WO2017122602A1 - Variable capacitor - Google Patents

Variable capacitor Download PDF

Info

Publication number
WO2017122602A1
WO2017122602A1 PCT/JP2017/000375 JP2017000375W WO2017122602A1 WO 2017122602 A1 WO2017122602 A1 WO 2017122602A1 JP 2017000375 W JP2017000375 W JP 2017000375W WO 2017122602 A1 WO2017122602 A1 WO 2017122602A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
unit
capacitor
power
insulating region
Prior art date
Application number
PCT/JP2017/000375
Other languages
French (fr)
Japanese (ja)
Inventor
砂田 卓也
新村 雄一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017122602A1 publication Critical patent/WO2017122602A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/06Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture having a dielectric selected for the variation of its permittivity with applied voltage, i.e. ferroelectric capacitors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • This disclosure relates to a variable capacitor.
  • variable capacitors have been used for impedance adjustment of contactless communication devices, wireless power feeding systems, resonance circuits, and the like.
  • a variable capacitor using a ferroelectric material is used (see Patent Document 1).
  • variable capacitor using a ferroelectric material
  • the electric capacity between output terminals is changed by applying a voltage to the control terminal from the outside.
  • the variable capacitor of the present disclosure includes an insulating device and a capacitor whose capacitance between electrodes changes according to a signal input to a control terminal, and the insulating device is a setting input from the outside in order to set a capacitance
  • a control signal corresponding to the setting signal received via the insulating region is output to the capacitor, and the capacitance of the capacitor is changed according to the control signal.
  • FIG. 1 is a block diagram of a variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration of a capacitor included in the variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating the configuration of the transmission unit and the reception unit of the variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a specific configuration of the transmission unit and the reception unit of the variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 5A is a diagram illustrating a relationship between a setting signal voltage and a control signal voltage in the variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 5B is a diagram illustrating a relationship between the voltage of the setting signal and the capacitance of the capacitor in the variable capacitor according to the first embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 7 is a diagram illustrating the configuration of the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 8A is a diagram illustrating a relationship between a setting signal current and a control signal voltage in the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 8B is a diagram illustrating a relationship between the current of the setting signal and the capacitance of the capacitor in the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a modified example of the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 10A is a diagram illustrating a relationship between a setting signal current and a control signal voltage in a variation of the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 10B is a diagram illustrating a relationship between the current of the setting signal and the capacitance of the capacitor in the modification example of the variable capacitor according to the second embodiment of the present disclosure.
  • FIG. 11 is a block diagram of a variable capacitor according to the third embodiment of the present disclosure.
  • FIG. 12 is a block diagram of a variable capacitor according to the fourth embodiment of the present disclosure.
  • FIG. 13 is a block diagram of a variable capacitor according to the fifth embodiment of the present disclosure.
  • FIG. 14 is a block diagram of a variable capacitor according to Embodiment 6 of the present disclosure.
  • FIG. 15 is a block diagram of a modified example of the variable capacitor according to the sixth embodiment of the present disclosure.
  • the withstand voltage between the control terminal and the output terminal of the variable capacitor is as small as several volts to several tens of volts, so it occurs on the output side of the variable capacitor when performing high-power wireless power supply, etc. There is a possibility that proper impedance adjustment cannot be performed due to high voltage noise.
  • the capacitance of the capacitor is changed by a control signal corresponding to the setting signal, so that appropriate impedance adjustment can be performed.
  • the following embodiments relate to a variable capacitor, and more particularly to a capacitor whose capacitance value between electrodes changes according to a signal.
  • variable capacitor 1 of this embodiment includes an insulating device 10, a capacitor 20, a first terminal t1, a second terminal t2, a third terminal t3, a fourth terminal t4, and power supply terminals t10 and t11, and Control terminals t21 and t22 are provided.
  • the insulation device 10 includes a transmission unit 11, a reception unit 12, and an insulation region 13.
  • the transmission unit 11 receives power supply from the power supply terminal t10 and the second terminal t2 and operates.
  • the transmission unit 11 receives a signal (setting signal S1) for setting the capacitance of the capacitor 20 from the first terminal t1, and transmits the received setting signal S1 to the receiving unit 12 through the insulating region 13.
  • the transmitter 11 is grounded via the second terminal t2.
  • the setting signal S1 is an analog signal that changes continuously.
  • the receiving unit 12 receives power supply from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2, and operates.
  • the receiving unit 12 receives the setting signal S1 transmitted from the transmitting unit 11 through the insulating region 13.
  • the receiving unit 12 outputs a control signal corresponding to the setting signal S ⁇ b> 1 to the capacitor 20.
  • the insulating region 13 is an insulating film formed of an electrically insulating material such as an insulating resin, and is provided between the transmission unit 11 and the reception unit 12 to insulate the transmission unit 11 and the reception unit 12 from each other. .
  • the insulation by the insulating region 13 means electrical insulation.
  • the capacitor 20 is electrically connected to the receiving unit 12 via control terminals t21 and t22.
  • the capacitor 20 is electrically connected to the third terminal t3 and the fourth terminal t4.
  • the control terminals t21 and t22 may be components (terminals) for connecting electric wires or the like, but may be a part of a conductor formed as a wiring on a lead of an electronic component or a circuit board. Good.
  • electrically connected means a connection in an electrically conductive state, and includes not only a direct connection but also an indirect connection via a conductor such as an electric wire.
  • the capacitance value between the electrodes of the capacitor 20 changes according to the control signal input to the control terminals t21 and t22.
  • the capacitor 20 is provided with a control layer 21 between two electrode plates 20a and 20b.
  • the control layer 21 is made of a ferroelectric material, and is electrically connected to the receiving unit 12 via control terminals t21 and t22.
  • the voltage is applied to the control layer 21 by the receiving unit 12 outputting the control signal.
  • the dielectric constant of the control layer 21 changes, and the electric capacity between the two electrode plates 20a and 20b changes according to this change.
  • the capacitor 20 changes the impedance between the third terminal t3 and the fourth terminal t4 by changing the electric capacity according to the control signal corresponding to the setting signal S1, so that the impedance between the third terminal t3 and the fourth terminal t4 is changed. A voltage corresponding to the change in impedance is generated.
  • the insulating region 13 is formed of a material that transmits light.
  • the transmission unit 11 includes a light emitting element 11a and a control unit 11b as shown in FIG.
  • the light emitting element 11a is, for example, an LED that emits light, and converts the setting signal S1 into light (optical signal) to emit light.
  • the light emitted by the light emitting element 11 a passes through the insulating region 13 and is received by the receiving unit 12.
  • the controller 11b receives power from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2, and drives the light emitting element 11a.
  • the control unit 11b performs control related to transmission of an optical signal by the light emitting element 11a.
  • the receiving unit 12 includes a light receiving element 12a and a control unit 12b as shown in FIG.
  • the light receiving element 12a is, for example, a photodiode that receives light, and converts the received light into electricity (electrical signal).
  • the control unit 11b operates by receiving power supply from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2.
  • the controller 11b converts the electrical signal converted by the light receiving element 12a into a voltage signal that is an analog signal, and outputs the voltage signal as a control signal to the capacitor 20, that is, applies it to the control terminals t21 and t22.
  • the electric capacity changes according to the voltage of the voltage signal (control signal) applied to the control terminals t21 and t22.
  • control unit 11b of the transmission unit 11 and the control unit 12b of the reception unit 12 will be described.
  • the transmission unit 11 has a current control circuit 11c as the control unit 11b as shown in FIG.
  • the current control circuit 11c is a circuit that controls the current flowing through the light emitting element 11a in accordance with the voltage of the setting signal S1 input to the first terminal t1.
  • the current control circuit 11c and the light emitting element 11a constitute a photo IC circuit.
  • the receiving unit 12 includes an amplifier circuit 12c as a control unit 12b.
  • the amplifying circuit 12c and the light receiving element 12a constitute a photo IC circuit with an amplifying function.
  • the amplification circuit 12c generates a voltage signal corresponding to the amplification factor from the electricity converted by the light receiving element 12a. For example, when the amplification factor is 1, the amplifier circuit 12c generates a voltage signal having the same voltage as the voltage of the setting signal S1 input to the first terminal t1, and controls the generated voltage signal (control signal). Applied to terminals t21 and t22.
  • the amplification factor is a value of 1 or more.
  • the electric capacity changes according to the voltage of the voltage signal (control signal) amplified by the amplifier circuit 12c.
  • V1 V2
  • the capacitor 20 is configured to change the electric capacity using a ferroelectric material, but is not limited to this configuration.
  • the capacitor 20 may be a capacitor of a type that can change the electric capacity by applying a voltage to the control terminals t21 and t22.
  • the capacitor 20 may be a variable capacitance diode or a MEMS (Micro Electro Mechanical Systems) type variable capacitor.
  • the capacitor 20 may be a mechanical capacitor having a movable part such as a variable capacitor, a trimmer capacitor, or a piston capacitor.
  • a voltage is applied to a motor or the like that displaces the movable part to change the capacitance of the capacitor.
  • the insulating device 10 of the variable capacitor 1 includes the transmission unit 11, the reception unit 12, and the insulating region 13.
  • the transmitter 11 transmits a setting signal S1 input from the outside in order to set the capacitance of the capacitor 20.
  • the receiving unit 12 receives the setting signal S1 transmitted by the transmitting unit 11.
  • the insulating region 13 is provided between the transmission unit 11 and the reception unit 12.
  • the receiving unit 12 outputs a control signal corresponding to the setting signal S ⁇ b> 1 received via the insulating region 13 to the capacitor 20.
  • variable capacitor 1 since a high withstand voltage can be ensured between the transmitter 11 and the receiver 12, the variable capacitor 1 has an appropriate impedance even when transmitting a high voltage or a large current in a non-contact manner. Adjustments can be made.
  • the transmission unit 11 may transmit the setting signal S1 as an optical signal to the reception unit 12 via the insulating region 13. According to this configuration, since the optical signal is unlikely to be affected by electricity, the variable capacitor 1 can perform signal transmission between the transmitter 11 and the receiver 12 with less influence of electrical noise.
  • the setting signal S1 is an analog signal.
  • the transmission unit 11 converts an analog signal into an optical signal
  • the reception unit 12 converts the received optical signal into an electrical signal.
  • the receiving unit 12 outputs an analog signal corresponding to the converted electric signal to the capacitor 20 as the control signal.
  • the insulating device 10 can transmit an analog signal input from the outside. Moreover, since the receiving part 12 outputs a control signal to the capacitor
  • variable capacitor of a comparative example there is a variable capacitor (hereinafter referred to as a “variable capacitor of a comparative example”) that increases the withstand voltage between a control terminal and an output terminal by turning on and off a plurality of capacitors with relays or switches.
  • a variable capacitor of the comparative example a plurality of capacitors and a plurality of relays or switches are required. Therefore, the variable capacitor of the comparative example becomes large. Furthermore, since the number of capacitors is changed by a relay, a switch, etc., the capacity of the variable capacitor changes stepwise, that is, it is output stepwise.
  • variable capacitor 1 of the present embodiment has an increased breakdown voltage without using a plurality of relays or switches. Therefore, the size can be reduced as compared with the variable capacitor of the comparative example.
  • variable capacitor 1 of the present embodiment increases the withstand voltage using an analog signal that changes continuously, the capacitance of the capacitor can be changed continuously.
  • both the setting signal S1 input from the outside and the control signal output from the receiving unit 12 are analog signals.
  • the signal output from the receiving unit 12 may be at least an analog signal. If the signal output from the receiving unit 12 is an analog signal, the capacitance of the capacitor can be continuously changed.
  • the receiving unit 12 outputs an analog signal that continuously changes as a control signal to the capacitor 20 so that the capacitor 20 continuously changes the capacitance. It may be configured. Alternatively, in the variable capacitor 1 of the present embodiment, the transmission unit 11 may be configured to transmit an analog signal to the reception unit 12 so that the capacitor continuously changes the capacitance. According to these configurations, the variable capacitor 1 can continuously change the capacitance of the capacitor.
  • the variable capacitor 1 includes the power supply terminals t10 and t11, but is not limited to this configuration. As shown in FIG. 6, the variable capacitor 1 may have a configuration not including the power supply terminals t10 and t11.
  • variable capacitor 1A that does not include the power supply terminal t10 will be described.
  • the present embodiment will be described focusing on differences from the first embodiment.
  • symbol is attached
  • the transmitter 11 of the variable capacitor 1A of the present embodiment includes a light emitting element 11d as shown in FIG.
  • the light emitting element 11d is, for example, an LED that emits light, and converts the setting signal S1 into light (optical signal) to emit light.
  • the light emitted by the light emitting element 11 d passes through the insulating region 13 and is received by the receiving unit 12.
  • the receiving unit 12 of the variable capacitor 1A of the present embodiment is a series circuit in which a resistor 12d and a phototransistor 12e are connected in series as shown in FIG.
  • One end of the resistor 12d is electrically connected to the power supply terminal t11, and the other end is connected to the collector of the phototransistor 12e.
  • the emitter of the phototransistor 12e is electrically connected to the control terminal t22.
  • a connection point between the resistor 12d and the phototransistor 12e is electrically connected to the control terminal t21.
  • the receiving unit 12 outputs the voltage at the connection point between the resistor 12d and the phototransistor 12e to the capacitor 20 as a control signal.
  • the phototransistor 12e receives light corresponding to the current flowing through the light emitting element 11d. Therefore, a collector current proportional to the current flowing through the light emitting element 11d flows between the collector and the emitter (between CE) of the phototransistor 12e. Then, a value (difference value) obtained by multiplying a value (multiplier value) obtained by multiplying the resistance value of the resistor 12d by the collector current value from a voltage supplied from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2. Is applied to the control terminals t21 and t22.
  • the difference value decreases as the collector current I1 increases. That is, the value of the voltage V applied between the control terminals t21 and t22 becomes small (see FIG. 8A).
  • the electric capacitance C of the variable capacitor increases. That is, as the collector current I1 increases, the capacitance C of the variable capacitor increases (see FIG. 8B).
  • the collector of the phototransistor 12e and the resistor 12d are connected.
  • the present invention is not limited to this configuration.
  • the variable capacitor 1A may be configured such that the emitter of the phototransistor 12e and the resistor 12d are connected.
  • the configuration of the variable capacitor 1A in this case is shown in FIG.
  • the collector of the phototransistor 12e in the variable capacitor 1A of this modification is electrically connected to the power supply terminal t11.
  • the emitter of the phototransistor 12e is connected to one end of the resistor 12d.
  • the other end of the resistor 12d is connected to the control terminal t22.
  • a connection point between the resistor 12d and the phototransistor 12e is electrically connected to the control terminal t21.
