WO2017122267A1 - 無線通信装置、無線通信システム、及び無線通信方法 - Google Patents

無線通信装置、無線通信システム、及び無線通信方法 Download PDF

Info

Publication number
WO2017122267A1
WO2017122267A1 PCT/JP2016/050657 JP2016050657W WO2017122267A1 WO 2017122267 A1 WO2017122267 A1 WO 2017122267A1 JP 2016050657 W JP2016050657 W JP 2016050657W WO 2017122267 A1 WO2017122267 A1 WO 2017122267A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
communication device
data
control unit
tcp
Prior art date
Application number
PCT/JP2016/050657
Other languages
English (en)
French (fr)
Inventor
太田好明
河▲崎▼義博
田中良紀
相川慎一郎
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to EP16884870.3A priority Critical patent/EP3404896B1/en
Priority to CN201680078527.3A priority patent/CN108463987B/zh
Priority to JP2017561082A priority patent/JP6894383B2/ja
Priority to PCT/JP2016/050657 priority patent/WO2017122267A1/ja
Publication of WO2017122267A1 publication Critical patent/WO2017122267A1/ja
Priority to US16/026,385 priority patent/US10693619B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/40Support for services or applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols

Definitions

  • the present invention relates to a wireless communication device, a wireless communication system, and a wireless communication method.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • 3GPP Release 8 to Release 12 are formulated as international specifications.
  • 3GPP Release 10 and later are called LTE-A.
  • 5th generation mobile communication 5th generation mobile communication
  • 4th generation mobile communication 4th generation mobile communication
  • TCP / IP Transmission Control Protocol / Internet Protocol
  • IP is a communication protocol used for relaying packets on the Internet
  • TCP is a transmission control protocol that provides a communication service in an intermediate layer between an application program and IP.
  • TCP In TCP, the sending side sends TCP data, the receiving side returns TCP ACK (Acknowledgement) when the TCP data is successfully received, and the sending side receives TCP ACK and sends the next TCP data. Start. As described above, TCP defines a procedure of “TCP data transmission ⁇ TCP ACK reply”, thereby realizing reliable communication.
  • One disclosure is to provide a wireless communication device, a wireless communication system, and a wireless communication method that reduce the delay time required for transmission of TCP ACK.
  • one disclosure is to provide a wireless communication device, a wireless communication system, and a wireless communication method that improve TCP throughput.
  • a wireless communication device that performs wireless communication with a first wireless communication device, a signal in a first layer, data in a second layer that is an upper layer than the first layer, and delivery confirmation for the data
  • a communication unit that transmits and receives information; and a plurality of second communication devices including the wireless communication device based on the signal received from the first wireless communication device without using scheduling information allocated in the first wireless communication device.
  • a controller that enables transmission of the delivery confirmation information from the communication unit to the first wireless communication device using the shared channel of the first layer shared by two wireless communication devices.
  • a wireless communication device it is possible to provide a wireless communication device, a wireless communication system, and a wireless communication method that reduce the delay time required for transmission of TCP ACK.
  • a wireless communication device it is possible to provide a wireless communication device, a wireless communication system, and a wireless communication method that improve TCP throughput.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 3 is a diagram illustrating a configuration example of the base station apparatus.
  • FIG. 4 is a diagram illustrating a configuration example of a mobile station apparatus.
  • FIG. 5A and FIG. 5B are diagrams illustrating transmission examples of TCP ACK.
  • 6A is a sequence example of the SR procedure
  • FIG. 6B is a diagram illustrating a detailed example of the delay time.
  • FIG. 7 is a diagram illustrating an example of TCP ACK transmission delay.
  • FIG. 8 is a diagram illustrating a transmission example of TCP ACK.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 3 is a diagram illustrating a configuration example of the base station apparatus.
  • FIG. 9A shows an example of CCE allocation to mobile station apparatuses
  • FIG. 9B shows an example of TCP ACK allocation to PUSCH.
  • FIG. 10 is a flowchart showing an operation example.
  • FIG. 11A shows an example of the relationship between the aggregation level and MCS
  • FIG. 11B shows an example of cyclic shift for DMRS.
  • FIG. 12 is a diagram illustrating a transmission example of TCP ACK.
  • FIG. 13 is a diagram illustrating a transmission example of TCP ACK.
  • FIG. 14 is a diagram for explaining TCP-CRNTI.
  • FIG. 15 is a diagram illustrating a transmission example of TCP ACK.
  • FIG. 16 is a diagram for explaining delayed ACK.
  • FIG. 17 is a diagram for explaining the Nagle-delayed ACK problem.
  • FIG. 18 is a diagram illustrating an example of a solution to the Nagle-delayed ACK problem.
  • FIGS. 19A and 19B are diagrams illustrating an example of a solution to the Nagle-delayed ACK problem.
  • FIG. 20 is a diagram illustrating a hardware configuration example of the base station apparatus.
  • FIG. 21 is a diagram illustrating a hardware configuration example of the mobile station apparatus.
  • Non-Patent Document 11 may be used as appropriate in this specification.
  • Non-Patent Document 1 (3GPP TS36.300 V12.5.0 (2015-03)) describes, for example, an outline specification of LTE-A.
  • Non-Patent Document 2 (3GPP TS 36.211 V12.5.0 (2015-03)) describes, for example, LTE-A PHY (Physical Layer) channel (or physical channel) specifications.
  • LTE-A PHY Physical Layer
  • Non-Patent Document 3 (3GPP TS36.212 V12.4.0 (2015-03)) describes, for example, LTE-A PHY coding specifications.
  • Non-Patent Document 4 (3GPP TS36.213 V12.5.0 (2015-03)) describes, for example, LTE-A PHY procedure specifications.
  • Non-Patent Document 5 (3GPP TS36.321 V12.5.0 (2015-03)) describes, for example, LTE-A MAC (Medium Access Control) specifications.
  • Non-Patent Document 6 (3GPP TS36.322 V12.2.0 (2015-03)) describes, for example, the LTE-A RLC (Radio Link Control) specification.
  • Non-Patent Document 7 (3GPP TS36.323 V12.3.0 (2015-03)) describes, for example, the PDCP (Packet Data Convergence Protocol) specification of LTE-A.
  • PDCP Packet Data Convergence Protocol
  • Non-Patent Document 8 (3GPP TS36.331 V12.5.0 (2015-03)) describes, for example, LTE-A RRC (Radio Resource Control) specifications.
  • Non-Patent Document 9 (3GPP TS36.413 V12.5.0 (2015-03)) describes, for example, the S1 specification of LTE-A.
  • Non-Patent Document 10 (3GPP TS36.423 V12.5.0 (2015-03)) describes, for example, the LTE-A X2 specification.
  • Non-Patent Document 11 (3GPP-TR36.842-V12.0.0 (2013-12)) is, for example, a study document on the small cell technology of LTE-A.
  • Non-Patent Document 12 (RFC793) describes, for example, TCP specifications.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
  • the wireless communication system 10 includes a wireless communication device 500 and a first wireless communication device 600.
  • the wireless communication device 500 and the first wireless communication device 600 perform wireless communication.
  • the wireless communication device 500 is a mobile station device
  • the first wireless communication device is a base station device.
  • the wireless communication device 500 includes a communication unit 510 and a control unit 520.
  • the communication unit 510 transmits and receives a signal in the first layer, data in the second layer, which is a higher layer than the first layer, and delivery confirmation information for the data.
  • the control unit 520 uses a plurality of second wireless communication devices including the wireless communication device 500 based on a signal received from the first wireless communication device 600 without using the scheduling information assigned in the first wireless communication device 600.
  • the delivery confirmation information can be transmitted from the communication unit 510 to the first wireless communication device 600 using a shared channel shared by the devices.
  • the wireless communication device 500 may perform a scheduling request procedure with the first wireless communication device 600.
  • the scheduling request procedure for example, the following procedure is executed. That is, radio communication apparatus 500 transmits a scheduling request to first radio communication apparatus 600, and first radio communication apparatus 600 generates scheduling information for radio communication apparatus 500 when receiving the request.
  • the first wireless communication apparatus 600 transmits UL grant including scheduling information to the wireless communication apparatus 500, and the wireless communication apparatus 500 transmits information using the shared channel according to the scheduling information.
  • Such a scheduling procedure may cause a delay in transmission of delivery confirmation information.
  • wireless communication apparatus 500 can transmit second layer delivery confirmation information using a shared channel based on a signal transmitted from first wireless communication apparatus 600. .
  • the wireless communication device 500 and the first wireless communication device 600 can transmit the delivery confirmation information using the shared channel without performing the scheduling request procedure.
  • the wireless communication device 500 can omit the scheduling request procedure for transmission of the delivery confirmation information, and the delay time due to the transmission of the delivery confirmation information can be shortened.
  • the throughput can be improved by reducing the delay time.
  • TCP ACK As delivery confirmation information. Therefore, in the first embodiment, it is possible to reduce the delay time due to the transmission of TCP ACK. Further, in the first embodiment, it is possible to improve the throughput in TCP by reducing the delay time.
  • FIG. 2 shows a configuration example of the wireless communication system 10.
  • the wireless communication system 10 includes a base station apparatus (hereinafter sometimes referred to as “base station”) 100 and a mobile station apparatus (hereinafter also referred to as “mobile station”) 200.
  • base station hereinafter sometimes referred to as “base station”
  • mobile station hereinafter also referred to as “mobile station”
  • the base station 100 corresponds to, for example, the first wireless communication device 600 in the first embodiment.
  • the mobile station 200 corresponds to the wireless communication apparatus 500 in the first embodiment, for example.
  • the base station 100 is a wireless communication device that performs wireless communication with, for example, the mobile station 200 located in the service area of the own station.
  • the mobile station 200 is, for example, a wireless communication device such as a smartphone, a feature phone, a tablet terminal, a personal computer, or a game device.
  • the mobile station 200 can perform wireless communication with the base station 100 and receive various services such as a call service and a web page browsing service.
  • the base station 100 and the mobile station 200 are capable of bidirectional communication. That is, the direction from the base station 100 to the mobile station 200 (hereinafter, sometimes referred to as “DL (Down Link) direction” or “downward direction”) and the direction from the mobile station 200 to the base station 100 (hereinafter, “UL (Up Link) direction “or” upward direction "may be used).
  • DL Down Link
  • UL Up Link
  • the base station 100 performs scheduling for downlink and uplink radio communication with the mobile station 200, thereby allocating radio resources and determining a coding scheme and a modulation scheme.
  • Base station 100 transmits to mobile station 200 a control signal including scheduling information indicating a scheduling result.
  • Base station 100 and mobile station 200 perform radio communication according to scheduling information included in the control signal.
  • wireless communication system 10 illustrated in FIG. 2, an example in which one mobile station 200 performs wireless communication with one base station 100 is illustrated. Wireless communication may be performed. Further, one mobile station 200 may perform wireless communication with a plurality of base stations.
  • the wireless communication system 10 may include a plurality of base stations and a plurality of mobile stations.
  • FIG. 3 is a diagram illustrating a configuration example of the base station 100.
  • the base station 100 includes a wireless transmission unit 101, a wireless reception unit 102, a control unit 104, a storage unit 105, and a network communication unit 106.
  • the wireless transmission unit 101 and the wireless reception unit 102 may be included in the wireless communication unit (or communication unit) 103.
  • the wireless transmission unit 101 may be referred to as error correction encoding processing (hereinafter referred to as “encoding processing”), for example, for data read from the storage unit 105 or a control signal output from the control unit 104. ), Modulation processing, frequency conversion processing, etc., to convert to a radio signal.
  • the wireless transmission unit 101 receives scheduling information including a coding rate, a modulation scheme, and the like from the control unit 104, and performs coding processing, modulation processing, and the like according to the scheduling information.
  • Radio transmission section 101 transmits the converted radio signal to mobile station 200.
  • the radio transmission unit 101 receives scheduling information from the control unit 104 and transmits a radio signal using radio resources included in the scheduling information. Radio resources include, for example, frequency resources and time resources.
  • the wireless transmission unit 101 transmits data or the like using PDSCH (Physical Downlink Shared Channel), and transmits a control signal or the like using PDCCH (Physical Downlink Control Channel).
  • PDSCH Physical Downlink Shared
  • the radio reception unit 102 receives a radio signal transmitted from each mobile station 200 using radio resources included in the scheduling information received from the control unit 104, for example.
  • the radio reception unit 102 receives a radio signal including a control signal using PUCCH (Physical / Uplink / Control / Channel), and receives a radio signal including data and the like using PUSCH (Physical / Uplink / Shared / Channel).
  • the wireless reception unit 102 performs frequency conversion processing, demodulation processing, error correction decoding processing (hereinafter, may be referred to as “decoding processing”), and the like on the received wireless signal, and data and control signals And so on.
  • the radio receiving unit 102 receives scheduling information including a modulation scheme and a coding rate from the control unit 104, and performs demodulation processing, decoding processing, and the like according to the scheduling information. For example, the wireless reception unit 102 outputs the extracted data and control signal to the storage unit 105 and the control unit 104.
  • the control unit 104 performs the above-described scheduling and outputs the result as scheduling information to the wireless transmission unit 101 and the wireless reception unit 102. In addition, the control unit 104 generates a control signal including scheduling information and outputs the control signal to the wireless transmission unit 101. The control signal is transmitted toward the mobile station 200.
  • HARQ Hybrid Automatic Repeat Request
  • HARQ is, for example, a technique for decoding the data by combining the data retransmitted from the transmission side without discarding the data that failed in the decoding process on the reception side.
  • the receiving side transmits ACK (Acknowledge), and when the transmitting side receives ACK, the transmitting side starts transmission of the next data.
  • the receiving side returns a NACK (Negative Acknowledge) to the transmitting side, and the transmitting side retransmits the data upon receiving the NACK.
  • NACK Negative Acknowledge
  • Both HARQ ACK and NACK are examples of HARQ delivery confirmation information. Retransmission control by HARQ is performed between the base station 100 and the mobile station 200.
  • the target of retransmission control by HARQ is, for example, data in a MAC (Medium Access Control) medium layer.
  • MAC Medium Access Control
  • An example of such data is MAC PDU (MAC Packet Data Unit).
  • the MAC layer is included in the data link layer (layer 2) in the OSI reference model.
  • the control unit 104 performs the following retransmission control by HARQ, for example. That is, when the wireless reception unit 102 performs decoding processing based on CRC (Cyclic Redundancy Check) added to the MAC layer data, the control unit 104 is notified of a processing result indicating whether or not decoding has been performed correctly. . The control unit 104 generates ACK and NACK according to the processing result. The control unit 104 transmits ACK based on HARQ (hereinafter sometimes referred to as “HARQ ACK”) or NACK based on HARQ (hereinafter sometimes referred to as “HARQ NACK”) to the mobile station 200 via the wireless transmission unit 101. Send.
  • HARQ ACK HARQ
  • HARQ NACK NACK based on HARQ
  • the control unit 104 when receiving the HARQ ACK from the mobile station 200 via the wireless receiving unit 102, the control unit 104 starts transmission of the next data.
  • the control unit 104 receives HARQ NACK from the mobile station 200 via the radio reception unit 102 or does not receive HARQ ACK even after a certain period of time has elapsed after transmitting MAC layer data, it confirms HARQ ACK.
  • the data not subjected to is read from the storage unit 105 and retransmitted to the mobile station 200.
  • the storage unit 105 stores, for example, data and control signals.
  • the wireless reception unit 102, the control unit 104, and the network communication unit 106 appropriately store data and control signals in the storage unit 105, and the wireless transmission unit 101, the control unit 104, and the network communication unit 106 are stored in the storage unit 105. Read data and control signals as appropriate.
  • the network communication unit 106 is connected to other devices and transmits / receives data to / from other devices. At that time, the network communication unit 106 converts the packet data into a format that can be output to other devices and transmits the packet data to other devices, or extracts data from packet data received from other devices, 105 or output to the control unit 104 or the like. Examples of other devices include other base station devices, MME (Mobility Management Entity), and SGW (Serving Gateway).
  • MME Mobility Management Entity
  • SGW Serving Gateway
  • FIG. 4 is a diagram illustrating a configuration example of the mobile station 200.
  • the mobile station 200 includes a wireless transmission unit 201, a wireless reception unit 202, a control unit 204, and a storage unit 205.
  • the wireless transmission unit 201 and the wireless reception unit 202 may be included in the wireless communication unit (or communication unit) 203.
