WO2017121616A1 - HAUSHALTSGERÄT MIT EINER TEMPERATURMEßSCHALTUNG - Google Patents

HAUSHALTSGERÄT MIT EINER TEMPERATURMEßSCHALTUNG Download PDF

Info

Publication number
WO2017121616A1
WO2017121616A1 PCT/EP2016/082728 EP2016082728W WO2017121616A1 WO 2017121616 A1 WO2017121616 A1 WO 2017121616A1 EP 2016082728 W EP2016082728 W EP 2016082728W WO 2017121616 A1 WO2017121616 A1 WO 2017121616A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
temperature
microprocessor
linearization
pull
Prior art date
Application number
PCT/EP2016/082728
Other languages
English (en)
French (fr)
Inventor
Christian HÖNLE
Guido Sattler
Károly ZARUBA
Original Assignee
BSH Hausgeräte GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeräte GmbH filed Critical BSH Hausgeräte GmbH
Publication of WO2017121616A1 publication Critical patent/WO2017121616A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K2207/00Application of thermometers in household appliances

Definitions

  • the invention relates to a household appliance with a temperature measuring circuit having a resistive temperature sensor and a microprocessor with a temperature detection input for the temperature sensor, wherein the temperature sensor is connected between the sensor input and a reference potential and a linearization resistance is provided.
  • the invention further relates to a method for microprocessor-controlled temperature measurement in a household appliance.
  • Such temperature measuring circuits are frequently used in domestic appliances since resistive temperature sensors can be used inexpensively and reliably with sufficient accuracy. Because of the mostly non-linear characteristic of the temperature sensors, the temperature sensor is usually provided with a wiring, which causes a substantial linearization of the characteristic. However, the linearization resistance must be well adapted to the characteristic of the temperature sensor.
  • WO2006 / 1 14340A1 shows such a temperature measuring circuit with an NTC, in which it is checked whether the temperature sensor is working properly.
  • WO91 / 08441 A1 discloses a measuring circuit in which a resistance network is changed in order to shift the operating point for the operation of a resistive temperature sensor. This can be measured with one and the same temperature sensor in a wide range.
  • the object of the present invention is to provide a household appliance that allows cost-effective flexible use of different temperature sensors.
  • a household appliance having a temperature measuring circuit comprising a resistive temperature sensor and a microprocessor with a temperature sensing input for the temperature sensor, wherein the temperature sensor is connected between the temperature sensing input and a reference potential and the temperature sensing input is provided with a linearization resistor provided by the microprocessor is changeable.
  • a temperature measuring circuit is capable of automatically adapting to the type, ie the characteristic curve of the temperature sensor used. sors. This is done by changing the linearization resistance by the microprocessor. If the microprocessor determines that readings from the temperature sensor do not fit within the allowable range, it may change the linearization resistance until the allowable range is reached, or if this is not possible, issue an error message or stop the operation of the appliance.
  • the temperature measuring circuit may be integrated, for example, in a control unit, which may be provided in principle for various household appliances, in particular household appliances, which may have temperature sensors with different characteristics.
  • a pull-up resistor is connected between the sensor input and a reference potential as a linearization resistor.
  • the linearization resistor and the resistive temperature sensor form a voltage divider which can be easily adapted to temperature sensors with a differentiated characteristic by changing the linearization resistance.
  • the linearization resistance can be changed by switching a further pull-up resistor parallel to the first pull-up resistor.
  • the parallel connection of the further pull-up resistor can be implemented very easily, for example by means of an electrical switch which can be controlled by the microprocessor.
  • the linearization resistance is variable by series connection of the pull-up resistor with a further pull-up resistor.
  • the object of the invention is also achieved by a method for microprocessor-controlled temperature measurement in a household appliance, in which by a microprocessor, a measured value of between a provided with a linearization resistance temperature detection input of the microprocessor and a reference potential switched resistive temperature sensor is detected, wherein, if the measured value is not in is a permissible value range, the value of the linearization resistance is changed by the microprocessor.
  • FIG. 2 is a schematic block diagram of a temperature measuring circuit according to a first embodiment of the invention.
  • FIG. 2 is a graph showing resistance-temperature (R / T) characteristics of different thermistors (NTC); and
  • FIG. 3 is a graph showing voltage-temperature (U / T) characteristics for the Temperature measuring circuit of Figure 1 with different thermistors (NTC).
  • a temperature measuring circuit 10 of a household appliance is shown schematically.
  • the household appliance should be in the example presented a tumble dryer, in which the temperature measuring circuit 10 detects the temperature of the process air in an air duct.
  • the temperature measuring circuit 10 has a temperature sensor 12.
  • the temperature sensor is formed in this example as a thermistor (NTC).
  • NTC thermistor
  • the temperature sensor 12 is housed in a process air duct of the tumble dryer (not shown), so that it is swept by the process air. According to the resistance temperature (R / T) characteristic curve 14 in FIG. 2, the resistance of the temperature sensor 12 changes depending on the temperature of the process air.