  • the receiving unit 12 outputs the voltage at the connection point between the resistor 12d and the phototransistor 12e to the capacitor 20 as a control signal.
  • the relationship between the collector current I1 and the voltage V applied between the control terminals t21 and t22 is opposite to that described above, that is, the voltage V increases as the collector current I1 increases (see FIG. 10A). .
  • the capacitance C of the variable capacitor decreases. That is, as the collector current I1 increases, the capacitance C of the variable capacitor decreases (see FIG. 10B).
  • the receiving unit 12 is configured by a series circuit in which the phototransistor 12e and the resistor 12d are connected in series.
  • the receiving unit 12 (series circuit) outputs the voltage at the connection point between the phototransistor 12e and the resistor 12d to the capacitor 20 as a control signal. According to this configuration, the configuration of the receiving unit 12 can be simplified.
  • the setting signal S1 is an analog signal, but the setting signal S1 may be a digital signal.
  • the variable capacitor 1B when the setting signal S1 is a digital signal will be described. In the following, the present embodiment will be described focusing on differences from the first embodiment.
  • symbol is attached
  • the transmission unit 11 of the variable capacitor 1B of the present embodiment includes a light emitting element 11f as shown in FIG.
  • the light emitting element 11f is, for example, an LED that emits light, and converts the setting signal S1 (digital signal) into light (optical signal) to emit light.
  • the light emitted from the light emitting element 11 f passes through the insulating region 13 and is received by the receiving unit 12.
  • the receiving unit 12 of the variable capacitor 1B of the present embodiment includes a light receiving element 12f, an amplifier circuit 12g, and a conversion circuit 12h.
  • the light receiving element 12f is, for example, a photodiode that receives light, and converts the received light into an electrical digital signal.
  • the amplifier circuit 12g generates a digital signal corresponding to the amplification factor from the digital signal converted by the light receiving element 12f.
  • the conversion circuit 12h is a digital-analog (DA) conversion circuit that converts the digital signal amplified by the amplification circuit 12g into an analog signal.
  • the conversion circuit 12h outputs the analog signal converted from the digital signal to the capacitor 20, that is, applies the voltage of the analog signal converted from the digital signal to the control terminals t21 and t22.
  • DA digital-analog
  • the setting signal S1 is a digital signal.
  • the transmission unit 11 converts a digital signal into an optical signal.
  • the receiving unit 12 converts the optical signal into a digital signal, and further converts the converted digital signal into an analog signal as the setting signal S1.
  • the variable capacitor 1B can change the impedance between the third terminal t3 and the fourth terminal t4 in accordance with a digital signal input from the outside.
  • the receiving part 12 outputs a control signal to the capacitor
  • variable capacitors 1, 1A, 1B of the first to third embodiments are configured to convert the setting signal S1 into light (optical signal) and transmit / receive it, but are not limited to this configuration.
  • variable capacitor 1C that transmits and receives the setting signal S1 using a magnetic field
  • the present embodiment will be described focusing on differences from the first embodiment.
  • symbol is attached
  • the transmission unit 11 of the variable capacitor 1C includes a first coil 11i and a control unit 11j.
  • the controller 11j is a circuit that controls the current flowing through the first coil 11i according to the voltage of the setting signal S1 input to the first terminal t1.
  • the first coil 11i generates a magnetic field according to the setting signal S1. Specifically, the first coil 11i generates a magnetic field corresponding to the current output from the control unit 11j.
  • the receiving unit 12 of the variable capacitor 1C includes a second coil 12i and a control unit 12j.
  • a current flows through the second coil 12 i due to the magnetic field generated by the first coil 11 i of the transmitter 11.
  • the controller 12j includes a rectifier circuit 100 that rectifies the current flowing through the second coil 12i, and outputs the current rectified by the rectifier circuit 100 to the control terminals t21 and t22 as a control signal. Since the rectified current is output to the control terminals t21 and t22, a voltage corresponding to the rectified current is applied to the control terminals t21 and t22.
  • the electric capacity of the variable capacitor is controlled by a method (optical insulating type) in which the setting signal S1 is transmitted by light.
  • the insulation device 10 of this embodiment controls the electric capacity of the variable capacitor by a method (magnetic insulation type) that transmits the setting signal S1 by magnetism. Since the magnetic insulation type has higher power transmission efficiency than the optical insulation type, the variable capacitor 1C according to the present embodiment can transmit a signal (setting signal S1) at a higher speed than the variable capacitors 1, 1A and 1B according to the first to third embodiments. There is an advantage that transmission can be performed.
  • the transmission unit 11 has at least the first coil 11i that generates a magnetic field according to the setting signal S1.
  • the receiving unit 12 includes a second coil 12i and a control unit 12j that rectifies a current flowing through the second coil 12i in accordance with a magnetic field generated in the first coil 11i.
  • the capacitor 20 uses the rectified current as a control signal. Output to.
  • the insulation device 10 is configured as a magnetic insulation type, signal transmission can be performed at a higher speed than an optical insulation type insulation device.
  • the transmission unit 11 of the variable capacitor 1D of the present embodiment includes a control unit 11k, two electrode plates 14a, and an electrode plate 14b.
  • the electrode plate 14 a is an electrode on one side of the first capacitor 150 formed between the transmission unit 11 and the reception unit 12.
  • the electrode plate 14 b is an electrode on one side of the second capacitor 151 formed between the transmission unit 11 and the reception unit 12.
  • the controller 11k is a circuit that controls the current output to the electrode plate 14a and the electrode plate 14b according to the voltage of the setting signal S1 input to the first terminal t1.
  • the receiving unit 12 of the variable capacitor 1D of the present embodiment includes a control unit 12k, and two electrode plates 15a and 15b.
  • the electrode plate 15a is an electrode that forms the first capacitor 150, and is provided at a position facing the electrode plate 14a with the insulating region 13 interposed therebetween.
  • the electrode plate 15b is an electrode that forms the second capacitor 151, and is provided at a position facing the electrode plate 14b with the insulating region 13 interposed therebetween.
  • the control unit 12k includes a rectifier circuit 101 that rectifies the current that flows due to the discharge of the first capacitor 150 and the second capacitor 151, and outputs the current rectified by the rectifier circuit 101 to the control terminals t21 and t22. Since the rectified current is output to the control terminals t21 and t22, a voltage corresponding to the rectified current is applied to the control terminals t21 and t22.
  • the electric capacity of the variable capacitor 1D is controlled by a method (capacity insulation type) in which the setting signal S1 is transmitted by a capacitor.
  • a method capacity insulation type in which the setting signal S1 is transmitted by a capacitor.
  • two capacitors are formed between the transmission unit 11 and the reception unit 12.
  • the present invention is not limited to this configuration. Any configuration in which one or more capacitors are formed between the transmitter 11 and the receiver 12 may be used.
  • the variable capacitor 1D of the present embodiment has at least one transmission capacitor (here, the first capacitor 150 and the second capacitor 151) between the transmission unit 11 and the reception unit 12. ing.
  • the setting signal S1 is transmitted and received by the transmission capacitor.
  • the receiving unit 12 rectifies the received setting signal S1 and outputs the rectified setting signal S1 to the capacitor 20.
  • the insulating device 10 is configured as a capacitive insulating type, signal transmission can be performed with lower consumption than the optical insulating type insulating device and the magnetic insulating type insulating device.
  • the insulation device 10 of the variable capacitor 1E of the present embodiment includes a transmission unit 11, a reception unit 12, an insulation region 13, a power transmission unit 16, and a power reception unit 17 as illustrated in FIG.
  • the transmission unit 11 and the power transmission unit 16 are arranged on one side and the reception unit 12 and the power reception unit 17 are arranged on the other side with the insulation region 13 interposed therebetween.
  • the power transmission unit 16 transmits the power supplied from the power supply terminal t10 and the second terminal t2 to the power reception unit 17 via the insulating region 13 by the magnetic coupling method.
  • the power receiving unit 17 is electrically connected to the receiving unit 12 and supplies the power received from the power transmitting unit 16 to the receiving unit 12. Thereby, the receiving unit 12 can operate.
  • the transmission unit 11 operates with power supplied from the power supply terminal t10 and the second terminal t2.
  • the power transmission method is not limited to the magnetic coupling method, and may be another method, for example, an optical coupling method or a capacitive coupling method.
  • the transmission unit 11 and the power transmission unit 16 are arranged on one side and the reception unit 12 and the power reception unit 17 are arranged on the other side with the insulating region 13 interposed therebetween. It is not limited to.
  • the transmission unit 11 and the power reception unit 17 are arranged on one side and the reception unit 12 and the power transmission unit 16 are arranged on the other side with the insulating region 13 interposed therebetween. May be.
  • the power transmission unit 16 supplies power supplied from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2 to the power reception unit 17 via the insulating region 13 by a magnetic coupling method.
  • the power reception unit 17 is electrically connected to the transmission unit 11 and supplies the power received from the power transmission unit 16 to the transmission unit 11. Thereby, the receiving unit 12 can operate.
  • the receiving unit 12 operates with power supplied from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2.
  • variable capacitor 1 ⁇ / b> F of the present embodiment includes the power transmission unit 16 that transmits power through the insulating region 13 and the power receiving unit 17 that receives the power transmitted from the power transmission unit 16 through the insulating region 13. And further.
  • the power transmission unit 16 is disposed on the side where the transmission unit 11 is disposed, of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween.
  • the power receiving unit 17 is arranged on the side where the receiving unit 12 is arranged among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween with respect to the insulating region 13.
  • the receiving unit 12 operates with the power received by the power receiving unit 17.
  • the power transmission unit 16 is disposed on the side where the reception unit 12 is disposed, of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween.
  • the power receiving unit 17 is disposed on the side where the transmitting unit 11 is disposed, of the transmitting unit 11 and the receiving unit 12 that are disposed across the insulating region 13 with respect to the insulating region 13.
  • the transmission unit 11 operates with the power received by the power reception unit 17.
  • a power supply terminal may be provided on one of the transmission unit 11 side and the reception unit 12 side.
  • the variable capacitor 1 of the present disclosure includes an insulating device 10 and a capacitor 20 whose capacitance between electrodes changes according to a signal input to the control terminal t21 or t22.
  • the insulating device 10 includes a transmission unit 11 that transmits a setting signal S1 input from the outside of the variable capacitor 1 in order to set a capacitance, a reception unit 12 that receives the setting signal S1 transmitted by the transmission unit 11, and a transmission And an insulating region 13 provided between the unit 11 and the receiving unit 12.
  • the receiving unit 12 outputs a control signal (signal input to the control terminal t21 or the control terminal t22) corresponding to the setting signal S1 received through the insulating region 13 to the capacitor 20.
  • the capacitance of the capacitor 20 is changed according to this control signal.
  • the transmission unit 11 transmits the setting signal S1 as an optical signal to the reception unit 12 via the insulating region 13, and the reception unit 12 converts the optical signal into the setting signal S1. May be.
  • the setting signal S1 input from the outside of the variable capacitor 1 is an analog signal.
  • the transmission unit 11 converts an analog signal into an optical signal
  • the reception unit 12 includes a light receiving element 12a that converts the optical signal into an electrical signal.
  • the light receiving element 12a converts the optical signal transmitted by the transmitting unit 11 into an electric signal
  • the receiving unit 12 outputs an analog signal corresponding to the electric signal converted by the light receiving element 12a to the capacitor 20 as a control signal.
  • the receiving unit 12 is configured by a series circuit in which a phototransistor 12e and a resistor 12d are connected in series. One end of this series circuit is connected to the power supply terminal t11, and this series circuit outputs the voltage at the connection point between the phototransistor 12e and the resistor 12d to the capacitor 20 as a control signal.
  • the setting signal S1 input from the outside of the variable capacitor 1B is a digital signal.
  • the transmission unit 11 converts a digital signal into an optical signal
  • the reception unit 12 includes a light receiving element 12f that converts the optical signal into an electric signal, and a conversion circuit 12h.
  • the light receiving element 12f converts the optical signal transmitted by the transmission unit 11 into a digital signal
  • the conversion circuit 12h converts the digital signal converted by the light receiving element 12f into an analog signal as a setting signal.
  • the transmission unit 11 includes at least a first coil 11i that generates a magnetic field according to the setting signal S1.
  • the receiving unit 12 includes a second coil 12i and a control unit 12j that rectifies a current flowing through the second coil 12i in accordance with a magnetic field generated by the first coil 11i.
  • the controller 12j outputs the rectified current to the capacitor 20 as a control signal.
  • the transmission unit 11 includes at least the first electrode plate 14a (or the first electrode plate 14b).
  • the receiving unit 12 includes a second electrode plate 15a (or second electrode plate 15b) for constituting a transmission capacitor with the first electrode plate 14a (or first electrode plate 14b), and a control unit 12k.
  • the insulating region 13 is provided between the first electrode plate 14a (or the first electrode plate 14b) and the second electrode plate, and the first electrode plate and the second electrode plate 15a (or the second electrode plate). 15b), the setting signal is transmitted and received between the transmission unit 11 and the reception unit 12 by the transmission capacitor.
  • the control unit 12k includes a rectifier circuit 101 that rectifies the setting signal received by the receiving unit 12.
  • the controller 12k outputs the setting signal rectified by the rectifier circuit 101 to the capacitor 20.
  • the variable capacitor 1E of the present disclosure includes a power transmission unit 16 that transmits electric power through the insulating region 13, and a power reception unit 17 that receives electric power transmitted from the power transmission unit 16 through the insulating region 13.
  • the power transmission unit 16 is disposed on the side where the transmission unit 11 is disposed, among the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween.
  • the power receiving unit 17 is arranged on the side where the receiving unit 12 is arranged, among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween, with respect to the insulating region 13.
  • the receiving unit 12 operates with the power received by the power receiving unit.
  • the variable capacitor 1F of the present disclosure includes a power transmission unit 16 that transmits electric power through the insulating region 13 and a power reception unit 17 that receives electric power transmitted from the power transmission unit 16 through the insulating region 13.
  • the power transmission unit 16 is arranged with respect to the insulating region 13 on the side where the receiving unit 12 is arranged among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween.
  • the power reception unit 17 is disposed on the side of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween with respect to the insulation region 13.
  • the transmission unit 11 operates with the power received by the power reception unit.
  • the receiving unit 12 may be configured to output to the capacitor 20 an analog signal that continuously changes as a control signal so that the capacitor 20 continuously changes the capacitance.
  • the transmission unit 11 may be configured to transmit an analog signal to the reception unit 12 so that the capacitor 20 continuously changes the capacitance.
  • Insulating device 11 Transmitter 11a, 11d, 11f Light emitting element 11b, 11j, 11k, 12b, 12j, 12k Control unit 11i First coil 12 Receiver 12a, 12f Light receiving element 12c, 12g Amplifier circuit 12d Resistor 12e Phototransistor 12h Converter circuit 12i Second coil 13 Insulating region 14a, 14b, 15a, 15b Electrode plate 16 Power transmitting unit 17 Power receiving unit 20 Capacitor 20a, 20b Electrode plate 100, 101 Rectifier circuit 150 1st capacitor 151 2nd capacitor t1, t2, t3, t4 terminal t10, t11 Power supply terminal t21, t22 Control terminal

