WO2017121082A1 - 生物检测装置及其加工方法 - Google Patents

生物检测装置及其加工方法 Download PDF

Info

Publication number
WO2017121082A1
WO2017121082A1 PCT/CN2016/089440 CN2016089440W WO2017121082A1 WO 2017121082 A1 WO2017121082 A1 WO 2017121082A1 CN 2016089440 W CN2016089440 W CN 2016089440W WO 2017121082 A1 WO2017121082 A1 WO 2017121082A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
chip
light emitter
light
photoelectric converter
Prior art date
Application number
PCT/CN2016/089440
Other languages
English (en)
French (fr)
Inventor
侯侣
张胜斌
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to EP16871745.2A priority Critical patent/EP3236387A4/en
Priority to KR1020177013811A priority patent/KR102032883B1/ko
Priority to US15/610,618 priority patent/US10367114B2/en
Publication of WO2017121082A1 publication Critical patent/WO2017121082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1382Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger
    • G06V40/1394Detecting the live character of the finger, i.e. distinguishing from a fake or cadaver finger using acquisition arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/40Spoof detection, e.g. liveness detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/70Multimodal biometrics, e.g. combining information from different biometric modalities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14678Contact-type imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors

Definitions

  • the invention relates to the field of biological detection, in particular to a biological detection device and a processing method thereof.
  • the fingerprint recognition module for fingerprint recognition and the optical module for performing heart rate detection, living body detection or press detection on the living body are separate devices, so that the user is inconvenient to carry, and the flexibility of use is not high, and The fingerprint recognition module is easily cracked by the prosthesis.
  • the invention provides a biological detecting device and a method for processing the biological detecting device, so that the biological detecting device can recognize fingerprints and detect other features of the living body, thereby improving user portability and flexible use of the biological detecting device. Degree, while preventing fingerprint recognition from being cracked by the prosthesis.
  • a biodetection device comprises a chip, a light emitter, a circuit board and a cover layer; the chip comprises a photoelectric converter, the cover layer covers the chip, the photoelectric converter and the light emitter; the cover layer transmits light emitted by the photoelectric emitter; The converter receives the light emitted by the light emitter and is reflected back to the object to be detected through the cover layer and then reflected back through the cover layer; the photoelectric converter emits the light emitted by the light emitter to the object to be detected and then passes through the cover layer.
  • the reflected light is photoelectrically converted to obtain an electrical signal;
  • the fingerprint detecting chip detects the object to be detected according to the electrical signal converted by the photoelectric converter;
  • the circuit board provides a communication channel and power supply for the chip, the light emitter and the photoelectric converter.
  • the light emitter is integrated on a chip.
  • the cover layer includes a protective layer and a color layer, and the adhesion between the protective layer and the color layer is greater than or equal to 3B;
  • the light emitted by the light emitter has a light transmittance greater than or equal to 30% for protecting the color layer; all or part of the color layer has a light transmittance of 30% or more for the light emitted by the light emitter,
  • the color layer has a thickness ranging from 5 nanometers to 50 micrometers, and the color layer has a dielectric constant greater than 2, and the color layer is used to provide the appearance color of the biodetection device.
  • the protective layer is a cover plate made of glass, sapphire, ceramic, acrylic or plastic.
  • the cover layer is attached to the chip, the photoelectric converter, and the light emitter by glue or film, and the thickness of the glue ranges from 5 micrometers to 150 micrometers, the electrical constant ranges from 1 to 10, and the light transmittance is 90% or more.
  • the protective layer is a hardness layer
  • the hardness layer has a thickness ranging from 2 micrometers to 25 micrometers
  • the Mohs hardness is greater than or equal to 3
  • the dielectric constant range is 1 to 10.
  • the light emitter emits at least one of infrared light and red light.
  • the color layer comprises at least one layer of infrared ray (IR) ink, each layer of IR ink having a light transmittance of greater than or equal to 30% for light emitted by the light emitter.
  • the light emitter emits at least one of infrared light and red light.
  • the color layer includes at least one layer of IR ink and at least one layer of conventional ink, and each layer of the IR ink has a light transmittance of light emitted from the light emitter of greater than or equal to 30%, and at least one layer of conventional ink is partially opened.
  • the photoelectric converter is specifically configured to receive the portion of the aperture formed by the light emitter and transmitted through at least one layer of the IR ink and the at least one conventional ink, and the protective layer is irradiated to the object to be detected, and then passes through the protective layer. And a portion of the at least one conventional ink opening and at least one layer of IR ink reflected back.
  • the cover layer includes a film, and all or part of the film has a transmittance greater than or greater than light emitted by the light emitter Equal to 30%.
  • the chip is soldered to the circuit board by solder paste or silver paste using a planar soldering technique, and the solder paste between the chip and the circuit board Or the thickness of the silver paste ranges from 20 microns to 120 microns.
  • the biodetection device further includes a collar that is soldered to the circuit by solder paste or silver paste using a planar soldering technique
  • the thickness of the solder paste or silver paste between the collar and the board is 40 micrometers. Meters up to 140 microns, the collar surrounds the chip, light emitter and photoelectric converter.
  • the chip performs fingerprint detection, heart rate detection, pressure detection, button detection, blood oxygen detection, and blood pressure according to the electrical signal to be detected. Detection or / and in vivo detection.
  • the biodetection device of the present invention integrates an optical module for detecting a living body and a device for fingerprint recognition, so that the biometric detecting device can recognize both the fingerprint and other features of the living body, that is, one
  • the detecting device can perform a plurality of functions, thereby improving the portability of the user and the flexibility of use of the biodetecting device, while preventing the fingerprint recognition from being cracked by the prosthesis.
  • a method of processing a biodetection device comprising a chip, a light emitter, a circuit board, and a cover layer.
  • the cover layer is used for transmitting light emitted by the light emitter;
  • the photoelectric converter is configured to receive light emitted by the light emitter and irradiated to the object to be detected through the cover layer and reflected back through the cover layer;
  • the photoelectric conversion is performed on the reflected light to obtain an electrical signal;
  • the chip is used for detecting the object to be detected according to the electrical signal;
  • the circuit board is used for providing a communication channel and power supply for the chip, the light emitter and the photoelectric conversion.
  • the processing method includes: integrating a photoelectric converter on a chip; fixing the chip on the circuit board; and covering the chip on the chip, the photoelectric converter, and the light emitter.
  • the processing method further includes: integrating the light emitter on the chip.
  • the specific embodiment of covering the cover layer on the chip, the photoelectric converter and the light emitter is: silk screen printing or spraying ink on the cover plate, So that the ink forms a color layer, the color layer forms a cover layer with the cover plate, the adhesion between the color layer and the cover plate is greater than or equal to 3B, and the cover material is glass, sapphire, ceramic, acrylic or plastic, and the cover plate is light.
  • the transmittance of the light emitted by the emitter is greater than or equal to 30%, and the transmittance of all or part of the color layer to the light emitted by the light emitter is greater than or equal to 30%, and the thickness of the color layer ranges from 5 nanometers to 50 micrometers.
  • the color layer has a dielectric constant greater than two.
  • the cover layer is attached to the chip, the photoelectric converter and the light emitter by glue or film, the thickness of the glue ranges from 5 micrometers to 150 micrometers, and the dielectric constant of the glue ranges from 1 to 10, and the transmittance of the glue is light. More than or equal to 90%.
  • a specific implementation manner of covering a cover layer on a chip, a photoelectric converter, and a light emitter is: in a chip, the photoelectric conversion And screen printing or spraying ink on the light emitter, the ink forming a color layer, the adhesion between the color layer and the chip, the photoelectric converter and the light emitter is greater than Or equal to 3B, all or part of the color layer has a light transmittance of 30% or more for light emitted by the light emitter, and the color layer has a thickness ranging from 5 nanometers to 50 micrometers, the color layer a dielectric constant greater than 2; a hardness layer is screen printed on the color layer, an adhesion between the color layer and the hardness layer is greater than or equal to 3B, and the hardness layer has a thickness ranging from 2 micrometers to 25 micrometers.
  • the hardness layer has a Mohs hardness of 3 or more, and the hardness layer
  • the light emitter is used to emit infrared light.
  • the specific embodiment of silk-screening or spraying ink on the cover plate comprises: silk-screening or spraying at least one layer of infrared IR ink on the cover plate; or silk-screening or spraying at least one layer of infrared IR ink and at least one layer of conventional ink on the cover plate. And opening a hole in a partial position of at least one layer of conventional ink.
  • the light emitter is used to emit infrared light and red light.
  • the specific embodiment of silk-screening or spraying ink on the cover plate is: silk-screening or spraying at least one layer of conventional ink on the cover plate; and opening at a local position of at least one layer of conventional ink.
  • the light emitter is used to emit infrared light.
  • the specific embodiment of screen printing or spraying ink on the chip, the photoelectric converter and the light emitter is: silk printing or spraying at least one layer of infrared IR ink on the chip, the photoelectric converter and the light emitter; or in the chip, the photoelectric converter and the light
  • the emitter is screen printed or sprayed with at least one layer of infrared IR ink and at least one layer of conventional ink, and is apertured at a localized location of the at least one layer of conventional ink.
  • a light emitter is used to emit infrared light and red light.
  • the specific embodiment of screen printing or spraying ink on the chip, the photoelectric converter and the light emitter is: silk printing or spraying at least one layer of conventional ink on the chip, the photoelectric converter and the light emitter; at a local position of at least one layer of conventional ink Open the hole.