  • the temperature measuring circuit 10 furthermore has a microprocessor 20.
  • the microprocessor has inputs 22, 24, with which it can detect electrical signals, and outputs 26 via which it can output electrical signals.
  • the microprocessor 20 may be provided in the washer dryer except for temperature sensing for other tasks, such as for the sequencing of the drying process, the control of a user interface, etc.
  • the temperature sensor 12 has two terminals, of which a first terminal 16 is connected via a two-pole plug connection 18 to a ground potential GND of the temperature measuring circuit 10.
  • a second terminal 17 of the temperature sensor 12 is connected via the two-pin connector 16 to an input of the microprocessor 20, the temperature detection input 22.
  • the temperature detection input 22 is also connected via a first pull-up resistor 30 to a reference voltage potential U r ef of the temperature measuring circuit 10.
  • a second pull-up resistor 32 is also connected to a terminal of the temperature sensing input 22 of the microprocessor 20.
  • the other terminal of the second pull-up resistor 32 is connected to a node 34 which can be connected via a switch 36 to the reference voltage potential U re f.
  • the switch 36 is formed in this embodiment as an electronic switch, which is controlled by a control output 26 of the microprocessor 20.
  • Another input of the microprocessor, the state detection input 24, is connected to the node 34 to detect the state of the switch 36.
  • the voltage across the temperature sensor 12 in the form of a voltage / temperature (U / T) characteristic curve 40 is shown as a function of the process air temperature T.
  • the first pull-up resistor 30 connected in series with the NTC 12 provides linearization of the characteristic curve 40 as a linearization resistor.
  • temperatures in a range dTvaüd between the boundaries Ti and T 2 which are marked in FIG. 3, occur.
  • the voltage measurement values at the temperature detection input 22 of the microprocessor 20 lie in a valid range of values dU va iid between the limits Ui and U 2 .
  • the first NTC type has a first characteristic 14
  • the second NTC type has a second characteristic 15.
  • the first pull-up resistor 30 results as a linearization resistor for the temperatures occurring in the region between Ti and T 2 at the temperature detection input 22 of the microprocessor 20 a range of values between the limits Ui and U 2 .
  • the values detected by the microprocessor 20 are therefore in the permissible range dU va ii d , which is evaluated by the microprocessor 20 so that the temperature sensor 12 is in order.
  • the temperature measuring circuit 10 provides plausible values and can be operated properly.
  • the second NTC type is installed in the tumble dryer, then, because of the R / T characteristic curve 15 different from the first NTC type, the resulting temperatures in the range dT va
  • the values detected by the microprocessor 20 are thus not in the permissible range dU va ii d , which is evaluated by the microprocessor 20 so that the temperature sensor 12 is not in order.
  • the linearization resistance In order to obtain a U / T characteristic with a permissible value range dUvaii d for the second NTC type, the linearization resistance must be changed.
  • the microprocessor 20 closes the switch 36 via its output 26 and thus connects the second pull up resistor 32 also with the reference voltage U ref .
  • the first pull-up resistor 30 and the second pull-up resistor 32 are connected in parallel and form an altered linearization resistance.
  • the measuring circuit mi has a U / T characteristic with the second NTC types, which in turn results in a permissible value range between the limits Ui and U 2 for the temperatures occurring in the region between Ti and T 2 at the temperature detection input 22 of the microprocessor 20 ,
  • the values detected by the microprocessor 20 are therefore within the permissible range dU va ii d .
  • the temperature measuring circuit 10 provides plausible values and can be operated properly.
  • the microproduct detects Zessor 20 that there is a fault, such as cable breakage or short circuit, stops the operation of the tumble dryer and outputs a corresponding error message.
  • the detection may give a permissible value, although the linearization resistance is not correctly matched.
  • the microprocessor can nevertheless determine, due to plausibilities, that the linearization resistance must be adapted, that is, the switch 36 must be closed.
  • Such a plausibility can be, for example, the fact that shortly after switching on the heating, the temperature of the process air can not have reached a certain temperature. A value U 3 should not occur then, so it is an NTC installed with another Kannline, the linearization resistance is therefore adjusted.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Vorgeschlagen wird ein Haushaltsgerät mit einer Temperaturmeßschaltung (10), die einen resistiven Temperatursensor (12) und einen Mikroprozessor (20) mit einem Temperaturerfassungseingang (22) für den Temperatursensor aufweist, wobei der Temperatursensor zwischen dem Temperaturerfassungseingang (22) und einem Bezugspotential (GND) geschaltet ist und am Temperaturerfassungseingang (22) ein Linearisierungswiderstand vorgesehen ist, und der Linearisierungswiderstand durch den Mikroprozessor veränderbar ist. Vorgeschlagen wird außerdem ein Verfahren zur mikroprozessorgesteuerten Temperaturmessung in einem Haushaltsgerät, bei dem durch einen Mikroprozessor ein Meßwert eines zwischen einem mit einem Linearisierungswiderstand versehenen Temperaturerfassungseingang des Mikroprozessors und einem Bezugspotential geschalteten resistiven Temperatursensors erfaßt wird, der Wert des Linearisierungswiderstand von dem Mikroprozessor verändert wird, falls der Meßwert nicht in einem zulässigen Wertebereich liegt.