Abstract

A variable capacitor includes an insulating device and a capacitor of which the capacitance between electrodes varies in accordance with a signal input to a control terminal. The insulating device includes a transmit unit, a receive unit, and an insulating region provided between the transmit unit and the receive unit. The transmit unit transmits a setting signal, input from the outside to set capacitance, via the insulating region. The receive unit receives the setting signal transmitted via the insulating region from the transmit unit, and outputs a control signal in accordance with the received setting signal to the capacitor.

Description

可変コンデンサVariable capacitor
 本開示は、可変コンデンサに関する。 This disclosure relates to a variable capacitor.
 従来、非接触通信装置、ワイヤレス給電システム、共振回路等のインピーダンス調整において、可変コンデンサが使用されている。例えば、強誘電体材料を用いた可変コンデンサが用いられている(特許文献1参照)。 Conventionally, variable capacitors have been used for impedance adjustment of contactless communication devices, wireless power feeding systems, resonance circuits, and the like. For example, a variable capacitor using a ferroelectric material is used (see Patent Document 1).
 強誘電体材料を用いた可変コンデンサでは、制御端子に外部から電圧を印加することにより、出力端子間の電気容量を変化させている。 In a variable capacitor using a ferroelectric material, the electric capacity between output terminals is changed by applying a voltage to the control terminal from the outside.
特開2007-287996号公報JP 2007-287996 A
 本開示の可変コンデンサは、絶縁デバイスと、制御端子に入力される信号に応じて電極間の容量が変化するコンデンサとを備え、前記絶縁デバイスは、容量を設定するために外部から入力された設定信号を送信する送信部と、前記送信部で送信された前記設定信号を受信する受信部と、前記送信部と前記受信部との間に設けられた絶縁領域とを有し、前記受信部は、前記絶縁領域を介して受信された前記設定信号に応じた制御信号を前記コンデンサに出力し、前記コンデンサでは、前記制御信号に応じて前記容量が変更されることを特徴とする。 The variable capacitor of the present disclosure includes an insulating device and a capacitor whose capacitance between electrodes changes according to a signal input to a control terminal, and the insulating device is a setting input from the outside in order to set a capacitance A transmission unit that transmits a signal; a reception unit that receives the setting signal transmitted by the transmission unit; and an insulating region provided between the transmission unit and the reception unit. A control signal corresponding to the setting signal received via the insulating region is output to the capacitor, and the capacitance of the capacitor is changed according to the control signal.
図1は、本開示の実施形態1に係る可変コンデンサのブロック図である。FIG. 1 is a block diagram of a variable capacitor according to the first embodiment of the present disclosure. 図2は、本開示の実施形態1に係る可変コンデンサが有するコンデンサの構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a capacitor included in the variable capacitor according to the first embodiment of the present disclosure. 図3は、本開示の実施の形態1に係る可変コンデンサの送信部および受信部の構成を説明する図である。FIG. 3 is a diagram illustrating the configuration of the transmission unit and the reception unit of the variable capacitor according to the first embodiment of the present disclosure. 図4は、本開示の実施形態1に係る可変コンデンサの送信部および受信部の具体的な構成を説明する図である。FIG. 4 is a diagram illustrating a specific configuration of the transmission unit and the reception unit of the variable capacitor according to the first embodiment of the present disclosure. 図5Aは、本開示の実施形態1に係る可変コンデンサにおいて設定信号の電圧と制御信号の電圧との関係を示す図である。FIG. 5A is a diagram illustrating a relationship between a setting signal voltage and a control signal voltage in the variable capacitor according to the first embodiment of the present disclosure. 図5Bは、本開示の実施形態1に係るの可変コンデンサにおいて設定信号の電圧とコンデンサの電気容量との関係を示す図である。FIG. 5B is a diagram illustrating a relationship between the voltage of the setting signal and the capacitance of the capacitor in the variable capacitor according to the first embodiment of the present disclosure. 図6は、本開示の実施形態2に係る可変コンデンサのブロック図である。FIG. 6 is a block diagram of a variable capacitor according to the second embodiment of the present disclosure. 図7は、本開示の実施形態2に係る可変コンデンサの構成を説明する図である。FIG. 7 is a diagram illustrating the configuration of the variable capacitor according to the second embodiment of the present disclosure. 図8Aは、本開示の実施形態2に係る可変コンデンサにおいて設定信号の電流と制御信号の電圧との関係を示す図である。FIG. 8A is a diagram illustrating a relationship between a setting signal current and a control signal voltage in the variable capacitor according to the second embodiment of the present disclosure. 図8Bは、本開示の実施形態2に係る可変コンデンサにおいて設定信号の電流とコンデンサの電気容量との関係を示す図である。FIG. 8B is a diagram illustrating a relationship between the current of the setting signal and the capacitance of the capacitor in the variable capacitor according to the second embodiment of the present disclosure. 図9は、本開示の実施形態2に係る可変コンデンサの変形例のブロック図である。FIG. 9 is a block diagram of a modified example of the variable capacitor according to the second embodiment of the present disclosure. 図10Aは、本開示の実施形態2に係る可変コンデンサの変形例の設定信号の電流と制御信号の電圧との関係を示す図である。FIG. 10A is a diagram illustrating a relationship between a setting signal current and a control signal voltage in a variation of the variable capacitor according to the second embodiment of the present disclosure. 図10Bは、本開示の実施形態2に係る可変コンデンサの変形例の設定信号の電流とコンデンサの電気容量との関係を示す図である。FIG. 10B is a diagram illustrating a relationship between the current of the setting signal and the capacitance of the capacitor in the modification example of the variable capacitor according to the second embodiment of the present disclosure. 図11は、本開示の実施形態3に係る可変コンデンサのブロック図である。FIG. 11 is a block diagram of a variable capacitor according to the third embodiment of the present disclosure. 図12は、本開示の実施形態4に係る可変コンデンサのブロック図である。FIG. 12 is a block diagram of a variable capacitor according to the fourth embodiment of the present disclosure. 図13は、本開示の実施形態5に係る可変コンデンサのブロック図である。FIG. 13 is a block diagram of a variable capacitor according to the fifth embodiment of the present disclosure. 図14は、本開示の実施形態6に係る可変コンデンサのブロック図である。FIG. 14 is a block diagram of a variable capacitor according to Embodiment 6 of the present disclosure. 図15は、本開示の実施形態6に係る可変コンデンサの変形例のブロック図である。FIG. 15 is a block diagram of a modified example of the variable capacitor according to the sixth embodiment of the present disclosure.
 本開示の実施の形態の説明に先立ち、従来の装置における問題点を簡単に説明する。 Prior to the description of the embodiment of the present disclosure, the problems in the conventional apparatus will be briefly described.
 従来のコンデンサでは、可変コンデンサにおける制御端子と出力端子との間の絶縁耐圧は、数V~数十Vと小さいため、高出力のワイヤレス給電等を行う場合には、可変コンデンサの出力側で発生する高電圧ノイズによって適切なインピーダンス調整ができない可能性がある。 With conventional capacitors, the withstand voltage between the control terminal and the output terminal of the variable capacitor is as small as several volts to several tens of volts, so it occurs on the output side of the variable capacitor when performing high-power wireless power supply, etc. There is a possibility that proper impedance adjustment cannot be performed due to high voltage noise.
 本開示のコンデンサでは、高電圧または大電流を非接触で伝送する場合であっても、設定信号に応じた制御信号によりコンデンサの容量を変更するので、適切なインピーダンス調整を行うことができる。 In the capacitor of the present disclosure, even when a high voltage or a large current is transmitted in a non-contact manner, the capacitance of the capacitor is changed by a control signal corresponding to the setting signal, so that appropriate impedance adjustment can be performed.
 以下の実施形態は、可変コンデンサに関し、特に信号に応じて電極間の容量値が変化するコンデンサに関する。 The following embodiments relate to a variable capacitor, and more particularly to a capacitor whose capacitance value between electrodes changes according to a signal.
 (実施形態1)
 以下、実施形態に係る可変コンデンサ1について図面を参照して説明する。ただし、以下に説明する構成は本開示の一例に過ぎない。本開示は、以下の実施形態に限定されず、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能である。
(Embodiment 1)
Hereinafter, a variable capacitor 1 according to an embodiment will be described with reference to the drawings. However, the configuration described below is merely an example of the present disclosure. The present disclosure is not limited to the following embodiments, and various modifications can be made according to the design and the like as long as they do not depart from the technical idea of the present disclosure.
 本実施形態の可変コンデンサ1は、図1に示すように、絶縁デバイス10、コンデンサ20、第1端子t1、第2端子t2、第3端子t3、第4端子t4および電源端子t10,t11、および制御端子t21,t22を有する。 As shown in FIG. 1, the variable capacitor 1 of this embodiment includes an insulating device 10, a capacitor 20, a first terminal t1, a second terminal t2, a third terminal t3, a fourth terminal t4, and power supply terminals t10 and t11, and Control terminals t21 and t22 are provided.
 絶縁デバイス10は、送信部11、受信部12および絶縁領域13を有している。 The insulation device 10 includes a transmission unit 11, a reception unit 12, and an insulation region 13.
 送信部11は、電源端子t10、第2端子t2から電力の供給を受け、動作する。送信部11は、第1端子t1からコンデンサ20の容量を設定する信号(設定信号S1)を受け付け、受け付けた設定信号S1を絶縁領域13を介して受信部12へ送信する。また、送信部11は、第2端子t2を介して接地されている。ここで、設定信号S1は、連続的に変化するアナログの信号である。 The transmission unit 11 receives power supply from the power supply terminal t10 and the second terminal t2 and operates. The transmission unit 11 receives a signal (setting signal S1) for setting the capacitance of the capacitor 20 from the first terminal t1, and transmits the received setting signal S1 to the receiving unit 12 through the insulating region 13. The transmitter 11 is grounded via the second terminal t2. Here, the setting signal S1 is an analog signal that changes continuously.
 受信部12は、電源端子t11および、第2端子t2とは別の電位の端子(図示せず)から電力の供給を受け、動作する。受信部12は、絶縁領域13を介して送信部11から送信された設定信号S1を受信する。受信部12は、設定信号S1に応じた制御信号をコンデンサ20へ出力する。 The receiving unit 12 receives power supply from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2, and operates. The receiving unit 12 receives the setting signal S1 transmitted from the transmitting unit 11 through the insulating region 13. The receiving unit 12 outputs a control signal corresponding to the setting signal S <b> 1 to the capacitor 20.
 絶縁領域13は、絶縁樹脂等の電気的な絶縁材料で形成された絶縁膜であり、送信部11と受信部12との間に設けられ、送信部11と受信部12との間を絶縁する。ここで、絶縁領域13による絶縁とは、電気的な絶縁を意味する。 The insulating region 13 is an insulating film formed of an electrically insulating material such as an insulating resin, and is provided between the transmission unit 11 and the reception unit 12 to insulate the transmission unit 11 and the reception unit 12 from each other. . Here, the insulation by the insulating region 13 means electrical insulation.
 コンデンサ20は、制御端子t21,t22を介して受信部12に電気的に接続されている。また、コンデンサ20は、第3端子t3,第4端子t4に電気的に接続されている。ここで、制御端子t21,t22は、電線等を接続するための部品(端子)であってもよいが、電子部品のリードや回路基板に配線として形成された導電体の一部であってもよい。また、「電気的に接続」とは、電気的に導通した状態の接続を意味し、直接的な接続だけでなく、例えば電線等の導体を介した間接的な接続も含む。 The capacitor 20 is electrically connected to the receiving unit 12 via control terminals t21 and t22. The capacitor 20 is electrically connected to the third terminal t3 and the fourth terminal t4. Here, the control terminals t21 and t22 may be components (terminals) for connecting electric wires or the like, but may be a part of a conductor formed as a wiring on a lead of an electronic component or a circuit board. Good. Moreover, “electrically connected” means a connection in an electrically conductive state, and includes not only a direct connection but also an indirect connection via a conductor such as an electric wire.
 コンデンサ20は、制御端子t21,t22に入力される制御信号に応じて電極間の容量値が変化する。具体的には、コンデンサ20は、図2に示すように、2つの電極板20a,20bとの間に制御層21が設けられている。制御層21は、強誘電体材料で形成されており、制御端子t21,t22を介して受信部12と電気的に接続されている。受信部12が制御信号を出力することで、電圧が制御層21に印加される。電圧が印加されると制御層21の誘電率が変化し、この変化に応じて2つの電極板20a,20bの間の電気容量が変化する。 The capacitance value between the electrodes of the capacitor 20 changes according to the control signal input to the control terminals t21 and t22. Specifically, as shown in FIG. 2, the capacitor 20 is provided with a control layer 21 between two electrode plates 20a and 20b. The control layer 21 is made of a ferroelectric material, and is electrically connected to the receiving unit 12 via control terminals t21 and t22. The voltage is applied to the control layer 21 by the receiving unit 12 outputting the control signal. When a voltage is applied, the dielectric constant of the control layer 21 changes, and the electric capacity between the two electrode plates 20a and 20b changes according to this change.
 コンデンサ20は、設定信号S1に応じた制御信号により電気容量が変化することにより、第3端子t3,第4端子t4の間のインピーダンスを変化させて、第3端子t3,第4端子t4の間にインピーダンスの変化に応じた電圧を発生させる。 The capacitor 20 changes the impedance between the third terminal t3 and the fourth terminal t4 by changing the electric capacity according to the control signal corresponding to the setting signal S1, so that the impedance between the third terminal t3 and the fourth terminal t4 is changed. A voltage corresponding to the change in impedance is generated.
 以下、送信部11および受信部12の詳細な構成について説明する。本実施形態では、絶縁領域13は、光を透過する材料で成形されている。 Hereinafter, detailed configurations of the transmission unit 11 and the reception unit 12 will be described. In the present embodiment, the insulating region 13 is formed of a material that transmits light.
 送信部11は、図3に示すように、発光素子11aおよび制御部11bを有している。発光素子11aは、例えば光を発光するLED等であり、設定信号S1を光(光信号)に変換し、発光する。発光素子11aにより発光された光が絶縁領域13を透過して受信部12で受光される。制御部11bは、電源端子t11、第2端子t2とは別の電位の端子から電力の供給を受け、発光素子11aを駆動する。例えば制御部11bは、発光素子11aによる光信号の送信に係る制御を行う。 The transmission unit 11 includes a light emitting element 11a and a control unit 11b as shown in FIG. The light emitting element 11a is, for example, an LED that emits light, and converts the setting signal S1 into light (optical signal) to emit light. The light emitted by the light emitting element 11 a passes through the insulating region 13 and is received by the receiving unit 12. The controller 11b receives power from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2, and drives the light emitting element 11a. For example, the control unit 11b performs control related to transmission of an optical signal by the light emitting element 11a.
 受信部12は、図3に示すように、受光素子12aおよび制御部12bを有している。受光素子12aは、例えば光を受光するフォトダイオード等であり、受光した光を電気(電気信号)に変換する。制御部11bは、電源端子t11、第2端子t2とは別の電位の端子から電力の供給を受け、動作する。制御部11bは、受光素子12aで変換された電気信号をアナログ信号である電圧信号に変換し、電圧信号を制御信号としてコンデンサ20に出力、つまり制御端子t21,t22に印加する。 The receiving unit 12 includes a light receiving element 12a and a control unit 12b as shown in FIG. The light receiving element 12a is, for example, a photodiode that receives light, and converts the received light into electricity (electrical signal). The control unit 11b operates by receiving power supply from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2. The controller 11b converts the electrical signal converted by the light receiving element 12a into a voltage signal that is an analog signal, and outputs the voltage signal as a control signal to the capacitor 20, that is, applies it to the control terminals t21 and t22.
 コンデンサ20では、制御端子t21,t22に印加された電圧信号(制御信号)の電圧に応じて電気容量が変化する。 In the capacitor 20, the electric capacity changes according to the voltage of the voltage signal (control signal) applied to the control terminals t21 and t22.