  • the communication unit 203 corresponds to, for example, the communication unit 510 in the first embodiment.
  • the control unit 204 corresponds to, for example, the control unit 204 in the first embodiment.
  • the wireless transmission unit 201 performs, for example, encoding processing, modulation processing, frequency conversion processing, and the like on the data read from the storage unit 205 and the control signal output from the control unit 204 and converts the data into a wireless signal.
  • the wireless transmission unit 201 receives scheduling information including a coding rate and a modulation scheme from the control unit 204, and performs coding processing and modulation processing according to the scheduling information.
  • the radio transmission unit 201 transmits a radio signal to the base station 100.
  • the radio transmission unit 201 receives scheduling information including radio resources allocated to the mobile station 200 from the control unit 204 and transmits radio signals to the base station 100 using the radio resources.
  • the wireless transmission unit 201 transmits a control signal or the like using PUCCH, and transmits data or the like using PUSCH.
  • the radio reception unit 202 receives a radio signal transmitted from the base station 100. At this time, the radio reception unit 202 receives scheduling information including radio resources allocated to the mobile station 200 from the control unit 204, and receives radio signals using the radio resources. For example, the wireless reception unit 202 receives a wireless signal including a control signal using the PDCCH, and receives a wireless signal including data and the like using the PDSCH. In addition, the wireless reception unit 202 performs frequency conversion processing, demodulation processing, decoding processing, and the like on the received wireless signal, and extracts data, control signals, and the like from the wireless signal.
  • the wireless reception unit 202 receives scheduling information such as a modulation scheme and a coding rate from the control unit 204, and performs a demodulation process and a decoding process according to the modulation scheme and the coding rate. For example, the wireless reception unit 202 outputs the extracted data and control signals to the control unit 204 and the storage unit 205.
  • scheduling information such as a modulation scheme and a coding rate
  • the wireless reception unit 202 outputs the extracted data and control signals to the control unit 204 and the storage unit 205.
  • the control unit 204 receives a control signal from the radio reception unit 202, extracts scheduling information assigned to the mobile station 200 from the control signal, and outputs it to the radio transmission unit 201 and the radio reception unit 202.
  • control unit 204 generates a control signal and outputs it to the wireless transmission unit 201.
  • the control signal may include, for example, HARQ ACK or HARQ NACK, CSI (Channel State Information), SR (Scheduling Request).
  • control unit 204 performs TCP data delivery confirmation (or response confirmation) and retransmission processing.
  • TCP data is exchanged between the mobile station 200 and a server handling TCP via the base station 100, for example.
  • the base station 100 directly transmits the TCP packet transmitted from the server to the mobile station 200 without analyzing the TCP header or TCP data included in the TCP packet, or the mobile station 200 The TCP packet transmitted from is transmitted to the server as it is.
  • the TCP reception side when the TCP data transmitted from the TCP transmission side is correctly received by the TCP reception side, the TCP reception side returns a TCP ACK (or acknowledgment) to the TCP transmission side.
  • the TCP sender receives a TCP ACK, it starts sending the next TCP data.
  • the TCP transmission side if the TCP transmission side does not receive the TCP ACK even after a certain period of time has elapsed after transmitting the TCP data, the TCP transmission side retransmits the TCP data for which the TCP ACK has not been confirmed to the reception side.
  • the TCP transmission side receives a plurality of (for example, three) TCP ACKs (or duplicate ACKs) having the same confirmation response number, it is determined that the TCP reception side has not correctly received the TCP data.
  • the TCP data may be retransmitted.
  • Such retransmission processing by TCP is performed in the control unit 204, for example.
  • the control unit 204 confirms whether or not the TCP data has been correctly received, generates TCP delivery confirmation information according to the result, and transmits the delivery confirmation information to the server via the wireless transmission unit 101. To do.
  • control unit 204 can check the TCP ACK stored in the storage unit 205 when it does not receive the TCP ACK even after a certain period of time has passed after transmitting the TCP data to the server or the like via the wireless transmission unit 101. Unread TCP data is read out and transmitted to the server via the wireless transmission unit 101.
  • TCP is included in the transport layer (layer 4) in the OSI reference model.
  • the MAC layer that handles HARQ ACK and the like is included in the data link layer (layer 2) in the OSI reference model.
  • the transport layer is a higher layer than the data link layer.
  • the RLC (Radio Link Control) layer and the PDCP (Packet Data Convergence Protocol: packet data convergence) layer in LTE and the like are included in the data link layer and are sublayers of the data link layer.
  • the MAC layer is a lower layer and the PDCP layer is an upper layer.
  • control unit 204 may receive data of the MAC layer from the wireless reception unit 202, generate or extract data of each layer from the MAC layer data to the TCP data, and then perform processing on the TCP data. It becomes possible.
  • control unit 204 generates or extracts data of each layer from TCP data to MAC layer data, and then outputs the MAC layer data to the wireless transmission unit 201, thereby Data can be transmitted to the base station 100.
  • control unit 204 performs retransmission control by HARQ. Retransmission control by HARQ is performed between the base station 100 and the mobile station 200.
  • the control unit 204 or the like performs the following processing. That is, when the wireless reception unit 202 performs the decoding process based on the CRC added to the data of the MAC layer, the control unit 204 is notified of the processing result indicating whether or not the decoding has been correctly performed. Then, HARQ ACK and HARQ NACK are generated according to the processing result.
  • the control unit 204 transmits HARQ ACK and HARQ NACK to the base station 100 via the wireless transmission unit 201.
  • the control unit 204 when receiving a HARQ ACK from the base station 100 via the wireless reception unit 202, the control unit 204 starts transmission of data next to the MAC layer.
  • the control unit 204 receives a HARQ NACK from the base station 100 or does not receive a HARQ ACK even after a certain period of time has elapsed after transmitting MAC layer data, the control unit 204 reads the data for which the HARQ ACK has not been confirmed. The data is read from the storage unit 205 and retransmitted to the base station 100.
  • the storage unit 205 stores, for example, data and control signals.
  • the wireless reception unit 202 and the control unit 204 appropriately store data and control signals in the storage unit 205, and the wireless transmission unit 201 and the control unit 204 read data and control signals stored in the storage unit 205 as appropriate.
  • information processed before or after modulation may be referred to as data or control information
  • information processed after modulation or before demodulation may be referred to as a signal.
  • information handled in the transport layer may be referred to as data or control information
  • information handled in the MAC layer may be referred to as a signal.
  • FIG. 5A to FIG. 6 are diagrams illustrating transmission examples of TCP ACK.
  • TCP data (“DL TCP Data") transmitted in the downlink direction (S1)
  • the mobile station 200 when the mobile station 200 normally receives TCP data ("DL TCP Data") transmitted in the downlink direction (S1), the mobile station 200 generates a TCP ACK.
  • the mobile station 200 transmits the generated TCP ACK (“UL TCP ACK”) in the uplink direction (S2).
  • the TCP data itself is generated by, for example, a server connected to the base station 100 and transmitted to the mobile station 200 via the base station 100.
  • TCP ACK is transmitted to the server that has generated TCP data via the base station 100.
  • the mobile station 200 transmits a TCP ACK by executing a scheduling request procedure shown in FIG.
  • the mobile station 200 transmits a scheduling request (SR: Scheduling Request) to the base station 100 using the PUCCH (S5).
  • the base station 100 receives the scheduling request and generates scheduling information.
  • the base station 100 transmits UL grant (or transmission permission) including scheduling information to the mobile station 200 using the PDCCH (S6).
  • the mobile station 200 transmits a TCP ACK to the mobile station 200 using the PUSCH radio resource allocated by the scheduling information (S7).
  • 5B illustrates an example in which the mobile station 200 transmits a TCP ACK and a BSR (Buffer Status Report) to the base station 100.
  • FIG. 6A shows a sequence example of a series of processing until the mobile station 200 transmits data in the uplink direction
  • FIG. 6B shows an example of the time required for the mobile station 200 to transmit data in the uplink direction. Represents.
  • the mobile station (UE (User Equipment)) 200 waits for a PUCCH transmission opportunity (S11), and transmits a scheduling request using the PUCCH (S12).
  • the base station (eNB (evolved Node B)) 100 performs processing such as radio resource allocation (S13), and transmits UL grant (S14).
  • the mobile station 200 receives UL grant, performs processing such as encoding processing on data (S15), and transmits data ("UL Data") using radio resources included in PUSCH (S16).
  • UL Data is TCP ACK.
  • FIG. 6B shows an example of the time required for each processing from S11 to S16 in such a series of sequences.
  • the average delay time in the process of S11 is “2.5 ms”.
  • the delay time until one mobile station 200 transmits data in the uplink direction is about “11.5 ms” even if error free. That is, the delay time required for transmission of TCP ACK is about “11.5 ms”.
  • This delay time is greatly affected by TCP communication, and is one of the factors that reduce the throughput of TCP.
  • the round-trip propagation delay (RTT: Round-Trip-Time) in the Internet line from Tokyo to Osaka was about 20 ms. From this reference value, the size of “11.5 ms” will be understood.
  • the mobile station 200 can also transmit a TCP ACK using PUCCH.
  • the timing when the mobile station 200 desires to transmit the TCP ACK. May not be able to send TCP ACK.
  • the mobile station 200 waits for transmission of TCP ACK until the next PUCCH opportunity (for example, after 5 ms), and the transmission delay of TCP ACK increases.
  • the mobile station 200 transmits a TCP ACK using the PUSCH without performing the scheduling request procedure.
  • the scheduling request procedure shown in FIG. 5B and FIG. 6A is omitted, and the delay time required for transmitting the TCP ACK can be shortened.
  • the mobile station 200 when the mobile station 200 transmits a TCP ACK using PUSCH, the scheduling request procedure is not performed, and therefore, UL grant is not given from the base station 100. Therefore, the mobile station 200 transmits a TCP ACK using the PUSCH based on the signal transmitted from the base station 100 without receiving the UL grant (or without using scheduling information).
  • the mobile station 200 transmits a TCP ACK using the PUSCH based on the signal transmitted from the base station 100 without receiving the UL grant (or without using scheduling information).
  • PSCHCH Lowest CCE Control Channel Element
  • Index k is used to determine PUSCH PRB (Physical Resource Block) index
  • PDCCH aggregation level and PUSCH MCS Modulation and Coding Scheme
  • the MCS is determined from the relationship of the index.
  • the cyclic shift value of the PUSCH DMRS Demodulation Reference Signal
  • the timing for transmitting the TCP ACK PUSCH is RRC (Radio Resource Control: radio).
  • the mobile station 200 determines (or selects) the position g of the PUSCH radio resource for transmitting the TCP ACK based on the lowest CCE index (Lowest CCE index) among the CCEs included in the PDCCH. )
  • the mobile station 200 transmits a TCP ACK using the radio resource at the determined position g.
  • the base station 100 receives a TCP ACK using the radio resource.
  • the CCE is a unit (or element) of a radio resource used for transmission of PDCCH, for example.
  • the base station 100 assigns continuous CCEs such as 1, 2, 4, or 8 for each mobile station 200.
  • the base station 100 transmits a control signal addressed to the mobile station 200 using the assigned CCE.
  • This number of CCEs corresponds to the aggregation level. For example, when the number of CCEs is 8, the aggregation level is 8.
  • the base station 100 can determine the number of CCEs such that the coding rate decreases as the number of CCEs included in one PDCCH increases.
  • the base station 100 may determine the number of CCEs assigned to one mobile station 200 based on the radio quality.
  • FIG. 9A shows an example of CCEs that the base station 100 assigns to each mobile station 200.
  • the base station 100 has a CCE index of “0” (or an index, which may be referred to as “CCE index” hereinafter) for the mobile station 200-1 (UE # 1).
  • CCE (CCE # 0) is allocated.
  • the base station 100 assigns two CCEs (CCE # 1, CCE # 2) having CCE indexes of “1” and “2” to the mobile station 200-2 (UE # 2). For example, the base station 100 allocates the CCE index so that the same CCE index does not overlap for a plurality of users (or mobile stations 200) multiplexed in the same subframe.
  • the mobile station 200 performs a decoding process on all CCEs (or CCEs within a certain candidate range) and detects CCEs that have been correctly decoded as CCEs assigned to the mobile station.
  • the mobile station 200 can specify the CCE index based on the number of CCEs that can be correctly decoded. For example, when the number of CCEs that can be correctly decoded is 1, CCE # 0, and when the number of CCEs that can be correctly decoded is 2, CCE # 1, CCE # 2, and the like.
  • Such detection may be referred to as blind detection (or blind decoding), for example.
  • the mobile station 200 determines the PUSCH resource position g to be used for TCP ACK transmission by using the smallest CCE index k among the CCE indexes detected by blind detection in this way. For example, as shown in FIG. 9B, when the minimum CCE index k is “0” for the mobile station 200-1, the position of g # 1 in the PUSCH is transmitted to the TCP ACK by f (0). It is determined as a radio resource to be used. Also, when the minimum CCE index k for the mobile station 200-2 is “1”, g # 2 in PUSCH is determined as a radio resource to be used for TCP ACK transmission by f (1).
  • the function f may be determined as a system or may be determined for each of the mobile stations 200-1 and 200-2.
  • the mobile station 200 transmits a TCP ACK using the PUSCH radio resource position g determined by f (k) (S31).
  • FIG. 10 is a flowchart showing an operation example in the mobile station 200.
  • FIG. 10 summarizes the above-described operation examples.
  • the mobile station 200 detects the minimum CCE index k among the CCE indexes assigned to the mobile station 200 from the signal received using the PDCCH (S41). For example, the minimum CCE index k is detected by blind detection for a signal received using the PDCCH in the radio reception unit 202, and the detected CCE index k is output to the control unit 204.
  • the mobile station 200 transmits a TCP ACK by using the radio resource at the calculated PUSCH resource position g (S43). For example, the following processing is performed. That is, the control unit 204 outputs the resource position f (k) to the wireless transmission unit 201. In addition, the control unit 204 generates a TCP ACK and outputs the MAC layer data corresponding to the generated TCP ACK to the wireless transmission unit 201. Radio transmission section 201 performs coding processing, modulation processing, and the like on the data to convert the data into a radio signal, and transmits the radio signal to base station 100 using the radio resource at PUSCH resource position g. Thereby, TCP ACK is transmitted to base station 100 using PUSCCH.
  • the MCS is determined from the correspondence between the PDCCH aggregation level and the PUSCH MCS index.
  • FIG. 11A shows a PDCCH aggregation level (or an aggregation level, which may be referred to as an “aggregation level” hereinafter) and a PUSCH MCS index.
  • a PDCCH aggregation level or an aggregation level, which may be referred to as an “aggregation level” hereinafter
  • a PUSCH MCS index Represents an example of the correspondence relationship.
  • MCS (or MCS level value) represents, for example, a combination of a coding rate and a modulation method.
  • the MCS level value is smaller than the second threshold value, and when the aggregation level value is less than or equal to the first threshold value, the MCS level value is greater than or equal to the second threshold value.
  • the PUSCH MCS level value decreases when the aggregation level value increases with time, and the PUSCH MCS level value increases when the aggregation level value decreases.
  • the aggregation level value is “1” for the mobile station UE # 1, and the PUSCH MCS level value is “x1”. Further, the aggregation level value for the mobile station UE # 2 is “2”, and the PUSCH MCS level value is “x2” ( ⁇ x1).
  • the aggregation level (or aggregation level value) corresponds to, for example, the number of CCEs assigned to the mobile station 200.
  • the aggregation level in UE # 1 is “1”
  • the aggregation level in UE # 2 is “2”. Therefore, the aggregation level in UE # 2 is “2”.
  • the mobile station 200 may perform the following processing. That is, based on the determined correspondence, the PUSCH MCS level value corresponding to the aggregation level value is stored in the storage unit 205. Alternatively, the correspondence relationship itself may be stored in the storage unit 205. Then, the control unit 204 of the mobile station 200 reads the PUSCH MCS level value corresponding to the aggregation level value detected by blind decoding from the storage unit 205. The control unit 204 outputs the read PUSCH MCS level value to the wireless transmission unit 201, and the wireless transmission unit 201 performs encoding processing, modulation processing, and the like on the TCP ACK based on the level value and transmits it to the base station 100. To do.
  • the value of the cyclic shift of PUSCH DMRS is a fixed value.
  • the shift sequence may be used for a data demodulation reference signal (DMRS).
  • DMRS data demodulation reference signal
  • the mobile station 200 uses a predetermined fixed value C as a cyclic shift value.
  • the base station 100 can easily detect the data demodulation reference signal, and the data transmitted from the mobile station 200 can be easily demodulated using the detected data demodulation reference signal.