  • the cover layer is overlaid on the chip, the photoelectric converter, and the light emitter, including: silk screen printing on a transparent or translucent film or Thermal transfer ink, film and ink having a light transmittance of greater than or equal to 30% for light emitted by the light emitter; or partially perforated on the colored film such that the film of the apertured portion emits light to the light emitter The light transmittance is greater than or equal to 30%; the film is covered on the chip, the photoelectric converter or the light emitter.
  • the chip is fixed on the circuit board, comprising: soldering the chip to the circuit board through solder paste or silver paste by using a planar soldering technique, and the thickness of the solder paste or the silver paste between the chip and the circuit board ranges from 20 micrometers to 120 degrees. Micron.
  • the biometric device further includes a collar.
  • the processing method further comprises: soldering the collar to the circuit board by solder paste or silver paste by using a planar soldering technique, and the thickness of the solder paste or the silver paste between the collar and the circuit board ranges from 40 micrometers to 140 micrometers; Chips, light emitters and photoelectric converters.
  • the biological detection device processed by the processing method of the present invention integrates an optical module for detecting a living body and a device for fingerprint recognition, so that the biological detecting device can recognize both the fingerprint and the biological body.
  • Other features that is, one detecting device can perform a plurality of functions, thereby improving user portability and flexibility of use of the biodetecting device while preventing fingerprint recognition from being cracked by the prosthesis.
  • FIG. 1 is a schematic structural view of a prior art fingerprint identification device.
  • Fig. 2 is a schematic cross-sectional view showing the structure of a biological detecting device according to an embodiment of the present invention.
  • Fig. 3 is a schematic cross-sectional view showing the structure of a biological detecting device according to still another embodiment of the present invention.
  • Figure 4 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • Figure 6 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • Figure 8 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • the prior art fingerprint recognition device includes a fingerprint recognition chip 101, a circuit board 102, a ring 103, a cover plate 104, and a color layer 105.
  • the fingerprint recognition chip 101 is soldered to the circuit board 102.
  • the fingerprint recognition chip 101 is covered with a color layer 105, and the color of the color layer 105 matches the appearance color of the device on which the fingerprint recognition device is mounted.
  • the color layer 105 is covered with a cover plate 104 to protect the color layer 105 and the fingerprint recognition chip 101.
  • the fingerprint identification chip 101, the color layer 105, and the cover plate 104 are surrounded by a collar 103.
  • the collar 103 is also soldered to the circuit board 102.
  • the cover plate 104 can also be replaced by a hardness layer.
  • the existing fingerprint identification device is used for fingerprint recognition, has a single function, and is easily cracked by the prosthesis.
  • Some existing optical modules can be used to detect various features of the living body. If the user needs to recognize the fingerprint and perform the feature detection, the fingerprint identification device and the detection device with the optical module are respectively required to be carried, which is inconvenient to carry. And use is not flexible.
  • the present invention therefore proposes to integrate the fingerprint recognition device with the optical module for detection to form a unitary biodetection device.
  • biodetection device and the method of processing the biodetection device according to the embodiment of the present invention will be specifically described below with reference to FIGS. 2 to 8.
  • Fig. 2 is a schematic cross-sectional view showing the structure of a biological detecting device according to an embodiment of the present invention.
  • the biodetection device includes a cover layer 201, a light emitter 202, a photoelectric converter 203, a chip 204, and a circuit board 205.
  • the cover layer 201 is capable of transmitting light emitted by the light emitter. Moreover, the cover layer can also provide the appearance color of the biodetection device, that is, the appearance color that the biodetection device finally displays to the user is mainly determined by the cover layer 201.
  • the cover layer 201 can absorb light of certain wavelengths and allow certain specific wavelengths of light to pass through, so as to selectively transmit light emitted by the light emitter, ensuring a certain transmittance to the useful light and useless light. Has a certain absorption capacity.
  • the overlay 201 provides an appearance color that matches the appearance color of the device in which the biodetection device is mounted.
  • the cover layer 201 can be covered on the chip 204, and the photoelectric conversion The converter 203 and the light emitter 202 are on.
  • the light emitter 202 is used to provide a light source, and may be a single package or a plurality of packages, and may include one or more light emitting wavelength chips.
  • the light emitted by the light emitter 202 has a wavelength ranging from 390 nanometers (nm) to 1300 nm.
  • the light emitter 202 is mainly used to emit light having a wavelength of 525 nm, 625 nm, 720 nm, 840 nm or 950 nm.
  • the cover layer 201 When the light emitted by the light emitter 202 passes through the cover layer 201 overlying it, it is irradiated to the living creature to be detected (such as the finger shown in FIG. 2), and then reflected back and passed over the photoelectric converter 203. The cover layer 201 finally reaches the photoelectric converter 203.
  • the light emitter 202 may be directly fixed on the circuit board 205, or the light emitter 202 may be first integrated on the chip 204, and then the chip 204 may be fixed on the circuit board 205.
  • the deflection angle and flatness of the light emitter 202 need to be strictly controlled.
  • the horizontal rotation angle is less than 2°
  • the height difference between the two terminals in the vertical direction is less than 10 micrometers.
  • the photoelectric converter 203 is configured to receive the light emitted by the light emitter 202 and reach the photoelectric converter 203 after a series of propagation processes (as shown by the arrow in FIG. 2, the light propagation process), and receive the light. Photoelectric conversion is performed to obtain an electrical signal.
  • the photoelectric converter 203 is integrated inside the chip 204, and then the chip 204 is fixed on the circuit board 205. And a certain distance between the light emitter and the photoelectric converter is required, for example, the distance between the light emitter and the photoelectric converter is controlled between 2 mm and 9 mm.
  • the chip 204 includes a series of circuits for performing fingerprint recognition and other detection of an object to be detected according to the electrical signal converted by the photoelectric converter 203, such as detecting a heart rate of the object to be detected according to the electrical signal, performing a living body detection on the object to be detected or Press detection or other detection. That is, the entire biodetection device can implement fingerprint recognition and other detection functions.
  • the chip 204 can perform fingerprint recognition and other detection functions at the same time, or can perform fingerprint recognition and other detection functions separately.
  • the chip 204 is fixed to the circuit board 205.
  • the photoelectric converter 203 is integrated on the chip 204, which is just an example. However, in practice, the photoelectric converter may not be integrated on the chip 204, which is not limited in the present invention.
  • the circuit board 205 is used to carry the chip 204, the photoelectric converter 203, and the light emitter 202 while providing communication channels and power for the chip 204, the photoelectric converter 203, and the light emitter 202.
  • Chip 204, the photoelectric converter 203 and the light emitter 202 are directly or indirectly fixed on the circuit board 205.
  • the biodetection device of the present invention integrates an optical module for detecting a living body and a device for fingerprint recognition, so that the biometric detecting device can recognize both the fingerprint and other features of the living body, that is, one
  • the detecting device can perform a plurality of functions, thereby improving the portability of the user and the flexibility of use of the biodetecting device, while preventing the fingerprint recognition from being cracked by the prosthesis.
  • the cover layer may be a color layer with hardness, and may also include a color layer and a protective layer, and the protective layer has hardness.
  • the adhesion between the protective layer and the color layer is generally greater than or equal to 3B in the American Society for Testing and Materials (ASTM) standard "ASTM D3359-1997 Paint Adhesion Test".
  • the light transmittance of the color layer and the protective layer to the light emitted by the light emitter needs to be greater than or equal to 30%, which ensures that the light emitted by the light emitter 202 passes through the cover layer 201.
  • the photoelectric converter 203 mainly receives a partial color layer and a protective layer which are emitted by the light emitter 202 and transmitted through the color layer to the light emitted from the light emitter 202 by a light transmittance of 30% or more. After the object to be detected, the light reflected from the partial color layer of the light emitted by the light emitter 202 on the protective layer and the color layer is greater than or equal to 30%.
  • the protective layer may be a cover plate or a hardness layer or the like.
  • the cover layer may also include a special film such as an antireflection film, a filter film, an infrared film or a unidirectional film.
  • the film may be a transparent or translucent film coated with an IR ink or a conventional colored film.
  • the cover layer comprises a transparent or translucent film
  • it is processed by silk screen printing or thermal transfer of special infrared penetrating ink such as IR black ink and IR blue ink.
  • the ink thickness is controlled between 5 microns and 30 microns and the light transmission is greater than or equal to 30%; the film is then attached to the chip.
  • the pores have a diameter between 5 microns and 50 microns, a pore spacing ranging from 10 microns to 100 microns, and a light transmission greater than or equal to 30%.
  • the cover layer may also include a film of a special material.
  • a film made of a material that can transmit infrared light such as an acrylic material, can be used.
  • the cover layer comprises a film
  • the transmittance of light emitted by the light emitter is greater than or equal to 30%, and the material having both hardness and color covers the chip, the light emitter, and the light.
  • the electrical converter acts as a cover layer.
  • Fig. 3 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • the same reference numerals in FIG. 3 as those in FIG. 2 denote the same meanings, and are not described herein again.
  • the photoemitter 202 is directly fixed on the circuit board 205, and the protective layer is a cover plate 302, that is, the cover layer includes a color layer 301 and a cover plate 302.
  • the color layer 301 is used to provide the appearance color of the biodetection device, that is, the appearance color that the biodetection device finally displays to the user is mainly determined by the color layer 301.
  • the color layer 301 can absorb light of certain wavelengths and allow certain specific wavelengths of light to pass through, so as to selectively transmit light emitted by the light emitter, ensuring a certain transmittance to the useful light and useless light. Has a certain absorption capacity. In most cases, the color layer 301 provides an appearance color that matches the appearance color of the device in which the biodetection device is mounted.