 次に、送信部11の制御部11bおよび受信部12の制御部12bの詳細について説明する。 Next, details of the control unit 11b of the transmission unit 11 and the control unit 12b of the reception unit 12 will be described.
 送信部11は、図4に示すように、制御部11bとして電流制御回路11cを有している。電流制御回路11cは、第1端子t1に入力された設定信号S1の電圧に応じて発光素子11aに流れる電流を制御する回路である。電流制御回路11cと発光素子11aとでフォトIC回路が構成されている。 The transmission unit 11 has a current control circuit 11c as the control unit 11b as shown in FIG. The current control circuit 11c is a circuit that controls the current flowing through the light emitting element 11a in accordance with the voltage of the setting signal S1 input to the first terminal t1. The current control circuit 11c and the light emitting element 11a constitute a photo IC circuit.
 受信部12は、図4に示すように、制御部12bとして増幅回路12cを有している。増幅回路12cと受光素子12aとで増幅機能付きフォトIC回路が構成されている。 As shown in FIG. 4, the receiving unit 12 includes an amplifier circuit 12c as a control unit 12b. The amplifying circuit 12c and the light receiving element 12a constitute a photo IC circuit with an amplifying function.
 増幅回路12cは、受光素子12aで変換された電気から増幅率に応じた電圧信号を生成する。例えば、増幅率が1である場合には、増幅回路12cは、第1端子t1に入力された設定信号S1の電圧と同じ電圧の電圧信号を生成し、生成した電圧信号(制御信号)を制御端子t21,t22に印加する。なお、増幅率は1以上の値である。 The amplification circuit 12c generates a voltage signal corresponding to the amplification factor from the electricity converted by the light receiving element 12a. For example, when the amplification factor is 1, the amplifier circuit 12c generates a voltage signal having the same voltage as the voltage of the setting signal S1 input to the first terminal t1, and controls the generated voltage signal (control signal). Applied to terminals t21 and t22. The amplification factor is a value of 1 or more.
 コンデンサ20では、増幅回路12cで増幅された電圧信号(制御信号)の電圧に応じて電気容量が変化する。 In the capacitor 20, the electric capacity changes according to the voltage of the voltage signal (control signal) amplified by the amplifier circuit 12c.
 ここで、増幅率が1である場合には、入力電圧である設定信号S1の電圧V1と、制御端子t21,t22間の電圧V2との関係は、関係式“V1=V2”で表される(図5A参照)。つまり、V1の値が大きくなるにつれてV2の値は単調に増加する。 Here, when the amplification factor is 1, the relationship between the voltage V1 of the setting signal S1 as the input voltage and the voltage V2 between the control terminals t21 and t22 is expressed by the relational expression “V1 = V2”. (See FIG. 5A). That is, as the value of V1 increases, the value of V2 increases monotonously.
 したがって、V1の値が大きくなるにつれてコンデンサ20の制御端子t21,t22に印加される電圧は大きくなる。そのため、V1の値が大きくなるにつれてコンデンサ20の電気容量Cは単調に減少する(図5B参照)。 Therefore, the voltage applied to the control terminals t21 and t22 of the capacitor 20 increases as the value of V1 increases. Therefore, the electric capacity C of the capacitor 20 monotonously decreases as the value of V1 increases (see FIG. 5B).
 なお、本実施形態では、コンデンサ20は、強誘電体材料を用いて電気容量を変化させる構成としたが、この構成に限定されない。コンデンサ20は、制御端子t21,t22に電圧を印加して電気容量を変更できるタイプのコンデンサであればよい。例えば、コンデンサ20として、可変容量ダイオードや、MEMS(Micro Electro Mechanical Systems)式の可変コンデンサであってもよい。 In the present embodiment, the capacitor 20 is configured to change the electric capacity using a ferroelectric material, but is not limited to this configuration. The capacitor 20 may be a capacitor of a type that can change the electric capacity by applying a voltage to the control terminals t21 and t22. For example, the capacitor 20 may be a variable capacitance diode or a MEMS (Micro Electro Mechanical Systems) type variable capacitor.
 または、コンデンサ20は、バリアブルコンデンサ、トリマコンデンサ、ピストンコンデンサ等の可動部がついているメカニカル方式のコンデンサであってもよい。この場合、可動部を変位するモータ等に、電圧を印加してコンデンサの電気容量を変更する。 Alternatively, the capacitor 20 may be a mechanical capacitor having a movable part such as a variable capacitor, a trimmer capacitor, or a piston capacitor. In this case, a voltage is applied to a motor or the like that displaces the movable part to change the capacitance of the capacitor.
 以上説明したように、本実施形態の可変コンデンサ1の絶縁デバイス10は、送信部11と、受信部12と、絶縁領域13とを有している。送信部11は、コンデンサ20の容量を設定するために外部から入力された設定信号S1を送信する。受信部12は、送信部11で送信された設定信号S1を受信する。絶縁領域13は、送信部11と受信部12との間に設けられている。受信部12は、絶縁領域13を介して受信された設定信号S1に応じた制御信号をコンデンサ20に出力する。 As described above, the insulating device 10 of the variable capacitor 1 according to the present embodiment includes the transmission unit 11, the reception unit 12, and the insulating region 13. The transmitter 11 transmits a setting signal S1 input from the outside in order to set the capacitance of the capacitor 20. The receiving unit 12 receives the setting signal S1 transmitted by the transmitting unit 11. The insulating region 13 is provided between the transmission unit 11 and the reception unit 12. The receiving unit 12 outputs a control signal corresponding to the setting signal S <b> 1 received via the insulating region 13 to the capacitor 20.
 これにより、送信部11と受信部12との間で高い絶縁耐圧を確保することができるので、可変コンデンサ1は、高電圧または大電流を非接触で伝送する場合であっても、適切なインピーダンス調整を行うことができる。 Thereby, since a high withstand voltage can be ensured between the transmitter 11 and the receiver 12, the variable capacitor 1 has an appropriate impedance even when transmitting a high voltage or a large current in a non-contact manner. Adjustments can be made.
 ここで、送信部11は、設定信号S1を光信号として絶縁領域13を介して受信部12へ送信するとしてもよい。この構成によると、光信号は電気の影響を受ける可能性が低いため、可変コンデンサ1は、送信部11と受信部12との間において電気ノイズの影響が少ない信号伝達を行うことができる。 Here, the transmission unit 11 may transmit the setting signal S1 as an optical signal to the reception unit 12 via the insulating region 13. According to this configuration, since the optical signal is unlikely to be affected by electricity, the variable capacitor 1 can perform signal transmission between the transmitter 11 and the receiver 12 with less influence of electrical noise.
 ここで、設定信号S1はアナログ信号である。送信部11は、アナログ信号を光信号に変換し、受信部12は、受信した光信号を電気信号に変換している。受信部12は、変換された電気信号に応じたアナログ信号を前記制御信号としてコンデンサ20に出力する。 Here, the setting signal S1 is an analog signal. The transmission unit 11 converts an analog signal into an optical signal, and the reception unit 12 converts the received optical signal into an electrical signal. The receiving unit 12 outputs an analog signal corresponding to the converted electric signal to the capacitor 20 as the control signal.
 この構成によると、絶縁デバイス10は、外部から入力されたアナログ信号を伝送することができる。また、受信部12は、制御信号をアナログ信号としてコンデンサ20に出力するので、従来と同様にアナログ信号によりコンデンサの電気容量を変更することができる。 According to this configuration, the insulating device 10 can transmit an analog signal input from the outside. Moreover, since the receiving part 12 outputs a control signal to the capacitor | condenser 20 as an analog signal, it can change the electrical capacitance of a capacitor | condenser with an analog signal similarly to the past.
 従来、複数のコンデンサをリレーやスイッチ等で入り切りすることで、制御端子と出力端子との間の絶縁耐圧を高める可変コンデンサ(以下、「比較例の可変コンデンサ」という)がある。比較例の可変コンデンサでは、複数のコンデンサと、複数のリレーまたはスイッチが必要である。そのため、比較例の可変コンデンサは大きくなる。さらに、リレーやスイッチ等でコンデンサの数を変えるため、可変コンデンサの容量は階段状に変化する、つまり階段状に出力されることになる。 Conventionally, there is a variable capacitor (hereinafter referred to as a “variable capacitor of a comparative example”) that increases the withstand voltage between a control terminal and an output terminal by turning on and off a plurality of capacitors with relays or switches. In the variable capacitor of the comparative example, a plurality of capacitors and a plurality of relays or switches are required. Therefore, the variable capacitor of the comparative example becomes large. Furthermore, since the number of capacitors is changed by a relay, a switch, etc., the capacity of the variable capacitor changes stepwise, that is, it is output stepwise.
 一方、本実施形態の可変コンデンサ1は、複数のリレーまたはスイッチを用いることなく絶縁耐圧を高めている。そのため、比較例の可変コンデンサと比較して小型化することができる。また、本実施形態の可変コンデンサ1は、連続的に変化するアナログ信号を用いて絶縁耐圧を高めているので、コンデンサの容量を連続的に変化させることができる。 On the other hand, the variable capacitor 1 of the present embodiment has an increased breakdown voltage without using a plurality of relays or switches. Therefore, the size can be reduced as compared with the variable capacitor of the comparative example. In addition, since the variable capacitor 1 of the present embodiment increases the withstand voltage using an analog signal that changes continuously, the capacitance of the capacitor can be changed continuously.
 なお、本実施形態では、外部から入力される設定信号S1および受信部12が出力する制御信号の双方ともアナログ信号であるとしたが、これに限定されない。受信部12が出力する信号が少なくともアナログ信号であればよい。受信部12が出力する信号がアナログ信号であれば、コンデンサの容量を連続的に変化させることができる。 In the present embodiment, both the setting signal S1 input from the outside and the control signal output from the receiving unit 12 are analog signals. However, the present invention is not limited to this. The signal output from the receiving unit 12 may be at least an analog signal. If the signal output from the receiving unit 12 is an analog signal, the capacitance of the capacitor can be continuously changed.
 以上説明したように、本実施形態の可変コンデンサ1において、受信部12は、コンデンサ20が容量を連続的に変更するように制御信号として連続的に変化するアナログ信号をコンデンサ20に出力するように構成されていてもよい。または、本実施形態の可変コンデンサ1において、送信部11は、コンデンサが容量を連続的に変更するようにアナログ信号を受信部12に送信するように構成されていてもよい。これらの構成によると、可変コンデンサ1は、コンデンサの容量も連続的に変化させることができる。 As described above, in the variable capacitor 1 of the present embodiment, the receiving unit 12 outputs an analog signal that continuously changes as a control signal to the capacitor 20 so that the capacitor 20 continuously changes the capacitance. It may be configured. Alternatively, in the variable capacitor 1 of the present embodiment, the transmission unit 11 may be configured to transmit an analog signal to the reception unit 12 so that the capacitor continuously changes the capacitance. According to these configurations, the variable capacitor 1 can continuously change the capacitance of the capacitor.
 (実施形態2)
 実施形態1では、可変コンデンサ1は電源端子t10,t11を含む構成としたが、この構成に限定されない。可変コンデンサ1は、図6に示すように、電源端子t10,t11を含まない構成であってもよい。
(Embodiment 2)
In the first embodiment, the variable capacitor 1 includes the power supply terminals t10 and t11, but is not limited to this configuration. As shown in FIG. 6, the variable capacitor 1 may have a configuration not including the power supply terminals t10 and t11.
 本実施形態では、電源端子t10を含まない可変コンデンサ1Aについて説明する。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。 In this embodiment, a variable capacitor 1A that does not include the power supply terminal t10 will be described. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の可変コンデンサ1Aの送信部11は、図7に示すように、発光素子11dを有する。発光素子11dは、例えば光を発光するLED等であり、設定信号S1を光(光信号)に変換し、発光する。発光素子11dにより発光された光が絶縁領域13を透過して受信部12で受光される。 The transmitter 11 of the variable capacitor 1A of the present embodiment includes a light emitting element 11d as shown in FIG. The light emitting element 11d is, for example, an LED that emits light, and converts the setting signal S1 into light (optical signal) to emit light. The light emitted by the light emitting element 11 d passes through the insulating region 13 and is received by the receiving unit 12.
 本実施形態の可変コンデンサ1Aの受信部12は、図7に示すように、抵抗12dとフォトトランジスタ12eとが直列接続された直列回路である。 The receiving unit 12 of the variable capacitor 1A of the present embodiment is a series circuit in which a resistor 12d and a phototransistor 12e are connected in series as shown in FIG.
 抵抗12dの一端は電源端子t11と電気的に接続され、他端はフォトトランジスタ12eのコレクタと接続されている。フォトトランジスタ12eのエミッタは、制御端子t22と電気的に接続されている。抵抗12dとフォトトランジスタ12eとの接続点は制御端子t21と電気的に接続されている。 One end of the resistor 12d is electrically connected to the power supply terminal t11, and the other end is connected to the collector of the phototransistor 12e. The emitter of the phototransistor 12e is electrically connected to the control terminal t22. A connection point between the resistor 12d and the phototransistor 12e is electrically connected to the control terminal t21.
 受信部12は、抵抗12dとフォトトランジスタ12eとの接続点の電圧を制御信号としてコンデンサ20に出力する。 The receiving unit 12 outputs the voltage at the connection point between the resistor 12d and the phototransistor 12e to the capacitor 20 as a control signal.
 以下、受信部12の機能について詳細に説明する。 Hereinafter, the function of the receiving unit 12 will be described in detail.
 発光素子11dは、流れる電流に応じた光量の光を発光するので、フォトトランジスタ12eには、発光素子11dに流れる電流に応じた光を受光する。そのため、フォトトランジスタ12eのコレクタ-エミッタ間(CE間)には、発光素子11dに流れる電流に比例したコレクタ電流が流れる。そうすると、抵抗12dの抵抗値にコレクタ電流の値を乗じた値(乗算値)を、電源端子t11、第2端子t2とは別の電位の端子から供給される電圧から引いた値(差分値)である電圧が制御端子t21,t22に印加されることとなる。 Since the light emitting element 11d emits light of a light amount corresponding to the flowing current, the phototransistor 12e receives light corresponding to the current flowing through the light emitting element 11d. Therefore, a collector current proportional to the current flowing through the light emitting element 11d flows between the collector and the emitter (between CE) of the phototransistor 12e. Then, a value (difference value) obtained by multiplying a value (multiplier value) obtained by multiplying the resistance value of the resistor 12d by the collector current value from a voltage supplied from a terminal having a potential different from that of the power supply terminal t11 and the second terminal t2. Is applied to the control terminals t21 and t22.
 ここで、フォトトランジスタ12eに入力されるコレクタ電流I1が大きくなるにつれて上述した乗算値は大きくなる。そのため、コレクタ電流I1が大きくなると差分値は小さくなる。つまり、制御端子t21,t22間に印加される電圧Vの値は小さくなる(図8A参照)。制御端子t21,t22間に印加される電圧Vの値が小さくなると可変コンデンサの電気容量Cは大きくなる。つまり、コレクタ電流I1が大きくなるにつれて可変コンデンサの電気容量Cは大きくなる(図8B参照)。 Here, as the collector current I1 input to the phototransistor 12e increases, the multiplication value described above increases. Therefore, the difference value decreases as the collector current I1 increases. That is, the value of the voltage V applied between the control terminals t21 and t22 becomes small (see FIG. 8A). When the value of the voltage V applied between the control terminals t21 and t22 decreases, the electric capacitance C of the variable capacitor increases. That is, as the collector current I1 increases, the capacitance C of the variable capacitor increases (see FIG. 8B).
 なお、本実施形態では、フォトトランジスタ12eのコレクタと抵抗12dとを接続する構成としたが、この構成に限定されない。 In this embodiment, the collector of the phototransistor 12e and the resistor 12d are connected. However, the present invention is not limited to this configuration.
 可変コンデンサ1Aは、フォトトランジスタ12eのエミッタと抵抗12dとが接続している構成であってもよい。この場合における可変コンデンサ1Aの構成を図9に示す。 The variable capacitor 1A may be configured such that the emitter of the phototransistor 12e and the resistor 12d are connected. The configuration of the variable capacitor 1A in this case is shown in FIG.
 本変形例の可変コンデンサ1Aにおけるフォトトランジスタ12eのコレクタは、電源端子t11と電気的に接続されている。フォトトランジスタ12eのエミッタは、抵抗12dの一端と接続されている。抵抗12dの他端は、制御端子t22と接続されている。抵抗12dとフォトトランジスタ12eとの接続点は制御端子t21と電気的に接続されている。 The collector of the phototransistor 12e in the variable capacitor 1A of this modification is electrically connected to the power supply terminal t11. The emitter of the phototransistor 12e is connected to one end of the resistor 12d. The other end of the resistor 12d is connected to the control terminal t22. A connection point between the resistor 12d and the phototransistor 12e is electrically connected to the control terminal t21.