  • the control unit 204 reads the fixed value C stored in the storage unit 205, generates a sequence such as a ZC sequence, and uses the sequence that is cyclically shifted based on the fixed value C as a data demodulation reference signal.
  • FIG. 12 is a diagram illustrating a TCP ACK transmission example when TCP ACK transmission timing is set by RRC.
  • the base station 100 and the mobile station 200 may transmit and receive signals according to a predetermined procedure, such as when the mobile station 200 is on standby or when a new wireless connection is established.
  • a procedure may be, for example, a procedure defined in a specification including the above-described non-patent literature.
  • An example of such a procedure is an RRC procedure.
  • the base station 100 notifies the transmission timing of the TCP ACK in the PUSCH using a signal transmitted / received by such a procedure, and the mobile station 200 transmits the TCP ACK based on the signal. Transmit at a predetermined timing.
  • the base station 100 and the mobile station 200 perform the following processing. That is, the control unit 104 of the base station 100 determines the transmission timing for transmitting the TCP ACK, and instructs the wireless transmission unit 101 to generate a signal including information regarding the determined timing.
  • the wireless transmission unit 101 generates a signal according to the instruction and transmits the signal according to a determined procedure.
  • the radio reception unit 202 of the mobile station 200 receives the signal, extracts information related to transmission timing from the received signal, and outputs the information to the control unit 204.
  • the control unit 204 outputs information regarding the extracted transmission timing to the wireless transmission unit 201, and the wireless transmission unit 201 transmits a TCP ACK according to the timing (S61).
  • the information notified by the signal of the determined procedure may be not only the transmission timing but also the frequency used for transmission of the TCP ACK, or a part or all of the information regarding the radio resource may be notified.
  • the above (1) is improved and the position of the radio resource (PRB) of PUSCH used for transmission of TCP ACK is set based on a signal transmitted and received in a predetermined procedure.
  • PRB radio resource
  • such a procedure may be a procedure defined in the specification including the above-mentioned non-patent literature.
  • An example of such a procedure is an RRC procedure.
  • the PRB position notified by such a procedure may be, for example, the start position or end position of the PRB that transmits the TCP ACK, as long as the PRB position in the PUSCH used for transmitting the TCP ACK is indicated. . Also in this example, the contents described in the above (4), FIG. In this case, when receiving a signal according to the determined procedure, the control unit 204 instructs the wireless transmission unit 201 to transmit a TCP ACK using a wireless resource at a predetermined position of the PUSCH based on the signal. The wireless transmission unit 201 transmits a TCP ACK using the wireless resource according to the instruction.
  • FIGS. 13 and 14 are diagrams showing an example of transmission of TCP ACK in this example.
  • TCP data is divided into a plurality (for example, n) of PDCP SDUs (PDCP Service Data Unit) (or packet unit) and transmitted from the base station 100 to the mobile station 200.
  • PDCP SDUs PDCP Service Data Unit
  • a C-RNTI Cell-Radio Network Temporary Identifier: cell
  • the base station 100 masks the CRC added to the control signal with C-RNTI.
  • Base station 100 transmits a control signal masked with C-RNTI using PDCCH (S70-1,..., S70- (n-1) in FIG. 14).
  • the mobile station 200 receives a control signal masked with C-RNTI, and when the control signal can be decoded (or descrambled, hereinafter referred to as “decode”) with C-RNTI, Recognize that the 1st to (n-1) th PDCP SDU has been transmitted, and recognize that it is not the TCP ACK transmission timing.
  • the base station 100 uses a TCP-CRNTI (Transmission Protocol-Cell Radio Network Temporary Identifier: Mask with a TCP cell wireless network temporary identifier). Specifically, the base station 100 masks the CRC added to the control signal with TCP-CRNTI. The base station 100 transmits a control signal masked with TCP-CRNTI using PDCCH (S70 in FIG. 13, S70-n in FIG. 14).
  • TCP-CRNTI Transmission Protocol-Cell Radio Network Temporary Identifier: Mask with a TCP cell wireless network temporary identifier.
  • the mobile station 200 receives the control signal masked with TCP-CRNTI, and when the control signal can be decoded with TCP-RNTI, recognizes that it is the last n-th PDCP SDU and receives TCP ACK. It is recognized that the transmission timing is notified.
  • the control signal masked with TCP-RNTI indicates, for example, that the mobile station 200 has reached the timing for transmitting TCP ACK.
  • the PUSCH resource position g used for TCP ACK transmission is used. May be determined.
  • the mobile station 200 transmits a TCP ACK using the radio resource at the resource location g.
  • the above processing may be performed by the control unit 104 of the base station 100 or the control unit 204 of the mobile station 200, for example.
  • the control unit 104 analyzes the amount of TCP data transmitted to the mobile station 200 by analyzing the TCP data and the TCP header. When the amount of data reaches a predetermined value, the control unit 104 generates a control signal on the assumption that the mobile station 200 has transmitted TCP ACK.
  • the control unit 104 masks the CRC added to the control signal together with the TCP-CRNTI read from the storage unit 105 with the TCP-RNTI, and transmits the control signal masked with the TCP-CRNTI to the mobile station 200.
  • the wireless transmission unit 101 is instructed to transmit.
  • the wireless transmission unit 101 masks the CRC of the control signal with TCP-RNTI, and transmits the masked signal to the mobile station 200.
  • the control unit 204 notifies the control unit 204 of the fact, and the control unit 204 may transmit a TCP ACK by the notification. Recognize that.
  • the control unit 204 instructs the wireless transmission unit 201 to transmit a TCP ACK.
  • the wireless transmission unit 201 transmits a TCP ACK to the base station 100 according to the instruction.
  • the above-described “TCP-CNTI” may be replaced with C-RNTI.
  • the control unit 204 receives a notification from the wireless reception unit 202 that the C-RNTI has been decoded, it recognizes that it is not the timing to transmit the TCP ACK.
  • the base station 100 can confirm the last PDCP SDU by analyzing the TCP header and TCP data, for example.
  • the analysis may be limited to QCI (Quality of Service class Identifier: Qos class indicator) 6, QCI8, or QCI9.
  • the bearer that implements the present application can be set as another bearer. For example, a bearer in which data transmission is performed using C-RNTI and a bearer in which data transmission is performed using TCP-RNTI may be set as different bearers.
  • the base station 100 only needs to be able to estimate the timing at which the mobile station 200 transmits a TCP ACK. For example, when the number of packets exceeds a predetermined number, the timing is determined by TCP-CRNTI.
  • the masked control signal may be transmitted on the PDCCH.
  • TCP ACK transmission is performed using SPS.
  • SPS is a scheduling technique that allocates radio resources in a semi-persistent manner instead of dynamically allocating radio resources for each subframe as in dynamic scheduling, for example.
  • the base station 100 since the base station 100 only needs to transmit scheduling information to the mobile station 200 at regular intervals, it is possible to reduce overhead due to transmission of control signals.
  • FIG. 15 is a diagram illustrating a transmission example of TCP ACK in this example.
  • the base station 100 When transmitting the TCP data, the base station 100 also transmits the SPS activation at the same time to implement the SPS (S110).
  • the SPS activation is information indicating the implementation (or start) of the SPS, for example.
  • the control unit 104 generates an SPS activation and outputs the SPS activation to the wireless transmission unit 101, and the wireless transmission unit 101 transmits the SPS activation using the PDCCH. At this time, the control unit 104 also generates information such as the SPS cycle and transmits the information on the PDCCH via the wireless transmission unit 101.
  • the mobile station 200 decides to perform SPS by receiving the SPS activation, and transmits a TCP ACK using the PUSCH in the period received from the base station 100 (S111). For example, the mobile station 200 performs the following processing. That is, when the control unit 204 of the mobile station 200 receives the SPS activation and the SPS cycle via the radio reception unit 202, the control unit 204 instructs the radio transmission unit 201 to transmit a TCP ACK for each cycle.
  • the wireless transmission unit 201 transmits a TCP ACK according to the instruction. In this case, the mobile station 200 may transmit the first TCP ACK after 4 ms after receiving the SPS activation, and then transmit the TCP ACK for each SPS cycle (or for each specified interval).
  • SPS may be used, for example, when the mobile station 200 transmits VoIP (Voice over Internet Protocol) data.
  • VoIP Voice over Internet Protocol
  • the base station 100 masks and transmits the PDCCH for transmitting the SPS activation with the TCP-CRNT.
  • the mobile station 200 recognizes that it is SPS by TCP ACK when the signal received by PDCCH can be decoded by TCP-CRNTI, and recognizes that it is transmission of VoIP data when it cannot be decoded by TCP-CRNTI.
  • the content described in (6) above is used.
  • the mobile station 200 can also perform PUSCH power control when transmitting a TCP ACK using the PUSCH.
  • the mobile station 200 may calculate the transmission power for PUSCH (or TCP ACK) based on the value of TPC (Transmission Power Control) transmitted from the base station 100 using PDCCH. Or the mobile station 200 may calculate based on the transmission power of PUCCH (or the signal transmitted using the said PUCCH) immediately before PUSCH which transmits TCP ACK.
  • TPC Transmission Power Control
  • the mobile station 200 can transmit a TCP ACK using PUSCH without performing a scheduling request procedure (for example, S11 to S16 in FIG. 6). Become. Therefore, it is possible to shorten the delay time (“11.5 ms” in the example of FIG. 6B) from the generation of TCP data to the transmission of TCP ACK.
  • the TCP ACK delay time could be shortened to about “4 ms”.
  • the TCP throughput increases in inverse proportion to the decrease in RTT, and the effect of the TCP throughput according to the present method is about twice or more compared with the case where the scheduling request procedure is performed (for example, FIG. 6A). .
  • FIG. 16 to FIG. 19B are diagrams for explaining such a problem and its solution.
  • the delayed ACK will be described.
  • FIG. 16 is a diagram for explaining delayed ACK.
  • the TCP receiving side 400 returns a TCP ACK when the TCP data transmitted from the TCP transmitting side 300 can be normally received.
  • the TCP receiving side 400 receives TCP data larger than the maximum segment size, it is recommended to receive (or send) TCP ACK by receiving two segments of TCP data (S130, S131). (S132). Since the TCP receiving side 400 receives the TCP data of two segments and transmits the TCP ACK, there is an advantage that it becomes possible to create an update opportunity of the TCP reception window.
  • FIG. 17 is a diagram for explaining the Nagle-delayed ACK problem.
  • the TCP transmission side 300 does not send pieces of chopped TCP data one by one, but sends a plurality of pieces of chopped TCP data together (S135, S136).
  • an algorithm that transmits a plurality of data in one piece may be referred to as a Nagle algorithm, for example.
  • the TCP transmission side 300 may require a certain time or more until the TCP data is collectively transmitted (S135, S136).
  • the TCP receiving side 400 receives the TCP data of the two segments and transmits the TCP ACK.
  • the TCP transmitting side 300 is very much longer than the threshold time until receiving the TCP ACK. It can take a lot of time. In this way, the problem that takes a very long time for the TCP transmitting side 300 to receive the TCP ACK may be referred to as a Nagle-delayed ACK problem, for example.
  • FIG. 18 is a diagram illustrating a first example of a solution.
  • the mobile station 200 is taken as an example as the TCP receiving side 400.
  • the base station 100 receives TCP data of one segment from the TCP transmission side 300 (S140)
  • the base station 100 divides the data into a plurality of data and transmits the data to the mobile station 200 (S141).
  • the mobile station 200 stops the delayed ACK when receiving a plurality of divided data, and returns a TCP ACK when receiving TCP data of one segment (S145). Thereby, for example, on the TCP transmission side 300, the transmission delay of the TCP ACK can be shortened compared with the case where the mobile station 200 receives two segments and returns a TCP ACK (S144).
  • FIG. 19 (A) and FIG. 19 (B) are diagrams showing a second example of the solution.
  • the second example is an example in which the mobile station 200 transmits a TCP ACK when the radio quality is good.
  • the mobile station 200 may repeatedly transmit the TCP ACK if the quality of the uplink radio channel is not good (S145-1 and S145-2 in FIG. 19A). ,..., S145-n).
  • a transmission delay of TCP ACK occurs at the base station 100 or the TCP transmission side 300.
  • the mobile station 200 does not transmit the TCP ACK when the radio quality is below a certain level, and transmits the TCP ACK collectively when the radio quality is higher than the certain level (S146 in FIG. 19B).
  • the mobile station 200 does not transmit a TCP ACK many times, and the power consumption of the mobile station 200 can be reduced.
  • FIG. 20 is a diagram illustrating a hardware configuration example of the base station 100.
  • the base station 100 includes an antenna 110, an RF (Radio Frequency) circuit 111, a processor 112, a memory 113, and a network IF (Interface) 114.
  • the processor 112 can realize the function of the control unit 104 by reading and executing the program stored in the memory 113.
  • the processor 112 corresponds to the control unit 104 in the second embodiment, for example.
  • the antenna 110 and the RF circuit 111 correspond to, for example, the wireless transmission unit 101 and the wireless reception unit 102 in the second embodiment.
  • the memory 113 corresponds to, for example, the storage unit 105 in the second embodiment.
  • the network IF 114 corresponds to, for example, the network communication unit 106 in the second embodiment.
  • FIG. 21 is a diagram illustrating a hardware configuration example of the mobile station 200.
  • the mobile station 200 includes an antenna 210, an RF circuit 211, a processor 212, and a memory 213.
  • the processor 212 can realize the function of the control unit 204 by reading and executing the program stored in the memory 213.
  • the processor 212 corresponds to the control unit 204 in the second embodiment, for example.
  • the antenna 210 and the RF circuit 211 correspond to, for example, the wireless transmission unit 201 and the wireless reception unit 202 in the second embodiment.
  • the memory 213 corresponds to the storage unit 205 in the second embodiment, for example.
  • the processors 112 and 212 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field Programmable Gate Array), or the like.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • FPGA Field Programmable Gate Array
  • the mobile station 200 has described an example in which the PUCCH resource position used for TCP ACK transmission is determined based on the minimum CCE index k among the CCEs allocated to the mobile station (for example, FIG. 9 ( B) etc.). For example, the mobile station 200 may determine the resource position of the PUCCH used for transmission of TCP ACK based on the maximum CCE index among the CCEs assigned to the mobile station 200. For example, the mobile station 200 may transmit the TCP ACK using the PUCCH radio resource corresponding to the CCE index of the CCE assigned to the mobile station 200.
  • the above-described example can be implemented as long as it is a protocol that ensures the reliability of communication by transmitting and receiving delivery confirmation information end-to-end, such as SCTP (Stream Control Transmission Protocol).
  • SCTP Stream Control Transmission Protocol
  • TCP ACK is mainly transmitted.
  • the mobile station 200 transmits a TCP NACK, it can be performed in the same manner as when a TCP ACK is transmitted.
  • the radio communication apparatus 500 and the first radio communication apparatus 600 described in the first embodiment can be implemented as the base station apparatus 100 and the mobile station apparatus 200 described in the second embodiment, respectively.
  • the wireless communication device 500 and the first wireless communication device 600 described in the first embodiment can be implemented as the mobile station device 200 and the base station device 100 described in the second embodiment, respectively.
  • the control unit 520 in the first embodiment may correspond to the control unit 104 of the base station device 100 or the control unit 204 of the mobile station device 200 in the second embodiment.
  • the function of the control unit 520 described in the first embodiment may be implemented in the control unit 104 of the base station apparatus 100 or the control unit 204 of the mobile station apparatus 200.
  • the base station apparatus 100 and the mobile station apparatus 200 can also be implemented as the base station apparatus 100 and the mobile station apparatus 200 described in the other embodiments, respectively.
  • the control unit 104 of the second embodiment in the base station device 100 may correspond to, for example, the processor 112 in the other embodiments, and the processor 112 may implement the function of the control unit 104.
  • the control unit 204 of the second embodiment in the mobile station device 100 may correspond to, for example, the processor 212 in the other embodiments, and the processor 212 may implement the function of the control unit 204.
  • the wireless communication apparatus 500 and the first wireless communication apparatus 600 described in the first embodiment are the same as the base station apparatus 100 and the mobile station apparatus 200 (or the mobile station apparatus 200 and the base station described in the other embodiments). It can also be implemented as a station device 100). Therefore, the control unit 520 in the first embodiment may implement the function of the control unit 520 in the processor 112 or 212 corresponding to the processor 112 or 212 in the other embodiments.
  • wireless communication system 100 base station apparatus 101: wireless transmission unit 102: wireless reception unit 103: wireless communication unit or communication unit 104: control unit 105: storage unit 106: network communication unit 112: processor 113: memory 200: movement Station device 201: Wireless transmission unit 202: Wireless reception unit 203: Communication unit 204: Control unit 205: Storage unit 212: Processor 213: Memory 300: TCP transmission side 400: TCP reception side 500: Wireless communication device 510: Communication unit 520 : Control unit 600: First wireless communication apparatus