Description

Haushaltsgerät mit einer Temperaturmeßschaltung
Die Erfindung betrifft ein Haushaltsgerät mit einer Temperaturmeßschaltung, die einen resistiven Temperatursensor und einen Mikroprozessor mit einem Temperaturerfassungseingang für den Temperatursensor aufweist, wobei der Temperatursensor zwischen dem Sensoreingang und einem Bezugspotential geschaltet ist und ein Linearisierungswiderstand vorgesehen ist. Die Erfindung betrifft weiterhin ein Verfahren zur mikroprozessorgesteuerten Temperaturmessung in einem Haushaltsgerät.
Derartige Temperaturmeßschaltungen finden in Hausgeräten häufig Verwendung, da resistive Temperatursensoren bei ausreichender Genauigkeit kostengünstig und zuver- lässig einsetzbar sind. Wegen der meist nichtlinearen Kennlinie der Temperatursensoren, wird in der Regel der Temperatursensor mit einer Beschaltung versehen, die eine weitgehende Linearisierung der Kennlinie bewirkt. Der Linearisierungswiderstand muß jedoch gut an die Kennlinie des Temperatursensors angepaßt sein.
WO2006/1 14340A1 zeigt eine solche Temperaturmeßschaltung mit einem NTC, bei der überprüft wird, ob der Temperatursensor ordnungsgemäß funktioniert.
In der WO91/08441 A1 ist eine Meßschaltung offenbart, bei der ein Widerstandnetzwerk verändert wird, um den Arbeitspunkt für den Betrieb eine resistiven Temperatursensors zu verschieben. Damit kann mit ein und demselben Temperatursensor in einem weiten Bereich gemessen werden. Die Aufgabe der vorliegenden Erfindung besteht darin, eine Haushaltsgerät bereitzustellen, das kostengünstig einen flexiblen Einsatz unterschiedlicher Temperatursensoren erlaubt.
Dies wird erreicht durch ein Haushaltsgerät mit einer Temperaturmeßschaltung, die einen resistiven Temperatursensor und einen Mikroprozessor mit einem Temperaturerfas- sungseingang für den Temperatursensor aufweist, wobei der Temperatursensor zwischen dem Temperaturerfassungseingang und einem Bezugspotential geschaltet ist und am Temperaturerfassungseingang ein Linearisierungswiderstand vorgesehen ist, der durch den Mikroprozessor veränderbar ist. Eine solche Temperaturmeßschaltung ist in der Lage, sich automatisch an den Typ, d.h. an die Kennlinie des verwendeten Temperatursen- sors anzupassen. Dies geschieht mittels Veränderung des Linearisierungswiderstandes durch den Mikroprozessor. Wenn der Mikroprozessor feststellt, daß Meßwerte von dem Temperatursensor nicht in den zulässigen Wertebereich passen kann er den Linearisierungswiderstand solange verändern, bis der zulässige Wertebereich erreicht ist, oder falls dies nicht möglich ist, eine Fehlermeldung ausgeben und oder den Betrieb des Haushaltsgeräts unterbinden. Dies hat den Vorteil, daß beispielsweise in einer Gerätebaureihe, in der unterschiedliche Temperatursensoren verbaut sein können, keine unterschiedlichen Varianten für die Temperaturmeßschaltung vorgehalten werden müssen. Die Temperaturmeßschaltung kann beispielsweise in einer Steuereinheit integriert sein, die prinzipiell für verschiedene Haushaltsgeräte vorgesehen sein kann, insbesondere Haushaltsgeräte, die Temperatursensoren mit unterschiedlichen Kennlinien aufweisen können.