 受信部12は、抵抗12dとフォトトランジスタ12eとの接続点の電圧を制御信号としてコンデンサ20に出力する。 The receiving unit 12 outputs the voltage at the connection point between the resistor 12d and the phototransistor 12e to the capacitor 20 as a control signal.
 この場合、コレクタ電流I1と、制御端子t21,t22間に印加される電圧Vとの関係は、上述した場合と逆の関係、つまりコレクタ電流I1が大きくなると電圧Vも大きくなる(図10A参照)。制御端子t21,t22間に印加される電圧Vの値が大きくなると可変コンデンサの電気容量Cは小さくなる。つまり、コレクタ電流I1が大きくなるにつれて可変コンデンサの電気容量Cは小さくなる(図10B参照)。 In this case, the relationship between the collector current I1 and the voltage V applied between the control terminals t21 and t22 is opposite to that described above, that is, the voltage V increases as the collector current I1 increases (see FIG. 10A). . As the value of the voltage V applied between the control terminals t21 and t22 increases, the capacitance C of the variable capacitor decreases. That is, as the collector current I1 increases, the capacitance C of the variable capacitor decreases (see FIG. 10B).
 以上説明したように、本実施形態の可変コンデンサ1Aでは、受信部12は、フォトトランジスタ12eと抵抗12dとが直列接続された直列回路で構成されている。受信部12(直列回路)は、フォトトランジスタ12eと抵抗12dとの接続点の電圧を制御信号としてコンデンサ20に出力する。この構成によると、受信部12の構成を簡単な構成とすることができる。 As described above, in the variable capacitor 1A of the present embodiment, the receiving unit 12 is configured by a series circuit in which the phototransistor 12e and the resistor 12d are connected in series. The receiving unit 12 (series circuit) outputs the voltage at the connection point between the phototransistor 12e and the resistor 12d to the capacitor 20 as a control signal. According to this configuration, the configuration of the receiving unit 12 can be simplified.
 (実施形態3)
 実施形態1では、設定信号S1はアナログの信号であるとしたが、設定信号S1はデジタル信号であってもよい。本実施形態では、設定信号S1がデジタルの信号である場合での可変コンデンサ1Bについて説明する。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 3)
In the first embodiment, the setting signal S1 is an analog signal, but the setting signal S1 may be a digital signal. In the present embodiment, the variable capacitor 1B when the setting signal S1 is a digital signal will be described. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の可変コンデンサ1Bの送信部11は、図11に示すように、発光素子11fを有する。発光素子11fは、例えば光を発光するLED等であり、設定信号S1(デジタル信号)を光(光信号)に変換し、発光する。発光素子11fにより発光された光が絶縁領域13を透過して受信部12で受光される。 The transmission unit 11 of the variable capacitor 1B of the present embodiment includes a light emitting element 11f as shown in FIG. The light emitting element 11f is, for example, an LED that emits light, and converts the setting signal S1 (digital signal) into light (optical signal) to emit light. The light emitted from the light emitting element 11 f passes through the insulating region 13 and is received by the receiving unit 12.
 本実施形態の可変コンデンサ1Bの受信部12は、図11に示すように、受光素子12f、増幅回路12g、および変換回路12hを有している。 As shown in FIG. 11, the receiving unit 12 of the variable capacitor 1B of the present embodiment includes a light receiving element 12f, an amplifier circuit 12g, and a conversion circuit 12h.
 受光素子12fは、例えば光を受光するフォトダイオード等であり、受光した光を電気的なデジタル信号に変換する。増幅回路12gは、受光素子12fで変換されたデジタル信号から増幅率に応じたデジタル信号を生成する。 The light receiving element 12f is, for example, a photodiode that receives light, and converts the received light into an electrical digital signal. The amplifier circuit 12g generates a digital signal corresponding to the amplification factor from the digital signal converted by the light receiving element 12f.
 変換回路12hは、増幅回路12gで増幅されたデジタル信号をアナログ信号に変換するデジタルアナログ(DA)変換回路である。変換回路12hは、デジタル信号が変換されたアナログ信号をコンデンサ20に出力、つまりデジタル信号が変換されたアナログ信号の電圧を制御端子t21,t22に印加する。 The conversion circuit 12h is a digital-analog (DA) conversion circuit that converts the digital signal amplified by the amplification circuit 12g into an analog signal. The conversion circuit 12h outputs the analog signal converted from the digital signal to the capacitor 20, that is, applies the voltage of the analog signal converted from the digital signal to the control terminals t21 and t22.
 以上説明したように、本実施形態では、設定信号S1はデジタル信号であるとしている。送信部11は、デジタル信号を光信号に変換する。受信部12は、光信号をデジタル信号に変換し、さらに、変換されたデジタル信号を設定信号S1としてのアナログ信号に変換している。この構成によると、可変コンデンサ1Bは、外部から入力されたデジタル信号に応じて第3端子t3、第4端子t4の間のインピーダンスを変化させることができる。また、受信部12は、制御信号をアナログ信号としてコンデンサ20に出力するので、従来と同様にアナログ信号によりコンデンサの電気容量を変更することができる。 As described above, in the present embodiment, the setting signal S1 is a digital signal. The transmission unit 11 converts a digital signal into an optical signal. The receiving unit 12 converts the optical signal into a digital signal, and further converts the converted digital signal into an analog signal as the setting signal S1. According to this configuration, the variable capacitor 1B can change the impedance between the third terminal t3 and the fourth terminal t4 in accordance with a digital signal input from the outside. Moreover, since the receiving part 12 outputs a control signal to the capacitor | condenser 20 as an analog signal, it can change the electrical capacitance of a capacitor | condenser with an analog signal similarly to the past.
 (実施形態4)
 実施形態1~3の可変コンデンサ1,1A,1Bは、設定信号S1を光(光信号)に変換して送受信する構成であるとしたが、この構成に限定されない。
(Embodiment 4)
The variable capacitors 1, 1A, 1B of the first to third embodiments are configured to convert the setting signal S1 into light (optical signal) and transmit / receive it, but are not limited to this configuration.
 本実施形態では、磁界を利用して設定信号S1を送受信する可変コンデンサ1Cについて、図12を用いて説明する。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。 In this embodiment, a variable capacitor 1C that transmits and receives the setting signal S1 using a magnetic field will be described with reference to FIG. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の可変コンデンサ1Cの送信部11は、第1コイル11iと制御部11jとを有している。制御部11jは、第1端子t1に入力された設定信号S1の電圧に応じて第1コイル11iに流れる電流を制御する回路である。第1コイル11iは、設定信号S1に応じた磁界を発生する。具体的には、第1コイル11iは、制御部11jから出力された電流に応じた磁界を発生する。 The transmission unit 11 of the variable capacitor 1C according to the present embodiment includes a first coil 11i and a control unit 11j. The controller 11j is a circuit that controls the current flowing through the first coil 11i according to the voltage of the setting signal S1 input to the first terminal t1. The first coil 11i generates a magnetic field according to the setting signal S1. Specifically, the first coil 11i generates a magnetic field corresponding to the current output from the control unit 11j.
 本実施形態の可変コンデンサ1Cの受信部12は、第2コイル12iと制御部12jとを有している。第2コイル12iには、送信部11の第1コイル11iで発生された磁界により電流が流れる。制御部12jは、第2コイル12iで流れる電流を整流する整流回路100を有し、整流回路100で整流された電流を制御信号として制御端子t21,t22に出力する。整流された電流が制御端子t21,t22に出力されることにより、制御端子t21,t22には、整流された電流に応じた電圧が印加されることとなる。 The receiving unit 12 of the variable capacitor 1C according to the present embodiment includes a second coil 12i and a control unit 12j. A current flows through the second coil 12 i due to the magnetic field generated by the first coil 11 i of the transmitter 11. The controller 12j includes a rectifier circuit 100 that rectifies the current flowing through the second coil 12i, and outputs the current rectified by the rectifier circuit 100 to the control terminals t21 and t22 as a control signal. Since the rectified current is output to the control terminals t21 and t22, a voltage corresponding to the rectified current is applied to the control terminals t21 and t22.
 実施形態1~3の絶縁デバイス10では、光により設定信号S1を伝送する方式(光絶縁タイプ)により可変コンデンサの電気容量を制御している。一方、本実施形態の絶縁デバイス10は、磁気により設定信号S1を伝送する方式(磁気絶縁タイプ)により可変コンデンサの電気容量を制御している。磁気絶縁タイプは、光絶縁タイプよりも電力伝送効率が高いため、本実施形態の可変コンデンサ1Cは、実施形態1~3の可変コンデンサ1,1A,1Bよりも高速に信号(設定信号S1)の伝達を行うことができるという利点がある。 In the insulating devices 10 of the first to third embodiments, the electric capacity of the variable capacitor is controlled by a method (optical insulating type) in which the setting signal S1 is transmitted by light. On the other hand, the insulation device 10 of this embodiment controls the electric capacity of the variable capacitor by a method (magnetic insulation type) that transmits the setting signal S1 by magnetism. Since the magnetic insulation type has higher power transmission efficiency than the optical insulation type, the variable capacitor 1C according to the present embodiment can transmit a signal (setting signal S1) at a higher speed than the variable capacitors 1, 1A and 1B according to the first to third embodiments. There is an advantage that transmission can be performed.
 以上説明したように、本実施形態の可変コンデンサ1Cにおいて、送信部11は、設定信号S1に応じた磁界を発生させる第1コイル11iを少なくとも有している。受信部12は、第2コイル12iと、第1コイル11iで発生した磁界に応じて第2コイル12iに流れる電流を整流する制御部12jとを有し、整流された電流を制御信号としてコンデンサ20に出力する。この構成によると、絶縁デバイス10は、磁気絶縁タイプとして構成されているので、光絶縁タイプの絶縁デバイスよりもより高速に信号伝達を行うことができる。 As described above, in the variable capacitor 1C of the present embodiment, the transmission unit 11 has at least the first coil 11i that generates a magnetic field according to the setting signal S1. The receiving unit 12 includes a second coil 12i and a control unit 12j that rectifies a current flowing through the second coil 12i in accordance with a magnetic field generated in the first coil 11i. The capacitor 20 uses the rectified current as a control signal. Output to. According to this configuration, since the insulation device 10 is configured as a magnetic insulation type, signal transmission can be performed at a higher speed than an optical insulation type insulation device.
 (実施形態5)
 本実施形態では、送信部11と受信部12との間にコンデンサを形成し、このコンデンサを用いて設定信号S1を送受信する可変コンデンサ1Dについて、図13を用いて説明する。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 5)
In the present embodiment, a variable capacitor 1D that forms a capacitor between the transmission unit 11 and the reception unit 12 and transmits / receives the setting signal S1 using this capacitor will be described with reference to FIG. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の可変コンデンサ1Dの送信部11は、制御部11kと、2つの電極板14a,電極板14bとを有している。電極板14aは、送信部11と受信部12との間で形成される第1コンデンサ150の片側の電極である。電極板14bは、送信部11と受信部12との間で形成される第2コンデンサ151の片側の電極である。制御部11kは、第1端子t1に入力された設定信号S1の電圧に応じて電極板14aおよび電極板14bに出力する電流を制御する回路である。 The transmission unit 11 of the variable capacitor 1D of the present embodiment includes a control unit 11k, two electrode plates 14a, and an electrode plate 14b. The electrode plate 14 a is an electrode on one side of the first capacitor 150 formed between the transmission unit 11 and the reception unit 12. The electrode plate 14 b is an electrode on one side of the second capacitor 151 formed between the transmission unit 11 and the reception unit 12. The controller 11k is a circuit that controls the current output to the electrode plate 14a and the electrode plate 14b according to the voltage of the setting signal S1 input to the first terminal t1.
 本実施形態の可変コンデンサ1Dの受信部12は、制御部12kと、2つの電極板15a,電極板15bとを有している。電極板15aは、第1コンデンサ150を形成する電極であって、絶縁領域13を挟んで電極板14aに対向する位置に設けられる。電極板15bは、第2コンデンサ151を形成する電極であって、絶縁領域13を挟んで電極板14bに対向する位置に設けられる。制御部12kは、第1コンデンサ150および第2コンデンサ151の放電により流れる電流を整流する整流回路101を有し、整流回路101で整流された電流を制御端子t21,t22に出力する。整流された電流が制御端子t21,t22に出力されることにより、制御端子t21,t22には、整流された電流に応じた電圧が印加されることとなる。 The receiving unit 12 of the variable capacitor 1D of the present embodiment includes a control unit 12k, and two electrode plates 15a and 15b. The electrode plate 15a is an electrode that forms the first capacitor 150, and is provided at a position facing the electrode plate 14a with the insulating region 13 interposed therebetween. The electrode plate 15b is an electrode that forms the second capacitor 151, and is provided at a position facing the electrode plate 14b with the insulating region 13 interposed therebetween. The control unit 12k includes a rectifier circuit 101 that rectifies the current that flows due to the discharge of the first capacitor 150 and the second capacitor 151, and outputs the current rectified by the rectifier circuit 101 to the control terminals t21 and t22. Since the rectified current is output to the control terminals t21 and t22, a voltage corresponding to the rectified current is applied to the control terminals t21 and t22.
 本実施形態の絶縁デバイス10は、コンデンサにより設定信号S1を伝送する方式(容量絶縁タイプ)により可変コンデンサ1Dの電気容量を制御している。容量絶縁タイプの絶縁デバイス10を用いることにより半導体IC(Integrated Circuit)として集積化が可能となり、光絶縁タイプおよび磁気絶縁タイプよりも低消費で信号の伝達が可能となり、さらには小型化が可能となる。 In the insulation device 10 of the present embodiment, the electric capacity of the variable capacitor 1D is controlled by a method (capacity insulation type) in which the setting signal S1 is transmitted by a capacitor. By using the capacitive insulation type insulation device 10, it is possible to integrate as a semiconductor IC (Integrated Circuit), and it is possible to transmit signals with lower consumption than the optical insulation type and the magnetic insulation type, and further miniaturization is possible. Become.
 なお、本実施形態では、送信部11と受信部12との間に、2個のコンデンサ(第1コンデンサ150、第2コンデンサ151)を形成する構成としたが、この構成に限定されない。送信部11と受信部12との間には、1個以上のコンデンサが形成される構成であればよい。 In the present embodiment, two capacitors (first capacitor 150 and second capacitor 151) are formed between the transmission unit 11 and the reception unit 12. However, the present invention is not limited to this configuration. Any configuration in which one or more capacitors are formed between the transmitter 11 and the receiver 12 may be used.
 以上説明したように、本実施形態の可変コンデンサ1Dにおいて、送信部11と受信部12との間に少なくとも1個の送信用コンデンサ(ここでは、第1コンデンサ150、第2コンデンサ151)を有している。本実施形態では、送信用コンデンサにより設定信号S1の送受信が行われる。受信部12は、受信した設定信号S1を整流し、整流された設定信号S1をコンデンサ20に出力する。この構成によると、絶縁デバイス10は、容量絶縁タイプとして構成されているので、光絶縁タイプの絶縁デバイスおよび磁気絶縁タイプの絶縁デバイスよりも低消費で信号伝達を行うことができる。 As described above, the variable capacitor 1D of the present embodiment has at least one transmission capacitor (here, the first capacitor 150 and the second capacitor 151) between the transmission unit 11 and the reception unit 12. ing. In the present embodiment, the setting signal S1 is transmitted and received by the transmission capacitor. The receiving unit 12 rectifies the received setting signal S1 and outputs the rectified setting signal S1 to the capacitor 20. According to this configuration, since the insulating device 10 is configured as a capacitive insulating type, signal transmission can be performed with lower consumption than the optical insulating type insulating device and the magnetic insulating type insulating device.
 (実施形態6)
 本実施形態では、1つの電源で送信部11および受信部12を駆動させる可変コンデンサ1Eについて、図14を用いて説明する。以下、本実施形態では、実施形態1と異なる点を中心に説明する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を適宜省略する。
(Embodiment 6)
In the present embodiment, a variable capacitor 1E that drives the transmitter 11 and the receiver 12 with a single power source will be described with reference to FIG. In the following, the present embodiment will be described focusing on differences from the first embodiment. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted suitably.
