WO2017121107A1 - 一种空气净化器系统 - Google Patents

一种空气净化器系统 Download PDF

Info

Publication number
WO2017121107A1
WO2017121107A1 PCT/CN2016/093940 CN2016093940W WO2017121107A1 WO 2017121107 A1 WO2017121107 A1 WO 2017121107A1 CN 2016093940 W CN2016093940 W CN 2016093940W WO 2017121107 A1 WO2017121107 A1 WO 2017121107A1
Authority
WO
WIPO (PCT)
Prior art keywords
air purifier
sensor
air
host
control terminal
Prior art date
Application number
PCT/CN2016/093940
Other languages
English (en)
French (fr)
Inventor
张文东
温煜
Original Assignee
东莞市利发爱尔空气净化系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市利发爱尔空气净化系统有限公司 filed Critical 东莞市利发爱尔空气净化系统有限公司
Publication of WO2017121107A1 publication Critical patent/WO2017121107A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/58Remote control using Internet communication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/66Volatile organic compounds [VOC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide

Definitions

  • the invention relates to the field of air purification technology, and in particular to an air purifier system.
  • Air purifiers also known as "air cleaners", air purifiers, purifiers, are capable of adsorbing, decomposing or converting various air pollutants (generally including PM2.5, dust, pollen, odor, formaldehyde, etc.). , bacteria, allergens, etc., products that effectively improve air cleanliness, mainly divided into household, commercial, industrial, and building.
  • air pollutants generally including PM2.5, dust, pollen, odor, formaldehyde, etc.
  • bacteria, allergens, etc. products that effectively improve air cleanliness, mainly divided into household, commercial, industrial, and building.
  • air purification technologies include: adsorption technology, negative (positive) ion technology, catalytic technology, photocatalytic technology, superstructure photomineralization technology, HEPA high efficiency filtration technology, electrostatic dust collection technology, etc.; material technology mainly includes: photocatalyst, activated carbon, Synthetic fiber, HEAP high efficiency material, negative ion generator, etc.
  • the existing air purifiers are mostly compounded, that is, a plurality of purification technologies and material media are simultaneously used.
  • the current air purifier is a single host, and its working mode is relatively simple, which can not meet the needs of the masses, and is not intelligent enough, resulting in low-experience technical problems.
  • the air purifier system realized by the embodiment of the invention realizes the operation of the cloud purifier system, facilitates the overall control of the user, the ambient air quality, and the like, and solves the current air purifier as a single host, and its working mode It is relatively simple, and it has been unable to meet the needs of the public, not intelligent enough, resulting in low-experience technical problems.
  • Air purifier host control terminal and cloud server
  • the air purifier host is wirelessly connected to the control terminal, and the control terminal and the cloud server are wirelessly connected;
  • the air purifier host performs a corresponding instruction execution operation according to the control instruction transmitted by the control terminal, and the control terminal detects the air quality data detected by the internal air quality sensor and the working state returned by the air purifier host The data is uploaded to the cloud server for recording.
  • the air purifier system further includes:
  • the mobile terminal is wirelessly connected to the control terminal by the cloud server.
  • the mobile terminal is configured to obtain, by using the cloud server, all feedback data of the control terminal and the air purifier host.
  • control terminal includes:
  • control unit and the main control unit are electrically connected, the main control unit is disposed inside the outer casing, and the control unit is disposed on the surface of the outer casing;
  • the main control unit includes:
  • the communication module and the air quality detecting sensor are electrically connected to the main control board
  • the air quality detecting sensor comprises a carbon dioxide sensor, a formaldehyde sensor, and a PM2.5 sensor.
  • a temperature sensor and a humidity sensor are disposed in the air purifier main body.
  • a top of the casing of the air purifier main body is provided with a touch ring, and the touch ring is provided with an inductive PCB board, and the inductive PCB board is electrically connected to the motor.
  • a plurality of touch sensors are disposed on the sensing PCB;
  • the touch sensor is configured to send a touch action signal obtained by touching the touch ring to a control unit of the air purifier host to determine an angle change of the touch action, and change according to the angle
  • the preset wind speed change level is matched, so that the control unit controls the wind turbine to perform the air volume operation according to the matching result.
  • the communication module includes a Bluetooth communication component and a wifi communication component;
  • the Bluetooth communication component is wirelessly connected to a communication module of the air purifier host;
  • the wifi communication component is wirelessly connected to the cloud server and the mobile terminal.
  • the operating unit comprises a touch display screen electrically connected to the light sensor and the position sensor.
  • An air purifier system provided by an embodiment of the present invention, wherein the air purifier system comprises: an air purifier host, a control terminal, and a cloud server; the air purifier host wirelessly communicates with the control terminal, and the control terminal and the cloud server wirelessly communicate The air purifier host performs corresponding command execution operations according to the control command transmitted by the control terminal, and the control terminal uploads the air quality data detected by the internal air quality sensor and the working state data returned by the air purifier host to the cloud server. recording.
  • the air purifier host performs a corresponding instruction execution operation according to the control instruction transmitted by the control terminal, and the control terminal uploads the air quality data detected by the internal air quality sensor and the working state data returned by the air purifier host.
  • Recording to the cloud server realizes the operation of the cloud purifier system, which facilitates the overall control of the user and the ambient air quality, and solves the current air purifier as a single host.
  • the working mode is relatively simple and can no longer satisfy the public.
  • the demand is not intelligent enough to cause low-experience technical problems.
  • FIG. 1 is a schematic structural diagram of an embodiment of an air purifier system according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a control terminal
  • FIG. 3 is a schematic structural view of an air purifier main body
  • FIG. 4 is a schematic diagram of the external structure of the control terminal.
  • the air purifier system realized by the embodiment of the invention realizes the operation of the cloud purifier system, facilitates the overall control of the user, the ambient air quality, and the like, and solves the current air purifier as a single host, and its working mode It is relatively simple, and it has been unable to meet the needs of the public, not intelligent enough, resulting in low-experience technical problems.
  • an embodiment of an air purifier system according to an embodiment of the present invention includes:
  • the air purifier host 01 is wirelessly connected to the control terminal 02, and the control terminal 02 and the cloud server 03 are wirelessly connected;
  • the air purifier main unit 01 performs a corresponding command execution operation according to the control command transmitted by the control terminal 02, and the control terminal 02 uploads the air quality data detected by the internal air quality sensor and the work status data returned by the air purifier main unit 01 to the cloud.
  • the server 03 performs recording.
  • the air purifier system further comprises:
  • the mobile terminal 04 is wirelessly connected to the control terminal 02 via the cloud server 03.
  • the mobile terminal 04 is configured to obtain all feedback data of the control terminal 02 and the air cleaner host 01 through the cloud server 03.