Gemäß einer vorteilhaften Ausführungsform der Erfindung ist als Linearisierungswiderstand ein Pull-up-Widerstand zwischen dem Sensoreingang und einem Referenzpotential geschaltet. Der Linearisierungswiderstand und der resistive Temperatursensor bil- den einen Spannungsteiler, der durch Veränderung des Linearisierungswiderstandes sehr einfach an Temperatursensoren mit unterscheidelicher Kennlinie anpaßbar ist.
Gemäß einer vorteilhaften Weiterbildung ist der Linearisierungswiderstand durch Schalten eines weiteren Pull-up-Widerstandes parallel zum ersten Pull-up-Widerstand veränderbar. Das Parallelschalten des weiteren Pull-up-Widerstandes lässt sich sehr einfach realisie- ren, beispielsweise mittels eines elektrischen Schalters, der vom Mikroprozessor ansteuerbar ist.
Gemäß einer anderen vorteilhaften Weiterbildung ist der Linearisierungswiderstand durch Reihenschaltung des Pull-up-Widerstandes mit einem weiteren Pull-up-Widerstand veränderbar ist. Das Ziel der Erfindung wird auch erreicht durch ein Verfahren zur mikroprozessorgesteuerten Temperaturmessung in einem Haushaltsgerät, bei dem durch einen Mikroprozessor ein Meßwert eines zwischen einem mit einem Linearisierungswiderstand versehenen Temperaturerfassungseingang des Mikroprozessors und einem Bezugspotential geschalteten resistiven Temperatursensors erfaßt wird, wobei, falls der Meßwert nicht in einem zulässigen Wertebereich liegt, der Wert des Linearisierungswiderstandes von dem Mikroprozessor verändert wird. Damit wird eine automatische Anpassung einer mikroprozes- sorgesteuerten Temperaturmeßschaltung in einem Haushaltsgerät an einen Temperatursensor erreicht.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen. In den Zeichnungen zeigt:
Fig. 1 . ein schematisches Blockschaltbild einer Temperaturmeßschaltung gemäß einer ersten Ausführungsform der Erfindung,
Fig. 2. ein Diagramm mit einer Darstellung von Widerstands-Temperatur- (R/T-) Kennlinien unterschiedlicher Heißleiter (NTC) und Fig. 3. ein Diagramm mit einer Darstellung von Spannungs/Temperatur- (U/T-) Kennlinien für die Temperaturmeßschaltung aus Figur 1 mit unterschiedlichen Heißleitern (NTC).
In Fig. 1 ist schematisch eine Temperaturmeßschaltung 10 eines Haushaltsgerätes dargestellt. Das Haushaltsgerät soll im vorgestellten Beispiel ein Wäschetrockner sein, in welchem die Temperaturmeßschaltung 10 die Temperatur der Prozeßluft in einem Luftkanal erfaßt.
Die Temperaturmeßschaltung 10 weist einen Temperatursensor 12 auf. Der Temperatursensor ist in diesem Beispiel als Heißleiter (NTC) ausgebildet. Der Temperatursensor 12 ist in einem Prozeßluftkanal des Wäschetrockners (nicht dargestellt) untergebracht, sodaß er von der Prozeßluft überstrichen wird. Entsprechend der Widerstands-Temperatur- (R/T- ) Kennlinie 14 in Figur 2 ändert sich der Widerstand des Temperatursensors 12 abhängig von der Temperatur der Prozeßluft.
Die Temperaturmeßschaltung 10 weist weiterhin einen Mikroprozessor 20 auf. Der Mikroprozessor besitzt Eingänge 22, 24, mit denen er elektrische Signale erfassen kann, sowie Ausgänge 26 über welche er elektrische Signale ausgeben kann.