 本実施形態の可変コンデンサ1Eの絶縁デバイス10は、図14に示すように、送信部11、受信部12、絶縁領域13、送電部16および受電部17を有している。絶縁デバイス10では、絶縁領域13を挟んで、一方側に送信部11および送電部16が、他方側に受信部12および受電部17が、それぞれ配置されている。 The insulation device 10 of the variable capacitor 1E of the present embodiment includes a transmission unit 11, a reception unit 12, an insulation region 13, a power transmission unit 16, and a power reception unit 17 as illustrated in FIG. In the insulating device 10, the transmission unit 11 and the power transmission unit 16 are arranged on one side and the reception unit 12 and the power reception unit 17 are arranged on the other side with the insulation region 13 interposed therebetween.
 送電部16は、電源端子t10、第2端子t2から供給された電力を、磁気結合方式により絶縁領域13を介して受電部17へ送電する。 The power transmission unit 16 transmits the power supplied from the power supply terminal t10 and the second terminal t2 to the power reception unit 17 via the insulating region 13 by the magnetic coupling method.
 受電部17は、受信部12と電気的に接続しており、送電部16から受け取った電力を受信部12に供給する。これにより、受信部12は、動作することができる。 The power receiving unit 17 is electrically connected to the receiving unit 12 and supplies the power received from the power transmitting unit 16 to the receiving unit 12. Thereby, the receiving unit 12 can operate.
 また、送信部11は、電源端子t10、第2端子t2から供給された電力により動作する。 In addition, the transmission unit 11 operates with power supplied from the power supply terminal t10 and the second terminal t2.
 なお、送電方法は、磁気結合方式に限らず、他の方法、例えば光結合方式や容量結合方式であってもよい。 Note that the power transmission method is not limited to the magnetic coupling method, and may be another method, for example, an optical coupling method or a capacitive coupling method.
 また、本実施形態では、絶縁領域13を挟んで、一方側に送信部11および送電部16が、他方側に受信部12および受電部17が、それぞれ配置されている構成としたが、この構成に限定されない。 In the present embodiment, the transmission unit 11 and the power transmission unit 16 are arranged on one side and the reception unit 12 and the power reception unit 17 are arranged on the other side with the insulating region 13 interposed therebetween. It is not limited to.
 図15の可変コンデンサ1Fに示すように、絶縁領域13を挟んで、一方側に送信部11および受電部17が、他方側に受信部12および送電部16が、それぞれ配置されている構成であってもよい。この場合、送電部16は、電源端子t11および、第2端子t2とは別の電位の端子(図示せず)から供給された電力を、磁気結合方式により絶縁領域13を介して受電部17へ送電する。受電部17は、送信部11と電気的に接続しており、送電部16から受け取った電力を送信部11に供給する。これにより、受信部12は、動作することができる。また、受信部12は、電源端子t11および、第2端子t2とは別の電位の端子(図示せず)から供給された電力により動作する。 As shown in the variable capacitor 1F in FIG. 15, the transmission unit 11 and the power reception unit 17 are arranged on one side and the reception unit 12 and the power transmission unit 16 are arranged on the other side with the insulating region 13 interposed therebetween. May be. In this case, the power transmission unit 16 supplies power supplied from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2 to the power reception unit 17 via the insulating region 13 by a magnetic coupling method. Power transmission. The power reception unit 17 is electrically connected to the transmission unit 11 and supplies the power received from the power transmission unit 16 to the transmission unit 11. Thereby, the receiving unit 12 can operate. The receiving unit 12 operates with power supplied from a terminal (not shown) having a potential different from that of the power supply terminal t11 and the second terminal t2.
 以上説明したように、本実施形態の可変コンデンサ1Fは、絶縁領域13を介して電力を送電する送電部16と、送電部16から絶縁領域13を介して送電された電力を受電する受電部17とを、さらに備えている。送電部16は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち送信部11が配置された側に配置されている。受電部17は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち受信部12が配置された側に配置されている。受信部12は、受電部17が受電した電力により動作する。 As described above, the variable capacitor 1 </ b> F of the present embodiment includes the power transmission unit 16 that transmits power through the insulating region 13 and the power receiving unit 17 that receives the power transmitted from the power transmission unit 16 through the insulating region 13. And further. The power transmission unit 16 is disposed on the side where the transmission unit 11 is disposed, of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween. The power receiving unit 17 is arranged on the side where the receiving unit 12 is arranged among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween with respect to the insulating region 13. The receiving unit 12 operates with the power received by the power receiving unit 17.
 または、送電部16は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち受信部12が配置された側に配置されている。受電部17は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち送信部11が配置された側に配置されている。送信部11は、受電部17が受電した電力により動作する。 Alternatively, the power transmission unit 16 is disposed on the side where the reception unit 12 is disposed, of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween. The power receiving unit 17 is disposed on the side where the transmitting unit 11 is disposed, of the transmitting unit 11 and the receiving unit 12 that are disposed across the insulating region 13 with respect to the insulating region 13. The transmission unit 11 operates with the power received by the power reception unit 17.
 これらの構成によると、送信部11側および受信部12側の一方に電源端子を設ければよい。 According to these configurations, a power supply terminal may be provided on one of the transmission unit 11 side and the reception unit 12 side.
 (まとめ)
 本開示の可変コンデンサ1は、絶縁デバイス10と、制御端子t21またはt22に入力される信号に応じて電極間の容量が変化するコンデンサ20とを有する。絶縁デバイス10は、容量を設定するために可変コンデンサ1の外部から入力された設定信号S1を送信する送信部11と、送信部11で送信された設定信号S1を受信する受信部12と、送信部11と受信部12との間に設けられた絶縁領域13とを有する。受信部12は、絶縁領域13を介して受信された設定信号S1に応じた制御信号(制御端子t21または制御端子t22に入力される信号)をコンデンサ20に出力する。コンデンサ20では、この制御信号に応じて容量が変更される。
(Summary)
The variable capacitor 1 of the present disclosure includes an insulating device 10 and a capacitor 20 whose capacitance between electrodes changes according to a signal input to the control terminal t21 or t22. The insulating device 10 includes a transmission unit 11 that transmits a setting signal S1 input from the outside of the variable capacitor 1 in order to set a capacitance, a reception unit 12 that receives the setting signal S1 transmitted by the transmission unit 11, and a transmission And an insulating region 13 provided between the unit 11 and the receiving unit 12. The receiving unit 12 outputs a control signal (signal input to the control terminal t21 or the control terminal t22) corresponding to the setting signal S1 received through the insulating region 13 to the capacitor 20. The capacitance of the capacitor 20 is changed according to this control signal.
 さらに、本開示の可変コンデンサ1においては、送信部11は、設定信号S1を光信号として絶縁領域13を介して受信部12へ送信し、受信部12は、光信号を設定信号S1に変換してもよい。 Furthermore, in the variable capacitor 1 of the present disclosure, the transmission unit 11 transmits the setting signal S1 as an optical signal to the reception unit 12 via the insulating region 13, and the reception unit 12 converts the optical signal into the setting signal S1. May be.
 本開示の可変コンデンサ1においては、可変コンデンサ1の外部から入力された設定信号S1はアナログ信号である。送信部11は、アナログ信号を光信号に変換し、受信部12は、光信号を電気信号に変換する受光素子12aを有している。受光素子12aは、送信部11で送信された光信号を電気信号に変換し、受信部12は、受光素子12aで変換された電気信号に応じたアナログ信号を制御信号としてコンデンサ20に出力する。 In the variable capacitor 1 of the present disclosure, the setting signal S1 input from the outside of the variable capacitor 1 is an analog signal. The transmission unit 11 converts an analog signal into an optical signal, and the reception unit 12 includes a light receiving element 12a that converts the optical signal into an electrical signal. The light receiving element 12a converts the optical signal transmitted by the transmitting unit 11 into an electric signal, and the receiving unit 12 outputs an analog signal corresponding to the electric signal converted by the light receiving element 12a to the capacitor 20 as a control signal.
 本開示の可変コンデンサ1Aにおいては、受信部12は、フォトトランジスタ12eと抵抗12dとが直列接続された直列回路で構成されている。この直列回路の一端は電源端子t11に接続されており、この直列回路は、フォトトランジスタ12eと抵抗12dとの接続点の電圧を制御信号としてコンデンサ20に出力する。 In the variable capacitor 1A of the present disclosure, the receiving unit 12 is configured by a series circuit in which a phototransistor 12e and a resistor 12d are connected in series. One end of this series circuit is connected to the power supply terminal t11, and this series circuit outputs the voltage at the connection point between the phototransistor 12e and the resistor 12d to the capacitor 20 as a control signal.
 本開示の可変コンデンサ1Bにおいては、可変コンデンサ1Bの外部から入力された設定信号S1はデジタル信号である。送信部11は、デジタル信号を光信号に変換し、受信部12は、光信号を電気信号に変換する受光素子12fと、変換回路12hとを有している。受光素子12fは、送信部11で送信された光信号をデジタル信号に変換し、変換回路12hは、受光素子12fで変換されたデジタル信号を、設定信号としてのアナログ信号に変換する。 In the variable capacitor 1B of the present disclosure, the setting signal S1 input from the outside of the variable capacitor 1B is a digital signal. The transmission unit 11 converts a digital signal into an optical signal, and the reception unit 12 includes a light receiving element 12f that converts the optical signal into an electric signal, and a conversion circuit 12h. The light receiving element 12f converts the optical signal transmitted by the transmission unit 11 into a digital signal, and the conversion circuit 12h converts the digital signal converted by the light receiving element 12f into an analog signal as a setting signal.
 本開示の可変コンデンサ1Cにおいては、送信部11は、設定信号S1に応じた磁界を発生させる第1コイル11iを少なくとも有する。受信部12は、第2コイル12iと、第1コイル11iで発生した磁界に応じて第2コイル12iに流れる電流を整流する制御部12jとを有する。制御部12jは整流された電流を制御信号としてコンデンサ20に出力する。 In the variable capacitor 1C of the present disclosure, the transmission unit 11 includes at least a first coil 11i that generates a magnetic field according to the setting signal S1. The receiving unit 12 includes a second coil 12i and a control unit 12j that rectifies a current flowing through the second coil 12i in accordance with a magnetic field generated by the first coil 11i. The controller 12j outputs the rectified current to the capacitor 20 as a control signal.
 本開示の可変コンデンサ1Dにおいては、送信部11は、第1電極板14a(または第1電極板14b)を少なくとも有する。受信部12は、第1電極板14a(または第1電極板14b)とで送信用コンデンサを構成するための第2電極板15a(または第2電極板15b)と、制御部12kとを有する。絶縁領域13は、第1電極板14a(または第1電極板14b)と第2電極板との間に設けられており、前記第1電極板と前記第2電極板15a(または第2電極板15b)との間で構成される送信用コンデンサにより送信部11と受信部12との間で設定信号の送受信が行われる。制御部12kは、受信部12で受信した設定信号を整流する整流回路101を有する。制御部12kは、整流回路101で整流された設定信号をコンデンサ20に出力する。 In the variable capacitor 1D of the present disclosure, the transmission unit 11 includes at least the first electrode plate 14a (or the first electrode plate 14b). The receiving unit 12 includes a second electrode plate 15a (or second electrode plate 15b) for constituting a transmission capacitor with the first electrode plate 14a (or first electrode plate 14b), and a control unit 12k. The insulating region 13 is provided between the first electrode plate 14a (or the first electrode plate 14b) and the second electrode plate, and the first electrode plate and the second electrode plate 15a (or the second electrode plate). 15b), the setting signal is transmitted and received between the transmission unit 11 and the reception unit 12 by the transmission capacitor. The control unit 12k includes a rectifier circuit 101 that rectifies the setting signal received by the receiving unit 12. The controller 12k outputs the setting signal rectified by the rectifier circuit 101 to the capacitor 20.
 本開示の可変コンデンサ1Eにおいては、絶縁領域13を介して電力を送電する送電部16と、送電部16から絶縁領域13を介して送電された電力を受電する受電部17とを有する。送電部16は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち送信部11が配置された側に配置される。受電部17は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち受信部12が配置された側に配置される。受信部12は、前記受電部が受電した電力により動作する。 The variable capacitor 1E of the present disclosure includes a power transmission unit 16 that transmits electric power through the insulating region 13, and a power reception unit 17 that receives electric power transmitted from the power transmission unit 16 through the insulating region 13. The power transmission unit 16 is disposed on the side where the transmission unit 11 is disposed, among the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween. The power receiving unit 17 is arranged on the side where the receiving unit 12 is arranged, among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween, with respect to the insulating region 13. The receiving unit 12 operates with the power received by the power receiving unit.
 本開示の可変コンデンサ1Fにおいては、絶縁領域13を介して電力を送電する送電部16と、送電部16から絶縁領域13を介して送電された電力を受電する受電部17とを有する。送電部16は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち受信部12が配置された側に配置される。受電部17は、絶縁領域13に対して、絶縁領域13を挟んで配置された送信部11と受信部12とのうち送信部11が配置された側に配置される。送信部11は、受電部が受電した電力により動作する。 The variable capacitor 1F of the present disclosure includes a power transmission unit 16 that transmits electric power through the insulating region 13 and a power reception unit 17 that receives electric power transmitted from the power transmission unit 16 through the insulating region 13. The power transmission unit 16 is arranged with respect to the insulating region 13 on the side where the receiving unit 12 is arranged among the transmitting unit 11 and the receiving unit 12 arranged with the insulating region 13 interposed therebetween. The power reception unit 17 is disposed on the side of the transmission unit 11 and the reception unit 12 that are disposed with the insulation region 13 interposed therebetween with respect to the insulation region 13. The transmission unit 11 operates with the power received by the power reception unit.
 本開示の可変コンデンサ1においては、受信部12を、コンデンサ20が容量を連続的に変更するように制御信号として連続的に変化するアナログ信号をコンデンサ20に出力するように構成してもよい。さらに、送信部11を、コンデンサ20が容量を連続的に変更するようにアナログ信号を受信部12に送信するように構成してもよい。 In the variable capacitor 1 of the present disclosure, the receiving unit 12 may be configured to output to the capacitor 20 an analog signal that continuously changes as a control signal so that the capacitor 20 continuously changes the capacitance. Furthermore, the transmission unit 11 may be configured to transmit an analog signal to the reception unit 12 so that the capacitor 20 continuously changes the capacitance.
  1,1A,1B,1C,1D,1E,1F  可変コンデンサ
  10  絶縁デバイス
  11  送信部
  11a,11d,11f  発光素子
  11b,11j,11k,12b,12j,12k  制御部
  11i  第1コイル
  12  受信部
  12a,12f  受光素子
  12c,12g  増幅回路
  12d  抵抗
  12e  フォトトランジスタ
  12h  変換回路
  12i  第2コイル
  13  絶縁領域
  14a,14b,15a,15b  電極板
  16  送電部
  17  受電部
  20  コンデンサ
  20a,20b  電極板
  100,101  整流回路
  150  第1コンデンサ
  151  第2コンデンサ
  t1,t2,t3,t4  端子
  t10,t11  電源端子
  t21,t22  制御端子
1, 1A, 1B, 1C, 1D, 1E, 1F Variable capacitor 10 Insulating device 11 Transmitter 11a, 11d, 11f Light emitting element 11b, 11j, 11k, 12b, 12j, 12k Control unit 11i First coil 12 Receiver 12a, 12f Light receiving element 12c, 12g Amplifier circuit 12d Resistor 12e Phototransistor 12h Converter circuit 12i Second coil 13 Insulating region 14a, 14b, 15a, 15b Electrode plate 16 Power transmitting unit 17 Power receiving unit 20 Capacitor 20a, 20b Electrode plate 100, 101 Rectifier circuit 150 1st capacitor 151 2nd capacitor t1, t2, t3, t4 terminal t10, t11 Power supply terminal t21, t22 Control terminal