  • control terminal 04 includes:
  • control unit 1 and the main control unit 2 are electrically connected, the main control unit 2 is disposed inside the outer casing 3, and the manipulation unit 1 is disposed on the surface of the outer casing 3;
  • the main control unit 2 includes:
  • the communication module 22 and the air quality detecting sensor 23 are electrically connected to the main control board 21;
  • the communication module 22 is connected to the air purifier host in a wireless communication manner, and the air quality detecting sensor 23 is configured to display the detected air quality on the display screen of the manipulation unit 1 through the main control board 21, and the main control panel 21 is configured to be used according to the manipulation.
  • the signal fed back by the unit 1 performs corresponding signal processing, so that the air purifier host performs corresponding operation processing by acquiring an instruction sent by the communication module 22.
  • the air quality detecting sensor 23 includes a carbon dioxide sensor, a formaldehyde sensor, a PM2.5 sensor, a temperature sensor, and a humidity sensor.
  • a temperature sensor and a humidity sensor are provided in the air cleaner main unit 01.
  • the top of the housing of the air purifier main unit 01 is provided with a touch ring 20, and the touch ring 20 is provided with an inductive PCB board 22, and the inductive PCB board 22 is electrically connected to the motor, for example, as shown in FIG.
  • An inductive PCB board 22 is provided.
  • the inductive PCB board 22 is electrically connected to the motor.
  • the motor is used to drive the fan blade rotation of the air guiding device.
  • the inductive PCB board 22 on the touch ring 20 is provided.
  • the inductive PCB board 22 controls the rotation of the motor, and the motor drives the fan blade to rotate at a certain speed.
  • a plurality of touch sensors are disposed on the sensing PCB;
  • the touch sensor is configured to send the touch action signal acquired by the touch touch ring to the control unit of the air purifier main unit 01 to determine the angle change of the touch action, and match the preset wind speed change level according to the angle change. So that the control unit controls the fan to perform the operation of the air volume according to the matching result.
  • the communication module includes a Bluetooth communication component and a wifi communication component
  • the Bluetooth communication component is wirelessly connected to the communication module of the air purifier host;
  • the wifi communication unit is wirelessly connected to the cloud server 03 and the mobile terminal 04.
  • the manipulation unit 1 includes a touch display screen electrically connected to the photosensitive sensor and the position sensor.
  • the present invention is based on a fully intelligent air purifier in which a plurality of sensors are built in the control terminal 02 and cloud control can be performed. It consists of an air purifier host 01, an independent control terminal 02, and a mobile terminal 04 (such as a mobile phone). Air purifier main unit built-in temperature and humidity sensor, equipped with wireless communication module for communication with monitoring controller; control terminal 02 built-in PM2.5 (including independent PM10 monitoring channel), formaldehyde, carbon dioxide, VOC sensor for monitoring The air quality at the location.
  • the internal communication system is also equipped with a wireless communication module for communicating with the purifier host, and the WiFi communication module is used for connecting to the cloud through the WiFi network, and then transmitted to the pre-connected intelligent terminal (such as a mobile phone).
  • the control terminal 02 is also equipped with a touch screen for interactive operation, and is equipped with a light sensor to automatically adjust its screen brightness according to ambient light.
  • the control terminal 02 is also equipped with a rechargeable battery, which can be used independently as a monitor for realizing the user's need to monitor air quality anytime and anywhere; the APP on the mobile terminal 04 (such as a mobile phone) can realize remote viewing and control.
  • the air purifier main unit 01 performs a corresponding command execution operation according to the control command transmitted by the control terminal 02, and the control terminal 02 detects the air quality data detected by the internal air quality sensor and the air purifier main unit 01 returns.
  • the working status data is uploaded to the cloud server 03 for recording, and the operation of the cloud purifier system is realized, which facilitates the overall control of the user, the ambient air quality, etc., and solves the current air purifier as a single host, and the working mode is relatively simple. It has been unable to meet the needs of the public, not intelligent enough, resulting in low-experience technical problems.
  • the main control unit 2 of the control terminal 02 further includes:
  • the timing control unit 24 is configured to control the air quality detecting sensor 22 to continuously detect or preset the ambient air quality.
  • the main control unit 2 further includes:
  • the mode selection module 25 is configured to acquire a mode command selected by the manipulation unit 1 and transmit the mode command to the main control board 21 to control the air purifier host to perform an operation mode opposite to the mode instruction, where the mode instruction includes an intelligent mode and a sleep mode. , strong wind mode and manual mode.
  • the main control unit 2 further includes:
  • the standard selection module 26 is configured to acquire the standard work instruction selected by the manipulation unit 1 and transmit the standard work instruction to the main control board 21 to control the air purifier main body to perform standard work corresponding to the standard work instruction.
  • the wireless communication connection between the communication module 22 and the air purifier host may be paired by a pairing method, for example, the monitor (the main control unit 2) and the host work together through a special Bluetooth wireless connection, and the connection needs to be paired online.
  • a pairing method for example, the monitor (the main control unit 2) and the host work together through a special Bluetooth wireless connection, and the connection needs to be paired online.
  • the detection methods of carbon dioxide sensor, formaldehyde sensor, PM2.5 sensor, temperature sensor and humidity sensor can be as follows:
  • CO2 carbon dioxide
  • the monitor divides the monitored air quality into six levels: excellent, good, medium, poor, inferior, and dangerous.
  • the smart mode, sleep mode, strong wind mode, and manual mode are switched as follows:
  • Strong wind mode full speed operation, fast purification (non-intelligent mode, automatic switching to medium speed after 90 minutes of fast operation);
  • Manual mode Manually adjust the host wind speed return mode selection interface to return to the monitor
  • Air quality standards (national standard or US standard) are selected as required to control the operation of the purifier. Choosing American standards, the purifier will work more strongly, especially at night.
  • the communication module 22 is wirelessly connected to the air purifier host, and the air quality detecting sensor 23 is configured to display the detected air quality on the display screen of the manipulation unit 1 through the main control board 21, and the main control board 21 Corresponding signal processing is performed according to the signal fed back by the manipulation unit 1 , so that the air purifier main body performs the corresponding operation processing by acquiring the instruction sent by the communication module 22 , and solves the current control components of the air purifier and the purifier.
  • the main unit is an integrated structure, and the air quality detecting sensor is also disposed in the purifier main body, resulting in inconvenient control and low experience. The detection of air quality is not a real technical problem of the current ambient air quality.
  • control terminal 02 In practical applications, there are various functions of the control terminal 02, which are respectively described below:
  • the control sensor After obtaining the current time period indicated by the internal RTC clock, it is necessary to determine the sensor working mode according to the current time period. If it is a day time period, the control sensor operates continuously according to the 1 minute to 2 minute time period, according to 4 minutes to 6 minutes. The minute period control sensor stops power and stops working, and performs reciprocating control processing for 10 cycles per hour.
  • step 204 determining whether the air quality detected by the sensor continuously working in the third preset period is less than a preset threshold, and if so, executing step 204;
  • control sensor In the daytime period, the control sensor continuously operates according to the period of 1 minute to 2 minutes, and the sensor is controlled to be powered down according to the period of 4 minutes to 6 minutes. After the reciprocating control process of 10 cycles per hour, it is necessary to judge.
  • the sensor is continuously operated for the third preset period. Whether the air quality is less than a preset threshold, and if so, step 204 is performed.
  • the control sensor continuously works according to a period of 1 minute to 2 minutes, and controls the sensor to be powered off according to a period of 10 minutes to 12 minutes, and performs a reciprocating control process of 5 cycles per hour;
  • the control sensor continuously operates according to the period of 1 minute to 2 minutes, and the sensor is controlled to be powered off according to the period of 10 minutes to 12 minutes, and the operation is performed. 5 cycles of reciprocating control processing per hour.
  • control sensor continuously operates according to a period of 1 minute to 2 minutes, and controls the sensor to be powered off according to a period of 10 minutes to 12 minutes, and performs a reciprocating control process of 5 cycles per hour;
  • the control sensor continuously works according to the period of 1 minute to 2 minutes, and the sensor is powered off according to the time period of 10 minutes to 12 minutes to stop working, and the hourly work is performed 5 Cycle reciprocating control processing.
  • step 207 determining whether the air quality detected by the sensor continuously working in the third preset period is less than a preset threshold, and if so, executing step 207;
  • the control sensor continuously works according to the period of 1 minute to 2 minutes, and the sensor is controlled to be powered down according to the time period of 10 minutes to 12 minutes, and the reciprocating control process of 5 cycles per hour is performed, and the sensor needs to be judged. Whether the air quality detected by the third preset period of continuous operation is less than a preset threshold, and if yes, step 207 is performed.
  • the control sensor continuously operates according to a period of 1 minute to 2 minutes, and controls the sensor to be powered off according to the time period of 18 minutes to 20 minutes, and performs a reciprocating control process of 3 cycles per hour.
  • the control sensor continuously works according to the period of 1 minute to 2 minutes, and the sensor is controlled to be powered off according to the time period of 18 minutes to 20 minutes, and the operation is performed. 3 cycles of reciprocating control processing per hour.
  • the filter of the purifier when it is necessary to determine whether the filter of the purifier needs to be replaced, it is first necessary to obtain the PM10 value detected by the PM10 sensor, the PM2.5 value detected by the PM2.5 sensor, and the formaldehyde detected by the formaldehyde sensor. value.
  • the first actual dust holding capacity corresponding to PM2.5 needs to be calculated according to the first preset formula PM2.5 value x unit time fan airflow amount ⁇ preset PM2.5 absorptivity.
  • the first preset formula according to the third preset formula is required.
  • the actual dust holding capacity ⁇ filter dust capacity calculates the filter consumption ratio.
  • the HEPA filter replacement prompt is performed
  • the HEPA filter replacement prompt is performed.
  • the second actual dust holding capacity corresponding to PM10 needs to be calculated according to the second preset formula PM10 value x the fan air output amount per unit time ⁇ preset PM10 absorption rate.
  • the second actual dust holding capacity according to the fourth preset formula needs to be filtered.
  • the amount of mesh dust is calculated from the initial filter consumption.
  • the initial filter cleaning prompt is performed
  • the preliminary filter cleaning prompt is performed.
  • step 302 and step 303 it is necessary to calculate the adsorption amount of activated carbon corresponding to formaldehyde according to the fifth preset formula formaldehyde value x unit time fan air output amount x preset formaldehyde value absorption rate.
  • the activated carbon filter replacement prompt is performed.
  • the monitoring controller can calculate the accurate dust amount by monitoring the parameters such as PM2.5 and PM10, combined with the real-time air volume of the purifier, and then the loss ratio of the HEPA filter can be known at any time according to the dust holding capacity of the HEPA filter.
  • the monitoring controller can know the life status of the activated carbon filter through the monitoring of the formaldehyde content, the real-time air volume and the total adsorption capacity of the activated carbon, and accurately remind the user to replace; the monitoring controller Through the monitoring of PM10, combined with the real-time air volume of the purifier, the use status of the primary filter can be known, and the user can be promptly and promptly reminded to clean the pre-filter.
  • the environmental PM2.5 reading is tested by the controller and returned to the host; when the host is disconnected from the test controller, the host will estimate the actual PM2.5 reading. The amount of dust.
  • the ambient formaldehyde reading is tested by the controller and returned to the host; when the host is disconnected from the detection controller, the host will estimate the actual amount of adsorption with a fixed formaldehyde reading. It should be noted that the life of the activated carbon filter has a limit of 2 years, and the actual operation of the main machine is started, and the maximum is not more than 2 years.
  • the consumption ratio of the filter screen in this embodiment can be further determined according to the filter consumption ratio formula (filter actual working time / filter life limit time) * first proportional coefficient + (actual absorption amount / total absorption amount) ) * second proportional coefficient calculation acquisition;
  • the first proportional coefficient is 0-100%
  • the second proportional coefficient is 100%-0
  • the sum of the first proportional coefficient and the second proportional coefficient is 1.
  • the total adsorption amount of the activated carbon filter can reach 2800mg under ideal conditions
  • the replacement threshold of the activated carbon filter is 95%
  • the consumption ratio of the activated carbon filter is ( ⁇ working time / 8000) * 60% - ( ⁇ adsorption amount / 2800) * 40%, of which 60% and 40% are our experience values.
  • the air purifier issues an activated carbon filter replacement prompt.
  • the filter itself has a life limit. If the air quality is concerned for a long time, the filter does not effectively adsorb the pollutants for a long time, but the filter itself will wear out over time. Therefore, it is necessary to use the working time of the air purifier to correct it.
  • the environmental pollutant is formaldehyde, but PM2.5 is always 0, then the air purifier will work all the time, the activated carbon filter has been adsorbed, and the HEPA filter is not filtered, but there will be loss.
  • the environmental pollutant is formaldehyde, but PM2.5 is always 0, then the air purifier will work all the time, the activated carbon filter has been adsorbed, and the HEPA filter is not filtered, but there will be loss.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, and a read only memory. (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空气净化器系统,包括空气净化器主机(01)、控制终端(02)和云服务器(03)。空气净化器主机(01)与控制终端(02)无线通信连接,控制终端(02)和云服务器(03)无线通信连接,空气净化器主机(01)根据控制终端(02)传输的控制指令进行对应的指令执行操作,控制终端(02)将其内部的空气质量传感器检测的空气质量数据,以及空气净化器主机(01)返回的工作状态数据上传至云服务器(03)进行记录。该空气净化器系统实现了云端操作,便于后续对于空气质量的整体管控。