Abstract

第1の無線通信装置と無線通信を行う無線通信装置において、第1レイヤにおける信号と、前記第1レイヤよりも上位レイヤである第2レイヤのデータ及び前記データに対する送達確認情報を送受信する通信部と、前記第1の無線通信装置において割り当てられたスケジューリング情報を用いることなく前記第1の無線通信装置から受信した前記信号に基づいて、前記無線通信装置を含む複数の第2の無線通信装置で共有される前記第1レイヤの共有チャネルを用いて前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にする制御部を備える。

Description

無線通信装置、無線通信システム、及び無線通信方法
 本発明は、無線通信装置、無線通信システム、及び無線通信方法に関する。
 現在、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)システムや、LTEシステムをベースとしたLTE-A(LTE-Advanced)システムの仕様が完了又は検討されている。LTEについては、3GPP Release8からRelease12が国際仕様として策定されている。また、3GPP Release10以降は、LTE-Aと呼ばれている。更に、第4世代移動通信(4G, 4th generation mobile communication)に続く第5世代移動通信(5G, 5th generation mobile communication)の検討も2013年頃から始まっている。
 一方、データ通信においてはTCP/IP(Transmission Control Protocol/Internet Protocol)と呼ばれる通信プロトコルが用いられる場合がある。TCP/IPは、例えば、TCPとIPとを組み合わせたプロトコルであり、インターネットなどで標準的に用いられている。例えば、IPはインターネットにおいてパケットを中継するために用いられる通信プロトコルであり、TCPは伝送制御プロトコルであってアプリケーションプログラムとIPとの間の中間のレイヤにおいて通信サービスを提供するプロトコルとなっている。
 TCPでは、送信側がTCPデータを送信し、受信側はTCPデータを正常に受信できたときはTCP ACK(Acknowledgement)を返信し、送信側はTCP ACKを受信して、次のTCPデータの送信を開始する。このようにTCPでは「TCPデータ送信→TCP ACK返信」という手順を規定しており、これにより、信頼性のある通信を実現している。
3GPP TS36.300 V12.5.0(2015-03) 3GPP TS36.211 V12.5.0(2015-03) 3GPP TS36.212 V12.4.0(2015-03) 3GPP TS36.213 V12.5.0(2015-03) 3GPP TS36.321 V12.5.0(2015-03) 3GPP TS36.322 V12.2.0(2015-03) 3GPP TS36.323 V12.3.0(2015-03) 3GPP TS36.331 V12.5.0(2015-03) 3GPP TS36.413 V12.5.0(2015-03) 3GPP TS36.423 V12.5.0(2015-03) 3GPP TR36.842 V12.0.0(2013-12) RFC793
特表2015-501116号公報 特開2009-164816号公報
 一開示は、TCP ACKの送信に要する遅延時間を短縮させるようにした無線通信装置、無線通信システム、及び無線通信方法を提供することにある。
 また、一開示は、TCPのスループットを向上させるようにした無線通信装置、無線通信システム、及び無線通信方法を提供することにある。
 一態様によれば、第1の無線通信装置と無線通信を行う無線通信装置において、第1レイヤにおける信号と、前記第1レイヤよりも上位レイヤである第2レイヤのデータ及び前記データに対する送達確認情報を送受信する通信部と、前記第1の無線通信装置において割り当てられたスケジューリング情報を用いることなく前記第1の無線通信装置から受信した前記信号に基づいて、前記無線通信装置を含む複数の第2の無線通信装置で共有される前記第1レイヤの共有チャネルを用いて前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にする制御部を備える。
 一開示によれば、TCP ACKの送信に要する遅延時間を短縮させるようにした無線通信装置、無線通信システム、及び無線通信方法を提供することができる。また、一開示によれば、TCPのスループットを向上させるようにした無線通信装置、無線通信システム、及び無線通信方法を提供することができる。
図1は無線通信システムの構成例を表す図である。 図2は無線通信システムの構成例を表す図である。 図3は基地局装置の構成例を表す図である。 図4は移動局装置の構成例を表す図である。 図5(A)と図5(B)はTCP ACKの送信例を表す図である。 図6(A)はSR手順のシーケンス例、図6(B)は遅延時間の詳細例を表す図である。 図7はTCP ACKの送信遅延の例を表す図である。 図8はTCP ACKの送信例を表す図である。 図9(A)は移動局装置へのCCEの割り当て例、図9(B)はTCP ACKのPUSCHへの割り当て例を表す図である。 図10は動作例を表すフローチャートである。 図11(A)はaggregation levelとMCSの関係例、図11(B)はDMRSに対する巡回シフトの例を夫々表す図である。 図12はTCP ACKの送信例を表す図である。 図13はTCP ACKの送信例を表す図である。 図14はTCP-CRNTIを説明するための図である。 図15はTCP ACKの送信例を表す図である。 図16は遅延ACKを説明するための図である。 図17はNagle-遅延ACK問題を説明するための図である。 図18はNagle-遅延ACK問題の解決策の一例を表す図である。 図19(A)と図19(B)はNagle-遅延ACK問題の解決策の一例を表す図である。 図20は基地局装置のハードウェア構成例を表す図である。 図21は移動局装置のハードウェア構成例を表す図である。
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。
 また、本明細書で使用している用語や本明細書に記載した技術的内容は、3GPPなどにおいて通信に関する規格として仕様書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書の一例としては、上述した非特許文献1から非特許文献12などがある。
 なお、上述した非特許文献1から非特許文献11は、日付として上記記載の非特許文献が用いられても良いが、随時更新されており、本願出願日直前に発行された非特許文献1から非特許文献11に記載された用語や技術的内容が本願明細書において適宜用いられてもよい。
 なお、非特許文献1から非特許文献12の各文献に記載された概要は以下となる。
 すなわち、非特許文献1(3GPP TS36.300 V12.5.0(2015-03))は、例えば、LTE-Aの概要仕様について記載されている。
 また、非特許文献2(3GPP TS36.211 V12.5.0(2015-03))は、例えば、LTE-AのPHY(Physical Layer)チャネル(又は物理チャネル)仕様について記載されている。
 更に、非特許文献3(3GPP TS36.212 V12.4.0(2015-03))は、例えば、LTE-AのPHY符号化仕様について記載されている。
 更に、非特許文献4(3GPP TS36.213 V12.5.0(2015-03))は、例えば、LTE-AのPHY手順仕様について記載されている。
 更に、非特許文献5(3GPP TS36.321 V12.5.0(2015-03))は、例えば、LTE-AのMAC(Medium Access Control)仕様について記載されている。
 更に、非特許文献6(3GPP TS36.322 V12.2.0(2015-03))は、例えば、LTE-AのRLC(Radio Link Control)仕様について記載されている。
 更に、非特許文献7(3GPP TS36.323 V12.3.0(2015-03))は、例えば、LTE-AのPDCP(Packet Data Convergence Protocol)仕様について記載されている。
 更に、非特許文献8(3GPP TS36.331 V12.5.0(2015-03))は、例えば、LTE-AのRRC(Radio Resource Control)仕様について記載されている。
 更に、非特許文献9(3GPP TS36.413 V12.5.0(2015-03))は、例えば、LTE-AのS1仕様について記載されている。
 更に、非特許文献10(3GPP TS36.423 V12.5.0(2015-03))は、例えば、LTE-AのX2仕様について記載されている。
 更に、非特許文献11(3GPP TR36.842 V12.0.0(2013-12))は、例えば、LTE-Aのスモールセル技術の検討書である。
 更に、非特許文献12(RFC793)は、例えば、TCPの仕様について記載されている。
 [第1の実施の形態]
 図1は第1の実施の形態における無線通信システム10の構成例を表す図である。無線通信システム10は無線通信装置500と第1の無線通信装置600を備える。無線通信装置500と第1の無線通信装置600は無線通信を行う。例えば、無線通信装置500は移動局装置であり、第1の無線通信装置は基地局装置である。
 無線通信装置500は、通信部510と制御部520を備える。
 通信部510は第1レイヤにおける信号と、第1レイヤよりも上位レイヤである第2レイヤのデータ及びデータに対する送達確認情報を送受信する。
 制御部520は、第1の無線通信装置600において割り当てられたスケジューリング情報を用いることなく第1の無線通信装置600から受信した信号に基づいて、無線通信装置500を含む複数の第2の無線通信装置で共有される共有チャネルを用いて送達確認情報を通信部510から第1の無線通信装置600へ送信することを可能にする。
 無線通信装置500は、共有チャネルを用いて情報を送信する場合、第1の無線通信装置600との間でスケジューリング要求手順を行う場合がある。スケジューリング要求手順においては、例えば、以下の手順が実行される。すなわち、無線通信装置500がスケジューリング要求を第1の無線通信装置600へ送信し、第1の無線通信装置600は当該要求を受信すると無線通信装置500に対するスケジューリング情報を生成する。第1の無線通信装置600は、スケジューリング情報を含むUL grantを無線通信装置500へ送信し、無線通信装置500はスケジューリング情報に従って共有チャネルを用いて情報を送信する。このようなスケジューリング手順によって送達確認情報の送信について遅延が発生する場合がある。
 本第1の実施の形態においては、無線通信装置500は第1の無線通信装置600から送信された信号に基づいて共有チャネルを用いて第2レイヤの送達確認情報を送信することが可能となる。これにより、無線通信装置500と第1の無線通信装置600はスケジューリング要求手順を行うことなく、無線通信装置500は共有チャネルを用いて送達確認情報を送信することが可能となる。
 従って、本第1の実施の形態においては、無線通信装置500では送達確認情報の送信について、スケジューリング要求手順を省くことができ、送達確認情報の送信による遅延時間を短縮させることが可能となる。また、本第1の実施の形態においては、このような遅延時間の短縮によって、スループットの向上を図ることができる。
 例えば、送達確認情報としてはTCP ACKがある。よって、本第1の実施の形態では、TCP ACKの送信による遅延時間の短縮を図ることが可能となる。また、本第1の実施の形態では、このような遅延時間の短縮によって、TCPにおけるスループットの向上を図ることが可能となる。
 [第2の実施の形態]
 次に第2の実施の形態について説明する。
 <無線通信システムの構成例>
 図2は無線通信システム10の構成例を表している。無線通信システム10は、基地局装置(以下、「基地局」と称する場合がある)100と移動局装置(以下、「移動局」と称する場合がある)200を備える。
 なお、基地局100は、例えば、第1の実施の形態における第1の無線通信装置600に対応する。また、移動局200は、例えば、第1の実施の形態における無線通信装置500に対応する。
 基地局100は、例えば、自局のサービスエリアに在圏する移動局200と無線通信を行う無線通信装置である。
 移動局200は、例えば、スマートフォン、フィーチャーフォン、タブレット端末、パーソナルコンピュータ、ゲーム装置などの無線通信装置である。移動局200は、基地局100と無線通信を行い、通話サービスやWebページの閲覧サービスなど様々なサービスの提供を受けることができる。
 基地局100と移動局200は双方向通信が可能である。すなわち、基地局100から移動局200への方向(以下、「DL(Down Link)方向」又は「下り方向」と称する場合がある)と、移動局200から基地局100への方向(以下、「UL(Up Link)方向」又は「上り方向」と称する場合がある)の通信が可能である。
 基地局100は、移動局200との下り方向と上り方向の無線通信に関して、スケジューリングを行うことで、無線リソースの割り当てや、符号化方式と変調方式の決定などを行う。基地局100は、スケジューリング結果を示すスケジューリング情報を含む制御信号を移動局200へ送信する。基地局100と移動局200は、制御信号に含まれるスケジューリング情報に従って無線通信を行う。
 なお、図2に示す無線通信システム10では、1つの移動局200が1つの基地局100と無線通信を行っている例を示しているが、例えば、複数の移動局が1つの基地局100と無線通信を行ってもよい。また、1つの移動局200が複数の基地局と無線通信を行ってもよい。無線通信システム10には、複数の基地局と複数の移動局が含まれてもよい。
 <基地局装置の構成例>
 次に、基地局100の構成例について説明する。図3は基地局100の構成例を表す図である。基地局100は、無線送信部101、無線受信部102、制御部104、記憶部105、及びネットワーク通信部106を備える。なお、無線送信部101と無線受信部102は無線通信部(又は通信部)103に含まれてもよい。
 無線送信部101は、例えば、記憶部105から読み出されたデータや制御部104から出力された制御信号などに対して、誤り訂正符号化処理(以下、「符号化処理」と称する場合がある)や変調処理、周波数変換処理などを施して、無線信号に変換する。無線送信部101は、制御部104から符号化率や変調方式などを含むスケジューリング情報を受け取り、このスケジューリング情報に従って符号化処理や変調処理などを行う。そして、無線送信部101は変換後の無線信号を移動局200へ送信する。この場合、無線送信部101は、制御部104からスケジューリング情報を受け取り、スケジューリング情報に含まれる無線リソースを用いて無線信号を送信する。無線リソースは、例えば、周波数リソースと時間リソースを含む。例えば、無線送信部101は、データなどをPDSCH(Physical Downlink Shared Channel)を用いて送信し、制御信号などをPDCCH(Physical Downlink Control Channel)を用いて送信する。
 無線受信部102は、例えば、制御部104から受け取ったスケジューリング情報に含まれる無線リソースを用いて各移動局200から送信された無線信号を受信する。この場合、無線受信部102は、PUCCH(Physical Uplink Control Channel)を用いて制御信号などを含む無線信号を受信し、PUSCH(Physical Uplink Shared Channel)を用いてデータなどを含む無線信号を受信する。また、無線受信部102は、受信した無線信号に対して、周波数変換処理や復調処理、誤り訂正復号化処理(以下、「復号化処理」と称する場合がある)などを施してデータや制御信号などを抽出する。無線受信部102は、変調方式と符号化率などを含むスケジューリング情報を制御部104から受け取り、このスケジューリング情報に従って復調処理や復号化処理などを行う。無線受信部102は、例えば、抽出したデータや制御信号などを記憶部105や制御部104へ出力する。