  • the color layer 301 needs to have a transmittance of light greater than or equal to 30% for the light emitted by the light emitter 202, and the color layer 301 has a thickness ranging from 5 nanometers to 50 micrometers and a dielectric constant greater than two.
  • the cover plate 302 is made of a transparent semiconductor material and a non-transparent material, and is generally made of glass, sapphire, ceramic, acrylic or plastic.
  • the light transmittance of the light emitted by the cover plate 302 to the light emitter 202 is preferably greater than or equal to 30%.
  • the color layer 301 is attached to the cover plate 302, and the color layer 301 is connected to the chip 204, the photoelectric converter 203, and the light emitter 202 by glue or a film to be adhesive.
  • the thickness of the glue or film ranges from 5 micrometers. To 150 microns, the dielectric constant ranges from 1 to 10, and the light transmission to the light emitter can be greater than or equal to 90%.
  • the glue or film needs to have good physical and chemical stability, adhesion, minimal thermal expansion coefficient and water absorption. In most cases, sufficient glue is used to fill the top and periphery of the light emitter 202 to reduce color layer shedding and deformation of the cover.
  • the color layer 301 may be in close contact with the surface of the chip 204, or the cover plate 302 may be in close contact with the surface of the chip 204.
  • the cover layer of the embodiment of the present invention and the chip and the light emitter can also be connected by other means, and the comparison of the present invention is not limited.
  • Fig. 4 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • the same reference numerals in FIG. 4 and FIG. 3 denote the same meanings, and are not described herein again. 4 differs from the biodetection device shown in FIG. 3 in that both the light emitter 202 and the photoelectric converter 203 are integrated on the chip 204 to be indirectly fixed to the circuit board 205.
  • Fig. 5 is a schematic cross-sectional view showing the structure of a biological detecting device according to another embodiment of the present invention.
  • the same reference numerals in FIG. 5 as those in FIG. 4 denote the same meanings, and are not described herein again.
  • 5 is different from the biodetection device shown in FIG. 4 in that the protective layer is a hardness layer, that is, the cover layer includes a color layer 301 and a hardness layer 501.
  • the hardness layer 501 has a thickness ranging from 2 micrometers to 25 micrometers, a Mohs hardness of 3 or more, a dielectric constant ranging from 1 to 10, and a light transmittance to light emitted from the light emitter of 30% or more.
  • the color layer 301 is attached to the chip 204 by spraying.
  • the adhesion between the color layer 301 and the chip 204 is generally greater than or equal to 3B in the American Society for Testing and Materials (ASTM) standard "ASTM D3359-1997 Paint Adhesion Test”. .
  • the hardness layer 501 is attached to the color layer 301 by spraying.
  • a cover layer including a hardness layer and a color layer is often used to cover the chip, the photoelectric converter, and the light emitter.
  • the biodetection device may further comprise a collar.
  • the collar can be soldered to the circuit board 205 by solder paste or silver paste using planar soldering techniques.
  • the thickness of the solder paste or silver paste between the collar and the circuit board 205 ranges from 40 microns to 140 microns.
  • the collar surrounds the chip 104, the light emitter 202, and the photoelectric converter 203.
  • the glue is generally used between the collar and the light emitter and the photoelectric converter to increase the fixation between the three; when the light emitter is integrated on the chip, the chip is fixed in the circuit.
  • glue is generally used between the collar and the chip to increase the fixation between the two.
  • the glue used has a dielectric constant ranging from 1 to 10, a transmittance to light emitted from the light emitter of greater than or equal to 90%, and good physical and chemical stability, a small coefficient of thermal expansion, and water absorption.
  • FIG. 6 is a cross-sectional view of the biodetection device including the collar 601
  • FIG. 6 is a cross-sectional view of the biodetection device including the collar 701 as shown in FIG.
  • a cross-sectional view of the biodetection device including the collar 801 is shown in FIG.
  • the same reference numerals in FIGS. 6, 7, and 8 as those in FIGS. 3, 4, and 5 respectively denote the same meanings, and are not described herein again.
  • the collar 601 There may or may not be a gap between the collar 701 or the collar 801 and the chip 204, the color layer 301, the cover 302 or the hardness layer 501 and/or the light emitter, which is not limited in the present invention.
  • the light emitter 202 can emit infrared light or simultaneously emit infrared light and red light.
  • the color layer 301 may include one or more layers of IR ink; or may include at least one layer of IR ink and at least one layer of conventional ink, but the local position of the conventional ink requires opening, such that light Most of the infrared light emitted by the emitter 202 can pass through the opening.
  • the color layer 301 may include one or more layers of conventional ink. At this time, the local position of the conventional ink needs to be opened, so that most of the infrared light emitted by the light emitter 202 can be Pass through the hole.
  • the shape of the opening of the local position of the above conventional ink can be made into various patterns as needed.
  • the color layer can be made into black, white, red, gold, silver, pink, etc. according to the color requirements of the color layer.
  • the light emitter 202 emits infrared light or emits infrared light and emits red light
  • a black color layer and a white color layer are processed on the cover plate as an example to describe a processing method for generating a color layer on the cover.
  • a process for processing a black color layer on the cover is to screen two layers of black IR ink on the cover.
  • two layers of special black IR ink are screen printed directly on the cover or sprayed with IR black ink.
  • the total thickness of the IR black ink can be controlled between 5 microns and 18 microns with a light transmission greater than or equal to 30%.
  • Another process for processing a black color layer on the cover when the light emitter 202 emits infrared light is to screen a layer of ultra-black IR ink and a layer of conventional black ink on the cover.
  • the light emitter 202 and the photoelectric converter 203 are avoided, and the total thickness of the black ink can be controlled between 5 ⁇ m and 30 ⁇ m, and the light transmittance is 30% or more.
  • a processing process for processing a black color layer on the cover plate is to screen two layers of conventional ink on the cover plate, and then open the hole at the local position of the conventional black ink to avoid light.
  • the emitter 202 and the photoelectric converter 203 are such that the punched portion can transmit light emitted by the light emitter 202 and the photoelectric converter 203 can receive light.
  • a process for processing a white color layer on the cover is to screen two layers of conventional white ink and a layer of gray ink on the cover.
  • Gray ink is a special IR gray ink formulated by IR ink.
  • the thickness of the white ink ranges from 8 microns to 20 microns and the thickness of the gray ink ranges from 4 microns to 10 microns.
  • the white color layer on the cover plate When the light emitter 202 emits infrared light, another processing technique for processing the white color layer on the cover plate is: silk-screening three layers of white ink and a layer of gray ink on the cover plate, and then partially opening or engraving the ink.
  • Various patterns circumvent the light emitter 202 and the photoelectric converter 203.
  • the pores have a diameter of from 5 micrometers to 50 micrometers, and the pore spacing ranges from 10 micrometers to 100 micrometers, depending on the specific requirements.
  • the white ink thickness is controlled between 12 micrometers and 30 micrometers
  • the gray ink thickness is controlled between 4 micrometers and 10 micrometers
  • the light transmittance is 30% or more.
  • the light emitter 202 emits infrared light and red light
  • another processing technique for processing a white color layer on the cover is to screen three or four layers of conventional white ink on the cover plate at a local position of the conventional white ink.
  • the aperture evades the light emitter 202 and the photoelectric converter 203.
  • the evasion size ranges from 0.2 mm to 1.5 mm
  • the perforation diameter ranges from 5 microns to 50 microns
  • the inter-hole distance ranges from 10 microns to 100 microns
  • the total ink thickness ranges from 15 microns to 40 microns.
  • the multilayer IR ink and the hardness layer can be screen printed on the chip, the specific steps are: direct silk printing on the chip or spraying IR black, and then in the IR ink.
  • Silk screen hardness layer The total thickness of the IR black ink is controlled to be 10 micrometers to 80 micrometers, and the thickness of the hardness layer is controlled to be 5 micrometers to 15 micrometers, and the light transmittance is 30% or more.
  • the light emitter 202 when processing the black color layer on the chip, it is also possible to directly screen or spray black ink on the chip, and silk-print the hardness layer on the black ink, and then open the hole at the local position to avoid the light emitter.
  • the local avoidance size ranges from 0.2 mm to 1.5 mm
  • the perforation diameter is 5 to 50 microns
  • the inter-hole distance ranges from 10 microns to 100 microns
  • the black ink has a thickness of 20 to 40 microns.
  • the white ink layer can be processed on the chip, and the conventional ink and hardness layer process can be screen printed on the chip.
  • the specific steps are: direct silk printing or spraying white ink on the chip, silk screen printing on the white ink.
  • the hardness layer is then partially evaded at the corresponding position of the light emitter and the photoelectric converter to make a small hole.
  • the thickness of the white ink is controlled between 10 micrometers and 80 micrometers, and the light transmittance is greater than or equal to 30%.
  • the conventional ink and hardness layer process can be screen printed on the chip when the black color layer is processed on the chip.
  • the specific steps are: direct silk printing on the chip or black ink sprayed on the chip.
  • the ink is screen printed on the hardness layer, and then partially evaded at the corresponding position of the light emitter and the photoelectric converter to make a small hole.
  • the pores have a diameter between 5 microns and 50 microns. Hole
  • Hole The pitch ranges from 10 micrometers to 100 micrometers, and the size of the pattern depends on the specific requirements.
  • the thickness of the black ink is controlled between 15 micrometers and 80 micrometers, and the light transmittance is greater than or equal to 30%.
  • the conventional ink and hardness layer process can be screen printed on the chip, the specific steps are: direct silk printing on the chip or spraying white ink, in white
  • the ink is screen printed on the hardness layer, and then partially evaded at the corresponding position of the light emitter and the photoelectric converter to make a small hole.
  • the pores have a diameter between 5 microns and 50 microns.
  • the pitch of the holes ranges from 10 micrometers to 100 micrometers, and the size of the pattern depends on the specific requirements.
  • the thickness of the white ink is controlled between 10 micrometers and 80 micrometers, and the light transmittance is greater than or equal to 30%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