Der Mikroprozessor 20 kann in dem Waschtrockner außer zur Temperaturerfassung auch für andere Aufgaben vorgesehen sein, beispielsweise für die Ablaufsteuerung des Trocknungsprozesses, die Steuerung einer Benutzerschnittstelle etc. Der Temperatursensor 12 besitzt zwei Anschlüsse, von denen ein erster Anschluß 16 über eine zweipolige Steckverbindung 18 mit einem Massepotential GND der Temperaturmeßschaltung 10 verbunden ist. Ein zweiter Anschluß 17 der Temperatursensors 12 ist über die zweipolige Steckverbindung 16 mit einem Eingang des Mikroprozessors 20, dem Temperaturerfassungseingang 22, verbunden. Der Temperaturerfassungseingang 22 ist zudem über einen ersten Pull-up-Widerstand 30 mit einem Referenzspannungspotential Uref der Temperaturmeßschaltung 10 verbunden.
Ein zweiter Pull-up-Widerstand 32 ist mit einem Anschluß ebenfalls mit dem Temperaturerfassungseingang 22 des Mikroprozessors 20 verbunden. Der andere Anschluß des zweiten Pull-up-Widerstands 32 ist an einem Knoten 34 angeschlossen, der über einen Schalter 36 mit dem Referenzspannungspotential Uref verbunden werden kann. Der Schalter 36 ist in dieser Ausführungsform als elektronischer Schalter ausgebildet, der von einem Steuerausgang 26 des Mikroprozessors 20 gesteuert wird. Ein weiterer Eingang des Mikroprozessors, der Zustandserfassungseingang 24, ist mit dem Knoten 34 verbunden, um den Zustand des Schalters 36 zu erfassen.
Im Folgenden wird die Funktionsweise der Temperaturmeßschaltung 10 erläutert.
In Figur 3 ist in Abhängigkeit der Prozeßlufttemperatur T die Spannung über dem Temperatursensor 12 in Form einer Spannungs/Temperatur- (U/T-) Kennlinie 40 dargestellt. Der in Reihe zum NTC 12 geschaltete erste Pull-up-Widerstand 30 sorgt als Linearisierungswiderstand für eine Linearisierung der Kennlinie 40.
In dem Wäschetrockner treten im ordnungsgemäßen Betrieb Temperaturen in einem Bereich dTvaüd zwischen den Grenzen T-i und T2 auf, die in Figur 3 gekennzeichnet sind. Das bedeutet, daß die gemäß der U/T-Kennlinie die Spannungsmeßwerte am Temperaturerfassungseingang 22 des Mikroprozessors 20 in einem gültigen Wertebereich dUvaiid zwi- sehen den Grenzen Ui und U2 liegen.
In dem Wäschetrockner mit der Temperaturmeßschaltung 10 kann je nach Ausführung des Wäschetrockner-Modells als Temperatursensor 12 ein anderer Typ von NTC verbaut sein. Die in der gezeigten Ausführungsform möglichen beiden NTC-Typen unterscheiden sich durch die R/T-Kennlinie (Fig. 2): der erste NTC Typ hat eine erste Kennlinie 14, der zweite NTC-Typ eine zweite Kennlinie 15. Ist der erste NTC-Typ in dem Wäschetrockner verbaut, so ergibt sich mit dem ersten Pull- up-Widerstand 30 als Linearisierungswiderstand für die vorkommenden Temperaturen im Bereich zwischen T-i und T2 am Temperaturerfassungseingang 22 des Mikroprozessors 20 ein Wertebereich zwischen den Grenzen Ui und U2. Die vom Mikroprozessor 20 erfaß- ten Werte liegen also im zulässigen Bereich dUvaiid, was vom Mikroprozessor 20 so ausgewertet wird, daß der Temperatursensor 12 in Ordnung ist. Die Temperaturmeßschaltung 10 liefert plausible Werte und kann ordnungsgemäß betrieben werden.
