tooth portions located at both ends of the linear stator, one is provided with a first connecting portion, and the other is provided with a second connecting portion,
    The method for manufacturing a stator according to any one of claims 30 to 33, wherein in the fourth step, the first connecting portion and the second connecting portion are connected.
PCT/JP2017/000391 2016-01-13 2017-01-10 Stator, motor, and method for manufacturing stator WO2017122606A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017561607A JPWO2017122606A1 (en) 2016-01-13 2017-01-10 Stator, motor, and stator manufacturing method
CN201780007455.8A CN108475947B (en) 2016-01-13 2017-01-10 Stator, motor, and method for manufacturing stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-004462 2016-01-13
JP2016004462 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017122606A1 true WO2017122606A1 (en) 2017-07-20

Family

ID=59312105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000391 WO2017122606A1 (en) 2016-01-13 2017-01-10 Stator, motor, and method for manufacturing stator

Country Status (3)

Country Link
JP (1) JPWO2017122606A1 (en)
CN (1) CN108475947B (en)
WO (1) WO2017122606A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121174A (en) * 2018-06-20 2021-08-19 ハンオン システムズ Compressor drive unit and assembly method thereof
CN114270665A (en) * 2019-08-21 2022-04-01 松下知识产权经营株式会社 Stator and motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436775B2 (en) * 2019-03-27 2024-02-22 ダイキン工業株式会社 stator
JP7147704B2 (en) * 2019-07-17 2022-10-05 株式会社デンソー Rotating electric machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197319A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Manufacture of stator core
JP2004357491A (en) * 2003-05-08 2004-12-16 Asmo Co Ltd Stator of rotary electric machine and method for manufacturing same
JP2010166739A (en) * 2009-01-16 2010-07-29 Fujitsu General Ltd Electric motor
WO2010109515A1 (en) * 2009-03-23 2010-09-30 株式会社ハーモニック・ドライブ・システムズ Segmented core motor stator
JP2011078219A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Stator for rotary electric machine and manufacturing method of the same
JP2012034498A (en) * 2010-07-30 2012-02-16 Honda Motor Co Ltd Outer rotor type salient pole concentrated winding motor
JP2013176272A (en) * 2012-02-27 2013-09-05 Asmo Co Ltd Method of manufacturing stator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946769B2 (en) * 2003-05-08 2005-09-20 Asmo Co., Ltd. Insulator and manufacturing method thereof, and stator for electric rotating machine
US20130200742A1 (en) * 2012-02-08 2013-08-08 Asmo Co., Ltd. Stator, brushless motor, stator manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000197319A (en) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd Manufacture of stator core
JP2004357491A (en) * 2003-05-08 2004-12-16 Asmo Co Ltd Stator of rotary electric machine and method for manufacturing same
JP2010166739A (en) * 2009-01-16 2010-07-29 Fujitsu General Ltd Electric motor
WO2010109515A1 (en) * 2009-03-23 2010-09-30 株式会社ハーモニック・ドライブ・システムズ Segmented core motor stator
JP2011078219A (en) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp Stator for rotary electric machine and manufacturing method of the same
JP2012034498A (en) * 2010-07-30 2012-02-16 Honda Motor Co Ltd Outer rotor type salient pole concentrated winding motor
JP2013176272A (en) * 2012-02-27 2013-09-05 Asmo Co Ltd Method of manufacturing stator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021121174A (en) * 2018-06-20 2021-08-19 ハンオン システムズ Compressor drive unit and assembly method thereof
US11658535B2 (en) 2018-06-20 2023-05-23 Hanon Systems Apparatus for driving a compressor and method for assembling the apparatus
CN114270665A (en) * 2019-08-21 2022-04-01 松下知识产权经营株式会社 Stator and motor
CN114270665B (en) * 2019-08-21 2023-12-05 松下知识产权经营株式会社 Stator and motor

Also Published As

Publication number Publication date
CN108475947A (en) 2018-08-31
JPWO2017122606A1 (en) 2018-11-01
CN108475947B (en) 2020-06-09

Similar Documents

Publication Publication Date Title
JP5692613B2 (en) Stator and rotating electric machine using the same
JP5519808B2 (en) Stator and rotating electric machine including the stator
US10523078B2 (en) Motor and method of manufacturing motor
WO2017122606A1 (en) Stator, motor, and method for manufacturing stator
JP6248433B2 (en) motor
US20150102696A1 (en) Armature, rotating electrical device, and armature manufacturing method
JP4178558B2 (en) Rotating electric machine
JP2008035649A (en) Method for manufacturing stator core of stepping motor and the stepping motor
US20190103781A1 (en) Motor
US11677290B2 (en) Motor
JP6229331B2 (en) motor
JP4386909B2 (en) motor
JP5688981B2 (en) Positioning device and electric motor
JP6652308B2 (en) Armature, rotating electric machine and method for manufacturing armature
JP2018093581A (en) Stator and motor
JP5729439B2 (en) Brushless motor
WO2018142844A1 (en) Motor
JP2018207616A (en) motor
JP2014014215A (en) Stator for rotary electric machine
JP2011229290A (en) Motor
JPH11168844A (en) Motor core and manufacture of motor core
JP3596811B2 (en) Brushless DC motor
JP2018164368A (en) motor
JP2018207619A (en) motor
JP2018207618A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017561607

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17738360

Country of ref document: EP

Kind code of ref document: A1