一种生物检测装置及其加工方法,该生物检测装置包括芯片(204)、光发射器(202)、电路板(205)和覆盖层(201)。芯片(204)包括光电转换器(203),覆盖层(201)覆盖于芯片(204)、光电转换器(203)和光发射器(202)上;覆盖层(201)是透光的;光发射器(202)发射光;光电转换器(203)接收光发射器(202)发射的光;光电转换器(203)还用于对光进行光电转化,得到电信号;芯片(204)根据电信号对待检测物体进行检测;电路板(205)为芯片(204)和光发射器(202)提供通信通道和供电。提高用户的便携性和该生物检测装置的使用灵活度,同时防止指纹识别被假体破解。

Description

生物检测装置及其加工方法
本申请要求于2016年01月14日提交中国专利局、申请号为201610027073.9、发明名称为“生物检测装置及其加工方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及生物检测领域,尤其涉及一种生物检测装置及其加工方法。
背景技术
现有技术中,用于指纹识别的指纹识别模块和用于对生物体进行心率检测、活体检测或按压检测等的光学模块为分开的装置,使得用户携带不便,使用的灵活度不高,而且指纹识别模块容易被假体破解。
发明内容
本发明提供一种生物检测装置和加工该生物检测装置的方法,使得该生物检测装置既能识别指纹,又能检测生物体的其他特征,从而提高用户的便携性和该生物检测装置的使用灵活度,同时防止指纹识别被假体破解。
第一方面,提供了一种生物检测装置。该生物检测装置包括芯片、光发射器、电路板和覆盖层;该芯片包括光电转换器,覆盖层覆盖于芯片、光电转换器和光发射器上;覆盖层透过光电发射器发射的光;光电转换器接收光发射器发射的、并透过覆盖层照射到待检测物体后又透过覆盖层反射回的光;光电转换器对光发射器发射的照射到待检测物体后又透过覆盖层反射回的光进行光电转化,以得到电信号;指纹检测芯片根据光电转换器转换的电信号对待检测物体进行检测;电路板为该芯片、光发射器和光电转换器提供通信通道和供电。
结合第一方面,在第一种可能的实现方式中,光发射器集成在芯片上。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,覆盖层包括保护层和颜色层,保护层与颜色层之间的附着力大于或等于3B;保护层对光发射器发射的光的透光率大于或等于30%,用于保护所述颜色层;颜色层的全部或部分对光发射器发射的光的透光率大于或等于30%,颜 色层的厚度范围为5纳米至50微米,颜色层的介电常数大于2,颜色层用于提供生物检测装置的外观颜色。
结合第二种可能的实现方式,在第三种可能的实现方式中,保护层为盖板,该盖板的材质为玻璃、蓝宝石、陶瓷、亚克力或塑胶。此时,覆盖层通过胶水或薄膜连接在芯片、光电转换器和光发射器上,胶水的厚度范围为5微米至150微米,电常数的范围为1至10,透光率大于等于90%。
结合第二种可能的实现方式,在第四种可能的实现方式中,保护层为硬度层,硬度层的厚度范围为2微米至25微米,莫氏硬度大于或等于3,介电常数范围为1至10。此时,颜色层通过喷涂方式附着在芯片、光电转换器和光发射器上,颜色层与芯片、光电转换器和光发射器上之间的附着力大于或等于3B,硬度层通过喷涂方式附着在颜色层上。
结合第二至第四中任意一种可能的实现方式,在第五种可能的实现方式中,光发射器发射红外光、红光中的至少一种。对应地,颜色层包括至少一层红外线(Infrared Ray,IR)油墨,每层IR油墨对光发射器发射的光的透光率大于或等于30%。
结合第二至第四中任意一种可能的实现方式,在第六种可能的实现方式中,光发射器发射红外光、红光中的至少一种。此时,颜色层包括至少一层IR油墨和至少一层常规油墨,每层IR油墨对光发射器发射的光的透光率大于或等于30%,至少一层常规油墨的局部位置开孔。相应地,光电转换器具体用于接收光发射器发射的、并透过至少一层IR油墨和至少一层常规油墨上开孔的部分及保护层照射到待检测物体后,又透过保护层和至少一层常规油墨上开孔的部分及至少一层IR油墨反射回的光。
结合第一方面或第一种可能的实现方式,在第七种可能的实现方式中,所述覆盖层包括薄膜,所述薄膜的全部或部分对光发射器发射的光的透光率大于或等于30%。
结合第一方面或其以上任意一种可能的实现方式,在第八种可能的实现方式中,芯片利用平面焊接技术通过锡膏或银浆焊接到电路板上,芯片与电路板间的锡膏或银浆的厚度范围为20微米至120微米。
结合第一方面或其以上任意一种可能的实现方式,在第九种可能的实现方式中,该生物检测装置还包括套环,该套环利用平面焊接技术通过锡膏或银浆焊接到电路板上,该套环与电路板间的锡膏或银浆的厚度范围为40微 米至140微米,该套环环绕芯片、光发射器和光电转换器。
结合第一方面或其以上任意一种可能的实现方式,在第十种可能的实现方式中,芯片根据电信号对待检测物体进行指纹检测、心率检测、压力检测、按键检测、血氧检测、血压检测或/和活体检测。
本发明的生物检测装置通过将用于对生物体进行检测的光学模块和用于指纹识别的装置集成到一起,使得该生物检测装置既能识别指纹,又能检测生物体的其他特征,即一个检测装置能够完成多个功能,从而提高用户的便携性和该生物检测装置的使用灵活度,同时防止指纹识别被假体破解。
第二方面,提供了一种生物检测装置的加工方法,该生物检测装置包括芯片、光发射器、电路板和覆盖层。覆盖层用于透过光发射器发射的光;光电转换器用于接收光发射器发射的、并透过覆盖层照射到待检测物体后又透过覆盖层反射回的光;光电转换器还用于对反射回的光进行光电转化,得到电信号;芯片用于根据电信号对待检测物体进行检测;电路板用于为芯片、光发射器和光电转换提供通信通道和供电。该加工方法包括:在芯片上集成光电转换器;将芯片固定在电路板上;将覆盖层覆盖在芯片、光电转换器和光发射器上。
结合第二方面,在第一种可能的实现方式中,该加工方法还包括:将光发射器集成在芯片上。
结合第二方面或第一种实现方式,在第二种可能的实现方式中,将覆盖层覆盖于芯片、光电转换器和光发射器上的具体实施方式为:在盖板上丝印或喷涂油墨,以使得油墨形成颜色层,颜色层与盖板形成覆盖层,颜色层与盖板之间的附着力大于或等于3B,盖板的材质为玻璃、蓝宝石、陶瓷、亚克力或塑胶,盖板对光发射器发射的光的透光率大于或等于30%,颜色层的全部或部分对光发射器发射的光的透光率大于或等于30%,颜色层的厚度范围为5纳米至50微米,颜色层的介电常数大于2。此时,将覆盖层通过胶水或薄膜连接在芯片、光电转换器和光发射器上,胶水的厚度范围为5微米至150微米,胶水的介电常数的范围为1至10,胶水的透光率大于等于90%。
结合第二方面或第一种可能的实现方式,在第三种可能的实现方式中,将覆盖层覆盖于芯片、光电转换器和光发射器上的具体实施方式为:在芯片、所述光电转换器和所述光发射器上丝印或喷涂油墨,所述油墨形成颜色层,所述颜色层与所述芯片、所述光电转换器和所述光发射器之间的附着力大于 或等于3B,所述颜色层的全部或部分对所述光发射器发射的光的透光率大于或等于30%,所述颜色层的厚度范围为5纳米至50微米,所述颜色层的介电常数大于2;在所述颜色层上丝印硬度层,所述颜色层与所述硬度层之间的附着力大于或等于3B,所述硬度层的厚度范围为2微米至25微米,所述硬度层的莫氏硬度大于或等于3,所述硬度层的介电常数范围为1至10。
结合第二种可能的实现方式,在第四种可能的实现方式中,光发射器用于发射红外光。其中,在盖板上丝印或喷涂油墨的具体实施方式包括:在盖板上丝印或喷涂至少一层红外线IR油墨;或在盖板上丝印或喷涂至少一层红外线IR油墨和至少一层常规油墨,并在至少一层常规油墨的局部位置开孔。
结合第二种可能的实现方式,在第五种可能的实现方式中,光发射器用于发射红外光和红光。其中,在盖板上丝印或喷涂油墨的具体实施方式为:在盖板上丝印或喷涂至少一层常规油墨;在至少一层常规油墨的局部位置开孔。
结合第三种可能的实现方式,在第六种可能的实现方式中,光发射器用于发射红外光。其中,在芯片、光电转换器和光发射器上丝印或喷涂油墨的具体实施方式为:在芯片、光电转换器和光发射器上丝印或喷涂至少一层红外线IR油墨;或在芯片、光电转换器和光发射器上丝印或喷涂至少一层红外线IR油墨和至少一层常规油墨,并在所述至少一层常规油墨的局部位置开孔。
结合第三种可能的实现方式,在第七种可能的实现方式中,光发射器用于发射红外光和红光。其中,在芯片、光电转换器和光发射器上丝印或喷涂油墨的具体实施方式为:在芯片、光电转换器和光发射器上丝印或喷涂至少一层常规油墨;在至少一层常规油墨的局部位置开孔。
结合第二方面或第一种可能的实现方式,在第八种可能的实现方式中,将覆盖层覆盖在芯片、光电转换器和光发射器上,包括:在透明或者半透明的薄膜上丝印或者热转印油墨,薄膜和油墨对光发射器发射的光的透光率大于或等于30%;或在带颜色的薄膜上局部带孔,使得打孔部分的薄膜对光发射器发射的光的透光率大于或等于30%;将薄膜覆盖于芯片、光电转换器或光发射器上。