Description

一种空气净化器系统
本申请要求于2016年1月13日提交中国专利局、申请号为201610024497.X、发明名称为“一种空气净化器系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及空气净化技术领域,尤其涉及一种空气净化器系统。
背景技术
空气净化器又称“空气清洁器”、空气清新机、净化器,是指能够吸附、分解或转化各种空气污染物(一般包括PM2.5、粉尘、花粉、异味、甲醛之类的装修污染、细菌、过敏原等),有效提高空气清洁度的产品,主要分为家用、商用、工业、楼宇。
空气净化器中有多种不同的技术和介质,使它能够向用户提供清洁和安全的空气。常用的空气净化技术有:吸附技术、负(正)离子技术、催化技术、光触媒技术、超结构光矿化技术、HEPA高效过滤技术、静电集尘技术等;材料技术主要有:光触媒、活性炭、合成纤维、HEAP高效材料、负离子发生器等。现有的空气净化器多采为复合型,即同时采用了多种净化技术和材料介质。
目前的空气净化器为单一的主机,其工作模式较为单一,已经无法满足大众的需求,不够智能化,造成了体验性低的技术问题。
发明内容
本发明实施例提供的一种空气净化器系统,实现了云端净化器系统的操作,便于后续对于用户、环境空气质量等的整体管控,解决了目前的空气净化器为单一的主机,其工作模式较为单一,已经无法满足大众的需求,不够智能化,造成的体验性低的技术问题。
本发明实施例提供的一种空气净化器系统,包括:
空气净化器主机、控制终端和云服务器;
所述空气净化器主机与所述控制终端无线通信连接,所述控制终端和所述云服务器无线通信连接;
所述空气净化器主机根据所述控制终端传输的控制指令进行对应的指令执行操作,所述控制终端将其内部的空气质量传感器检测的空气质量数据,以及所述空气净化器主机返回的工作状态数据上传至所述云服务器进行记录。
可选地,所述空气净化器系统还包括:
移动终端,通过所述云服务器与所述控制终端无线通信连接。
可选地,所述移动终端,用于通过所述云服务器获取到所述控制终端和所述空气净化器主机所有反馈数据。
可选地,所述控制终端包括:
外壳、操控单元和主控单元;
所述操控单元和所述主控单元电性连接,所述主控单元设置在所述外壳内部,所述操控单元设置在所述外壳表面;
所述主控单元包括:
主控板、通信模块和空气质量检测传感器;
所述通信模块和所述空气质量检测传感器与所述主控板电性连接
可选地,所述空气质量检测传感器包括二氧化碳传感器、甲醛传感器、PM2.5传感器。
可选地,所述空气净化器主机内设置有温度传感器和湿度传感器。
可选地,所述空气净化器主机的壳体的顶部设有触摸环,所述触摸环上设有感应PCB板,所述感应PCB板与所述电机电性连接。
可选地,所述感应PCB板上设置有复数个触控传感器;
所述触控传感器,用于将触控所述触摸环获取的触控动作信号发送至所述空气净化器主机的控制单元进行所述触控动作的角度变化的确定,并根据所述角度变化与预置的风速变化级别进行匹配,使得所述控制单元控制风机根据匹配结果进行出风量的操作。
可选地,所述通信模块包括蓝牙通信部件和wifi通信部件;
所述蓝牙通信部件与所述空气净化器主机的通信模组无线连接;
所述wifi通信部件与云服务器、所述移动终端无线通信连接。
可选地,所述操控单元包括触摸显示屏,电性连接有光敏传感器及位置传感器。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明实施例提供的一种空气净化器系统,其中,空气净化器系统包括:空气净化器主机、控制终端和云服务器;空气净化器主机与控制终端无线通信连接,控制终端和云服务器无线通信连接;空气净化器主机根据控制终端传输的控制指令进行对应的指令执行操作,控制终端将其内部的空气质量传感器检测的空气质量数据,以及空气净化器主机返回的工作状态数据上传至云服务器进行记录。本实施例中,通过空气净化器主机根据控制终端传输的控制指令进行对应的指令执行操作,控制终端将其内部的空气质量传感器检测的空气质量数据,以及空气净化器主机返回的工作状态数据上传至云服务器进行记录,实现了云端净化器系统的操作,便于后续对于用户、环境空气质量等的整体管控,解决了目前的空气净化器为单一的主机,其工作模式较为单一,已经无法满足大众的需求,不够智能化,造成的体验性低的技术问题。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的一种空气净化器系统的一个实施例的结构示意图;
图2为控制终端结构示意图;
图3为空气净化器主机结构示意图;
图4为控制终端外部结构示意图。
具体实施方式
本发明实施例提供的一种空气净化器系统,实现了云端净化器系统的操作,便于后续对于用户、环境空气质量等的整体管控,解决了目前的空气净化器为单一的主机,其工作模式较为单一,已经无法满足大众的需求,不够智能化,造成的体验性低的技术问题。
为使得本发明的发明目的、特征、优点能够更加的明显和易懂,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,下面所描述的实施例仅仅是本发明一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1至图4,本发明实施例提供的一种空气净化器系统的一个实施例包括:
空气净化器主机01、控制终端02和云服务器03;
空气净化器主机01与控制终端02无线通信连接,控制终端02和云服务器03无线通信连接;
空气净化器主机01根据控制终端02传输的控制指令进行对应的指令执行操作,控制终端02将其内部的空气质量传感器检测的空气质量数据,以及空气净化器主机01返回的工作状态数据上传至云服务器03进行记录。
可选地,空气净化器系统还包括:
移动终端04,通过云服务器03与控制终端02无线通信连接。
可选地,移动终端04,用于通过云服务器03获取到控制终端02和空气净化器主机01所有反馈数据。
可选地,控制终端04包括:
外壳3、操控单元1和主控单元2;
操控单元1和主控单元2电性连接,主控单元2设置在外壳3内部,操控单元1设置在外壳3表面;
主控单元2包括:
主控板21、通信模块22和空气质量检测传感器23;
通信模块22和空气质量检测传感器23与主控板21电性连接;
其中,通信模块22与空气净化器主机无线通信连接,空气质量检测传感器23用于将检测到的空气质量通过主控板21在操控单元1的显示屏进行显示,主控板21用于根据操控单元1反馈的信号进行对应的信号处理,使得空气净化器主机通过获取到通信模块22发送的指令进行对应的操作处理。