Claims (11)

  1.  絶縁デバイスと、
     制御端子に入力される信号に応じて電極間の容量が変化するコンデンサとを備え、
     前記絶縁デバイスは、
     容量を設定するために外部から入力された設定信号を送信する送信部と、
     前記送信部で送信された前記設定信号を受信する受信部と、
     前記送信部と前記受信部との間に設けられた絶縁領域とを有し、
     前記受信部は、前記絶縁領域を介して受信された前記設定信号に応じた制御信号を前記コンデンサに出力し、
     前記コンデンサでは、前記制御信号に応じて前記容量が変更される
     ことを特徴とする可変コンデンサ。
    An isolation device;
    A capacitor whose capacitance between the electrodes changes according to a signal input to the control terminal,
    The insulating device is:
    A transmitter for transmitting a setting signal input from the outside in order to set the capacity;
    A receiver that receives the setting signal transmitted by the transmitter;
    An insulating region provided between the transmitter and the receiver;
    The receiver outputs a control signal corresponding to the setting signal received through the insulating region to the capacitor,
    In the capacitor, the capacitance is changed according to the control signal.
  2.  前記送信部は、前記設定信号を光信号として前記絶縁領域を介して前記受信部へ送信し、
     前記受信部は、前記光信号を前記設定信号に変換する
     ことを特徴とする請求項1に記載の可変コンデンサ。
    The transmitter transmits the setting signal as an optical signal to the receiver through the insulating region,
    The variable capacitor according to claim 1, wherein the receiving unit converts the optical signal into the setting signal.
  3.  前記外部から入力された前記設定信号はアナログ信号であり、
     前記送信部は、前記アナログ信号を前記光信号に変換し、
     前記受信部は、前記光信号を電気信号に変換する受光素子を有しており、
     前記受光素子は、前記送信部で送信された前記光信号を電気信号に変換し、
     前記受信部は、前記受光素子で変換された前記電気信号に応じたアナログ信号を前記制御信号として前記コンデンサに出力する
     ことを特徴とする請求項2に記載の可変コンデンサ。
    The setting signal input from the outside is an analog signal,
    The transmission unit converts the analog signal into the optical signal,
    The receiver has a light receiving element that converts the optical signal into an electrical signal,
    The light receiving element converts the optical signal transmitted by the transmission unit into an electrical signal,
    The variable receiver according to claim 2, wherein the receiving unit outputs an analog signal corresponding to the electrical signal converted by the light receiving element to the capacitor as the control signal.
  4.  前記受信部は、フォトトランジスタと抵抗とが直列接続された直列回路で構成されており、
     前記直列回路の一端は電源端子に接続されており、
     前記直列回路は、前記フォトトランジスタと前記抵抗との接続点の電圧を前記制御信号として前記コンデンサに出力する
     ことを特徴とする請求項2に記載の可変コンデンサ。
    The receiving unit is composed of a series circuit in which a phototransistor and a resistor are connected in series,
    One end of the series circuit is connected to a power supply terminal,
    The variable capacitor according to claim 2, wherein the series circuit outputs a voltage at a connection point between the phototransistor and the resistor as the control signal to the capacitor.
  5.  前記外部から入力された前記設定信号はデジタル信号であり、
     前記送信部は、前記デジタル信号を前記光信号に変換し、
     前記受信部は、光信号を電気信号に変換する受光素子と、変換回路とを有しており、
     前記受光素子は、前記送信部で送信された前記光信号をデジタル信号に変換し、
     前記変換回路は、前記受光素子で変換された前記デジタル信号を、前記設定信号としてのアナログ信号に変換する
     ことを特徴とする請求項2に記載の可変コンデンサ。
    The setting signal input from the outside is a digital signal,
    The transmission unit converts the digital signal into the optical signal,
    The receiver includes a light receiving element that converts an optical signal into an electric signal, and a conversion circuit.
    The light receiving element converts the optical signal transmitted by the transmission unit into a digital signal,
    The variable capacitor according to claim 2, wherein the conversion circuit converts the digital signal converted by the light receiving element into an analog signal as the setting signal.
  6.  前記送信部は、前記設定信号に応じた磁界を発生させる第1コイルを少なくとも有し、
     前記受信部は、第2コイルと、前記第1コイルで発生した磁界に応じて前記第2コイルに流れる電流を整流する制御部とを有し、
     前記制御部は整流された前記電流を前記制御信号として前記コンデンサに出力する
     ことを特徴とする請求項1に記載の可変コンデンサ。
    The transmitter includes at least a first coil that generates a magnetic field according to the setting signal,
    The receiving unit includes a second coil and a control unit that rectifies a current flowing through the second coil in accordance with a magnetic field generated in the first coil.
    The variable capacitor according to claim 1, wherein the control unit outputs the rectified current to the capacitor as the control signal.
  7.  前記送信部は、第1電極板を有し、
     前記受信部は、前記第1電極板とで送信用コンデンサを構成するための第2電極板と、制御部とを有しており、
     前記絶縁領域は、前記第1電極板と前記第2電極板との間に設けられており、
     前記第1電極板と前記第2電極板との間で構成される前記送信用コンデンサにより前記送信部と前記受信部との間で前記設定信号の送受信が行われ、
     前記制御部は、前記受信部で受信した前記設定信号を整流する整流回路を有し、
     前記制御部は、前記整流回路で整流された前記設定信号を前記コンデンサに出力する
     ことを特徴とする請求項1に記載の可変コンデンサ。
    The transmitter has a first electrode plate,
    The receiving unit includes a second electrode plate for configuring a transmission capacitor with the first electrode plate, and a control unit,
    The insulating region is provided between the first electrode plate and the second electrode plate;
    Transmission and reception of the setting signal is performed between the transmission unit and the reception unit by the transmission capacitor configured between the first electrode plate and the second electrode plate,
    The control unit has a rectifier circuit that rectifies the setting signal received by the receiving unit;
    The variable controller according to claim 1, wherein the control unit outputs the setting signal rectified by the rectifier circuit to the capacitor.
  8.  前記絶縁領域を介して電力を送電する送電部と、
     前記送電部から前記絶縁領域を介して送電された電力を受電する受電部とを、さらに備え、
     前記送電部は、前記絶縁領域に対して、前記絶縁領域を挟んで配置された前記送信部と前記受信部とのうち前記送信部が配置された側に配置され、
     前記受電部は、前記絶縁領域に対して、前記絶縁領域を挟んで配置された前記送信部と前記受信部とのうち前記受信部が配置された側に配置され、
     前記受信部は、前記受電部が受電した電力により動作する
     ことを特徴とする請求項1~7のいずれか一項に記載の可変コンデンサ。
    A power transmission unit that transmits power through the insulating region;
    A power receiving unit that receives power transmitted from the power transmitting unit through the insulating region, and
    The power transmission unit is arranged on the side where the transmission unit is arranged among the transmission unit and the reception unit arranged across the insulation region with respect to the insulation region,
    The power receiving unit is arranged on the side where the receiving unit is arranged among the transmitting unit and the receiving unit arranged across the insulating region with respect to the insulating region,
    The variable capacitor according to any one of claims 1 to 7, wherein the receiving unit is operated by electric power received by the power receiving unit.
  9.  前記絶縁領域を介して電力を送電する送電部と、
     前記送電部から前記絶縁領域を介して送電された電力を受電する受電部とを、さらに備え、
     前記送電部は、前記絶縁領域に対して、前記絶縁領域を挟んで配置された前記送信部と前記受信部とのうち前記受信部が配置された側に配置され、
     前記受電部は、前記絶縁領域に対して、前記絶縁領域を挟んで配置された前記送信部と前記受信部とのうち前記送信部が配置された側に配置され、
     前記送信部は、前記受電部が受電した電力により動作する
     ことを特徴とする請求項1~7のいずれか一項に記載の可変コンデンサ。
    A power transmission unit that transmits power through the insulating region;
    A power receiving unit that receives power transmitted from the power transmitting unit through the insulating region, and
    The power transmission unit is arranged on the side where the receiving unit is arranged among the transmitting unit and the receiving unit arranged across the insulating region with respect to the insulating region,
    The power receiving unit is arranged on the side where the transmitting unit is arranged among the transmitting unit and the receiving unit arranged with respect to the insulating region across the insulating region,
    The variable capacitor according to any one of claims 1 to 7, wherein the transmission unit is operated by electric power received by the power reception unit.
  10.  前記受信部は、前記コンデンサが容量を連続的に変更するように前記制御信号として連続的に変化するアナログ信号を前記コンデンサに出力するように構成されている
     ことを特徴とする請求項1に記載の可変コンデンサ。
    The said receiving part is comprised so that the analog signal which changes continuously as the said control signal may be output to the said capacitor so that the said capacitor may change a capacity | capacitance continuously. Variable capacitor.
  11.  前記送信部は、前記コンデンサが容量を連続的に変更するように前記アナログ信号を前記受信部に送信するように構成されている
     ことを特徴とする請求項10に記載の可変コンデンサ。
    The variable capacitor according to claim 10, wherein the transmission unit is configured to transmit the analog signal to the reception unit so that the capacitor continuously changes the capacitance.
PCT/JP2017/000375 2016-01-12 2017-01-10 Variable capacitor WO2017122602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016003934A JP2017127081A (en) 2016-01-12 2016-01-12 Variable capacitor
JP2016-003934 2016-01-12