 制御部104は、上述したスケジューリングを行い、その結果をスケジューリング情報として無線送信部101や無線受信部102へ出力する。また、制御部104は、スケジューリング情報を含む制御信号を生成して無線送信部101へ出力する。制御信号は移動局200へ向けて送信される。
 更に、制御部104は、HARQ(Hybrid Automatic Repeat Request)による再送制御を行う。HARQは、例えば、受信側において復号化処理に失敗したデータを破棄せずに、送信側から再送信されたデータと合成することで、当該データを復号させる技術である。例えば、受信側において復号化処理に成功すると受信側はACK(Acknowledge:肯定応答)を送信し、送信側はACKを受信すると次のデータの送信を開始する。一方、受信側において復号化処理に失敗すると、受信側は送信側に対してNACK(Negative Acknowledge:否定応答)を返信し、送信側はNACKを受けてデータを再送する。HARQによるACKもNACKもHARQによる送達確認情報の一例である。HARQによる再送制御は、基地局100と移動局200との間で行われる。
 HARQによる再送制御の対象は、例えば、MAC(Medium Access Control:媒体アクセス制御)レイヤにおけるデータである。このようなデータの例として、MAC PDU(MAC Packet Data Unit)などがある。MACレイヤはOSI参照モデルにおいてはデータリンクレイヤ(レイヤ2)に含まれる。
 制御部104は、例えば、以下のようなHARQによる再送制御を行う。すなわち、無線受信部102でMACレイヤのデータに付加されたCRC(Cyclic Redundancy Check)などに基づいて復号化処理を行ったときに正しく復号できたか否かを示す処理結果を制御部104へ通知する。制御部104では処理結果に応じてACKやNACKを生成する。制御部104はHARQによるACK(以下、「HARQ ACK」と称する場合がある)やHARQによるNACK(以下、「HARQ NACK」と称する場合がある)を、無線送信部101を介して移動局200へ送信する。他方、制御部104は無線受信部102を介して移動局200からHARQ ACKを受信すると次のデータの送信を開始する。制御部104は無線受信部102を介して移動局200からHARQ NACKを受信したり又はMACレイヤのデータを送信後一定期間経過しても HARQ ACKを受信しなかったりしたときは、HARQ ACKの確認がなされていない当該データを記憶部105から読み出して移動局200へ再送する。
 記憶部105は、例えば、データや制御信号などを記憶する。例えば、無線受信部102や制御部104、ネットワーク通信部106はデータや制御信号などを記憶部105に適宜記憶し、無線送信部101や制御部104、ネットワーク通信部106は記憶部105に記憶されたデータや制御信号などを適宜読み出す。
 ネットワーク通信部106は、他の装置と接続され、他の装置との間でデータなどを送受信する。その際、ネットワーク通信部106は、他の装置へ出力可能なフォーマットのパケットデータに変換して他の装置へ送信したり、他の装置から受信したパケットデータからデータなどを抽出して、記憶部105や制御部104などに出力したりするい。他の装置の例としては、他の基地局装置やMME(Mobility Management Entity)やSGW(Serving Gateway)などがある。
 <移動局装置の構成例>
 図4は移動局200の構成例を表す図である。移動局200は、無線送信部201、無線受信部202、制御部204、及び記憶部205を備える。なお、無線送信部201と無線受信部202は無線通信部(又は通信部)203に含まれてもよい。
 なお、通信部203は、例えば、第1の実施の形態における通信部510に対応する。また、制御部204は、例えば、第1の実施の形態にける制御部204に対応する。
 無線送信部201は、例えば、記憶部205から読み出したデータや制御部204から出力された制御信号などに対して、符号化処理や変調処理、周波数変換処理などを施して無線信号に変換する。無線送信部201は、制御部204から符号化率や変調方式を含むスケジューリング情報を受け取り、このスケジューリング情報に従って符号化処理や変調処理を行う。無線送信部201は、無線信号を基地局100へ送信する。この場合、無線送信部201は、移動局200に割り当てられた無線リソースを含むスケジューリング情報を制御部204から受け取り、この無線リソースを用いて無線信号を基地局100へ送信する。例えば、無線送信部201は、PUCCHを用いて制御信号などを送信し、PUSCHを用いてデータなどを送信する。
 無線受信部202は、基地局100から送信された無線信号を受信する。この際、無線受信部202は、移動局200に割り当てられた無線リソースを含むスケジューリング情報を制御部204から受け取り、この無線リソースを用いて無線信号を受信する。例えば、無線受信部202は、PDCCHを用いて制御信号など含む無線信号を受信し、PDSCHを用いてデータなどを含む無線信号を受信する。また、無線受信部202は、受信した無線信号に対して周波数変換処理や復調処理、復号化処理などを施して、無線信号からデータや制御信号などを抽出する。この際、無線受信部202は、変調方式や符号化率などのスケジューリング情報を制御部204から受け取り、変調方式や符号化率などに従って復調処理や復号化処理を行う。無線受信部202は、例えば、抽出したデータや制御信号などを制御部204や記憶部205へ出力する。
 制御部204は、無線受信部202から制御信号を受け取り、移動局200に割り当てられたスケジューリング情報などを制御信号から抽出して、無線送信部201や無線受信部202へ出力する。
 また、制御部204は制御信号など生成し、無線送信部201へ出力する。制御信号には、例えば、HARQ ACK又はHARQ NACK、CSI(Channel State Information:チャネル状態情報)、SR(Scheduling Request:スケジューリング要求)などが含まれてもよい。
 更に、制御部204は、TCPデータの送達確認(又は応答確認)と再送処理を行う。TCPデータは、例えば、基地局100を介してTCPを取り扱うサーバと移動局200の間で交換される。この場合、基地局100では、原則的にはTCPパケットに含まれるTCPヘッダやTCPデータの解析などを行うことなく、サーバから送信されたTCPパケットを移動局200へそのまま送信したり、移動局200から送信されたTCPパケットをサーバへそのまま送信したりする。
 TCPの再送においても、TCP送信側から送信したTCPデータに対してTCP受信側で正しく受信できたとき、TCP受信側はTCP送信側へTCP ACK(又は肯定応答)を返信する。TCP送信側はTCP ACKを受信すると次のTCPデータの送信を開始する。一方、TCP送信側はTCPデータを送信後一定期間経過してもTCP ACKを受信しないときは、TCP ACKの確認が取れていないTCPデータを受信側へ再送する。この場合、例えば、TCP送信側は、確認応答番号が同一の複数(たとえば3個)のTCP ACK(又は重複ACK)を受信したときはTCP受信側において正しくTCPデータを受信できなかったと判別して当該TCPデータを再送してもよい。このようなTCPによる再送処理は、例えば、制御部204において行われる。この場合、制御部204は、TCPデータを正しく受信できたか否かを確認し、その結果に応じてTCPの送達確認情報を生成し、無線送信部101を介して当該送達確認情報をサーバへ送信する。また、制御部204は、無線送信部101を介してTCPデータをサーバなどに送信後、一定期間経過してもTCP ACKを受信しないときは、記憶部205に記憶されたTCP ACKの確認がとれていないTCPデータを読み出して、無線送信部101を介してサーバへ向けて送信する。
 TCPは、OSI参照モデルにおけるトランスポートレイヤ(レイヤ4)に含まれる。他方、HARQ ACKなどを取り扱うMACレイヤは、OSI参照モデルにおいては、データリンクレイヤ(レイヤ2)に含まれる。トランスポートレイヤは、データリンクレイヤよりも上位レイヤとなっている。
 なお、LTEなどにおけるRLC(Radio Link Control:無線リンク制御)レイヤとPDCP(Packet Data Convergence Protocol:パケットデータコンバージェンス)レイヤなどは、データリンクレイヤに含まれ、データリンクレイヤのサブレイヤとなっている。MACレイヤ、RCLレイヤ、PDCPレイヤの各レイヤは、この中ではMACレイヤが下位のレイヤであり、PDCPレイヤが上位のレイヤとなる。
 例えば、制御部204では、無線受信部202からMACレイヤのデータを受け取り、MACレイヤのデータからTCPデータまでの各レイヤのデータを生成したり抽出したりした後、TCPデータに対する処理を行うことが可能となる。また、例えば、制御部204では、TCPデータからMACレイヤのデータまでの各レイヤのデータを生成したり抽出したりした後、MACレイヤのデータを無線送信部201へ出力することで、MACレイヤのデータを基地局100へ送信することが可能となる。
 更に、制御部204ではHARQによる再送制御を行う。HARQによる再送制御は、基地局100と移動局200との間で行われる。例えば、制御部204などでは以下の処理を行う。すなわち、無線受信部202でMACレイヤのデータに付加されたCRCなどに基づいて復号化処理を行ったときに正しく復号化できたか否かを示す処理結果を制御部204へ通知し、制御部204では処理結果に応じてHAR ACKやHARQ NACKを生成する。制御部204はHARQ ACKやHARQ NACKを、無線送信部201を介して基地局100へ送信する。他方、制御部204は無線受信部202を介して基地局100からHARQ ACKを受信するとMACレイヤの次のデータの送信を開始する。制御部204は基地局100からHARQ NACKを受信したり又はMACレイヤのデータを送信後一定期間経過しても HARQ ACKを受信しなかったりしたときは、HARQ ACKの確認がなされていない当該データを記憶部205から読み出して基地局100へ再送する。
 記憶部205は、例えば、データや制御信号などを記憶する。例えば、無線受信部202や制御部204はデータや制御信号などを記憶部205に適宜記憶し、無線送信部201や制御部204は記憶部205に記憶されたデータや制御信号などを適宜読み出す。
 なお、基地局100や移動局200において、例えば、変調前や復調後において処理される情報はデータや制御情報、変調後や復調前において処理される情報は信号と称する場合もある。或いは、例えば、トランスポートレイヤで取り扱われる情報のことをデータや制御情報などと称し、MACレイヤで取り扱われる情報のことを信号と称する場合もある。
 <動作例>
 次に動作例について説明する。最初に移動局200におけるTCP ACKの送信例について説明し、次に本第2の実施の形態における動作例などを説明する。
 <移動局によるTCP ACKの送信例>
 図5(A)から図6はTCP ACKの送信例を表す図である。図5(A)に示すように、移動局200は下り方向に送信されたTCPデータ(「DL TCP Data」)を正常に受信すると(S1)、TCP ACKを生成する。移動局200は、生成したTCP ACK(「UL TCP ACK」)を上り方向に送信する(S2)。上述したように、TCPデータ自体は、例えば、基地局100に接続されたサーバなどで生成されて、基地局100を介して移動局200へ送信される。また、TCP ACKも基地局100を介してTCPデータを生成したサーバに向けて送信される。
 この場合、移動局200は、例えば、図5(B)に示すスケジューリング要求手順を実行してTCP ACKを送信する。
 すなわち、移動局200は、PUCCHを用いてスケジューリング要求(SR:Scheduling Request)を基地局100へ送信する(S5)。基地局100はスケジューリング要求を受けてスケジューリング情報を生成する。基地局100は、PDCCHを用いてスケジューリング情報を含むUL grant(又は送信許可)を移動局200へ送信する(S6)。移動局200は、スケジューリング情報により割り当てられたPUSCHの無線リソースを用いてTCP ACKを移動局200へ送信する(S7)。図5(B)の例では、移動局200はTCP ACKとBSR(Buffer Status Report)を基地局100へ送信する例を表している。
 図6(A)は移動局200が上り方向にデータを送信するまでの一連の処理のシーケンス例を表し、図6(B)は移動局200が上り方向におけるデータの送信に要する時間の例を表している。
 移動局(UE(User Equipment))200は、例えば、データが発生するとPUCCHの送信機会を待ち(S11)、PUCCHを用いてスケジューリング要求を送信する(S12)。基地局(eNB(evolved Node B))100は、無線リソースの割り当てなどの処理を行い(S13)、UL grantを送信する(S14)。移動局200はUL grantを受けて、データに対する符号化処理などの処理を施し(S15)、PUSCHに含まれる無線リソースを用いてデータ(「UL Data」)を送信する(S16)。UL Dataの例としてはTCP ACKがある。
 図6(B)は、このような一連のシーケンスにおいて、S11からS16の各処理における所要時間の例を表している。例えば、S11の処理における平均遅延時間は「2.5ms」などである。図6(B)に示すように、1つの移動局200が上り方向にデータを送信するまでの遅延時間はエラーフリーであっても約「11.5ms」となった。すなわち、TCP ACKの送信に要する遅延時間は約「11.5ms」となった。この遅延時間はTCP通信ではその影響が大きく、TCPにおけるスループットが低下する要因の一つでもある。なお、あくまで参考例ではあるが、例えば、東京から大阪までのインターネット回線における往復伝搬遅延(RTT:Round-Trip Time)は約20msであった。この参考値からも「11.5ms」の大きさが理解されよう。
 例えば、移動局200はPUCCHを用いてTCP ACKを送信することも可能である。しかし、例えば、PUCCHがTCP ACKを送信したいサブフレームに設定されていない場合やPUCCHが他の信号の送信に使用され無線リソースが不足している場合など、移動局200はTCP ACKを送信したいタイミングでTCP ACKを送信することができない場合がある。この場合、図7に示すように、移動局200は次のPUCCHの機会(例えば5ms後)までTCP ACKの送信を待機することになり、TCP ACKの送信遅延が増加する。
 そこで、本第2の実施の形態においては、移動局200はスケジューリング要求手順を実施することなくPUSCHを用いてTCP ACKを送信する。これにより、図5(B)や図6(A)に示すスケジューリング要求手順が省略され、TCP ACKの送信に要する遅延時間を短縮させることが可能となる。また、TCP ACKの遅延時間の短縮によって、TCPにおけるスループットの向上を図ることも可能となる。
 本第2の実施の形態においては、移動局200ではPUSCHを用いてTCP ACKを送信する場合、スケジューリング要求手順を実施しないため、基地局100からはUL grantが与えられない。そのため、移動局200では、UL grantを受信することなく(又はスケジューリング情報を用いることなく)、基地局100から送信された信号に基づいて、PUSCHを用いてTCP ACKを送信するようにしている。具体的には、以下の8つがある。以下、順番に説明する。