进一步地,空气质量检测传感器23包括二氧化碳传感器、甲醛传感器、PM2.5传感器、温度传感器和湿度传感器。
进一步地,空气净化器主机01内设置有温度传感器和湿度传感器。
进一步地,空气净化器主机01的壳体的顶部设有触摸环20,触摸环20上设有感应PCB板22,感应PCB板22与电机电性连接,例如图3所示,触摸环20上设有感应PCB板22,感应PCB板22与电机电性连接,电机用于驱动导风装置的扇叶转动,当空气净化器主机01处于工作模式时,当触摸环20上的感应PCB板22接收到一定速度的触摸信号时,感应PCB板22控制电机转动,进而电机带动扇叶以一定的速度转动。
进一步地,感应PCB板上设置有复数个触控传感器;
触控传感器,用于将触控触摸环获取的触控动作信号发送至空气净化器主机01的控制单元进行触控动作的角度变化的确定,并根据角度变化与预置的风速变化级别进行匹配,使得控制单元控制风机根据匹配结果进行出风量的操作。
进一步地,可选地,通信模块包括蓝牙通信部件和wifi通信部件;
蓝牙通信部件与空气净化器主机的通信模组无线连接;
wifi通信部件与云服务器03、移动终端04无线通信连接。
进一步地,操控单元1包括触摸显示屏,电性连接有光敏传感器和位置传感器。
需要说明的是,本发明是基于在控制终端02内置入多种传感器并可以进行云操控的全智能空气净化器。由空气净化器主机01、独立的控制终端02和移动终端04(如手机)组成。空气净化器主机01内置温、湿度传感器,配备无线通讯模组用于和监测控制器通讯;控制终端02内置PM2.5(含独立PM10监测通道)、甲醛、二氧化碳、VOC传感器,用于监测其 所在位置的空气质量。其内部还配备无线通讯模组用于和净化器主机通讯、WiFi通讯模组用于通过WiFi网络连接到云端,再下传到所预连的智能终端(如手机)。控制终端02还配备触摸屏进行交互操作,配备光敏传感器根据环境光自动调节其屏幕亮度。控制终端02还配备可充电电池,可独立作为监测仪使用,用于实现用户随时随地监测空气质量的需求;移动终端04(如手机)上的APP可以实现远程查看与控制。
本实施例中,通过空气净化器主机01根据控制终端02传输的控制指令进行对应的指令执行操作,控制终端02将其内部的空气质量传感器检测的空气质量数据,以及空气净化器主机01返回的工作状态数据上传至云服务器03进行记录,实现了云端净化器系统的操作,便于后续对于用户、环境空气质量等的整体管控,解决了目前的空气净化器为单一的主机,其工作模式较为单一,已经无法满足大众的需求,不够智能化,造成的体验性低的技术问题。
如图2和图4所示,控制终端02的主控单元2还包括:
定时控制单元24,用于控制空气质量检测传感器22对环境空气质量进行连续检测或预置时长检测。
主控单元2还包括:
模式选择模块25,用于获取到通过操控单元1选择的模式指令,并将模式指令传输给主控板21控制空气净化器主机进行与模式指令相对的工作模式,模式指令包括智能模式、睡眠模式、强风模式和手动模式。
主控单元2还包括:
标准选择模块26,用于对获取到通过操控单元1选择的标准工作指令,并将标准工作指令传输给主控板21控制空气净化器主机进行与标准工作指令相对应的标准工作。
需要说明的是,通信模块22与空气净化器主机无线通信连接可以是通过配对方法进行配对连接,例如监控器(主控单元2)与主机通过特殊的蓝牙无线连接方式协同工作,使用需要联机配对方法如下:
1、长按监控器开/关键开机,主机插上电源并显示绿灯。
2、逆时针滑动空气净化器主机的触摸环使主机绿灯缓慢闪烁,单指长 按空气净化器主机的触摸环上标记五秒以上,直至绿灯快速连续闪烁后移开手指,此时主机进入为时30秒的配对模式。
3、进入自动配对流程;
4、配对成功后,主机电源/状态指示灯变为白色,空气净化器系统提示“配对成功”。
二氧化碳传感器、甲醛传感器、PM2.5传感器、温度传感器和湿度传感器的检测方式可以是如下:
监测二氧化碳(CO2)浓度、甲醛浓度、PM2.5浓度,并自动遥控净化器主机将PM2.5和甲醛浓度控制在健康范围。在和主机配对后还可以监测温度和湿度。
本监控器将监测的空气质量分为六个等级:优、良、中、差、劣、危。
点击“CO2”为二氧化碳浓度。<1000ppm为优,超出建议开窗通风。数值的稳定大约需要40秒。
点击“PM2.5”为显示PM2.5的实时测量值。数值的稳定大约需要20秒。中国标准75μg/m3以下为良;美国标准为35μg/m3以下。
注意:监控器屏幕左上方的背后是PM2.5传感器的进气口,如需测量气流中的PM2.5浓度,应使此口对准且迎向气流方向。
点击“甲醛”为甲醛浓度。中国标准≤0.08mg/m3为合格;美国则要求≤0.06mg/m3
点击“温度”为显示净化器主机所在位置的温度。
点击“湿度”为显示净化器主机所在位置的相对湿度。
点击“连续测量”,监控器会连续监测5分钟,否则点击屏幕监控器只测量1分钟。
智能模式、睡眠模式、强风模式和手动模式的切换如下:
智能模式:根据实时室内空气质量,全智能自动调节主机风速;
睡眠模式:超低噪音运行,营造舒适睡眠环境(非智能模式,主机持续以此速度运行);
强风模式:全速运行,快速净化(非智能模式,快速运行90分钟后自动切换为中速运行);
手动模式:可手动调节主机风速返回模式选择界面返回监控器
标准选择:根据需要选择空气质量标准(国标或美国标准)来作为控制净化器工作的标准。选择美国标准,净化器将更强力地工作,尤其是在夜间。
本实施例中,通过通信模块22与空气净化器主机无线通信连接,空气质量检测传感器23用于将检测到的空气质量通过主控板21在操控单元1的显示屏进行显示,主控板21用于根据操控单元1反馈的信号进行对应的信号处理,使得空气净化器主机通过获取到通信模块22发送的指令进行对应的操作处理,解决了目前的空气净化器的控制部件都是与净化器主机为一体式结构,且空气质量检测传感器也相应地设置在净化器主机中,导致的控制不方便,体验性低,空气质量的检测并非真实的当前环境空气质量的技术问题。
实际应用中,控制终端02的功能有多种,下面分别进行描述:
一、传感器工作方法;
201、获取到内部的RTC时钟指示的当前时间段;
本实施例中,为了使得空气净化器的传感器间歇式工作,首先需要获取到内部的RTC时钟指示的当前时间段。
202、根据当前时间段确定传感器工作模式,若为白日时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照4分钟至6分钟时间段控制传感器掉电停止工作,进行每小时工作10周期的往复控制处理;