Ist dagegen der zweite NTC-Typ in dem Wäschetrockner verbaut, so ergibt sich wegen der vom ersten NTC-Typen verschiedenen R/T-Kennlinie 15 für die vorkommenden Tem- peraturen im Bereich dTva|id zwischen den Grenzen T-i und T2 mit dem ersten Pull-up- Widerstand 30 als Linearisierungswiderstand am Temperaturerfassungseingang 22 des Mikroprozessors 20 eine andere U/T-Kennlinie 42 mit einem Wertebereich dUVOid zwischen den Grenzen U3 und U4. Die vom Mikroprozessor 20 erfaßten Werte liegen also nicht im zulässigen Bereich dUvaiid, was vom Mikroprozessor 20 so ausgewertet wird, daß der Temperatursensor 12 nicht in Ordnung ist.
Um für den zweiten NTC-Typ eine U/T-Kennlinie mit einem zulässigen Wertebereich dUvaiid zu erhalten, muß der Linearisierungswiderstand verändert werden Als Maßnahme schließt der Mikroprozessor 20 in diesem Fall über seinen Ausgang 26 den Schalter 36 und verbindet damit den zweiten Pull-up-Widerstand 32 ebenfalls mit der Referenzspan- nung Uref. Damit sind der erste Pull-up-Widerstand 30 und der zweite Pull-up-Widerstand 32 parallel geschaltet und bilden einen veränderten Linearisierungswiderstand. Mit diesem veränderten Linearisierungswiderstand hat die Meßschaltung mi dem zweiten NTC- Typen eine U/T-Kennlinie, die für die vorkommenden Temperaturen im Bereich zwischen T-i und T2 am Temperaturerfassungseingang 22 des Mikroprozessors 20 wiederum einen zulässigen Wertebereich zwischen den Grenzen Ui und U2 ergibt.
Die vom Mikroprozessor 20 erfaßten Werte liegen also im zulässigen Bereich dUvaiid. Die Temperaturmeßschaltung 10 liefert plausible Werte und kann ordnungsgemäß betrieben werden.
Liegen die erfaßten Spannungswerte auch mit dem veränderten Linearisierungswiderstand nicht im zulässigen Bereich, insbesondere nahezu an der Referenzspannung Uref oder nahezu auf Massepotential GND, dann erkennt der Mikropro- zessor 20 daß ein Fehler vorliegt, etwa Kabelbruch oder Kurzschluß, unterbindet den Betrieb des Wäschetrockners und gibt eine entsprechende Fehlermeldung aus.
Für den Fall, daß sich der Wertebereich dUVOid zwischen den Grenzen U3 und U4 mit dem zulässigen Bereich dUvaiid überschneidet, die untere Grenze U3 also zwischen Ui und U2 im zulässigen Bereich dUvaiid liegt, kann die Erfassung einen zulässigen Wert ergeben, obwohl der Linearisierungswiderstand nicht korrekt angepaßt ist. In diesem Fall kann der Mikroprozessor aufgrund von Plausibilitäten dennoch feststellen, daß der Linearisierungswiderstand anzupassen ist, also der Schalter 36 geschlossen werden muß. Eine solche Plausibilität kann z.B. die Tatsache sein, daß kurz nach dem Einschal- ten der Heizung die Temperatur der Prozeßluft eine bestimmte Temperatur noch nicht erreicht haben kann. Ein Wert U3 dürfte dann nicht auftreten, es ist also ein NTC mit einer anderen Kannlinie verbaut, der Linearisierungswiderstand ist also anzupassen.
In nicht dargestellten Varianten können auch andere Möglichkeiten vorgesehen sein, den Linearisierungswiderstand zu verändern um die Temperaturmeßschaltung automatisch an den NTC-Typen anzupassen. Beispielsweise kann statt einer Parallelschaltung eines weiteren Pull-up-Widerstandes auch eine Serienschaltung oder ein Umschalten des Pull-up- Widerstandes vorgesehen sein. Des weiteren ist es möglich, mehrere schaltbare Pull-up- Widerstände vorzusehen, um die Schaltung an mehrere NTC-Typen anpassen zu können. Die Pull-up-Widerstände und/oder der Schalter können auch integriert in den Mikroprozessor vorgesehen sein.