 (1)PDCCH Lowest CCE(Control Channel Element:制御チャネル要素) index=kに基づいてPUSCH PRB(Physical Resource Block:無線リソースブロック) indexを決定
 (2)PDCCH aggregation levelとPUSCH MCS(Modulation and Coding Scheme) indexの関係からMCSを決定
 (3)PUSCH DMRS(Demodulation Reference Signal:データ復調用参照信号)の巡回シフトの値は固定値
 (4)TCP ACKのPUSCHを送信するタイミングはRRC(Radio Resource Control:無線リソース制御)により事前に設定
 (5)上記(1)の改良
 (6)上記(4)の改良
 (7)TCP ACK送信のためのSPS(Semi-Persistent Scheduling:セミパーシステントスケジューリング)の実施
 (8)その他
 (1)PDCCH Lowest CCE index=kに基づいて、PUSCH PRB indexを決定
 図8はPDCCH Lowest CCE index=kに基づいてPUSCH PRB indexを決定した場合のTCP ACKの送信例を表す図である。移動局200は、PDCCHを受信すると(S30)、PDCCHに含まれるCCEのうち最小のCCEインデックス(Lowest CCE index)に基づいて、TCP ACKを送信するPUSCHの無線リソースの位置gを決定(又は選択)する。移動局200は、決定した位置gの無線リソースを用いてTCP ACKを送信する。基地局100では当該無線リソースを用いてTCP ACKを受信する。
 CCEは、例えば、PDCCHの送信に利用される無線リソースの単位(又は要素)である。基地局100は、移動局200ごとに1個、2個、4個、又は8個などの連続したCCEを割り当てる。基地局100は割り当てたCCEを用いて移動局200宛の制御信号などを送信する。このCCE数はアグリゲーションレベルに相当する。例えば、CCE数が8のとき、アグリゲーションレベルは8となる。また、基地局100は、1つのPDCCHに含まれるCCE数が多くなるほど符号化率は小さくなるようにCCE数を定めることができる。基地局100は無線品質に基づいて1つの移動局200に割り当てるCCE数を決定してもよい。
 図9(A)は基地局100が各移動局200に割り当てるCCEの例を表している。図9(A)の例では、基地局100は移動局200-1(UE#1)に対して「0」のCCEインデックス(又はインデックス。以下、「CCEインデックス」と称する場合がある)を持つCCE(CCE#0)を割り当てている。また、基地局100は、移動局200-2(UE#2)に対して「1」と「2」のCCEインデックスを持つ2つのCCE(CCE#1,CCE#2)を割り当てている。例えば、基地局100は同一サブフレーム内に多重される複数のユーザ(又は移動局200)に対して同一のCCEインデックスが重複しないようにCCEインデックスを割り振る。移動局200では、例えば、全てのCCE(又は一定の候補範囲内のCCE)に対して復号化処理などを行い、正しく復号できたCCEを自局に割り当てられたCCEとして検出する。この場合、移動局200では、正しく復号できたCCE数により、CCEインデックスを特定することもできる。例えば、正しく復号できたCCE数が1個の場合はCCE#0であり、正しく復号できたCCE数が2個の場合はCCE#1,CCE#2などとなる。このような検出を、例えば、ブラインド検出(又はブラインド復号)と称する場合がある。
 移動局200ではこのようにブラインド検出により検出したCCEインデックスのうち最小のCCEインデックスkを用いて、TCP ACKの送信に利用するPUSCHのリソース位置gを決定する。例えば、図9(B)に示すように、移動局200-1に対して最小のCCEインデックスkが「0」のとき、f(0)によってPUSCHにおけるg#1の位置をTCP ACKの送信に利用する無線リソースとして決定する。また、移動局200-2に対して最小のCCEインデックスkが「1」のとき、f(1)によってPUSCHにおけるg#2をTCP ACKの送信に利用する無線リソースとして決定する。関数fは、システムとして決定されてもよいし、移動局200-1,200-2ごとに決定されてもよい。
 図8に戻り、移動局200はf(k)により決定したPUSCHの無線リソースの位置gを用いてTCP ACKを送信する(S31)。
 図10は移動局200における動作例を表すフローチャートである。図10は上述した動作例をまとめたものである。
 移動局200は処理を開始すると(S40)、PDCCHを用いて受信した信号から移動局200に割り当てられたCCEインデックスのうち、最小のCCEインデックスkを検出する(S41)。例えば、無線受信部202においてPDCCHを用いて受信した信号に対してブラインド検出により最小のCCEインデックスkを検出し、検出したCCEインデックスkを制御部204へ出力する。
 次に、移動局200は、検出した最小のCCEインデックスkに基づいてPUSCHにおけるリソース位置g=f(k)を算出する(S42)。例えば、制御部204は、記憶部205に記憶した関数fを表す式を読み出して、無線受信部202から受け取った最小のCCEインデックスkを関数fに代入することで、リソース位置gを算出する。
 次に、移動局200は、算出したPUSCHのリソース位置gの無線リソースを用いて、TCP ACKを送信する(S43)。例えば、以下のような処理が行われる。すなわち、制御部204は、リソース位置f(k)を無線送信部201へ出力する。また、制御部204は、TCP ACKを生成して、生成したTCP ACKに対応するMACレイヤのデータを無線送信部201へ出力する。無線送信部201は、当該データに対して符号化処理や変調処理などを施して無線信号に変換し、PUSCHのリソース位置gにおける無線リソースを用いて基地局100へ送信する。これにより、TCP ACKはPUSCCHを用いて基地局100へ送信される。
 (2)PDCCH aggregation levelとPUSCH MCS indexとの対応関係からMCSを決定
 図11(A)は、PDCCH aggregation level(又はアグリゲーションレベル。以下、「アグリゲーションレベル」と称する場合がある)とPUSCH MCS indexとの対応関係の例を表している。例えば、アグリゲーションレベルとPUCH MCS indexとの対応関係を事前に決定しておく。そして、移動局200ではこの対応関係を用いて、アグリゲーションレベルに基づいてMCSを決定する。MCS(又はMCSレベル値)は、例えば、符号化率と変調方式の組み合わせを表している。
 この対応関係については、例えば、アグリゲーションレベル値が大きいほどPUSCH MCS level値が小さく、アグリゲーションレベル値が小さいほどPUSCH MCS level値が大きいなどである。言い換えると、アグリゲーションレベル値が第1の閾値より大きいとき、MCSレベル値は第2の閾値より小さく、他方、アグリゲーションレベル値が第1の閾値以下のとき、MCSレベル値は第2の閾値以上となる。
 或いは、アグリゲーションレベル値が時間の経過とともに増加するとPUSCH MCS level値が減少し、アグリゲーションレベル値が減少すればPUSCH MCS level値が増加するなどである。
 図11(A)の例では、移動局UE#1に対してアグリゲーションレベル値が「1」であり、PUSCH MCS level値は「x1」となる。また、移動局UE#2に対してアグリゲーションレベル値が「2」であり、PUSCH MCS level値は「x2」(<x1)となる。
 なお、図11(A)に示すように、アグリゲーションレベル(又はアグリゲーションレベル値)は、例えば、移動局200に割り当てられたCCE数に対応する。図11(A)の例では、UE#1に割り当てられたCCE数は「1」となっているため、UE#1におけるアグリゲーションレベルは「1」、UE#2に対してCCE数は「2」となっているため、UE#2におけるアグリゲーションレベルは「2」となる。
 例えば、移動局200では以下の処理が行われてもよい。すなわち、決定した対応関係に基づいて、アグリゲーションレベル値に対応するPUSCH MCS level値を記憶部205に記憶しておく。或いは、記憶部205には当該対応関係そのものが記憶されてもよい。そして、移動局200の制御部204は、ブラインド復号により検出したアグリゲーションレベル値に対応するPUSCH MCS level値を記憶部205から読み出す。制御部204は読み出したPUSCH MCS level値を無線送信部201へ出力し、無線送信部201では当該level値に基づいてTCP ACKに対して符号化処理や変調処理などを施して基地局100へ送信する。
 (3)PUSCH DMRSの巡回シフトの値は固定値
 移動局200では、例えば、UL grantに含まれる巡回シフト(cyclic shift)の値に基づいてZC(Zadoff-Chu)系列に対して巡回シフトした巡回シフト系列をデータ復調用参照信号(DMRS)に用いる場合がある。本第2の実施の形態においては、UL grantが用いられないため、移動局200では予め決められた固定値Cを巡回シフトの値として用いる。これにより、例えば、基地局100ではデータ復調用参照信号を容易に検出でき、検出したデータ復調用参照信号を用いて移動局200から送信されたデータも容易に復調することができる。例えば、制御部204は記憶部205に記憶された固定値Cを読み出し、ZC系列などの系列を生成し、固定値Cに基づいて巡回シフトさせた系列をデータ復調用参照信号として用いる。
 (4)TCP ACKのPUSCHを送信するタイミングはRRCにより事前に設定
 図12はRRCによりTCP ACKの送信タイミングが設定された場合のTCP ACKの送信例を表す図である。移動局200の待ち受け時や新たな無線コネクションを確立する場合など、基地局100と移動局200は決められた手順によって信号を送受信する場合がある。このような手順は、例えば、上述した非特許文献を含む仕様書において規定された手順であってよい。このような手順の例としてはRRC手順などがある。
 本第2の実施の形態において、基地局100はこのような手順により送受信される信号を利用して、PUSCHにおけるTCP ACKの送信タイミングを通知し、移動局200は当該信号に基づいてTCP ACKを所定のタイミングで送信する。
 例えば、基地局100と移動局200は以下の処理を行う。すなわち、基地局100の制御部104において、TCP ACKを送信する送信タイミングを決定し、決定したタイミングに関する情報を含む信号の生成を無線送信部101へ指示する。無線送信部101では、当該指示に従って信号を生成し、決められた手順に従って当該信号を送信する。移動局200の無線受信部202は当該信号を受信し、受信した当該信号から送信タイミングに関する情報を抽出し、制御部204へ出力する。制御部204は抽出した送信タイミングに関する情報を無線送信部201へ出力し、無線送信部201では当該タイミングに従ってTCP ACKを送信する(S61)。
 例えば、決められた手順の信号により通知される情報は送信タイミングだけではなく、TCP ACKの送信に用いる周波数であってもよく、無線リソースに関する情報の一部或いは全部が通知されてもよい。
 (5)上記(1)の改良
 上記(1)では、PDCCH Lowest CCE index=kに基づいて、PUSCHにおけるTCP ACKの送信に利用する無線リソースの位置を決定した。本例では、上記(1)を改良して、TCP ACKの送信に利用するPUSCHの無線リソース(PRB)の位置を、予め決められた手順で送受信される信号に基づいて設定する例である。このような手順は、上記(4)と同様に、上述した非特許文献を含む仕様書において規定された手順であってよい。このような手順の例としてはRRC手順などがある。
 このような手順で通知されるPRBの位置は、例えば、TCP ACKを送信するPRBの開始位置や終了位置でもよく、TCP ACKの送信に利用されるPUSCHにおけるPRBの位置が示されていればよい。本例においても、上記(4)において説明した内容や図12などが援用される。この場合、制御部204は、決められた手順による信号を受信すると、当該信号に基づいてPUSCHの所定位置にある無線リソースを用いてTCP ACKを送信するように無線送信部201へ指示する。無線送信部201は当該指示に従って当該無線リソースを用いてTCP ACKを送信する。
 (6)上記(4)の改良
 上記(4)では、PUSCHを用いてTCP ACKを送信するタイミングを、予め決められた手順で送受信される信号により事前に設定する例について説明した。本例では、基地局100は移動局200においてTCP ACKが発生するタイミングを見計らって、PDCCHの送信のタイミングを設定し、移動局200は当該タイミングに基づいてPUSCHを用いてTCP ACKを送信する例である。
 図13と図14は本例におけるTCP ACKの送信例を表す図である。例えば、あるTCPデータが複数(例えばn個)のPDCP SDU(PDCP Service Data Unit)(又はパケットユニット)に分割されて基地局100から移動局200へ送信される場合がある。
 この場合、基地局100では、1番目のPDCP SDUから(n-1)番目のPDCP SDUの送信を指示する制御信号の送信に利用するPDCCHについてはC-RNTI(Cell-Radio Network Temporary Identifier:セル無線ネットワーク一時識別子)でマスク(又はスクランブル。以下、「マスク」と称する場合がある)する。具体的には、基地局100は当該制御信号に付加したCRCをC-RNTIでマスクする。基地局100は、PDCCHを用いてC-RNTIでマスクした制御信号を送信する(図14のS70-1,…,S70-(n-1))。この場合、移動局200では、C-RNTIでマスクされた制御信号を受信し、当該制御信号をC-RNTIでデコード(又はデスクランブル。以下、「デコード」と称する場合がある)できたとき、1番目から(n-1)番目のPDCP SDUが送信されたことを認識し、TCP ACKの送信タイミングではないことを認識する。
 一方、基地局100は、最後のn番目のPDCP SDUの送信を指示する制御信号の送信に利用するPDCCHについては、C-RNTIとは異なるTCP-CRNTI(Transmission Control Protocol-Cell Radio Network Temporary Identifier:TCPセル無線ネットワーク一時識別子)でマスクする。具体的には、基地局100は当該制御信号に付加したCRCをTCP-CRNTIでマスクする。基地局100は、PDCCHを用いてTCP-CRNTIでマスクした制御信号を送信する(図13のS70,図14のS70-n)。この場合、移動局200では、TCP-CRNTIでマスクされた制御信号を受信し、当該制御信号をTCP-RNTIでデコードできたとき、最後のn番目のPDCP SDUであることを認識し、TCP ACKの送信タイミングが通知されたと認識する。TCP-RNTIでマスクされた制御信号は、例えば、移動局200においてはTCP ACKを送信するタイミングになったことを表している。
 そして、移動局200では、上記(1)と同様に、当該制御信号の受信に利用したPDCCHに含まれるCCEのうち最小のCCEインデックスに基づいて、TCP ACKの送信に利用するPUSCHのリソース位置gを決定してもよい。移動局200は、リソース位置gの無線リソースを用いてTCP ACKを送信する。