结合第二方面或以上任意一种可能的实现方式,在第九种可能的实现方 式中,将芯片固定在电路板上,包括:利用平面焊接技术通过锡膏或银浆将芯片焊接到电路板上,芯片与电路板间的锡膏或银浆的厚度范围为20微米至120微米。
结合第二方面或其以上任意一种可能的实现方式,在第十种可能的实现方式中,生物检测装置还包括套环。该加工方法还包括:利用平面焊接技术通过锡膏或银浆将套环焊接到电路板上,套环与电路板间的锡膏或银浆的厚度范围为40微米至140微米;套环环绕芯片、光发射器和光电转换器。
本发明的加工方法加工的生物检测装置,通过将用于对生物体进行检测的光学模块和用于指纹识别的装置集成到一起,使得该生物检测装置既能识别指纹,又能检测生物体的其他特征,即一个检测装置能够完成多个功能,从而提高用户的便携性和该生物检测装置的使用灵活度,同时防止指纹识别被假体破解。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术的指纹识别装置的结构示意图。
图2是本发明一个实施例的生物检测装置的结构示意剖面图。
图3是本发明又一个实施例的生物检测装置的结构示意剖面图。
图4是本发明另一个实施例的生物检测装置的结构示意剖面图。
图5是本发明另一个实施例的生物检测装置的结构示意剖面图。
图6是本发明另一个实施例的生物检测装置的结构示意剖面图。
图7是本发明另一个实施例的生物检测装置的结构示意剖面图。
图8是本发明另一个实施例的生物检测装置的结构示意剖面图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为了更好地理解本发明实施例的生物检测装置,下面先结合图1介绍一下现有的指纹识别装置的结构。
如图1所示,现有技术的指纹识别装置包括指纹识别芯片101,电路板102、套环(Ring)103、盖板104和颜色层105。指纹识别芯片101焊接在电路板102上。指纹识别芯片101上覆盖有颜色层105,颜色层105的颜色与安装指纹识别装置的设备的外观颜色匹配。颜色层105上覆盖有盖板104,以保护颜色层105和指纹识别芯片101。指纹识别芯片101、颜色层105及盖板104四周环绕有套环103。套环103也焊接在电路板102上。其中,盖板104也可以换为硬度层。
从上述现有的指纹识别装置的结构可以看出,现有指纹识别装置用于进行指纹识别,功能单一,且容易被假体破解。
现有的一些光学模块可以用于检测生物体的各项特征,如果用户既需要识别指纹,又需要进行特征检测,则需要分别携带指纹识别装置和安装有光学模块的检测装置,导致携带不方便和使用不灵活。因此本发明提出了将指纹识别装置与用于检测的光学模块集成到一起,形成一个整体的生物检测装置。
下面结合图2至图8具体介绍本发明实施例的生物检测装置和加工该生物检测装置的方法。
图2所示为本发明一个实施例的生物检测装置的结构示意剖面图。如图2所示,该生物检测装置包括覆盖层201、光发射器202、光电转换器203、芯片204和电路板205。
覆盖层201能够透过光发射器发射的光。而且,覆盖层还可以提供该生物检测装置的外观颜色,即该生物检测装置最后向用户显示的外观颜色主要由覆盖层201决定。覆盖层201可以吸收某些波长的光线和能让某些特定波长的光线透过,以便于对光发射器发出的光做选择性传播,保证对有用光具有一定的透过率和对无用光具有一定的吸收能力。
多数情况下,覆盖层201提供的外观颜色与该生物检测装置所安装的设备的外观颜色匹配。
在加工该生物检测装置时,可以将覆盖层201覆盖在芯片204、光电转 换器203和光发射器202上。
光发射器202用于提供光源,可以为单个封装体或者多个封装体,可以包含一个或多个发光波长芯片。光发射器202发射的光的波长范围为390纳米(nm)至1300nm。现阶段,光发射器202主要用于发射波长为525nm、625nm、720nm、840nm或950nm的光。
当光发射器202发射的光透过覆盖在其上方的覆盖层201,照射到待检测的生物(如图2中所示的指头)后,反射回来又透过覆盖在光电转换器203上方的覆盖层201,最后到达光电转换器203。
在加工该生物检测装置时,光发射器202可以直接固定在电路板205上,也可以先将光发射器202集成在芯片204上,然后再将芯片204固定在电路板205上。当光发射器202直接固定在电路板205上时,在焊接光发射器202时,需要严格控制其偏转角度和平整度。一般来说,其水平面旋转角度小于2°,垂直方向两个端子高度差小于10微米。
光电转换器203用于接收光发射器202发射的经过一系列传播过程后到达光电转换器203的光(如图2中的箭头所示即为光的传播过程),并对接收到的这些光进行光电转换,以得到电信号。
在加工该生物检测装置时,光电转换器203集成在芯片204内部,然后再将芯片204固定在电路板205上。且光发射器与光电转换器之间需要保证一定的距离,如光发射器与光电转换器之间的距离控制在2毫米至9毫米之间。
芯片204包含一系列的电路,用于根据光电转换器203转换所得的电信号进行指纹识别和进行待检测物体的其他检测,如根据电信号检测待检测物体的心率,对待检测物体进行活体检测或按压检测或其他的检测。即使得整个生物检测装置可以实现指纹识别和其他检测功能。芯片204可以同时执行指纹识别和其他检测功能,也可以是分别执行指纹识别和其他检测功能。
在加工该生物检测装置时,将芯片204固定在电路板205上。
本发明实施例中,光电转换器203集成在了芯片204上,这只是一种示例。但实际上,光电转换器也可以不集成在芯片204上,本发明对此不作限制。
电路板205用于承载芯片204、光电转换器203和光发射器202,同时为芯片204、光电转换器203和光发射器202提供通信通道和供电。即芯片 204、光电转换器203和光发射器202直接或间接固定在电路板205上。
本发明的生物检测装置通过将用于对生物体进行检测的光学模块和用于指纹识别的装置集成到一起,使得该生物检测装置既能识别指纹,又能检测生物体的其他特征,即一个检测装置能够完成多个功能,从而提高用户的便携性和该生物检测装置的使用灵活度,同时防止指纹识别被假体破解。
本发明实施例中,可选地,覆盖层可以是一层带有硬度的颜色层,也可以包括颜色层和保护层,保护层带有硬度。保护层和颜色层之间的附着力在水煮百格后一般大于等于美国材料与试验协会(American Society for Testing and Materials,ASTM)的标准《ASTM D3359-1997油漆附着力测试》中的3B。颜色层和保护层对所述光发射器发射的光的透光率需要大于或等于30%,这样能够保证光发射器202发射的光透过覆盖层201。此时,光电转换器203主要接收的是光发射器202发射的、并透过颜色层上对光发射器202发射的光的透光率大于或等于30%的部分颜色层和保护层照射到待检测物体后,又透过保护层和颜色层上对光发射器202发射的光的透光率大于或等于30%的部分颜色层反射回的光。可选地,保护层可以是盖板或硬度层等。
在本发明实施例中,覆盖层也可以包括特殊的薄膜,如镀增透膜、过滤膜、红外膜或单向膜等。该薄膜可以是透明或半透明的喷涂了IR油墨的薄膜,也可以是普通带颜色的薄膜。
当覆盖层包括透明或者半透明的薄膜时,其加工方法为:在薄膜上丝印或者热转印特殊透红外光油墨,如IR黑色油墨和IR蓝色油墨等。油墨厚度控制在5微米至30微米之间,透光率要大于或等于30%;然后将薄膜粘贴在芯片上。当然也可以现将薄膜粘贴在芯片上,然后再在薄膜上丝印或热转印特殊油墨。
当覆盖层包括带颜色薄膜时,还需要在薄膜上局部打孔或者做特殊图案的方式实现透光。孔的直径在5微米至50微米间,孔间距范围为10微米至100微米,透光率要大于或等于30%。
覆盖层也可以包括特殊材质的薄膜。如当光发射器发射红外光时,可以使用能透红外光的材料制成的薄膜,如亚克力材料。
当覆盖层包括薄膜时,一般还需要加强薄膜表面硬度,以保护该薄膜。
在本发明实施例中,可选地,还可以将对光发射器发射的光的透过率大于或等于30%的,且既有硬度又带有颜色的材料覆盖在芯片、光发射器和光 电转换器上作为覆盖层。
图3是本发明另一个实施例的生物检测装置的结构示意剖面图。图3中与图2中相同的附图标记表示相同的含义,此处不再赘述。如图3所示,光电发射器202直接固定在电路板205上,保护层为盖板302,即覆盖层包括颜色层301和盖板302。
颜色层301用于提供该生物检测装置的外观颜色,即该生物检测装置最后向用户显示的外观颜色主要由颜色层301决定。颜色层301可以吸收某些波长的光线和能让某些特定波长的光线透过,以便于对光发射器发出的光做选择性传播,保证对有用光具有一定的透过率和对无用光具有一定的吸收能力。多数情况下,颜色层301提供的外观颜色与该生物检测装置所安装的设备的外观颜色匹配。