当获取到内部的RTC时钟指示的当前时间段之后,需要根据当前时间段确定传感器工作模式,若为白日时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照4分钟至6分钟时间段控制传感器掉电停止工作,进行每小时工作10周期的往复控制处理。
203、判断传感器连续工作第三预置周期所检测的空气质量是否小于预置阈值,若是,则执行步骤204;
当为白日时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照4分钟至6分钟时间段控制传感器掉电停止工作,进行每小时工作10周期的往复控制处理之后,需要判断传感器连续工作第三预置周期所检测 的空气质量是否小于预置阈值,若是,则执行步骤204。
204、控制传感器按照1分钟至2分钟时间段连续工作,按照10分钟至12分钟时间段控制传感器掉电停止工作,进行每小时工作5周期的往复控制处理;
当判断传感器连续工作第三预置周期所检测的空气质量小于预置阈值,则控制传感器按照1分钟至2分钟时间段连续工作,按照10分钟至12分钟时间段控制传感器掉电停止工作,进行每小时工作5周期的往复控制处理。
205、若为夜间时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照10分钟至12分钟时间段控制传感器掉电停止工作,进行每小时工作5周期的往复控制处理;
当根据当前时间段确定传感器工作模式,若为夜间时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照10分钟至12分钟时间段控制传感器掉电停止工作,进行每小时工作5周期的往复控制处理。
206、判断传感器连续工作第三预置周期所检测的空气质量是否小于预置阈值,若是,则执行步骤207;
当为夜间时间段,则控制传感器按照1分钟至2分钟时间段连续工作,按照10分钟至12分钟时间段控制传感器掉电停止工作,进行每小时工作5周期的往复控制处理之后,需要判断传感器连续工作第三预置周期所检测的空气质量是否小于预置阈值,若是,则执行步骤207。
207、控制传感器按照1分钟至2分钟时间段连续工作,按照18分钟至20分钟时间段控制传感器掉电停止工作,进行每小时工作3周期的往复控制处理。
当判断传感器连续工作第三预置周期所检测的空气质量小于预置阈值,则控制传感器按照1分钟至2分钟时间段连续工作,按照18分钟至20分钟时间段控制传感器掉电停止工作,进行每小时工作3周期的往复控制处理。
二、滤网寿命判断
301、获取到通过PM10传感器检测的PM10值,与通过PM2.5传感 器检测的PM2.5值,与通过甲醛传感器检测的甲醛值;
本实施例中,当需要确定净化器的滤网是否需要更换时,首先需要获取到通过PM10传感器检测的PM10值,与通过PM2.5传感器检测的PM2.5值,与通过甲醛传感器检测的甲醛值。
302、获取到单位时间的风机出风量;
当获取到通过PM10传感器检测的PM10值,与通过PM2.5传感器检测的PM2.5值,与通过甲醛传感器检测的甲醛值之后,需要获取到单位时间的风机出风量。
303、根据第一预置公式PM2.5值×单位时间的风机出风量×预置PM2.5吸收率计算出PM2.5对应的第一实际容尘量;
当步骤302和步骤303之后,需要根据第一预置公式PM2.5值×单位时间的风机出风量×预置PM2.5吸收率计算出PM2.5对应的第一实际容尘量。
304、根据第三预置公式第一实际容尘量÷滤网容尘量计算出滤芯消耗比例;
当根据第一预置公式PM2.5值×单位时间的风机出风量×预置PM2.5吸收率计算出PM2.5对应的第一实际容尘量之后,需要根据第三预置公式第一实际容尘量÷滤网容尘量计算出滤芯消耗比例。
305、若HEPA滤网消耗比例满足更换HEPA滤网阈值,则进行HEPA滤网更换提示;
当根据第三预置公式第一实际容尘量÷滤网容尘量计算出滤芯消耗比例之后,需要若HEPA滤网消耗比例满足更换HEPA滤网阈值,则进行HEPA滤网更换提示。
306、根据第二预置公式PM10值×单位时间的风机出风量×预置PM10吸收率计算出PM10对应的第二实际容尘量;
当步骤302和步骤303之后,需要根据第二预置公式PM10值×单位时间的风机出风量×预置PM10吸收率计算出PM10对应的第二实际容尘量。
307、根据第四预置公式第二实际容尘量÷滤网容尘量计算出初滤网消 耗比例;
当根据第二预置公式PM10值×单位时间的风机出风量×预置PM10吸收率计算出PM10对应的第二实际容尘量之后,需要根据第四预置公式第二实际容尘量÷滤网容尘量计算出初滤网消耗比例。
308、若初滤网消耗比例满足初滤网清洗阈值,则进行初滤网清洗提示;
当根据第四预置公式第二实际容尘量÷滤网容尘量计算出初滤网消耗比例之后,若初滤网消耗比例满足初滤网清洗阈值,则进行初滤网清洗提示。
309、根据第五预置公式甲醛值×单位时间的风机出风量×预置甲醛值吸收率计算出甲醛对应的活性炭吸附量;
当步骤302和步骤303之后,需要根据第五预置公式甲醛值×单位时间的风机出风量×预置甲醛值吸收率计算出甲醛对应的活性炭吸附量。
310、根据第六预置公式活性炭吸附量÷活性炭总吸附量计算出活性炭消耗比例;
当根据第五预置公式甲醛值×单位时间的风机出风量×预置甲醛值吸收率计算出甲醛对应的活性炭吸附量之后,需要根据第六预置公式活性炭吸附量÷活性炭总吸附量计算出活性炭消耗比例。
311、活性炭消耗比例满足更换活性炭阈值,则进行活性炭滤网更换提示。
当根据第六预置公式活性炭吸附量÷活性炭总吸附量计算出活性炭消耗比例之后,活性炭消耗比例满足更换活性炭阈值,则进行活性炭滤网更换提示。
监测控制器通过监测PM2.5、PM10等参数,结合净化器实时风量可以计算出比较精确的尘埃量,以此再依据HEPA滤网的容尘量就随时可以得知HEPA滤网的耗损比例,达到设定使用寿命则提示用户更换HEPA滤网;监测控制器通过对甲醛含量的监测,配合实时风量和活性炭总吸附量就可得知活性炭滤网的寿命状态,准确提醒用户更换;监测控制器通过对PM10的监测,再结合净化器实时风量就可得知初滤网的使用状态,准确及时提醒用户清洁预滤网。
PM2.5滤网寿命的计算方法是:实际活性炭总吸附量÷总容尘量=滤网消耗比例。
实际容尘量=环境PM2.5读数×单位时间的风量×PM2.5吸收率;
当主机与检测控制器连接时,环境PM2.5读数由控制器测试得到,并回传给主机;当主机与检测控制器断开独立工作时,主机会以固定的PM2.5读数来估算实际容尘量。