Claims

PATENTANSPRÜCHE
Haushaltsgerät mit einer Temperaturmeßschaltung (10), wobei die Temperaturmeßschaltung (10),
einen resistiven Temperatursensor (12) und einen Mikroprozessor (20) mit einem Temperaturerfassungseingang (22) für den Temperatursensor (12) aufweist, wobei der Temperatursensor zwischen dem Temperaturerfassungseingang (22) und einem Bezugspotential (GND) geschaltet ist, und am Temperaturerfassungseingang (22) ein Linearisierungswiderstand vorgesehen ist, dadurch gekennzeichnet, daß der Linearisierungswiderstand (30) durch den Mikroprozessor (20) veränderbar ist.
Haushaltsgerät nach Anspruch 1 , bei der als Linearisierungswiderstand ein erster Pull-up-Widerstand (30) zwischen dem Temperaturerfassungseingang (22) und einem Referenzpotential (Uref) geschaltet ist
Haushaltsgerät nach Anspruch 2, bei der der Linearisierungswiderstand durch Schalten eines weiteren Pull-up-Widerstandes (32) parallel zum ersten Pull-up- Widerstand (30) veränderbar ist.
Haushaltsgerät nach Anspruch 2, bei der der Linearisierungswiderstand durch Reihenschaltung des Pull-up-Widerstandes mit einem weiteren Pull-up-Widerstand veränderbar ist.
Haushaltsgerät nach Anspruch 4, wobei das Haushaltsgerät eine Waschmaschine, ein Wäschetrockner oder ein Waschtrockner ist.
Haushaltsgerät nach Anspruch 5, wobei das Haushaltsgerät ein Wäschetrockner oder ein Waschtrockner ist und der Temperatursensor (12) zur Erfassung der Prozeßlufttemperatur vorgesehen ist. Verfahren zur mikroprozessorgesteuerten Temperaturmessung in einem Haushaltsgerät, bei dem durch einen Mikroprozessor (20) ein Meßwert eines zwischen einem mit einem Linearisierungswiderstand versehenen Temperaturerfassungseingang (22) des Mikroprozessors und einem Bezugspotential (GND) geschalteten resistiven Temperatursensors (12) erfaßt wird,
dadurch gekennzeichnet, daß falls der Meßwert nicht in einem zulässigen Wertebereich liegt, der Wert des Linearisierungswiderstands von dem Mikroprozessor verändert wird.
Verfahren nach Anspruch 7, bei dem als Linearisierungswiderstand zwischen dem Temperaturerfassungseingang und einem Referenzpotential ein Pull-up- Widerstand (30) geschaltet ist und der Mikroprozessor (20) den
Linearisierungswiderstand durch parallelschalten eines weiteren Pull-up- Widerstands (32) verändert.
Verfahren nach Anspruch 7, bei dem als Linearisierungswiderstand zwischen dem Temperaturerfassungseingang und einem Referenzpotential ein Pull-up- Widerstand geschaltet ist und und der Mikroprozessor (20) de
Linearisierungswiderstand durch Reihenschaltung mit einem weiteren Widerstand verändert.
PCT/EP2016/082728 2016-01-14 2016-12-27 HAUSHALTSGERÄT MIT EINER TEMPERATURMEßSCHALTUNG WO2017121616A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016200334.8 2016-01-14
DE102016200334.8A DE102016200334A1 (de) 2016-01-14 2016-01-14 Temperaturmeßschaltung für ein Haushaltsgerät

Publications (1)

Publication Number Publication Date
WO2017121616A1 true WO2017121616A1 (de) 2017-07-20

Family

ID=57681599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/082728 WO2017121616A1 (de) 2016-01-14 2016-12-27 HAUSHALTSGERÄT MIT EINER TEMPERATURMEßSCHALTUNG

Country Status (2)

Country Link
DE (1) DE102016200334A1 (de)
WO (1) WO2017121616A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760956A1 (de) * 2019-07-04 2021-01-06 Ivoclar Vivadent AG Dentalofen
EP3967264A1 (de) * 2020-09-15 2022-03-16 VITA-ZAHNFABRIK H. Rauter GmbH & Co. KG Dental-brennofen sowie verfahren zum betreiben eines dental-brennofens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020100636A1 (de) * 2020-01-14 2021-07-15 Schaeffler Technologies AG & Co. KG Bestimmung einer temperatur in einer elektrischen maschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357484A (ja) * 2001-06-04 2002-12-13 Hitachi Ltd プログラマブルコントローラ、プログラマブルコントローラの測温抵抗体入力モジュール、測温信号形成方法及び測温信号形成用のプログラム
DE102006010107A1 (de) * 2006-03-01 2007-09-06 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zur Erkennung eines an eine Steuerung angeschlossenen Temperatursensors
EP2302344A2 (de) * 2009-09-29 2011-03-30 Siemens Aktiengesellschaft Vorrichtung zur Temperaturmessung und Verfahren dafür

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3940341A1 (de) 1989-12-06 1991-06-13 Bosch Gmbh Robert Einrichtung zur verbesserung der genauigkeit einer messwerterfassung
FR2708737B1 (fr) * 1993-08-02 1995-09-08 Siemens Automotive Sa Dispositif de mesure de la température.
FR2728680B1 (fr) * 1994-12-26 1997-01-24 Siemens Automotive Sa Procede de mesure de la temperature a l'aide d'un capteur a coefficient de temperature negatif et dispositif correspondant
DE102005019588A1 (de) 2005-04-27 2006-11-09 BSH Bosch und Siemens Hausgeräte GmbH Verfahren zum Überwachen eines temperaturabhängigen Widerstandes insbesondere in einem Wäschetrockner
KR100672342B1 (ko) * 2006-01-25 2007-01-24 엘지전자 주식회사 조리기기의 온도센서회로 자동 제어방법
US8672542B2 (en) * 2010-05-26 2014-03-18 Honeywell International Inc. High resolution measurement of thermistor thermometry signals with wide dynamic range