通常情况下,颜色层301的全部或部分对光发射器202发射的光的透光率需要大于或等于30%,且颜色层301的厚度范围为5纳米至50微米,介电常数大于2。
盖板302为透明半导体材质和非透明材质,一般可选用玻璃、蓝宝石、陶瓷、亚克力或塑胶材质等。盖板302对光发射器202发射的光的透光率最好大于或等于30%。
本发明实施例中,颜色层301附着在盖板302上,颜色层301通过胶水或待粘性的薄膜连接在芯片204、光电转换器203和光发射器202上,胶水或薄膜的厚度范围为5微米至150微米,介电常数的范围为1至10,对光发射器发出的光的透光率可以大于或等于90%。且胶水或薄膜需具备良好的物理和化学稳定性、粘接力、极小的热膨胀系数和吸水性。多数情况下,会在光发射器202的顶部及四周用足够的胶水填充,以减少颜色层脱落和盖板的变形。
覆盖层覆盖在芯片204和光发射器202上时,可以是颜色层301紧贴芯片204表面,也可以是盖板302紧贴芯片204表面。而且,本发明实施例的覆盖层与芯片和光发射器之间也可以通过其他方式连接,本发明对比不作限制。
应理解的是,图3所示的结构示意剖面图中,光发射器202与芯片204和颜色层301之间有间隙,这只是为了更好地体现光发射器202没有固定在芯片204上,而是直接固定在电路板205上。本发明对光发射器202与芯片 204与颜色层301之间是否有空隙不作限制。
图4为本发明另一个实施例的生物检测装置的结构示意剖面图。图4与图3中相同的附图标记表示相同的含义,此处不再赘述。图4与图3所示的生物检测装置的不同之处在于,光发射器202和光电转换器203均集成在芯片204上,从而间接地固定在电路板205上。
图5是本发明另一个实施例的生物检测装置的结构示意剖面图。图5中与图4中相同的附图标记表示相同的含义,此处不再赘述。图5与图4所示的生物检测装置的不同之处在于,保护层为硬度层,即覆盖层包括颜色层301和硬度层501。
硬度层501的厚度范围为2微米至25微米,莫氏硬度大于或等于3,介电常数范围为1至10,对光发射器发出的光的透光率大于或等于30%。
此时,颜色层301通过喷涂方式附着在芯片204。颜色层301与芯片204之间的附着力在水煮百格后一般大于等于美国材料与试验协会(American Society for Testing and Materials,ASTM)的标准《ASTM D3359-1997油漆附着力测试》中的3B。硬度层501通过喷涂方式附着在颜色层301上。
在光发射器集成在芯片上时,多采用包括硬度层和颜色层的覆盖层来覆盖芯片、光电转换器和光发射器。
在上述本发明的实施例中,生物检测装置还可以包括套环。套环可以利用平面焊接技术通过锡膏或银浆焊接到电路板205上。套环与电路板205间的锡膏或银浆的厚度范围为40微米至140微米。套环环绕芯片104、光发射器202和光电转换器203。
当光发射器直接固定在电路板上时,一般在套环与光发射器和光电转换器间使用胶水增加三者之间的固定性;当光发射器集成在芯片上,芯片再固定在电路板上,一般在套环与芯片间使用胶水增加二者之间的固定性。所使用的胶水的介电常数范围为1至10,对光发射器发出的光的透过率大于或等于90%,同时具备良好的物理和化学稳定性、较小的热膨胀系数和吸水性。
如图3所示的生物检测装置包括套环601时的剖视图如图6所示,如图4所示的生物检测装置包括套环701时的剖视图如图7所示,如图5所示的生物检测装置包括套环801时的剖视图如图8所示。图6、图7和图8中分别与图3、图4和图5中相同的附图标记表示相同的含义,此处不再赘述。
应理解的是,图6、图7和图8所示的结构示意剖面图中,套环601、 套环701或套环801与芯片204、颜色层301、盖板302或硬度层501和/或光发射器之间可以有也可以没有间隙,本发明对此不作限制。
在上述本发明的实施例中,光发射器202可以发射红外光或同时发射红外光和红光。
当光发射器202发射红外光时,颜色层301可以包括一层或多层IR油墨;或可以包括至少一层IR油墨和至少一层常规油墨,但常规油墨的局部位置需要开孔,使得光发射器202发射的大部分红外光可以从开孔的地方透过。当光发射器202发射红外光和红光时,颜色层301可以包括一层或多层常规油墨,此时,常规油墨的局部位置需要开孔,使得光发射器202发射的大部分红外光可以从开孔的地方透过。
上述常规油墨的局部位置的开孔的形状可以根据需求制作成各种图案。
在盖板上丝印或者喷涂油墨,以生成颜色层时,可以按照颜色层的颜色要求,将颜色层做成黑色、白色、红色、金色、银色、粉红色等颜色。下面以光发射器202发射红外光或即发射红外光又发射红光时,在盖板上加工黑色颜色层和白色颜色层为例介绍在盖板上生成颜色层的加工方法。
当光发射器202发射红外光时,在盖板上加工黑色颜色层的一种加工工艺为:在盖板上丝印两层特黑IR油墨。一般来说,两层特黑IR油墨是在盖板上直接丝印或者喷涂IR黑色油墨。IR黑色油墨总厚度可以控制在5微米至18微米之间,透光率大于或等于30%。
当光发射器202发射红外光时,在盖板上加工黑色颜色层的另一种加工工艺为:在盖板上丝印一层特黑IR油墨和一层常规黑色油墨。在常规黑色油墨的局部位置开孔避让光发射器202和光电转换器203,黑色油墨总厚度可以控制在5微米至30um之间,透光率要大于等于30%。
当光发射器202发射红外光和红光时,在盖板上加工黑色颜色层的一种加工工艺为:在盖板上丝印两层常规油墨,然后在常规黑色油墨的局部位置开孔避让光发射器202和光电转换器203,以使得打孔的部分可以透光光发射器202发射的光和光电转化器203能够接收到光。
当光发射器202发射红外光时,在盖板上加工白色颜色层的一种加工工艺为:在盖板上丝印两层常规的白色油墨加一层灰色油墨。灰色油墨是通过IR油墨调配得来的特殊IR灰色油墨。白色油墨的厚度范围在8微米至20微米之间,灰色油墨的厚度范围在4微米至10微米之间。
当光发射器202发射红外光时,在盖板上加工白色颜色层的另一种加工工艺为:在盖板上丝印三层白色油墨和一层灰色油墨,然后油墨的局部位置开孔或雕刻各种图案避让光发射器202和光电转换器203。孔的直径为5微米至50微米,孔的间距范围在10微米至100微米之间,图案尺寸在取决于具体需求。白色油墨厚度控制在12微米至30微米之间,灰色油墨厚度控制在4微米至10微米之间,透光率均要大于等于30%。
当光发射器202发射红外光和红光时,在盖板上加工白色颜色层的另一种加工工艺为:在盖板上丝印三层或四层常规白色油墨,在常规白色油墨的局部位置开孔避让光发射器202和光电转换器203。避让尺寸范围长0.2毫米至1.5毫米,打孔直径范围为5微米至50微米,孔间距离的范围为10微米至100微米,油墨的总厚度为15微米至40微米。
在芯片上丝印或者喷涂油墨以形成颜色层时,可以按照颜色要求做成黑色,白色,红色,金色,银色,粉红色等颜色。
当光发射器202发射红外光时,在芯片上加工黑色颜色层时,可以在芯片上丝印多层IR油墨和硬度层,具体步骤为:在芯片上直接丝印或者喷涂IR黑色,再在IR油墨上丝印硬度层。IR黑色油墨的总厚度要控制在10微米至80微米,硬度层的厚度控制在5微米至15微米,透光率要大于等于30%。
当光发射器202发射红外光时,在芯片上加工黑色颜色层时,还可以在芯片上直接丝印或者喷涂黑色油墨,并在黑色油墨上丝印硬度层,然后在局部位置开孔避让光发射器202和光电转换器203。局部避让尺寸范围为0.2毫米至1.5毫米,打孔直径为5至50微米,孔间距离的范围为10微米至100微米,黑色油墨的厚度为20至40微米。
当光发射器202发射红外光时,在芯片上加工白色颜色层时,可以在芯片上丝印常规油墨和硬度层工艺,具体步骤为:在芯片上直接丝印或者喷涂白色油墨,在白色油墨上丝印硬度层,然后再在光发射器和光电转换器对应的位置局部避让,打小孔。白色油墨的厚度控制在10微米至80微米之间,透光率要大于或等于30%。
当光发射器202发射红光和红外光时,在芯片上加工黑色颜色层时,可以在芯片上丝印常规油墨和硬度层工艺,具体步骤为:在芯片上直接丝印或者喷涂黑色油墨,在黑色油墨上丝印硬度层,然后再在光发射器和光电转换器对应的位置局部避让,打小孔。孔的直径在5微米至50微米之间。孔的 间距范围在10微米至100微米之间,图案的尺寸取决于具体需求,黑色油墨的厚度控制在15微米至80微米之间,透光率要大于或等于30%。
当光发射器202发射红光和红外光时,在芯片上加工白色颜色层时,可以在芯片上丝印常规油墨和硬度层工艺,具体步骤为:在芯片上直接丝印或者喷涂白色油墨,在白色油墨上丝印硬度层,然后再在光发射器和光电转换器对应的位置局部避让,打小孔。孔的直径在5微米至50微米之间。孔的间距范围在10微米至100微米之间,图案的尺寸取决于具体需求,白色油墨的厚度控制在10微米至80微米之间,透光率要大于或等于30%。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (22)