 以上の処理は、例えば、基地局100の制御部104や移動局200の制御部204において行われてもよい。例えば、以下のようにして行われる。すなわち、制御部104は、TCPデータやTCPヘッダを解析することで、移動局200へ送信するTCPデータのデータ量を解析する。制御部104は、データ量が所定値になったとき、TCP ACKを移動局200が送信するタイミングになったものとして、制御信号を生成する。制御部104は、記憶部105から読み出したTCP-CRNTIとともに、当該制御信号に付加されるCRCに対してTCP-RNTIでマスクを施し、TCP-CRNTIでマスクされた当該制御信号を移動局200へ送信するよう無線送信部101へ指示する。無線送信部101は当該指示に従って、当該制御信号のCRCに対してTCP-RNTIでマスクを施し、マスクされた当該信号を移動局200へ送信する。移動局200の無線受信部202では、TCP-CRNTIを用いて当該信号をデコードできたとき、その旨を制御部204へ通知し、制御部204は当該通知によりTCP ACKを送信してもよいタイミングであることを認識する。制御部204は、TCP ACKを送信するよう無線送信部201へ指示する。無線送信部201は当該指示に従ってTCP ACKを基地局100へ送信する。C-RNTIの場合の処理は、上記「TCP-CNTI」をC-RNTIに代えればよい。この場合、制御部204では、無線受信部202からC-RNTIでデコードできた旨の通知を受け取ると、TCP ACKを送信するタイミングではないことを認識する。
 本例においては、基地局100では、例えば、TCPヘッダやTCPデータを解析することで、最後のPDCP SDUなどを確認することができる。TCPヘッダやTCPデータの解析のオーバーヘッド低減のため、QCI(Quality of service Class Identifier:Qosクラスインジケータ)6、QCI8、又はQCI9に限定して解析が行われてもよい。ベアラの観点では、本願を実施するベアラは別ベアラに設定することも可能である。例えば、C-RNTIが用いられてデータの送信が行われるベアラとTCP-RNTIが用いられてデータの送信が行われるベアラは別々のベアラに設定されてもよい。
 なお、基地局100では、移動局200がTCP ACKを送信するタイミングを見計らうことができればよく、例えば、パケットのパケット数が所定個数以上となったときに、当該タイミングとして、TCP-CRNTIでマスクした制御信号をPDCCHで送信してもよい。
 (7)TCP ACK送信のためのSPSの実施
 本例では、TCP ACKの送信についてSPSを利用して送信する例である。SPSは、例えば、ダイナミックスケジューリングのようにサブフレーム毎に動的に無線リソースを割り当てるのではなく半持続的(semi-persistent)に無線リソースを割り当てるスケジューリング手法である。SPSでは、基地局100では一定周期ごとにスケジューリング情報を移動局200へ送信すればよいため、制御信号の送信によるオーバーヘッドの削減を図ることが可能となる。
 図15は本例におけるTCP ACKの送信例を表す図である。基地局100は、TCPデータを送信するときにSPS activationも同時に送信してSPSを実施する(S110)。SPS activationは、例えば、SPSの実施(又は開始)を表す情報である。例えば、制御部104は、SPS activationを生成して無線送信部101へ出力し、無線送信部101はPDCCHを用いてSPS activationを送信する。この際、制御部104はSPSの周期などの情報も生成し、無線送信部101を介してPDCCHで送信する。
 移動局200では、SPS activationの受信により、SPSを実施することを決定し、基地局100から受信した当該周期で、PUSCHを用いてTCP ACKを送信する(S111)。例えば、移動局200では以下の処理を行う。すなわち、移動局200の制御部204は無線受信部202を介してSPS activationとSPSの周期を受信すると、当該周期ごとにTCP ACKを送信するよう無線送信部201に指示する。無線送信部201は当該指示に従ってTCP ACKを送信する。この場合、移動局200では当該SPS activationを受信後、4ms後に最初のTCP ACKを送信し、その後、SPSの周期ごと(又は規定間隔ごと)にTCP ACKを送信してもよい。
 SPSは、例えば、移動局200がVoIP(Voice over Internet Protocol)データを送信する場合に用いられる場合がある。移動局200ではVoIPデータの送信と間違えないようにするため、基地局100ではSPS activationを送信するPDCCHに対してTCP-CRNTでマスクして送信する。移動局200では、PDCCHで受信した信号をTCP-CRNTIでデコードできたときは、TCP ACKによるSPSであると認識し、TCP-CRNTIでデコードできないときはVoIPデータの送信であると認識できる。この場合の基地局100と移動局200における処理は、例えば、上記(6)で説明した内容が援用される。
 (8)その他
 移動局200はPUSCHを用いてTCP ACKを送信するときにPUSCHのパワー制御を行うことも可能である。移動局200は、PDCCHを用いて基地局100から送信されたTPC(Transmission Power Control:送信電力制御)の値に基づいてPUSCH(又はTCP ACK)に対する送信電力を算出してもよい。或いは、移動局200はTCP ACKを送信するPUSCHの直前のPUCCH(又は当該PUCCHを用いて送信する信号)の送信電力に基づいて算出してもよい。
 <第2の実施の形態のまとめ>
 以上説明したように、本第2の実施の形態においては、移動局200ではスケジューリング要求手順(例えば図6のS11からS16)を行うことなく、PUSCHを用いてTCP ACKを送信することが可能となる。従って、TCPデータの発生からTCP ACKを送信するまでの遅延時間(図6(B)の例では「11.5ms」)の短縮が可能である。TCP ACKの遅延時間は約「4ms」まで短縮することができた。TCPスループットはRTTの減少に反比例して増加し、本方式によるTCPのスループットはスケジューリング要求手順が行われる場合(例えば図6(A))と比較して、その効果は約2倍以上となった。
 <Nagle-遅延ACK問題とその解決策>
 次に、Nagle-遅延ACK問題とその解決策について以下説明する。図16から図19(B)はかかる問題とその解決策を説明するための図である。最初に遅延ACKについて説明する。
 図16は遅延ACKを説明するための図である。図16に示すように、TCP受信側400はTCP送信側300から送信されたTCPデータに対して正常に受信できたときTCP ACKを返信する。この場合、TCP受信側400は、最大セグメントサイズ以上のTCPデータを受信したときは、TCPデータの2つのセグメントを受信して(S130,S131)、TCP ACKを送信することが推奨(又は送信するように実装)されている(S132)。TCP受信側400は2セグメントのTCPデータを受信してTCP ACKを送信するため、TCP受信ウィンドウの更新機会を作ることが可能になるなどの利点がある。
 図17はNagle-遅延ACK問題を説明するための図である。TCP送信側300は、例えば、細切れのTCPデータが多く発生する場合、細切れのTCPデータを1つ1つ送信するのではなく、複数の細切れのTCPデータを1つにまとめて送信する(S135,S136)。このように、複数のデータを1つにまとめて送信するアルゴリズムを、例えば、Nagleアルゴリズムと称する場合がある。この場合、TCP送信側300ではTCPデータを1つにまとめて送信する(S135,S136)までに一定時間以上の時間を要する場合がある。そして、遅延ACKで説明したように、TCP受信側400は2つのセグメントのTCPデータを受信してTCP ACKを送信するため、TCP送信側300はTCP ACKを受信するまでに閾値時間以上の非常に多くの時間を要する場合がある。このように、TCP送信側300がTCP ACKを受信するために非常に多くの時間を要する問題を、例えば、Nagle-遅延ACK問題と称する場合がある。
 本第2の実施の形態では、Nagle-遅延ACK問題に対して2つの解決策について説明する。
 図18は、解決策の1番目の例を表す図である。図18では、TCP受信側400として移動局200を例にしている。基地局100では、1つのセグメントのTCPデータをTCP送信側300から受信すると(S140)、複数のデータに分割して移動局200へ送信する(S141)。
 移動局200では、分割された複数のデータを受信したとき、遅延ACKを止めて、1つのセグメントのTCPデータを受信したときにTCP ACKを返信する(S145)。これにより、例えば、TCP送信側300では、移動局200が2つのセグメントを受信してTCP ACKを返信する場合(S144)と比較してTCP ACKの送信遅延の短縮を図ることができる。
 図19(A)と図19(B)は解決策の2番目の例を表す図である。2番目の例は、無線品質が良好なときに移動局200がTCP ACKを送信する例である。例えば、移動局200はTCP ACKを送信するときに、上り無線回線の品質が良好でない場合、何度も繰り返しTCP ACKを送信する場合がある(図19(A)のS145-1,S145-2,…,S145-n)。この場合、基地局100やTCP送信側300ではTCP ACKの送信遅延が発生する。
 そこで、移動局200では、無線品質が一定以下となっているときにはTCP ACKを送信しないで、無線品質が一定よりも高いときにTCP ACKをまとめて送信する(図19(B)のS146)。移動局200では何度もTCP ACKを送信するようなことがなくなり、移動局200の消費電力削減も図ることができる。
 [その他の実施の形態]
 図20は基地局100のハードウェア構成例を表す図である。基地局100は、アンテナ110、RF(Radio Frequency)回路111、プロセッサ112、メモリ113、ネットワークIF(Interface)114を備える。プロセッサ112は、メモリ113に記憶されたプログラムを読み出して実行することで、制御部104の機能を実現することが可能となる。プロセッサ112は、例えば、第2の実施の形態における制御部104に対応する。また、アンテナ110とRF回路111は、例えば、第2の実施の形態における無線送信部101と無線受信部102に対応する。更に、メモリ113は、例えば、第2の実施の形態における記憶部105に対応する。更に、ネットワークIF114は、例えば、第2の実施の形態におけるネットワーク通信部106に対応する。
 図21は移動局200のハードウェア構成例を表す図である。移動局200は、アンテナ210、RF回路211、プロセッサ212、メモリ213を備える。プロセッサ212は、メモリ213に記憶されたプログラムを読み出して実行することで、制御部204の機能を実現することが可能となる。プロセッサ212は、例えば、第2の実施の形態における制御部204に対応する。また、アンテナ210とRF回路211は、例えば、第2の実施の形態における無線送信部201と無線受信部202に対応する。更に、メモリ213は、例えば、第2の実施の形態における記憶部205に対応する。
 なお、プロセッサ112,212は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)、FPGA(Field Programmable Gate Array)などであってもよい。
 上述した例では、移動局200は自局に割り当てられたCCEのうち、最小のCCEインデックスkに基づいてTCP ACKの送信に利用するPUCCHのリソース位置を決定する例について説明した(例えば図9(B)など)。例えば、移動局200は、自局に割り当ててられたCCEのうち、最大のCCEインデックスに基づいてTCP ACKの送信に利用するPUCCHのリソース位置を決定してもよい。例えば、移動局200は、自局に割り当てられたCCEのCCEインデックスに対応するPUCCHの無線リソースを用いてTCP ACKを送信してもよい。
 また、上述した例ではTCPを例にして説明した。例えば、SCTP(Stream Control Transmission Protocol)など、エンドツーエンドで送達確認情報を送受信して通信の信頼性を確保するプロトコルであれば、上述した例を実施することが可能である。この場合でも、上述した例を実施することで、当該プロトコルによる送達確認情報の送信に要する遅延時間を短縮させ、当該プロトコルを用いた通信のスループット向上を図ることができる。
 更に、上述した例では主にTCP ACKを送信する例について説明した。例えば、移動局200はTCP NACKを送信する場合も、TCP ACKを送信する場合と同様に実施することが可能である。
 [実施の形態の組み合わせ]
 上述した各実施の形態は任意に組み合わせて実施することも可能である。例えば、以下のような組み合わせでも実施できる。
 すなわち、第1の実施の形態と第2の実施の形態とを組み合わせて実施することが可能である。この場合、第1の実施の形態で説明した無線通信装置500と第1の無線通信装置600は第2の実施の形態で説明した基地局装置100と移動局装置200として夫々実施することもできる。或いは、第1の実施の形態で説明した無線通信装置500と第1の無線通信装置600は第2の実施の形態で説明した移動局装置200と基地局装置100として夫々実施することもできる。従って、第1の実施の形態における制御部520は、第2の実施の形態における基地局装置100の制御部104又は移動局装置200の制御部204に対応してもよい。第1の実施の形態で説明した制御部520の機能は基地局装置100の制御部104又は移動局装置200の制御部204において実施されてもよい。
 また、第2の実施の形態とその他の実施の形態とを組み合わせて実施することも可能である。この場合、基地局装置100と移動局装置200はその他の実施の形態で説明した基地局装置100と移動局装置200として夫々実施することもできる。この場合、基地局装置100における第2の実施の形態の制御部104は、例えば、その他の実施の形態におけるプロセッサ112に対応し、プロセッサ112において制御部104の機能を実施してもよい。また、移動局装置100における第2の実施の形態の制御部204は、例えば、その他の実施の形態におけるプロセッサ212に対応し、プロセッサ212において制御部204の機能を実施してもよい。
 さらに、第1の実施の形態とその他の実施の形態とを組み合わせて実施することも可能である。この場合、第1の実施の形態で説明した無線通信装置500と第1の無線通信装置600はその他の実施の形態で説明した基地局装置100と移動局装置200(又は移動局装置200と基地局装置100)として夫々実施することもできる。従って、第1の実施の形態における制御部520はその他の実施の形態におけるプロセッサ112又は212に対応して、プロセッサ112又は212において制御部520の機能が実施されてもよい。
10:無線通信システム        100:基地局装置
101:無線送信部          102:無線受信部
103:無線通信部又は通信部     104:制御部
105:記憶部            106:ネットワーク通信部
112:プロセッサ          113:メモリ
200:移動局装置          201:無線送信部
202:無線受信部          203:通信部
204:制御部            205:記憶部
212:プロセッサ          213:メモリ
300:TCP送信側         400:TCP受信側
500:無線通信装置         510:通信部
520:制御部            600:第1の無線通信装置