Publications (1)

Publication Number Publication Date
WO2017122602A1 true WO2017122602A1 (en) 2017-07-20

Family

ID=59312132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000375 WO2017122602A1 (en) 2016-01-12 2017-01-10 Variable capacitor

Country Status (2)

Country Link
JP (1) JP2017127081A (en)
WO (1) WO2017122602A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10431388B2 (en) 2015-12-08 2019-10-01 Avx Corporation Voltage tunable multilayer capacitor
CN116666112A (en) 2017-10-02 2023-08-29 京瓷Avx元器件公司 High capacitance tunable multilayer capacitor and array
WO2020139681A1 (en) * 2018-12-26 2020-07-02 Avx Corporation System and method for controlling a voltage tunable multilayer capacitor
WO2023084727A1 (en) * 2021-11-12 2023-05-19 三菱電機株式会社 Electronic control device and electric power steering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102576A (en) * 1981-12-10 1983-06-18 デイオニクス・インコ−ポレイテツド High voltage output optical coupling isolator
JP2005286922A (en) * 2004-03-30 2005-10-13 Fujio Kurokawa Power source monitor terminal equipment
JP2009141848A (en) * 2007-12-10 2009-06-25 Mitsubishi Electric Corp Input/output device and remote control apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58102576A (en) * 1981-12-10 1983-06-18 デイオニクス・インコ−ポレイテツド High voltage output optical coupling isolator
JP2005286922A (en) * 2004-03-30 2005-10-13 Fujio Kurokawa Power source monitor terminal equipment
JP2009141848A (en) * 2007-12-10 2009-06-25 Mitsubishi Electric Corp Input/output device and remote control apparatus

Also Published As

Publication number Publication date
JP2017127081A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
WO2017122602A1 (en) Variable capacitor
US10897153B2 (en) System and method for charging receiver devices
US20150318900A1 (en) Wireless power transfer system, power receiver, and wireless power transfer method
KR102000608B1 (en) Ultrasonic sensor and its control method
KR20160030672A (en) Wireless power receiving apparatus and wireless power transmitting and receiving system
US20150263184A1 (en) Photocoupler
JP2008211421A (en) Capacitance variation detection circuit and semiconductor device
JP5499716B2 (en) Semiconductor device
JP5604083B2 (en) Power semiconductor module with control function and built-in transmitter
KR102560807B1 (en) Resonance apparatus and apparatus for transmitting power wirelessly using the same
JP2022048737A (en) Semiconductor device
JP2007124518A (en) Semiconductor relay apparatus
JP2019170144A (en) Radio power feeding system
WO2019054051A1 (en) Gate driving circuit and power switching system
JP4802227B2 (en) Relay device
TW202213044A (en) Mouse pad having multi-coil capable of a dynamically adjusted configuration
KR101952595B1 (en) Wireless electromagnetic receiver and wireless power transfer system
US20160066396A1 (en) Wireless switch
CN107221761A (en) Intelligent antenna and radio communication device
US20180159429A1 (en) Auxiliary Supply for a Switched-Mode Power Supply
WO2014122853A1 (en) Electrical power receiver, electrical power transmitter, and electrical power transmission system
KR101701031B1 (en) Wireless Switch
JP2018505602A (en) Control unit for supplying bias to the RF switch
US20240047938A1 (en) Capacitive Coupling for Optical or Laser Diodes
JP6094014B2 (en) Optical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17738356

Country of ref document: EP

Kind code of ref document: A1