活性炭滤网寿命的计算方法是:实际活性炭吸附量÷活性炭总吸附量=活性炭滤网消耗比例。
实际吸附量=环境甲醛读数×单位时间的风量×甲醛吸收率;
当主机与检测控制器连接时,环境甲醛读数由控制器测试得到,并回传给主机;当主机与检测控制器断开独立工作时,主机会以固定的甲醛读数来估算实际吸附量。需要说明的是,活性炭滤网寿命有2年的限制,实际按主机上电工作开始累加,最长不超过2年。
需要说明的是,本实施例中的滤网的消耗比例可以进一步根据滤网消耗比例公式(滤网实际工作时间/滤网寿命限制时间)*第一比例系数+(实际吸收量/总吸收量)*第二比例系数计算获取;
其中,第一比例系数为0~100%,第二比例系数为100%~0,第一比例系数与第二比例系数之和为1。
下面以活性炭滤网为例进行说明。
本实施例中的活性炭滤网的限制寿命为2年,以每天12小时的工作时间来估算,则为12小时*365天*2年=8000小时;
本实例中活性炭滤网在理想状态下可以达到的总吸附量为2800mg;
活性炭滤网的更换阈值为95%;
那么活性炭滤网的消耗比例为(∑工作时间/8000)*60%-(∑吸附量/2800)*40%,其中的60%和40%是我们的经验值。
当这个消耗比例达到95%时,空气净化器发出活性炭滤网更换提示。
解决的技术问题:
滤网本身是有寿命限制的,若空气质量长时间为忧,滤网虽然在很长一段时间内没有有效吸附污染物,但随着时间推移,滤网本身也会有损耗 的,因此要用空气净化器的工作时间来进行修正。
比如,环境污染物为甲醛,但PM2.5一直为0,那么空气净化器会一直工作,活性炭滤网一直进行吸附工作,HEPA滤网没有进行过滤,但也会有损耗。
比如,环境污染物为甲醛,但PM2.5一直为0,那么空气净化器会一直工作,活性炭滤网一直进行吸附工作,HEPA滤网没有进行过滤,但也会有损耗。
三、开窗检测方法
401、获取到开启空气净化器开窗检测的指令;
本实施例中,当需要确定当前是否开窗时,首先需要获取到开启空气净化器开窗检测的指令。
402、确定空气净化器处于工作状态;
当获取到开启空气净化器开窗检测的指令之后,需要确定空气净化器处于工作状态。
403、对当前空气环境进行预置时长的二氧化碳含量的检测,并将每次检测的二氧化碳含量进行保存;
当确定空气净化器处于工作状态之后,需要对当前空气环境进行预置时长的二氧化碳含量的检测,并将每次检测的二氧化碳含量进行保存。
404、对检测到二氧化碳含量,结合预置时长计算出二氧化碳含量的变化速率;
当对当前空气环境进行预置时长的二氧化碳含量的检测,并将每次检测的二氧化碳含量进行保存之后,需要对检测到二氧化碳含量,结合预置时长计算出二氧化碳含量的变化速率。
405、当二氧化碳含量增长,且满足预置增长值,则确定门窗未开启,继续维持空气净化器处于工作状态;
当二氧化碳含量增长,且满足预置增长值,则确定门窗未开启,继续维持空气净化器处于工作状态。
406、当二氧化碳含量下降时,判断二氧化碳含量的变化速率是否达到预置下降速率,若是,则进行门窗开启的预警提示,并在预置预警提示时 间段后控制空气净化器停机。
当二氧化碳含量下降时,判断二氧化碳含量的变化速率是否达到预置下降速率,若是,则进行门窗开启的预警提示,并在预置预警提示时间段后控制空气净化器停机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器 (ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种空气净化器系统,其特征在于,包括:
    空气净化器主机、控制终端和云服务器;
    所述空气净化器主机与所述控制终端无线通信连接,所述控制终端和所述云服务器无线通信连接;
    所述空气净化器主机根据所述控制终端传输的控制指令进行对应的指令执行操作,所述控制终端将其内部的空气质量传感器检测的空气质量数据,以及所述空气净化器主机返回的工作状态数据上传至所述云服务器进行记录。
  2. 根据权利要求1所述的空气净化器系统,其特征在于,所述空气净化器系统还包括:
    移动终端,通过所述云服务器与所述控制终端无线通信连接。
  3. 根据权利要求2所述的空气净化器系统,其特征在于,所述移动终端,用于通过所述云服务器获取到所述控制终端和所述空气净化器主机所有反馈数据。
  4. 根据权利要求3所述的空气净化器系统,其特征在于,所述控制终端包括:
    外壳、操控单元和主控单元;
    所述操控单元和所述主控单元电性连接,所述主控单元设置在所述外壳内部,所述操控单元设置在所述外壳表面;
    所述主控单元包括:
    主控板、通信模块和空气质量检测传感器;
    所述通信模块和所述空气质量检测传感器与所述主控板电性连接
  5. 根据权利要求4所述的空气净化器系统,其特征在于,所述空气质量检测传感器包括二氧化碳传感器、甲醛传感器、PM2.5传感器。
  6. 根据权利要求1所述的空气净化器系统,其特征在于,所述空气净化器主机内设置有温度传感器和湿度传感器。
  7. 根据权利要求4所述的空气净化器系统,其特征在于,所述空气净化器主机的壳体的顶部设有触摸环,所述触摸环上设有感应PCB板,所述 感应PCB板与所述电机电性连接。
  8. 根据权利要求7所述的空气净化器系统,其特征在于,所述感应PCB板上设置有复数个触控传感器;
    所述触控传感器,用于将触控所述触摸环获取的触控动作信号发送至所述空气净化器主机的控制单元进行所述触控动作的角度变化的确定,并根据所述角度变化与预置的风速变化级别进行匹配,使得所述控制单元控制风机根据匹配结果进行出风量的操作。
  9. 根据权利要求4所述的空气净化器系统,其特征在于,所述通信模块包括蓝牙通信部件和wifi通信部件;
    所述蓝牙通信部件与所述空气净化器主机的通信模组无线连接;
    所述wifi通信部件与云服务器、所述移动终端无线通信连接。
  10. 根据权利要求9所述的空气净化器系统,其特征在于,所述操控单元包括触摸显示屏,电性连接有光敏传感器及位置传感器。
PCT/CN2016/093940 2016-01-13 2016-08-08 一种空气净化器系统 WO2017121107A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610024497.XA CN105465971B (zh) 2016-01-13 2016-01-13 一种空气净化器系统
CN201610024497.X 2016-01-13