Claims (24)

  1.  第1の無線通信装置と無線通信を行う無線通信装置において、
     第1レイヤにおける信号と、前記第1レイヤよりも上位レイヤである第2レイヤのデータ及び前記データに対する送達確認情報を送受信する通信部と、
     前記第1の無線通信装置において割り当てられたスケジューリング情報を用いることなく前記第1の無線通信装置から受信した前記信号に基づいて、前記無線通信装置を含む複数の第2の無線通信装置で共有される前記第1レイヤの共有チャネルを用いて前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にする制御部と
     を備える無線通信装置。
  2.  前記送達確認情報はTCP ACK(Transmission Control Protocol Acknowledgement)又はTCP NACK(Negative Acknowledgement)であり、前記共有チャネルはPUSCH(Physical Uplink Shared Channel)であることを特徴とする請求項1記載の無線通信装置。
  3.  前記制御部は、前記他の無線通信装置が制御情報を前記第1レイヤの第1の制御チャネルを用いて前記無線通信装置へ送信する際に前記他の無線通信装置が前記無線通信装置に割り当てた前記第1の制御チャネルに含まれる各要素を表すインデックスに基づいて前記共有チャネルに含まれる第2の無線リソースを決定し、当該第2の無線リソースを用いて前記送達確認情報を送信することを可能にすることを特徴とする請求項1記載の無線通信装置。
  4.  前記制御部は、前記第1の無線リソースの各要素を表すインデックスのうち最小のインデックスに基づいて前記第2の無線リソースを決定することを可能にすること特徴とする請求項2記載の無線通信装置。
  5.  前記第1の制御チャネルはPDCCH(Physical Downlink Control Channel)、前記共有チャネルはPUSCH(Physical Uplink Shared Channel)、前記各要素を表すインデックスはPDCCHに含まれるCCE(Control Chanel Element)インデックスであって、
     前記制御部は、前記送達確認情報の送信に用いるPUSCH PRB(Physical Resource Block)インデックスを、PDCCHに含まれるCCEインデックスのうち最小のCCEインデックスに基づいて決定することを可能にすること特徴とする請求項4記載の無線通信装置。
  6.  前記制御部は、前記他の無線通信装置が制御情報を前記第1レイヤの第1の制御チャネルを用いて前記無線通信装置へ送信する際に前記他の無線通信装置が前記無線通信装置に割り当てた前記第1の制御チャネルに含まれる要素数に基づいて、符号化率と変調方式を決定することを可能にすることを特徴とする請求項1記載の無線通信装置。
  7.  前記第1の制御チャネルはPDCCH(Physical Downlink Control Channel)、前記要素はCCE(Control Chanel Element)、前記要素数はアグリゲーションレベル、前記符号化率と前記変調方式の組み合わせはMCSレベルであることを特徴とする請求項6記載の無線通信装置。
  8.  前記アグリゲーションレベルが第1の閾値より大きいとき、前記MCSレベルは第2の閾値より小さく、前記アグリゲーションレベルが前記第1の閾値以下のとき、前記MCSレベルは前記第2の閾値以上となることを特徴とする請求項7記載の無線通信装置。
  9.  前記無線通信装置から前記第1の無線通信装置に送信して前記第1の無線通信装置においてデータを復調するときに用いるデータ復調用参照信号の巡回シフト量は固定値であることを特徴とする請求項1記載の無線通信装置。
  10.  前記データ復調用参照信号はDMRS(Demodulation Reference Signal)であることを特徴とする請求項9記載の無線通信装置。
  11.  前記制御部は、前記第1の無線通信装置と予め決められた手順により送受信される前記信号に基づいて、所定のタイミングにより前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にすること特徴とする請求項1記載の無線通信装置。
  12.  前記手順はRRC(Radio Resource Control)手順であることを特徴とする請求項11記載の無線通信装置。
  13.  前記制御部は、前記第1の無線通信装置と予め決められた手順により送受信される前記信号に基づいて、前記共有チャネルの所定位置にある無線リソースを用いて前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にすることを特徴とする請求項1記載の無線通信装置。
  14.  前記共有チャネルの所定位置はPRB(Physical Resource Block)で表されることを特徴とする請求項13記載の無線通信装置。
  15.  前記制御部は、前記第1の無線通信装置において前記第2レイヤのデータのデータ量に基づいて生成した前記送達確認情報を送信するタイミングを表す前記信号を受信したとき、当該タイミングに基づいて前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にすることを特徴とする請求項1記載の無線通信装置。
  16.  前記制御部は、前記信号を第1の識別子でデコードできたとき、前記送達確認情報を送信するタイミングではなく、前記信号を第2の識別子でデコードできたとき、前記送達確認情報を送信することを可能にすることを特徴とする請求項15記載の無線通信装置。
  17.  前記制御部は、前記第2レイヤのデータを複数のパケットユニットで受信したときにおいて、前記パケットユニットのうち最後のパケットユニットに対応する前記信号を受信したとき、前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にすることを特徴とする請求項1記載の無線通信装置。
  18.  前記第1の識別子はC-RNTI(Cell-Radio Network Temporary Identifier)、前記第2の識別子はTCP-CRNTI(Transmission Control Protocol-Cell Radio Network Temporary Identifier)であることを特徴とする請求項16記載の無線通信装置。
  19.  前記制御部は、前記第1の無線通信装置においてQCI(Quality of service Class Identifier)6、QCI8、又はQCI9の前記第2レイヤのデータに対するデータ量に基づいて生成した前記信号を受信することを可能にすることを特徴とする請求項15記載の無線通信装置。
  20.  前記制御部は、前記第1の無線通信装置において一定周期毎にスケジューリング情報を送信することを実施することを示す前記信号を受信したとき、当該一定周期毎に前記送達確認情報を前記通信部から前記第1の無線通信装置へ送信することを可能にすることを特徴とする請求項1記載の無線通信装置。
  21.  前記第1の無線通信装置において一定周期毎にスケジューリング情報を送信することを実施することを示す前記信号は、SPS(Semi-Persistent Scheduling) activationを示す信号であることを特徴とする請求項20記載の無線通信装置。
  22.  前記無線通信装置は移動局装置であり、前記第1の無線通信装置は基地局装置であることを特徴とする請求項1記載の無線通信装置。
  23.  第1及び第2の無線通信装置を備える無線通信システムにおいて、
     前記第1の無線通信装置は、
     第1レイヤにおける信号と、前記第1レイヤよりも上位レイヤである第2レイヤのデータ及び前記データに対する送達確認情報を送受信する通信部と、
     前記第2の無線通信装置において割り当てられたスケジューリング情報を用いることなく前記第2の無線通信装置から受信した前記信号に基づいて、前記第1の無線通信装置を含む複数の無線通信装置で共有される前記第1レイヤの共有チャネルを用いて前記送達確認情報を前記通信部から前記第2の無線通信装置へ送信することを可能にする第1の制御部を備え、
     前記第2の無線通信装置は、前記共有チャネルを用いて前記送達確認情報を受信することを可能にする第2の制御部を備える
     ことを特徴とする無線通信システム。
  24.  第1及び第2の無線通信装置を備える無線通信システムにおける無線通信方法であって、
     前記第1の無線通信装置により、第1レイヤにおける信号と、前記第1レイヤよりも上位レイヤである第2レイヤのデータ及び前記データに対する送達確認情報を送受信し、前記第2レイヤのデータに対する送達確認情報を送信するときは、前記第2の無線通信装置において割り当てられたスケジューリング情報を用いることなく前記第2の無線通信装置から受信した前記信号に基づいて、前記第1の無線通信装置を含む複数の無線通信装置で共有される前記第1レイヤの共有チャネルを用いて前記送達確認情報を前記第2の無線通信装置へ送信することを可能にし、
     前記第2の無線通信装置により、前記共有チャネルを用いて前記送達確認情報を受信することを可能にする
     ことを特徴とする無線通信方法。
PCT/JP2016/050657 2016-01-12 2016-01-12 無線通信装置、無線通信システム、及び無線通信方法 WO2017122267A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16884870.3A EP3404896B1 (en) 2016-01-12 2016-01-12 Wireless communication device, wireless communication system, and wireless communication method
CN201680078527.3A CN108463987B (zh) 2016-01-12 2016-01-12 无线通信装置、无线通信系统和无线通信方法
JP2017561082A JP6894383B2 (ja) 2016-01-12 2016-01-12 無線通信装置、無線通信システム、及び無線通信方法
PCT/JP2016/050657 WO2017122267A1 (ja) 2016-01-12 2016-01-12 無線通信装置、無線通信システム、及び無線通信方法
US16/026,385 US10693619B2 (en) 2016-01-12 2018-07-03 Device, system and method for data communications in a wireless network

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/050657 WO2017122267A1 (ja) 2016-01-12 2016-01-12 無線通信装置、無線通信システム、及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/026,385 Continuation US10693619B2 (en) 2016-01-12 2018-07-03 Device, system and method for data communications in a wireless network

Publications (1)

Publication Number Publication Date
WO2017122267A1 true WO2017122267A1 (ja) 2017-07-20

Family

ID=59312021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050657 WO2017122267A1 (ja) 2016-01-12 2016-01-12 無線通信装置、無線通信システム、及び無線通信方法

Country Status (5)

Country Link
US (1) US10693619B2 (ja)
EP (1) EP3404896B1 (ja)
JP (1) JP6894383B2 (ja)
CN (1) CN108463987B (ja)
WO (1) WO2017122267A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111181697A (zh) * 2018-11-13 2020-05-19 三星电子株式会社 用于tcp ack包的传输的方法和系统
US11812511B2 (en) * 2020-03-31 2023-11-07 Mavenir Networks, Inc. TCP acknowledgment latency optimization
US11758513B2 (en) * 2020-04-20 2023-09-12 Qualcomm Incorporated Physical uplink control channel with uplink message short data field
US11523301B2 (en) * 2020-04-20 2022-12-06 Qualcomm Incorporated Physical uplink control channel with buffer status report
US11564242B2 (en) * 2020-06-09 2023-01-24 Qualcomm Incorporated Low-latency scheduling request configuration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006080A (ja) * 2005-06-23 2007-01-11 Fujitsu Ltd 移動通信システムにおける通信方法並びに移動局及び基地局
JP2009164816A (ja) 2007-12-28 2009-07-23 Sharp Corp 無線通信システム、第1の無線通信装置、第2の無線通信装置、無線受信方法および無線送信方法
JP2013197829A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 無線通信装置、及び無線通信装置において実行されるプログラム
WO2014191050A1 (en) * 2013-05-31 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Predictive scheduling for uplink transmission in a cellular network

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3116765B2 (ja) 1995-03-03 2000-12-11 株式会社田村電機製作所 デジタル無線電話装置
CN100370770C (zh) * 2004-03-03 2008-02-20 华为技术有限公司 实现网络长连接倒换的方法
CN101043709B (zh) * 2006-03-22 2011-02-09 华为技术有限公司 一种上行无线信道资源分配的实现方法
US20070240209A1 (en) * 2006-04-05 2007-10-11 Lewis Adam C Session persistence on a wireless network
CN101136727B (zh) * 2006-09-01 2010-05-12 华为技术有限公司 一种上报是否正确接收到数据的方法
US8705456B2 (en) 2007-01-05 2014-04-22 Interdigital Technology Corporation Fast uplink response to downlink shared channel transmission without a dedicated uplink channel
EP1959693A1 (en) 2007-02-19 2008-08-20 Siemens Networks S.p.A. Cross-layer error recovery optimisation in wireless systems
JP4926279B2 (ja) 2008-03-21 2012-05-09 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるデータ通信方法
WO2009116837A1 (en) 2008-03-21 2009-09-24 Lg Electronics Inc. Method of data communication in a wireless communication system
JP4511611B2 (ja) 2008-05-29 2010-07-28 株式会社エヌ・ティ・ティ・ドコモ 無線リソース選択方法、無線基地局及び移動局
CN104901778B (zh) * 2009-12-17 2018-07-24 Lg电子株式会社 无线通信系统中的接收和发送方法及设备
EA022843B1 (ru) 2010-03-30 2016-03-31 Шарп Кабусики Кайся Система мобильной связи, аппаратура базовой станции, аппаратура мобильной станции, способ мобильной связи и интегральная схема
US9553697B2 (en) 2010-04-05 2017-01-24 Qualcomm Incorporated HARQ ACK/NACK transmission for multi-carrier operation
EP2622923A1 (en) * 2010-09-27 2013-08-07 Fujitsu Limited Radio bearers for machine type communication
KR101919780B1 (ko) * 2011-03-03 2018-11-19 엘지전자 주식회사 무선 통신 시스템에서 확인응답 정보를 전송하는 방법 및 장치
EP2560448A1 (en) 2011-08-18 2013-02-20 Fujitsu Limited Scheduling request enabled uplink transmission
KR20190044141A (ko) 2011-09-30 2019-04-29 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
JP5753634B2 (ja) 2011-12-20 2015-07-22 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてランダムアクセス過程を行う方法及び装置
US9526091B2 (en) 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US9516637B2 (en) 2012-05-31 2016-12-06 Lg Electronics Inc. Method for transceiving control signals, and apparatus therefor
KR102088022B1 (ko) * 2012-08-01 2020-03-11 엘지전자 주식회사 제어 정보를 시그널링 하는 방법 및 이를 위한 장치
US9614652B2 (en) * 2013-04-05 2017-04-04 Telefonaktiebolaget L M Ericsson (Publ) Radio base stations and wireless terminal for dual connectivity, methods therein and a system
JP6224417B2 (ja) 2013-10-31 2017-11-01 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
KR101721291B1 (ko) * 2013-11-04 2017-03-30 한국전자통신연구원 이종 시스템이 연동된 망에서 데이터 전송 방법 및 데이터 전송 장치
WO2015098102A1 (ja) 2013-12-26 2015-07-02 日本電気株式会社 通信装置、通信方法、及び、記録媒体
EP3285535B1 (en) * 2015-05-15 2020-10-07 Kyocera Corporation Wireless terminal
CN106301670A (zh) 2015-05-15 2017-01-04 中兴通讯股份有限公司 上行控制信息的发送方法及装置
JP6443566B2 (ja) 2015-05-28 2018-12-26 日本電気株式会社 シグナリング方法
CN106255210B (zh) * 2015-06-12 2021-06-18 华硕电脑股份有限公司 在无线通信系统中使用配置资源的方法和装置
US10397906B2 (en) 2015-11-13 2019-08-27 Lg Electronics Inc. Method for transmitting wireless signals and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007006080A (ja) * 2005-06-23 2007-01-11 Fujitsu Ltd 移動通信システムにおける通信方法並びに移動局及び基地局
JP2009164816A (ja) 2007-12-28 2009-07-23 Sharp Corp 無線通信システム、第1の無線通信装置、第2の無線通信装置、無線受信方法および無線送信方法
JP2013197829A (ja) * 2012-03-19 2013-09-30 Fujitsu Ltd 無線通信装置、及び無線通信装置において実行されるプログラム
WO2014191050A1 (en) * 2013-05-31 2014-12-04 Telefonaktiebolaget L M Ericsson (Publ) Predictive scheduling for uplink transmission in a cellular network

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
3GPP TR36.842, December 2013 (2013-12-01)
3GPP TS36.21 1, March 2015 (2015-03-01)
3GPP TS36.211, March 2015 (2015-03-01)
3GPP TS36.212, March 2015 (2015-03-01)
3GPP TS36.213, March 2015 (2015-03-01)
3GPP TS36.300, March 2015 (2015-03-01)
3GPP TS36.321, March 2015 (2015-03-01)
3GPP TS36.322, March 2015 (2015-03-01)
3GPP TS36.323, March 2015 (2015-03-01)
3GPP TS36.331, March 2015 (2015-03-01)
3GPP TS36.413, March 2015 (2015-03-01)
3GPP TS36.423, March 2015 (2015-03-01)
See also references of EP3404896A4

Also Published As

Publication number Publication date
JP6894383B2 (ja) 2021-06-30
EP3404896B1 (en) 2022-03-09
JPWO2017122267A1 (ja) 2018-11-01
EP3404896A1 (en) 2018-11-21
US10693619B2 (en) 2020-06-23
EP3404896A4 (en) 2018-12-05
CN108463987A (zh) 2018-08-28
US20180316480A1 (en) 2018-11-01
CN108463987B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN112910601B (zh) 用于可靠的低时延通信的喷泉(fountain)harq
KR101702397B1 (ko) 의도되지 않은 다운링크 서브-프레임들에 대한 harq-ack 핸들링
US10693619B2 (en) Device, system and method for data communications in a wireless network
US10469213B2 (en) Network node, a wireless device and methods therein for handling automatic repeat requests (ARQ) feedback information
JP6262991B2 (ja) ユーザ装置及び方法
US20210037521A1 (en) Radio communication device, radio communication system, and radio communication method
US10433205B2 (en) Network node, method therein, computer program, and carrier comprising the computer program for retransmitting an RLC PDU
US10757605B2 (en) Radio communication device and radio communication method
JP5511383B2 (ja) 基地局装置及び移動局装置
US11044053B2 (en) Device and method of handling code block group-based communication operation
US9819454B2 (en) Wireless communication apparatus and method for HARQ buffer management
TWI558123B (zh) 混合自動重傳請求處理方法及系統
KR101617044B1 (ko) 피어 엔티티의 전송 상태 정보를 이용한 데이터 유닛 재전송 방법
WO2017073372A1 (ja) 基地局装置、端末装置、通信方法及びプログラム
TWI784764B (zh) 處理混合自動重傳請求重新傳送的裝置
WO2024090357A1 (ja) 通信制御方法、及びネットワーク装置
WO2022204999A1 (zh) 存活时间的处理方法和终端设备
CN104735801A (zh) 一种上行半静态调度业务资源释放方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016884870

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016884870

Country of ref document: EP

Effective date: 20180813