  1. 一种生物检测装置,其特征在于,包括:芯片、光发射器、电路板和覆盖层;
    所述芯片包括光电转换器,所述覆盖层覆盖于所述芯片、所述光电转换器和所述光发射器上;
    所述覆盖层透过所述光发射器发射的光;
    所述光电转换器接收所述光发射器发射的、并透过所述覆盖层照射到待检测物体后又透过所述覆盖层反射回的光;
    所述光电转换器对所述反射回的光进行光电转化,得到电信号;
    所述芯片根据所述电信号对所述待检测物体进行检测;
    所述电路板为所述芯片、所述光发射器和所述光电转换器提供通信通道和供电。
  2. 根据权利要求1所述的生物检测装置,其特征在于,所述光发射器集成在所述芯片上。
  3. 根据权利要求1或2所述的生物检测装置,其特征在于,所述覆盖层包括保护层和颜色层,所述保护层与所述颜色层之间的附着力大于或等于3B;
    所述保护层对所述光发射器发射的光的透光率大于或等于30%,用于保护所述颜色层;
    所述颜色层的全部或部分对所述光发射器发射的光的透光率大于或等于30%,所述颜色层的厚度范围为5纳米至50微米,所述颜色层的介电常数大于2,所述颜色层用于提供所述生物检测装置的外观颜色。
  4. 根据权利要求3所述的生物检测装置,其特征在于,所述保护层为盖板,所述盖板的材质为玻璃、蓝宝石、陶瓷、亚克力或塑胶;
    所述覆盖层通过胶水或薄膜连接在所述芯片、所述光电转换器和所述光发射器上,所述胶水或薄膜的厚度范围为5微米至150微米,所述胶水或薄膜的介电常数的范围为1至10,所述胶水或薄膜的透光率大于等于90%。
  5. 根据权利要求3所述的生物检测装置,其特征在于,所述保护层为硬度层,所述硬度层的厚度范围为2微米至25微米,所述硬度层的莫氏硬度大于或等于3,所述硬度层的介电常数范围为1至10。
    所述颜色层通过喷涂方式附着在所述芯片、所述光电转换器和所述光发 射器上,所述颜色层与所述芯片、所述光电转换器和所述光发射器之间的附着力大于或等于3B,所述硬度层通过喷涂方式附着在所述颜色层上。
  6. 根据权利要求3至5中任一项所述的生物检测装置,其特征在于,所述光发射器用于发射红外光;
    其中,所述颜色层包括至少一层红外线IR油墨;或
    所述颜色层包括至少一层红外线IR油墨和至少一层常规油墨,所述至少一层常规油墨的局部位置开孔。
  7. 根据权利要求3至5中任一项所述的生物检测装置,其特征在于,所述光发射器用于发射红外光和红光;
    所述颜色层包括至少一层常规油墨,所述至少一层常规油墨的局部位置开孔。
  8. 根据权利要求2所述的生物检测装置,其特征在于,所述覆盖层包括薄膜,所述薄膜的全部或部分对光发射器发射的光的透光率大于或等于30%。
  9. 根据权利要求1至8中任一项所述的生物检测装置,其特征在于,所述芯片利用平面焊接技术通过锡膏或银浆焊接到所述电路板上,所述芯片与所述电路板间的锡膏或银浆的厚度范围为20微米至120微米。
  10. 根据权利要求1至9中任一项所述的生物检测装置,其特征在于,所述生物检测装置还包括套环,所述套环利用平面焊接技术通过锡膏或银浆焊接到所述电路板上,所述套环与所述电路板间的锡膏或银浆的厚度范围为40微米至140微米;所述套环环绕所述芯片、所述光发射器和所述光电转换器。
  11. 根据权利要求1至10中任一项所述的生物检测装置,其特征在于,所述芯片根据所述电信号对所述待检测物体进行指纹检测、心率检测、压力检测、按键检测、血氧检测、血压检测和/或活体检测。
  12. 一种生物检测装置的加工方法,其特征在于,所述生物检测装置包括芯片、光发射器、电路板和覆盖层;所述覆盖层用于透过所述光发射器发射的光;所述光电转换器用于接收所述光发射器发射的、并透过所述覆盖层照射到待检测物体后又透过所述覆盖层反射回的光;所述光电转换器用于对所述反射回的光进行光电转化,得到电信号;所述芯片用于根据所述电信号对所述待检测物体进行检测;所述电路板用于为所述芯片、所述光发射器和 所述光电转换提供通信通道和供电;
    所述加工方法包括:
    在所述芯片上集成所述光电转换器;
    将所述芯片固定在所述电路板上;
    将所述覆盖层覆盖在所述芯片、所述光电转换器和所述光发射器上。
  13. 根据权利要求12所述的加工方法,其特征在于,所述加工方法还包括:
    将所述光发射器集成在所述芯片上。
  14. 根据权利要求12或13所述的加工方法,其特征在于,所述将所述覆盖层覆盖于所述芯片、所述光电转换器和所述光发射器上,包括:
    在盖板上丝印或喷涂油墨,所述油墨形成颜色层,所述颜色层与所述盖板形成所述覆盖层,所述颜色层与所述盖板之间的附着力大于或等于3B,所述盖板的材质为玻璃、蓝宝石、陶瓷、亚克力或塑胶,所述盖板对所述光发射器发射的光的透光率大于或等于30%,所述颜色层的全部或部分对所述光发射器发射的光的透光率大于或等于30%,所述颜色层的厚度范围为5纳米至50微米所述颜色层的介电常数大于2;
    将所述覆盖层通过胶水或薄膜连接在所述芯片、所述光电转换器和所述光发射器上,所述胶水的厚度范围为5微米至150微米,所述胶水的介电常数的范围为1至10,所述胶水的透光率大于等于90%。
  15. 根据权利要求13所述的加工方法,其特征在于,所述将所述覆盖层覆盖于所述芯片、所述光电转换器和所述光发射器上,包括:
    在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂油墨,所述油墨形成颜色层,所述颜色层与所述芯片、所述光电转换器和所述光发射器之间的附着力大于或等于3B,所述颜色层的全部或部分对所述光发射器发射的光的透光率大于或等于30%,所述颜色层的厚度范围为5纳米至50微米,所述颜色层的介电常数大于2;
    在所述颜色层上丝印硬度层,所述颜色层与所述硬度层之间的附着力大于或等于3B,所述硬度层的厚度范围为2微米至25微米,所述硬度层的莫氏硬度大于或等于3,所述硬度层的介电常数范围为1至10。
  16. 根据权利要求14所述的加工方法,其特征在于,所述光发射器用于发射红外光;
    其中,所述在盖板上丝印或喷涂油墨,包括:
    在所述盖板上丝印或喷涂至少一层红外线IR油墨;或
    在所述盖板上丝印或喷涂至少一层红外线IR油墨和至少一层常规油墨,并在所述至少一层常规油墨的局部位置开孔。
  17. 根据权利要求14所述的加工方法,其特征在于,所述光发射器用于发射红外光和红光;
    其中,所述在盖板上丝印或喷涂油墨,包括:
    在所述盖板上丝印或喷涂至少一层常规油墨;
    在所述至少一层常规油墨的局部位置开孔。
  18. 根据权利要求15所述的加工方法,其特征在于,所述光发射器用于发射红外光;
    其中,所述在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂油墨,包括:
    在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂至少一层红外线IR油墨;或
    在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂至少一层红外线IR油墨和至少一层常规油墨,并在所述至少一层常规油墨的局部位置开孔。
  19. 根据权利要求15所述的加工方法,其特征在于,所述光发射器用于发射红外光和红光;
    其中,所述在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂油墨,包括:
    在所述芯片、所述光电转换器和所述光发射器上丝印或喷涂至少一层常规油墨;
    在所述至少一层常规油墨的局部位置开孔。
  20. 根据权利要求13所述的加工方法,其特征在于,所述将所述覆盖层覆盖在所述芯片、所述光电转换器和所述光发射器上,包括:
    在透明或者半透明的薄膜上丝印或者热转印油墨,所述薄膜和所述油墨对所述光发射器发射的光的透光率大于或等于30%;或在带颜色的薄膜上局部带孔,使得所述打孔部分的薄膜对所述光发射器发射的光的透光率大于或等于30%;
    将所述薄膜覆盖于所述芯片、所述光电转换器或所述光发射器上。
  21. 根据权利要求12至20中任一项所述的加工方法,其特征在于,所述将所述芯片固定在所述电路板上,包括:
    利用平面焊接技术通过锡膏或银浆将所述芯片焊接到所述电路板上,所述芯片与所述电路板间的锡膏或银浆的厚度范围为20微米至120微米。
  22. 根据权利要求12至21中任一项所述的加工方法,其特征在于,所述生物检测装置还包括套环;
    所述加工方法还包括:
    利用平面焊接技术通过锡膏或银浆将所述套环焊接到所述电路板上,所述套环与所述电路板间的锡膏或银浆的厚度范围为40微米至140微米;所述套环环绕所述芯片、所述光发射器和所述光电转换器。
PCT/CN2016/089440 2016-01-14 2016-07-08 生物检测装置及其加工方法 WO2017121082A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16871745.2A EP3236387A4 (en) 2016-01-14 2016-07-08 Biological detection device and processing method for the same
KR1020177013811A KR102032883B1 (ko) 2016-01-14 2016-07-08 생물 검측 장치 및 그 가공 방법
US15/610,618 US10367114B2 (en) 2016-01-14 2017-05-31 Biological detection device and processing method of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610027073.9A CN106971136B (zh) 2016-01-14 2016-01-14 生物检测装置及其加工方法
CN201610027073.9 2016-01-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/610,618 Continuation US10367114B2 (en) 2016-01-14 2017-05-31 Biological detection device and processing method of the same