Publications (1)

Publication Number Publication Date
WO2017121107A1 true WO2017121107A1 (zh) 2017-07-20

Family

ID=55603948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093940 WO2017121107A1 (zh) 2016-01-13 2016-08-08 一种空气净化器系统

Country Status (2)

Country Link
CN (1) CN105465971B (zh)
WO (1) WO2017121107A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114811916A (zh) * 2022-04-14 2022-07-29 福州美美环保科技有限公司 一种空气智控方法及系统
RU2777914C2 (ru) * 2020-12-30 2022-08-11 Акционерное общество "Тион Умный микроклимат" Конструкция воздухоочистительного устройства и система управления им
EP4124805A1 (en) * 2021-07-29 2023-02-01 Carrier Corporation Intelligent environmental air management system

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105465972B (zh) 2016-01-13 2018-07-24 东莞市利发爱尔空气净化系统有限公司 一种控制空气净化器的传感器工作方法及装置
CN105465971B (zh) * 2016-01-13 2019-03-19 东莞市利发爱尔空气净化系统有限公司 一种空气净化器系统
CN105953307A (zh) * 2016-04-29 2016-09-21 昆山初本电子科技有限公司 可远程控制的家用空气净化系统及控制方法
CN105929719A (zh) * 2016-06-08 2016-09-07 东莞市利发爱尔空气净化系统有限公司 一种基于净化器的数据通信方法及装置
CN106949540A (zh) * 2017-03-17 2017-07-14 四川万康节能环保科技有限公司 一种具有灭菌和热交换装置的空气净化器系统
CN107040882A (zh) * 2017-04-26 2017-08-11 北京望远迅杰科技有限公司 净化器与智能终端、净化器与服务器后台之间的通信方法
CN107121450B (zh) * 2017-05-02 2021-05-04 北京小米移动软件有限公司 空气净化设备、滤芯的检测方法及装置
CN107192092A (zh) * 2017-05-18 2017-09-22 深圳市海和高新技术有限公司 智能家居的空气净化方法及系统
WO2018209647A1 (zh) * 2017-05-18 2018-11-22 深圳市海和高新技术有限公司 智能家居的空气净化方法及系统
CN109556238A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556201A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556198A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556252A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556199A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556197A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN109556200A (zh) * 2017-09-22 2019-04-02 浙江绍兴苏泊尔生活电器有限公司 空气净化系统和方法
CN107707651A (zh) * 2017-09-29 2018-02-16 北京海克智动科技开发有限公司 包含外设移动监测控制器的新风机的数据传输系统
CN108180594B (zh) * 2017-12-27 2020-04-07 北京众清科技有限公司 一种净化器间歇启停方法及装置
CN110207339A (zh) * 2018-05-07 2019-09-06 西安中科恒境环保科技有限公司 一种风量自动调节系统及风量自动调节方法
CN108960446A (zh) * 2018-06-29 2018-12-07 广东美的环境电器制造有限公司 一种信息处理方法、终端和计算机存储介质
CN110320328A (zh) * 2019-06-21 2019-10-11 珠海格力电器股份有限公司 一种甲醛浓度检测方法、装置及空气净化器
CN110393985A (zh) * 2019-07-26 2019-11-01 好空气科技发展有限公司 基于损耗计算的净化器滤芯更换方法
CN113494752A (zh) * 2020-04-07 2021-10-12 汤秉辉 空气清净机系统
CN112161345A (zh) * 2020-10-14 2021-01-01 昆山清阳净化系统工程有限公司 一种空气净化系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200998442Y (zh) * 2007-01-12 2008-01-02 深圳创维-Rgb电子有限公司 一种带感应式按键的空气净化消毒机
US20120079119A1 (en) * 2010-09-24 2012-03-29 Sunbir Gill Interacting with cloud-based applications using unrelated devices
CN203464435U (zh) * 2013-06-26 2014-03-05 宁波奥克斯空调有限公司 一种家用空气净化器遥控器
CN103941665A (zh) * 2013-12-31 2014-07-23 海尔集团公司 家电控制装置与家电设备的控制方法
CN104048387A (zh) * 2014-07-08 2014-09-17 陈南 空气净化器的调节控制方法、装置、系统及空气净化器
CN104596050A (zh) * 2014-12-31 2015-05-06 东莞市炜奥环保科技有限公司 基于云平台的智能空气净化器远程监控系统
CN204347601U (zh) * 2015-01-28 2015-05-20 李和平 一种基于物联网与云计算的家居生活环境监测终端
CN105465971A (zh) * 2016-01-13 2016-04-06 东莞市利发爱尔空气净化系统有限公司 一种空气净化器系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015109418A1 (zh) * 2014-01-24 2015-07-30 巫国谊 一种具有无线远程控制功能的净化器
CN103841191A (zh) * 2014-02-28 2014-06-04 陕西清馨环保科技有限公司 一种智能手机与空气净化器的互联通信系统及方法
CN103925676A (zh) * 2014-04-14 2014-07-16 陕西清馨环保科技有限公司 一种空气净化器智能云端平台
CN104075422A (zh) * 2014-07-09 2014-10-01 刘明湖 智能物联空气净化器
CN204678488U (zh) * 2015-02-13 2015-09-30 北京佳艺徕经贸有限责任公司 智能多媒体空气净化系统
CN205536374U (zh) * 2016-01-13 2016-08-31 东莞市利发爱尔空气净化系统有限公司 一种空气净化器系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN200998442Y (zh) * 2007-01-12 2008-01-02 深圳创维-Rgb电子有限公司 一种带感应式按键的空气净化消毒机
US20120079119A1 (en) * 2010-09-24 2012-03-29 Sunbir Gill Interacting with cloud-based applications using unrelated devices
CN203464435U (zh) * 2013-06-26 2014-03-05 宁波奥克斯空调有限公司 一种家用空气净化器遥控器
CN103941665A (zh) * 2013-12-31 2014-07-23 海尔集团公司 家电控制装置与家电设备的控制方法
CN104048387A (zh) * 2014-07-08 2014-09-17 陈南 空气净化器的调节控制方法、装置、系统及空气净化器
CN104596050A (zh) * 2014-12-31 2015-05-06 东莞市炜奥环保科技有限公司 基于云平台的智能空气净化器远程监控系统
CN204347601U (zh) * 2015-01-28 2015-05-20 李和平 一种基于物联网与云计算的家居生活环境监测终端
CN105465971A (zh) * 2016-01-13 2016-04-06 东莞市利发爱尔空气净化系统有限公司 一种空气净化器系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777914C2 (ru) * 2020-12-30 2022-08-11 Акционерное общество "Тион Умный микроклимат" Конструкция воздухоочистительного устройства и система управления им
EP4124805A1 (en) * 2021-07-29 2023-02-01 Carrier Corporation Intelligent environmental air management system
CN114811916A (zh) * 2022-04-14 2022-07-29 福州美美环保科技有限公司 一种空气智控方法及系统

Also Published As

Publication number Publication date
CN105465971B (zh) 2019-03-19
CN105465971A (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
WO2017121107A1 (zh) 一种空气净化器系统
CN205536374U (zh) 一种空气净化器系统
CN205940640U (zh) 一种室内空气质量检测报警器
CN102927667B (zh) 一种家用室内空气处理装置
CN203571895U (zh) 一种移动式检测的室内空气净化机
CN103528137A (zh) 一种移动式检测的室内空气净化机及其控制系统
CN107166548B (zh) 基于无线的智能化复合式空气净化器系统及其控制方法
CN103105195A (zh) 一种净化器的空气质量检测及显示装置
CN204084618U (zh) 一种室内空气净化机
CN204240536U (zh) 一种设置有无线网络的智能空气净化器
CN104006459A (zh) 一种空气净化机
CN108968806B (zh) 吸尘器的调速方法、装置、调速系统及存储介质
CN201103967Y (zh) 一种自动除尘空调器
CN104515549A (zh) 一种室内环境质量监测及控制系统
CN111023442A (zh) 空气净化设备净化效率风险识别、滤网重置提醒系统及方法
CN105444378A (zh) 一种空气净化器控制装置及其控制方法
CN107044685A (zh) 一种新风补偿与净化二合一空气净化器
CN104748304A (zh) 一种室内空气加湿、除湿系统
CN204987360U (zh) 一种带遥控功能的可移动空气净化器
CN203506597U (zh) 一种具有蓝牙功能的智能空气质量检测吸尘器
CN202630307U (zh) 一种可监测滤网积灰的空调机组检测机构
CN205383698U (zh) 一种空气净化器
CN204717906U (zh) 一种具有路径自学习功能的空气净化器
CN204574253U (zh) 一种空气净化系统
CN208504642U (zh) 窗式室内新风除尘系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884661

Country of ref document: EP

Kind code of ref document: A1