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002357484A (ja) * 2001-06-04 2002-12-13 Hitachi Ltd プログラマブルコントローラ、プログラマブルコントローラの測温抵抗体入力モジュール、測温信号形成方法及び測温信号形成用のプログラム
DE102006010107A1 (de) * 2006-03-01 2007-09-06 E.G.O. Elektro-Gerätebau GmbH Verfahren und Vorrichtung zur Erkennung eines an eine Steuerung angeschlossenen Temperatursensors
EP2302344A2 (de) * 2009-09-29 2011-03-30 Siemens Aktiengesellschaft Vorrichtung zur Temperaturmessung und Verfahren dafür

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3760956A1 (de) * 2019-07-04 2021-01-06 Ivoclar Vivadent AG Dentalofen
WO2021001561A1 (de) * 2019-07-04 2021-01-07 Ivoclar Vivadent Ag Dentalofen
EP3967264A1 (de) * 2020-09-15 2022-03-16 VITA-ZAHNFABRIK H. Rauter GmbH & Co. KG Dental-brennofen sowie verfahren zum betreiben eines dental-brennofens
WO2022058161A1 (de) * 2020-09-15 2022-03-24 Vita Zahnfabrik H. Rauter Gmbh & Co. Kg Dental-brennofen sowie verfahren zum betreiben eines dental-brennofens

Also Published As

Publication number Publication date
DE102016200334A1 (de) 2017-07-20

Similar Documents

Publication Publication Date Title
EP2664905B1 (de) Temperaturmesseinrichtung, elektrisches Gerät mit einer solchen Temperaturmesseinrichtung und Verfahren zur Temperaturmessung
DE102005037717B3 (de) Verfahren und Vorrichtung zur Diagnose eines Außentemperatursensors
DE112016001183B4 (de) Lenkradgrifferfassungsvorrichtung
WO2007141139A1 (de) Verfahren zur erkennung des stillstands einer trommel in einem trommeltrockner, und hierzu geeigneter trommeltrockner
DE102005029921A1 (de) Heizvorrichtung für Fluide und Haushaltsgerät
EP2656034B1 (de) Kerntemperaturfühler
WO2017121616A1 (de) HAUSHALTSGERÄT MIT EINER TEMPERATURMEßSCHALTUNG
WO2008046852A1 (de) Verfahren zum schutz eines heizelementes sowie heizvorrichtung
DE102010003125B4 (de) Vorrichtung zur Temperaturmessung
DE102006033705B3 (de) Schaltungsanordnung und Verfahren zur Überprüfung einer Schalterstellung und Verwendung der Schaltungsanordnung
DE102008007397A1 (de) Verfahren zur Überwachung von wenigstens einer Glühstiftkerze eines Brennkraftmotors und Vorrichtung hierzu
EP1700177B1 (de) Schaltungsanordnung zum schutz eines heizelements vor überhitzung, heizvorrichtung und verfahren zum absichern der heizvorrichtung
EP1879005B1 (de) Verfahren zur Überprüfung eines Temperatursensors mit mindestens zwei temperatursensitiven Widerständen
DE102014210645A1 (de) Verfahren und System zur Temperaturbestimmung in einer Antriebseinheit
DE102007050792A1 (de) Strömungssensor und Verfahren zur Überprüfung und zum Betrieb eines solchen Strömungssensors
WO2010049298A1 (de) Widerstandsmessung eines von einer messgrösse abhängigen widerstandselements
DE102007031615A1 (de) Verfahren zur Überprüfung eines Temperatursensors mit mindestens zwei temperatursensitiven Widerständen
DE19533241C5 (de) Verfahren und Vorrichtung zur thermischen Absicherung von Wäschetrocknern
DE102013226833A1 (de) Haushaltsgerät und Überwachungsverfahren für ein Haushaltsgerät
EP2639511B1 (de) Verfahren zum Betreiben eines Gargeräts mit anschließbarem Bratenthermometer und Gargerät
DE102017002296A1 (de) Schaltungsanordnung mit multifunktionalem Eingang, insbesondere für die Steuer- und Regelelektronik eines Pumpenaggregats
EP3211913B1 (de) Sensorschaltung mit mehreren optischen sensoren
AT503445B1 (de) Verfahren zur überprüfung eines temperatursensors
DE102012219501A1 (de) Sensoranordnung für eine Haushaltsgerät sowie ein Haushaltsgerät mit einer derartigen Sensoranordnung
DE69530718T2 (de) Schaltung zur Messung einer physikalischen Grösse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16819940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16819940

Country of ref document: EP

Kind code of ref document: A1