Publications (1)

Publication Number Publication Date
WO2017121082A1 true WO2017121082A1 (zh) 2017-07-20

Family

ID=59310692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/089440 WO2017121082A1 (zh) 2016-01-14 2016-07-08 生物检测装置及其加工方法

Country Status (5)

Country Link
US (1) US10367114B2 (zh)
EP (1) EP3236387A4 (zh)
KR (1) KR102032883B1 (zh)
CN (1) CN106971136B (zh)
WO (1) WO2017121082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765662A (zh) * 2021-01-13 2022-07-19 富士康(昆山)电脑接插件有限公司 感测模组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180057835A (ko) * 2016-11-23 2018-05-31 삼성전자주식회사 지문 인식 센서가 실장된 웨어러블 타입 전자 장치
EP3470872B1 (en) * 2017-10-11 2021-09-08 Melexis Technologies NV Sensor device
TWI636306B (zh) * 2017-12-08 2018-09-21 致伸科技股份有限公司 可攜式電子裝置
EP3731137B1 (en) * 2019-02-02 2023-01-25 Shenzhen Goodix Technology Co., Ltd. Fingerprint recognition apparatus and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875370A (zh) * 2003-09-05 2006-12-06 奥森泰克公司 利用具有不同选择性的生物测量学的多生物测量手指传感器以及相关方法
US20100208952A1 (en) * 2009-02-19 2010-08-19 Jew-Chieh Wu Fingerprint indentifying system
CN104050445A (zh) * 2014-04-08 2014-09-17 南昌欧菲生物识别技术有限公司 指纹识别装置、指纹识别装置的封装方法和智能终端
CN104239869A (zh) * 2014-09-25 2014-12-24 武汉华和机电技术有限公司 一种智能指纹识别装置及方法
CN104616001A (zh) * 2015-03-04 2015-05-13 上海箩箕技术有限公司 指纹识别系统以及指纹识别方法
CN105117697A (zh) * 2015-08-19 2015-12-02 南昌欧菲生物识别技术有限公司 指纹识别方法、指纹识别装置及其终端设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910336B2 (ja) * 1999-03-30 2007-04-25 富士フイルム株式会社 画像表示方法および装置
KR101035667B1 (ko) * 2002-05-09 2011-05-19 소니 주식회사 생체 인식 패턴 검출 장치, 개인 인증 장치 및 방법
US7351974B2 (en) 2003-09-05 2008-04-01 Authentec, Inc. Integrated circuit infrared sensor and associated methods
FI20070501A0 (fi) * 2007-06-21 2007-06-21 Timo Tapani Lehto Menetelmä ja järjestelmä ihmisen tunnistamiseksi
US8736587B2 (en) * 2008-07-10 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101727495B1 (ko) * 2010-12-28 2017-05-02 엘지전자 주식회사 이동 단말기
EP2921901A4 (en) * 2012-11-14 2016-04-27 Nanobrick Co Ltd FRAUD AND FAKE PREVENTION DEVICE
EP3072083B1 (en) * 2013-11-22 2018-07-18 Shenzhen Goodix Technology Co., Ltd. Secure human fingerprint sensor
CN104182739A (zh) * 2014-08-26 2014-12-03 南昌欧菲生物识别技术有限公司 指纹识别装置及其电子设备、封装方法
CN104318204A (zh) * 2014-09-29 2015-01-28 上海箩箕技术有限公司 指纹成像系统及方法、指纹识别系统、电子设备
CN104794428B (zh) * 2015-03-06 2019-03-12 南昌欧菲生物识别技术有限公司 指纹识别装置、触控屏及终端设备
CN205302331U (zh) * 2016-01-14 2016-06-08 深圳市汇顶科技股份有限公司 生物检测装置
CN107316034A (zh) * 2017-07-18 2017-11-03 广东越众光电科技有限公司 一种指纹模组及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1875370A (zh) * 2003-09-05 2006-12-06 奥森泰克公司 利用具有不同选择性的生物测量学的多生物测量手指传感器以及相关方法
US20100208952A1 (en) * 2009-02-19 2010-08-19 Jew-Chieh Wu Fingerprint indentifying system
CN104050445A (zh) * 2014-04-08 2014-09-17 南昌欧菲生物识别技术有限公司 指纹识别装置、指纹识别装置的封装方法和智能终端
CN104239869A (zh) * 2014-09-25 2014-12-24 武汉华和机电技术有限公司 一种智能指纹识别装置及方法
CN104616001A (zh) * 2015-03-04 2015-05-13 上海箩箕技术有限公司 指纹识别系统以及指纹识别方法
CN105117697A (zh) * 2015-08-19 2015-12-02 南昌欧菲生物识别技术有限公司 指纹识别方法、指纹识别装置及其终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765662A (zh) * 2021-01-13 2022-07-19 富士康(昆山)电脑接插件有限公司 感测模组

Also Published As

Publication number Publication date
KR102032883B1 (ko) 2019-10-16
CN106971136A (zh) 2017-07-21
US10367114B2 (en) 2019-07-30
CN106971136B (zh) 2023-10-20
EP3236387A4 (en) 2018-04-04
EP3236387A1 (en) 2017-10-25
KR20170107960A (ko) 2017-09-26
US20170271546A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2017121082A1 (zh) 生物检测装置及其加工方法
CN205302331U (zh) 生物检测装置
US11341764B2 (en) Integrated light emitting display, IR light source, and sensors for detecting biologic characteristics
KR102202342B1 (ko) 생물학적 특성을 검출하는 일체형 발광 디스플레이 및 센서
US10553179B2 (en) Electronic devices with ambient light sensors
EP3242247B1 (en) Fingerprint identification device and mobile terminal
CN107798289B (zh) 可变光场的生物图像感测系统
CN206003114U (zh) 指纹识别装置和移动终端
US10475937B1 (en) Optical sensor packages employing cloaking layers
TWI601513B (zh) 同時辨識手指影像及血氧濃度之指紋辨識裝置及其方法
CN105981039A (zh) 安全的人体指纹传感器
WO2014045774A1 (ja) 生体センサ、及び、生体センサの製造方法
US20170047487A1 (en) Optoelectronic modules having features for reducing the visual impact of interior components
WO2018184164A1 (zh) 指纹识别装置及其盖板的制造方法、电子终端
US9773937B2 (en) Information acquisition apparatus
TW201813063A (zh) 影像感測器
CN109508599A (zh) 光学指纹识别模组和电子装置
CN216528902U (zh) 光学芯片的封装结构和电子设备
US20190000355A1 (en) Analyte sensing device
CN108804985A (zh) 指纹成像模组和电子设备
CN210983440U (zh) 取像装置与使用其的电子装置
WO2020138086A1 (ja) 光学センサ装置
CN213715921U (zh) 输入模组、物理键盘及输入装置
TW201935313A (zh) 辨識裝置
CN108154073A (zh) 指纹成像模组和电子设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20177013811

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016871745

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE