WO2017121021A1 - 一种便携式电池组低温高功率输出辅助装置 - Google Patents

一种便携式电池组低温高功率输出辅助装置 Download PDF

Info

Publication number
WO2017121021A1
WO2017121021A1 PCT/CN2016/075468 CN2016075468W WO2017121021A1 WO 2017121021 A1 WO2017121021 A1 WO 2017121021A1 CN 2016075468 W CN2016075468 W CN 2016075468W WO 2017121021 A1 WO2017121021 A1 WO 2017121021A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
temperature
low
power output
switch
Prior art date
Application number
PCT/CN2016/075468
Other languages
English (en)
French (fr)
Inventor
刘宏兵
胡顺华
陈晓峰
周桂南
钟发平
Original Assignee
深圳先进储能材料国家工程研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进储能材料国家工程研究中心有限公司 filed Critical 深圳先进储能材料国家工程研究中心有限公司
Priority to US15/365,966 priority Critical patent/US10128673B2/en
Publication of WO2017121021A1 publication Critical patent/WO2017121021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery pack auxiliary device, and more particularly to a portable battery pack low temperature high power output auxiliary device that requires a high power output while the battery pack is still in a low temperature condition.
  • the battery pack is used in an environment of 0 ° C to 45 ° C. In this temperature range, the battery pack has better overall performance, such as high power output performance, cycle life, safety performance, and the like. If the environment is extremely low temperature or extremely high temperature, some performance of the battery pack is often greatly reduced. For example, at a temperature of minus 20 ° C, the high power of the LCO type lithium ion battery pack (the positive electrode is lithium cobaltate and the negative electrode is graphite) The output performance is greatly reduced.
  • the battery pack in the case of low-temperature and high-power output requirements, it can be improved by optimizing the design of the battery pack, but by changing the battery pack chemical system itself, the battery composition is greatly increased or the performance is greatly reduced. (For example, the high temperature performance of the battery pack is reduced).
  • the present invention is directed to a portable battery pack low temperature high power output assisting device that can enable a battery pack to restore high power output capability in a short period of time at low temperatures.
  • a portable battery pack low temperature high power output auxiliary device comprising a primary circuit and a control unit;
  • the primary circuit is configured as a working circuit of the battery pack, comprising a power resistor, the power resistor
  • the two ends are respectively electrically connected to the positive electrode and the negative electrode of the battery pack, and the battery pack is discharged by the power resistor at a low temperature to increase the internal temperature of the battery pack;
  • the control unit is configured to control the on and off of the primary circuit.
  • the primary circuit further includes a MOS transistor, one end of the power resistor is electrically connected to the positive/negative electrode of the battery pack, and the other end of the power resistor is electrically connected to the negative/positive electrode of the battery pack through the MOS transistor.
  • control unit is configured as a secondary circuit
  • the secondary circuit includes a push button switch electrically connected between the positive electrode of the battery pack and the MOS tube, and the push button switch controls the MOS tube
  • the on/off of the first loop is controlled by switching on and off.
  • the secondary circuit further includes a time control switch, the time control switch is connected in series with the button switch, and the time control switch controls on and off of the first circuit by controlling on and off of the MOS tube.
  • the secondary circuit further includes a temperature protection switch, the temperature protection switch is connected in series with the button switch and the time control switch, and the temperature protection switch controls the first by controlling on and off of the MOS tube The circuit is switched on and off.
  • control unit is further configured to control a switch, and the control switch is connected in series with the power resistor as a working circuit of the battery pack for controlling on and off of the primary circuit.
  • control switch comprises a push button switch, a temperature control switch and a time control switch connected in series.
  • N is the number of cells that make up the battery pack
  • I is the maximum allowable discharge current of the battery pack
  • the unit is A
  • R is the resistance of the power resistor, the unit is ⁇
  • m is the mass of the power resistor, the unit is Kg
  • C P is the specific heat of the power resistor, the unit is J / ( ° C * Kg)
  • t is the ambient temperature of the portable battery pack low temperature and high power output auxiliary device before use, the unit is ° C.
  • the above parameter setting of the power resistor can well achieve the purpose of auxiliary adjustment of the battery pack under low temperature conditions.
  • the battery pack is connected in series to form a circuit, and the battery pack performs large current discharge at a low temperature. Due to the low temperature, the internal resistance of the battery pack itself is large, generating intense self-heating heat, and the internal temperature of the battery pack rises in a short time, thereby enabling the battery pack to have high power output capability. At the same time, this adjustment will not cause over-discharge damage to the battery pack itself.
  • the operating temperature of the temperature protection switch is set to 10 to 55 ° C, and the closing operation time of the time control switch is set to 20 to 60 s.
  • the secondary circuit implements a control function for the primary circuit, and specifically includes: controlling the primary circuit to conduct and controlling the primary circuit to be disconnected.
  • controlling the primary circuit to conduct and controlling the primary circuit to be disconnected When the secondary circuit button switch is pressed and closed, and the temperature protection switch is not in the open protection temperature value and is in the closed state, and the MOS tube G has a forward driving voltage, the above three conditions are simultaneously satisfied, the primary circuit is When turned on, the battery pack discharges a large current through a primary circuit.
  • the secondary circuit switch button is released and disconnected, or the temperature protection switch reaches the open protection temperature value and is in the off state, or the MOS tube G pin has no forward driving voltage, any one of the above three conditions is satisfied, once The circuit is disconnected, the battery pack's high current discharge is terminated, and the battery pack is protected.
  • the setting of the secondary circuit can realize the high-current discharge of the primary circuit of the battery pack under low temperature conditions, thereby achieving self-heating temperature rise, and limiting the time of large current discharge, avoiding excessive discharge or overheating of the battery pack, and satisfying self. Hot heating demand and overheating safety protection requirements.
  • the control switch implements a control function for the primary circuit, and specifically includes: controlling the primary loop to be turned on, and controlling the primary loop to be disconnected.
  • controlling the primary loop to be turned on When the button switch is pressed and closed, and the temperature protection switch does not reach the open protection temperature value and is in the closed state, when the above two conditions are satisfied at the same time, the primary circuit is turned on, and the battery pack discharges a large current through the primary circuit.
  • the button switch of the control switch is turned off, or the temperature protection switch reaches the off-protection temperature value and is in the off state, if any of the above two conditions is satisfied, the primary circuit is disconnected, the battery pack is discharged with a large current, and the battery is terminated. The group is protected.
  • the setting of the control switch can realize the high-current discharge of the primary circuit of the battery pack under low temperature conditions, thereby achieving self-heating temperature rise, and limiting the time of large current discharge, avoiding excessive discharge or overheating of the battery pack, and satisfying self-heating. Heating demand and overheating safety protection needs.
  • the technical effects of the portable battery pack low temperature and high power output auxiliary device of the present invention are as follows:
  • the portable battery pack low-temperature high-power output auxiliary device realizes the large current discharge of the battery pack.
  • the larger the current the shorter the time required for the battery pack to self-heat to a certain temperature; meanwhile, the maximum discharge allowed in the low temperature of the battery pack In the current limit range, the larger the discharge current, the higher the ratio of self-heating energy in the energy released by the battery pack, and the shorter the self-heating time.
  • the control unit can realize effective control of the primary circuit, that is, effectively control the total amount of energy released by the battery pack, and also prevent the temperature rise of the auxiliary device from being excessive.
  • the higher the power output capability of the battery pack the faster the temperature rise of the auxiliary device, and the more favorable it is to reduce the self-heating temperature rise of the battery pack, so that the self-heating of the battery pack due to the auxiliary device does not occur.
  • the battery pack can realize the ability of the battery pack to quickly restore high power output in a low temperature environment.
  • the battery auxiliary device composed of the primary circuit and the control unit, the battery pack obtains rapid self-heating temperature in a low temperature environment, and the self-heating temperature rises from the inside, the temperature uniformity is good, and the temperature is received. Effective control and protection. After the temperature of the battery pack rises, the ability to achieve high power output can be achieved, and the corresponding working conditions can be immediately put into operation, such as starting the ignition of the car.
  • FIG. 1 is a schematic structural view of a low-temperature high-power output auxiliary device for a portable battery pack in Embodiment 1;
  • Example 2 is a graph showing charging characteristics and discharge characteristics of the battery pack in Example 1 at a normal temperature of 20 ⁇ 3° C.;
  • Example 3 is a discharge graph of different discharge powers of the battery pack in Example 1 at a normal temperature of 20 ⁇ 3° C.;
  • Example 4 is a discharge graph of different discharge powers of the battery pack in Example 1 at a low temperature of -20 ⁇ 2° C.;
  • Figure 5 (a) is a temperature-time graph of the power resistance of the battery pack in the first embodiment in the process of adjusting the low temperature and high power output auxiliary device of the portable battery pack at a low temperature of -20 ⁇ 2 ° C;
  • 5(b) is a temperature-time graph of the battery pack during the adjustment of the battery pack in the first embodiment using the portable battery pack low-temperature high-power output auxiliary device at a low temperature of -20 ⁇ 2° C.;
  • Figure 5 (c) is a voltage-time graph of the battery pack during the adjustment of the battery pack of the first embodiment using the portable battery pack low temperature high power output auxiliary device at a low temperature of -20 ⁇ 2 ° C;
  • FIG. 6 is a discharge graph of different discharge powers of the battery pack in the first embodiment after the battery pack is adjusted at a low temperature of -20 ⁇ 2° C. using a portable battery pack low-temperature high-power output auxiliary device;
  • FIG. 7 is a schematic structural view of a portable battery pack low temperature and high power output auxiliary device in Embodiment 2;
  • FIG. 8 is a schematic structural view of a low-temperature high-power output auxiliary device for a portable battery pack in Embodiment 3;
  • a portable battery pack low-temperature high-power output auxiliary device as shown in FIG. 1, includes a power resistor 1, a MOS tube 2, a push button switch 3, a time control switch 4, and a temperature protection switch 5, and the MOS tube 2 adopts an N-channel enhancement type.
  • one end of the power resistor 1 is connected to the positive lead wire 6 of the battery pack, the other end of the power resistor 1 is connected to the D pin of the MOS transistor 2 through the positive second wire 7 , and the S pin of the MOS transistor 2 is connected to the negative electrode lead 8;
  • the push button switch 3, the time control switch 4, and the temperature protection switch 5 are sequentially connected, and the push button switch 3 is connected to the positive first lead 6 through the third wire 9, and the temperature protection switch 5 is connected to the G pin of the MOS tube 2 through the fourth wire 10.
  • the circuit formed by the positive first wire 6, the power resistor 1, the positive second wire 7, the MOS tube 2 and the negative wire 8 is a primary circuit, the third wire 9, the push button switch 3, the time control switch 4, and the temperature protection switch 5
  • the circuit formed by the fourth wire 10 is a secondary circuit.
  • Primary circuit is working circuit, low temperature battery pack Temperature-assisted adjustment is implemented; the secondary circuit is the control loop, and the time and temperature control for the primary circuit operation is implemented.
  • the resistance of the power resistor 1 satisfies the formula (1), and the product of the mass of the power resistor 1 and the specific heat satisfies the formula (2).
  • N is the number of cells that make up the battery pack
  • I is the maximum allowable discharge current of the battery pack
  • the unit is A
  • R is the resistance of the power resistor, the unit is ⁇
  • m is the mass of the power resistor, the unit is Kg
  • C P is the specific heat of the power resistor, the unit is J / ( ° C * Kg)
  • t is the ambient temperature of the portable battery pack low temperature and high power output auxiliary device before use, the unit is ° C.
  • the battery pack used for the startup power supply of the portable automobile is a polymer lithium ion battery pack, which is formed by connecting three single cells in series.
  • the single battery model is 0845120 (thickness 8 mm, width 45 mm, height 120 mm), and the positive electrode is cobalt.
  • Lithium acid material, the negative electrode is graphite material, the nominal voltage and capacity of the single cell are 3.7V and 3400mAh respectively; the rated voltage of the battery pack is 11.1V, and the rated energy is 37.7kWh.
  • the battery pack needs to meet the capacity of 1000W rated power output for more than 2S, and the voltage of the battery pack should not be lower than 4.5V.
  • the maximum allowable discharge current of the battery pack is 80A
  • the maximum allowable discharge current I of the battery pack is 80A
  • the resistance range of the power resistor is 0.06 ⁇ ⁇ R ⁇ 0.115 ⁇ , which is 0.10 in this embodiment.
  • ⁇ power resistor The selection of the material of the power resistor 1 in the primary circuit is based on: The number of cells N constituting the battery pack is 3, and the resistance R of the power resistor 1 is 0.1 ⁇ .
  • the MOS transistor 2 selects an N-channel enhancement type MOS transistor (the turn-on voltage V T is 4V, the maximum drain current I D is 120A), and the temperature protection switch 5 is normally closed (the operating temperature is 45 ⁇ 2°C).
  • the reset temperature is 40 ⁇ 2°C
  • the time control switch 4 is normally open type (the trigger signal of the button switch is closed, and the time is started after 40S is turned off); the positive lead wire 6 and the positive second wire in the primary circuit 7.
  • the current carrying cross section of the negative electrode lead 8 is 16 mm 2
  • the current carrying cross sections of the third wire 9 and the fourth wire 10 in the secondary circuit are both 1 mm 2 .
  • the battery pack is first discharged to 8.0V at 680mA, charged to 12.6V with a constant current of 3400mA, then charged at a constant voltage of 12.6V until the current is gradually reduced to 170mA, the charging is stopped, and the battery is left for 15 minutes.
  • the battery pack can fully meet the capability of 1000W rated power output operation above 2S, and the total voltage of the battery pack during operation is above 10V, and the battery pack voltage is not lower than 4.5V. Requirements; output 2S at 1500W rated power, the battery pack voltage can still be maintained at 9V, which indicates that the battery pack has good high power output capability at normal temperature.
  • the battery pack was charged at a constant temperature of 20 ⁇ 3° C. at a constant current of 3400 mA to 12.6 V, then charged at a constant voltage of 12.6 V until the current was gradually reduced to 170 mA, the charging was stopped, and the battery was placed at -20 ⁇ 2° C. Hours, discharging at a constant power of 1000W or 700W or 500W for 2S at a temperature of -20 ⁇ 2°C, the voltage cut-off protection is 0V, and the discharge curve of the battery pack at different temperatures of -20 ⁇ 2°C is shown in Figure 4.
  • the curve indicated by “ ⁇ ” is a discharge curve with a discharge power of 500 W
  • the curve indicated by “ ⁇ ” is a discharge curve of a discharge power of 700 W
  • the curve represented by " ⁇ ” is a discharge curve of a discharge power of 1000 W. It can be seen from Fig. 4 that in the low temperature -20 ⁇ 2°C environment, the battery pack can not meet the capacity of 1000W rated power output operation for more than 2S. If the forced discharge output is 1000W, the battery pack voltage is quickly reduced to 0V within 0.5S. . At the same time, in the low temperature -20 ⁇ 2 °C environment, the battery pack can not meet the capacity of 700 rated power output operation above 2S.
  • the battery pack can be stable operation 2S with 500W rated power, but the battery pack voltage is only 7V ⁇ 6V; compared to 20 ⁇ 3 ° C environment, see in Figure 3 It also operates stably with 2W at 500W rated power, and the battery pack voltage ranges from 11.5V to 11.2V.
  • the temperature is reduced by 40 degrees, and the 500W rated power output discharge voltage platform of the battery pack drops by about 40%.
  • the battery pack was charged at a constant temperature of 20 ⁇ 3° C. at a constant current of 3400 mA to 12.6 V, then charged at a constant voltage of 12.6 V until the current was gradually reduced to 170 mA, the charging was stopped, and the battery was placed at -20 ⁇ 2° C.
  • the positive electrode and the negative electrode of the battery pack are respectively connected with the positive first wire and the negative electrode wire of the portable battery pack low-temperature high-power output auxiliary device.
  • the time control switch receives the button switch trigger signal to close, and the temperature protection switch does not reach its set operating temperature range because the ambient temperature is -20 ⁇ 2 °C. Therefore, it is in a normally closed state, whereby the secondary loop forward voltage is applied to the MOS transistor G pin, and the GS reaches the turn-on voltage of 4V, MOS The tube is turned on, the battery pack works for the load of the power resistor through the primary circuit, the temperature of the power resistor rises, the timing of the time control switch reaches 40S, the time control switch is turned off, and the forward bias voltage between the MOS transistors GS is disconnected. When the MOS is disconnected, the primary circuit discharge is stopped, and the battery pack is protected by the discharge.
  • Fig. 5(a) is a temperature-time graph of the power resistance of the battery pack during the adjustment of the low-temperature high-power output auxiliary device of the portable battery pack at a low temperature of -20 ⁇ 2 °C. It can be seen from Fig. 5(a) that the power resistor The temperature rises rapidly from -20 ° C to nearly 40 ° C in 60 seconds and rises to 55 ° C in the subsequent 40 seconds. The rapid rise of the initial 60S power resistor temperature is caused by the battery pack working on the power resistor with a large power. The subsequent 40S temperature rises because the surface temperature of the power resistor lags behind the internal temperature, plus the measured temperature hysteresis and the actual temperature. of.
  • the battery pack also performs work for itself. This is because the internal resistance of the battery pack is greatly increased in the low temperature environment (in the case of full charge, the battery pack of the present embodiment has a normal temperature of 20).
  • the internal resistance of 1000HZ AC is 6.1 milliohms in ⁇ 3°C environment, and the internal resistance of 1000HZ AC is 14.1 milliohms in low temperature -20 ⁇ 2°C environment, and the internal resistance is increased by 1.3 times compared with normal temperature at low temperature. Therefore, low temperature and high power output work At the same time, the battery pack itself consumes a large amount of energy due to the presence of polarization, so that rapid self-heating occurs.
  • Figure 5 (b) is a temperature-time graph of the battery pack during the adjustment of the low-temperature high-power output auxiliary device of the portable battery pack at a low temperature of -20 ⁇ 2 ° C.
  • the battery The temperature of the group quickly self-heated within 60 seconds, rising from -20 ° C to +5 ° C.
  • Figure 5 (c) is a voltage-time graph of the battery pack during the adjustment of the low-temperature high-power output auxiliary device of the portable battery pack at a low temperature of -20 ⁇ 2 ° C.
  • the battery In the 40S process of powering the power resistor the voltage of the battery pack drops from 7V to 6.5V, and then gradually rises to 7.8V. This is because the battery pack discharges, combined with the analysis of Figure 5(b).
  • the temperature of the battery pack has risen rapidly, which leads to an increase in the high power output capability of the battery pack.
  • the discharge platform not only does not decrease as the discharge progresses, but instead rises.
  • the setting of the temperature protection switch is considered As a portable device, it is required to meet the requirements for personal safety, and the low temperature auxiliary device cannot be overheated to cause injury to a person.
  • the operating temperature of the temperature protection switch is set to 45 ⁇ 2°C, so that the temperature of the low-temperature high-power output auxiliary device casing of the portable battery pack is not higher than 40°C, and the temperature protection switch and the time control switch are in series relationship in the secondary circuit. Once the time control switch setting value is too long or other faults, the temperature protection switch can make the final safety guarantee from the result of the temperature rise.
  • FIG. 6 is a discharge graph of different discharge powers of the battery pack of Example 1 after being adjusted by a low-temperature high-power output auxiliary device of a portable battery pack at a low temperature of -20 ⁇ 2° C., wherein the curve represented by “ ⁇ ” is a discharge power of 500 W.
  • the discharge curve, the curve indicated by “ ⁇ ” is a discharge curve of a discharge power of 700 W, and the curve represented by " ⁇ ” is a discharge curve of a discharge power of 1000 W. It can be seen from Fig. 6 that after the battery pack is adjusted by the low-temperature high-power output auxiliary device of the portable battery pack, the battery pack can not be subjected to 1000W high-power output operation, and can be converted into a fully capable high-power output.
  • the battery voltage of 1000W discharge 2S is between 8.6V and 8.1V, which is lower than the normal temperature of 20 ⁇ 3°C (the curve indicated by “ ⁇ ” in Fig. 3) of 10.4V ⁇ 10.1V. 2V, this is because the temperature of the battery pack is still only 7 ° C after self-heating, and it has not reached the normal temperature of 20 ° C.
  • the battery pack can fully meet the requirements of the starting ignition condition of the car; the battery pack has the capability of 700W output 2S, and the battery pack platform is 9.8V ⁇ 9.1V.
  • the battery pack 500W output 2S battery pack working platform is 10.3V ⁇ 10.1V, which is 7.0V ⁇ 6.2V compared with the low temperature -20 °C (the curve indicated by " ⁇ " in Fig. 3).
  • a lithium cobalt oxide type lithium ion battery as an example, the same applies to a rechargeable battery pack such as a ternary lithium ion battery pack, a lithium iron phosphate battery pack, or a lithium manganese oxide battery pack.
  • a rechargeable battery pack such as a ternary lithium ion battery pack, a lithium iron phosphate battery pack, or a lithium manganese oxide battery pack.
  • a battery pack or energy module that is constructed.
  • the present invention is described by taking a vehicle starting power supply as an example, it is also used in a case where a battery pack requires high power output at a low temperature, such as a drone battery pack, an engine starter battery pack, and the like.
  • the MOS transistor 2 is a P-channel enhancement type MOS transistor, as shown in FIG. 7, a portable battery pack low-temperature high-power output auxiliary device including a power resistor 1.
  • the S pole of 2 is connected, the D pole of the PMOS transistor 2 is connected to one end of the power resistor 1 through the second negative conductor 81, the other end of the power resistor 1 is connected to the first negative conductor 82, and the G pole of the PMOS transistor 2 is connected to the first negative pole.
  • the wire 82; the push button switch 3, the time control switch 4, the temperature protection switch 5, the PMOS tube 2, the second negative electrode lead 81, the power resistor 1 and the first negative electrode lead 82 form a circuit for the primary circuit, the push button switch 3, and the time control switch 4
  • the circuit formed by the temperature protection switch 5, the PMOS tube 2 and the negative first conductor 82 is a secondary circuit, the primary circuit is a working circuit, the temperature auxiliary adjustment is performed on the low temperature battery pack, and the secondary circuit is a control loop. A loop operating time and temperature control.
  • Embodiment 2 of Embodiment 1 differs from Embodiment 2 of Embodiment 1 in that, in the present example, the setting of the MOS tube is omitted, the control unit is directly set as a control switch, and the control switch is connected in series with the power resistor for realizing the control of the primary circuit. . As shown in FIG.
  • a portable battery pack low-temperature high-power output auxiliary device includes a power resistor 1, a push button switch 3, a time control switch 4, and a temperature protection switch 5; wherein, the push button switch 3, the time control switch 4, and the temperature protection The switch 5 is sequentially connected through the positive electrode, and one end of the temperature protection switch 5 is simultaneously connected to one end of the power resistor 1 through the negative second wire 81, and the other end of the power resistor 1 is connected to the first negative electrode 82.
  • the push button switch 3, the time control switch 4, the temperature protection switch 5, the second negative electrode lead 81, the power resistor 1 and the first negative electrode lead 82 constitute a working circuit of the battery pack, and pass the push button switch 3, the time control switch 4, and the temperature protection switch 5 Control the on and off of the working circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

本发明提供了一种便携式电池组低温高功率输出辅助装置,包括一次回路和控制单元;所述一次回路设置为电池组的工作回路,其包括功率电阻,所述功率电阻的两端分别与电池组的正极、负极电连接,电池组在低温下通过所述功率电阻进行电流放电,使电池组内部温度上升;所述控制单元用于对所述一次回路的通断进行控制。本发明的辅助装置通过将一次回路设置为电池组的工作回路,使电池组通过功率电阻进行电流放电,实现了电池组的快速自热升温,使得电池组在低温情况下短时间内恢复高功率输出能力;同时通过设置控制单元对一次回路的通断进行控制,有效的从电池组释放能量的总量上进行了控制,同时也防止辅助装置温升过大。

Description

一种便携式电池组低温高功率输出辅助装置 技术领域
本发明涉及一种电池组辅助装置,尤其是涉及一种要求低温情况下电池组仍然需要进行高功率输出的便携式电池组低温高功率输出辅助装置。
背景技术
随着化学电池组技术的进步,其储能的比能量快速提升,单位成本逐步下降,加上电池组本身所具有的快速响应、设置便捷等特点,使得电池组的应用变得越来越广泛。在数码产品中作为能量的供应装置,具有便携式和高能量密度的特点。在新能源(如风力发电、太阳能光伏发电)接入中作为能量的缓冲装置,平滑新能源,提升新能源的渗透率;在汽车中作为制动能量的回收装置,兼作为特殊工况(如启动、加速)的辅助动力能源提供装置(一般在HEV或PHEV中),或直接作为汽车全部动力的能源来源(即纯电动汽车);在微智能电网中,作为能源的缓冲平台,调配发电、用电之间的关系,维持整个微网的稳定运行和经济运行,等等。
通常情况下,电池组的使用环境为0℃~45℃,在这一温度范围内,电池组具有较佳的综合性能,例如高功率输出性能、循环寿命、安全性能等。如果使用环境为极端低温或极端高温,那么电池组的某些性能就往往大幅度降低,例如零下20℃情况下,LCO型锂离子电池组(正极为钴酸锂、负极为石墨)的高功率输出性能就大幅度下降。
因此,为了应对极端环境温度下的使用工况,往往通过对电池组外部的环境进行管控的方式。例如EV上使用的电池组,为了使得电池组在低温或高温下仍然能够正常工作,通常是在电池组周围设置热管理装置(如空调),但是这种控制电池组环境温度的方法,往往带来热管理成本高、热管理效率低的问题。
同时,在某些需要电池组满足高功率输出工况工作的场合(如汽车启动点火),由于要求电池组在很短的时间内(~3S)输出很大的功率,因此不可能通过外部的加热来使得电池组自身达到能够高功率输出工作的温度,一方面这需要较长的时间,此外还需消耗很多的电池组存储能量;而且通过外部加热的方式存在电池组自身温度不均衡的隐患(延长加热时间可以改善这一隐患,但是时间过长将导致满足应用需求变得没有意义,即用户不可能接受这么长的等待时间)。更进一步,对有低温高功率输出需求的场合,可以通过优化电池组的设计来进行改善,但是通过改变电池组化学体系本身,往往带来电池组成本的大幅度增加或其它性能的大幅度下降(例如电池组的高温性能降低)。
发明内容
针对现有技术中的缺陷,本发明旨在提供一种可以使得电池组在低温情况下,在很短的时间内恢复高功率输出能力的便携式电池组低温高功率输出辅助装置。
本发明通过以下方案实现:一种便携式电池组低温高功率输出辅助装置,包括一次回路和控制单元;所述的一次回路设置为电池组的工作回路,其包括功率电阻,所述的功率电阻的两端分别与电池组的正极、负极电连接,电池组在低温下通过所述功率电阻进行电流放电,使电池组内部温度上升;所述控制单元用于对所述一次回路的通断进行控制。
优选地,所述一次回路还包括MOS管,所述功率电阻的一端与电池组的正/负极电连接,所述功率电阻的另一端通过所述MOS管与电池组的负/正极电连接。
优选地,所述控制单元设置为二次回路,所述二次回路包括按钮开关,所述按钮开关电连接于所述电池组正极和MOS管之间,所述按钮开关通过控制所述MOS管的通断而控制所述第一回路的通断。
优选地,所述二次回路还包括时间控制开关,所述时间控制开关与所述按钮开关串联,所述时间控制开关通过控制所述MOS管的通断而控制第一回路的通断。
优选地,所述二次回路还包括温度保护开关,所述温度保护开关与所述按钮开关、时间控制开关串联,所述温度保护开关通过控制所述MOS管的通断而控制所述第一回路的通断。
优选地,上述控制单元还可以设置为控制开关,所述控制开关与所述功率电阻串联作为电池组的工作回路,用于控制所述一次回路的通断。
优选地,所述控制开关包括串联的按钮开关、温度控制开关和时间控制开关。
优选地,所述功率电阻的阻值满足公式(1),功率电阻的质量和比热的乘积满足公式(2),
Figure PCTCN2016075468-appb-000001
Figure PCTCN2016075468-appb-000002
其中:N为组成电池组的单体电池数量;I为电池组的低温最大允许放电电流,单位为A;R为功率电阻的阻值,单位为Ω;m为功率电阻的质量,单位为Kg;CP为功率电阻的比热,单位为J/(℃*Kg);t为便携式电池组低温高功率输出辅助装置使用前所处的环境温度,单位为℃。
功率电阻的上述参数设置,可以很好地实现低温情况下,对电池组进行辅助调整的目的,通过将该辅助装置作为电池组负载,串联成一个电路,电池组在低温下进行大电流放电,由于低温情况下,电池组自身内阻较大,产生剧烈的自热热量,在很短的时间内使得电池组内部温度上升,从而使得电池组具备高功率输出的能力。同时,这种调整又不会对电池组自身产生过放电能损伤。
优选地,所述温度保护开关的动作温度设定为10~55℃,时间控制开关的闭合工作时间设定为20~60S。
所述二次回路实施对一次回路的控制功能,具体包括:控制一次回路导通、控制一次回路断开。当二次回路按钮开关按下闭合,且温度保护开关开关未达到断开保护温度值因而处于闭合状态,且MOS管G脚有正向驱动电压,以上三个条件同时满足情况下,一次回路被导通,电池组通过一次回路进行大电流放电。当二次回路开关按钮松开断开,或温度保护开关达到断开保护温度值因而处于断开状态,或MOS管G脚无正向驱动电压,以上三个条件任何一个条件满足情况下,一次回路被断开,电池组大电流放电终止,电池组被保护。二次回路的设置,既可以实现低温情况下电池组一次回路导通进行大电流放电,从而实现自热升温,又可以限制大电流放电的时间,避免过度放电或电池组升温过度,同时满足自热升温需求和过热安全保护需求。
所述控制开关实施对一次回路的控制功能,具体包括:控制一次回路导通、控制一次回路断开。当按钮开关按下闭合,且温度保护开关开关未达到断开保护温度值因而处于闭合状态,以上两个条件同时满足的情况下,一次回路导通,电池组通过一次回路进行大电流放电。当控制开关的按钮开关断开,或温度保护开关达到断开保护温度值因而处于断开状态,以上两个条件任何一个条件满足情况下,一次回路被断开,电池组大电流放电终止,电池组被保护。控制开关的设置,既可以实现低温情况下电池组一次回路导通进行大电流放电,从而实现自热升温,又可以限制大电流放电的时间,避免过度放电或电池组升温过度,同时满足自热升温需求和过热安全保护需求。
与现有技术相比,本发明的便携式电池组低温高功率输出辅助装置的技术效果为:
(1)电池组可实现快速的自热升温。传统的通过外部环境加热,电池组由低温逐渐升温,需要几十分钟乃至几小时,尤其是要达到电池组内部温度的均匀,所需时间更长,这直接导致低温情况下,电池组不能正常满足使用需求。本发明的便携式电池组低温高功率输出辅助装置,通过让电池组在短时间内(一般是20S~60S)大电流放电,让电池组快速自热,电池组在1~2分钟内就恢复了原本低温条件下所不具备的高功率输出的能力。便携式电池组低温高功率输出辅助装置,通过实现电池组的大电流放电,一方面电流越大,电池组自热升温至一定温度所需的时间越短;同时,在电池组低温允许的最大放电电流限制范围内,放电电流越大,电池组所释放出的能量中用于自热的比率越高,越能缩短自热升温的时间。
(2)可以实现电池组自热过程中的有效保护。控制单元可以实现对一次回路的有效控制,即有效控制了电池组释放能量的总量,同时也防止辅助装置温升过大。电池组高功率输出能力越强,辅助装置温升越快,越有利于降低电池组自热温升,因而不会出现由于辅助装置导致电池组自热过头的现象。
(3)可以实现电池组低温环境下快速恢复高功率输出的能力。通过一次回路和控制单元所组成的电池组辅助装置,电池组在低温环境下获得了快速的自热升温,这种自热升温是从内而升的,温度的均匀性较好,并且受到了有效的控制和保护。电池组温度上升后,达到能够进行高功率输出的能力,可以立即投入相应的工况工作,例如汽车启动点火。
附图说明
图1是实施例1中的便携式电池组低温高功率输出辅助装置的结构示意图;
图2是实施例1中电池组在常温20±3℃下的充电特性和放电特性曲线图;
图3是实施例1中电池组在常温20±3℃下不同放电功率的放电曲线图;
图4是实施例1中电池组在低温-20±2℃下不同放电功率的放电曲线图;
图5(a)是实施例1中电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中功率电阻的温度-时间曲线图;
图5(b)是实施例1中电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中电池组的温度-时间曲线图;
图5(c)是实施例1中电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中电池组的电压-时间曲线图;
图6是实施例1中电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整后的不同放电功率的放电曲线图;
图7是实施例2中的便携式电池组低温高功率输出辅助装置的结构示意图;
图8是实施例3中的便携式电池组低温高功率输出辅助装置的结构示意图;
具体实施方式
实施例1
下面结合附图和实施例对本发明作进一步详细说明。
一种便携式电池组低温高功率输出辅助装置,如图1所示,包括功率电阻1、MOS管2、按钮开关3、时间控制开关4和温度保护开关5,MOS管2采用N沟道增强型MOS管,功率电阻1的一端连接电池组的正极第一导线6,功率电阻1的另一端通过正极第二导线7与MOS管2的D脚连接,MOS管2的S脚连接负极导线8;按钮开关3、时间控制开关4、温度保护开关5依次相连,按钮开关3通过第三导线9与正极第一导线6相连接,温度保护开关5通过第四导线10与MOS管2的G脚相连接;正极第一导线6、功率电阻1、正极第二导线7、MOS管2和负极导线8构成的电路为一次回路,第三导线9、按钮开关3、时间控制开关4、温度保护开关5和第四导线10构成的电路为二次回路。一次回路为工作回路,对低温电池组 实施温度辅助调整;二次回路为控制回路,实施对一次回路工作的时间和温度控制。
所述功率电阻1的阻值满足公式(1),功率电阻1的质量和比热的乘积满足公式(2),
Figure PCTCN2016075468-appb-000003
Figure PCTCN2016075468-appb-000004
其中:N为组成电池组的单体电池数量;I为电池组的低温最大允许放电电流,单位为A;R为功率电阻的阻值,单位为Ω;m为功率电阻的质量,单位为Kg;CP为功率电阻的比热,单位为J/(℃*Kg);t为便携式电池组低温高功率输出辅助装置使用前所处的环境温度,单位为℃。
本实施例中便携式汽车启动电源采用的电池组为聚合物锂离子电池组,由3只单体电池串联而成,单体电池型号为0845120(厚度8mm,宽度45mm,高度120mm),正极为钴酸锂材料,负极为石墨材料,单体电池的标称电压和容量分别为3.7V和3400mAh;电池组的额定电压为11.1V,额定能量为37.7kWh。该电池组需满足1000W额定功率输出工作2S以上的能力,且电池组工作时电压不得低于4.5V。
在本实施例中,电池组低温最大允许放电电流为80A,由
Figure PCTCN2016075468-appb-000005
Figure PCTCN2016075468-appb-000006
进行计算,依据组成电池组的单体电池数量N为3,电池组的低温最大允许放电电流I为80A,得到功率电阻的阻值范围为:0.06Ω≤R≤0.115Ω,本实施例采用0.10Ω的功率电阻。一次回路中功率电阻1材质的选择,依据:
Figure PCTCN2016075468-appb-000007
其中组成电池组的单体电池数 量N为3,功率电阻1的阻值R为0.1Ω,便携式电池组低温高功率输出辅助装置使用前所处的环境温度t为-20℃,计算得到:98.7J/℃≤m×CP≤607.5J/℃,本实施例功率电阻材质选择m×CP=210J/℃。本实施例中,MOS管2选择N沟道增强型MOS管(开启电压VT为4V,最大漏极电流ID为120A),温度保护开关5为常闭型(动作温度为45±2℃,复位温度40±2℃),时间控制开关4为常开型(接收到按钮开关的触发信号即闭合,开始计时40S后断开);一次回路中的正极第一导线6、正极第二导线7、负极导线8的载流截面均为16mm2,二次回路中的第三导线9、第四导线10的载流截面均为1mm2
在常温20±3℃下,将电池组先以680mA放残电至8.0V,以3400mA恒流充电至12.6V,然后恒压12.6V充电至电流逐渐减小至170mA,停止充电,搁置15分钟,以3400mA恒流放电至8.0V截止,电池组的充电容量为3.52Ah,电池组放电容量为3.43Ah,电池组在常温20±3℃下的充电特性曲线图和放电特性曲线图如图2所示,其中“△”表示的曲线为放电特性曲线,“○”表示的曲线为充电特性曲线。
在常温20±3℃下,将电池组先以680mA放残电至8.0V,以3400mA恒流充电至12.6V,然后恒压12.6V充电至电流逐渐减小至170mA,停止充电,搁置15分钟,分别以1000W、700W、500W、1200W、1500W恒功率放电2S,电压截止保护为4.5V,电池组在常温20±3℃下不同放电功率的放电曲线图如图3所示,其中“◇”表示的曲线为放电功率500W的放电曲线,“○”表示的曲线为放电功率700W的放电曲线,“△”表示的曲线为放电功率1000W的放电曲线,“□”表示的曲线为放电功率1200W的放电曲线,“*”表示的曲线为放电功率1500W的放电曲线。由图3可知,在常温20±3℃环境下,电池组完全能够满足1000W额定功率输出工作2S以上的能力,且电池组工作时的总电压在10V以上,满足电池组电压不低于4.5V 的要求;以1500W额定功率输出2S,电池组电压仍然可以保持在9V,这表明该电池组在常温情况下具有良好的高功率输出能力。
将电池组在常温20±3℃下以3400mA恒流充电至12.6V,然后恒压12.6V充电至电流逐渐减小至170mA,停止充电,再将电池组放入-20±2℃下搁置24小时,在-20±2℃环境下以1000W或700W或500W恒功率放电2S,电压截止保护为0V,电池组在低温-20±2℃下不同放电功率的放电曲线图如图4所示,其中“◇”表示的曲线为放电功率500W的放电曲线,“○”表示的曲线为放电功率700W的放电曲线,“△”表示的曲线为放电功率1000W的放电曲线。由图4可知,在低温-20±2℃环境下,电池组不能够满足1000W额定功率输出工作2S以上的能力,如果以1000W进行强制放电输出,则电池组电压在0.5S内快速降低到0V。同时,在低温-20±2℃环境下,电池组也不能够满足700额定功率输出工作2S以上的能力,如果以700W进行强制放电输出,则电池组总电压在0.6S内快速降低到0V。进一步降低输出功率,在低温-20±3℃环境下,该电池组可以以500W额定功率输出稳定工作2S,但是电池组电压只有7V~6V;对比20±3℃环境下,图3中看出,同样以500W额定功率输出稳定工作2S,电池组电压范围为11.5V~11.2V。温度降低40度,电池组的500W额定功率输出放电电压平台下降约40%以上。
将电池组在常温20±3℃下以3400mA恒流充电至12.6V,然后恒压12.6V充电至电流逐渐减小至170mA,停止充电,再将电池组放入-20±2℃下搁置24小时,在-20±2℃环境下,将电池组的正极、负极分别与便携式电池组低温高功率输出辅助装置的正极第一导线、负极导线相连接。按下便携式电池组低温高功率输出辅助装置的按钮开关,时间控制开关接收到按钮开关触发信号进行闭合,温度保护开关由于环境温度为-20±2℃,未达到其设定的工作温度范围,因此处于常闭状态,由此二次回路正向电压施加到MOS管G脚,G-S达到开启电压4V条件,MOS 管被导通,电池组通过一次回路给功率电阻这一负载做功,功率电阻温度上升,时间控制开关计时达到40S,时间控制开关断开,MOS管G-S间的正向偏置电压被断开,MOS被断开一次回路放电停止,电池组被放电保护。
图5(a)为电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中功率电阻的温度-时间曲线图,由图5(a)可以看出,功率电阻的温度从-20℃在60S时间内快速上升到接近40℃,并在后续的40S时间内上升到55℃。初期60S功率电阻温度的快速上升,是由于电池组在以较大功率对功率电阻做功导致的,后续40S温度是上升是由于功率电阻表面温度滞后于内部温度,加上测量温度滞后与实际温度造成的。电池组通过一次回路给功率电阻做功放电的过程中,也在给自身做功,这是由于电池组在低温环境下,自身的内阻大幅度增加(充满电情况下,本实施例电池组常温20±3℃环境下1000HZ交流内阻为6.1毫欧,而在低温-20±2℃环境下1000HZ交流内阻为14.1毫欧,低温下相对常温内阻增加1.3倍),因此低温大功率输出工作的同时,电池组自身由于极化的存在,也消耗大量的能量,从而发生快速的自热现象。
图5(b)为电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中电池组的温度-时间曲线图,由图5(b)中可以看出,电池组的温度在60S内快速自热,从-20℃上升到+5℃。
图5(c)为电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整过程中电池组的电压-时间曲线图,由图5(c)中可以看出,电池组在给功率电阻做功的40S过程中,电池组的电压由7V下降到6.5V,随后又逐渐上升到7.8V,这是由于随着电池组放电进行,结合图5(b)的分析可知,电池组的温度出现了快速的上升,因而导致电池组的高功率输出能力增强,放电平台不仅没有随着放电的进行下降,反而出现了上升的情况。温度保护开关的设置,是考虑到 作为便携式装置,需满足对人身安全的要求,低温辅助装置不能过温从而产生对人的伤害。温度保护开关的动作温度设定为45±2℃,使得便携式电池组低温高功率输出辅助装置外壳的温度不至于高于40℃,同时温度保护开关与时间控制开关在二次回路中属于串联关系,一旦时间控制开关设置值过长或其它故障,温度保护开关能够从温度上升的结果上做最后的安全保障。
图6是实施例1中电池组在低温-20±2℃下采用便携式电池组低温高功率输出辅助装置调整后的不同放电功率的放电曲线图,其中“◇”表示的曲线为放电功率500W的放电曲线,“○”表示的曲线为放电功率700W的放电曲线,“△”表示的曲线为放电功率1000W的放电曲线。从图6中可看出,电池组经过便携式电池组低温高功率输出辅助装置的调整后,电池组由原来不能进行1000W高功率输出工作,转变为完全能够进行正常的高功率输出。电池组经过自热后,1000W放电2S的电池组电压为8.6V~8.1V之间,比常温20±3℃下(图3中的“△”表示的曲线)10.4V~10.1V要低约2V,这是由于电池组自热后温度仍然只有7℃,没有达到常温20℃。但是,在7℃情况下,电池组完全能够满足汽车启动点火的工况要求;电池组完全具备700W输出2S的能力,且电池组平台为9.8V~9.1V。同时,电池组500W输出2S的电池组工作平台为10.3V~10.1V,相对比低温-20℃下(图3中的“◇”表示的曲线)为7.0V~6.2V。
本发明虽然是以钴酸锂型锂离子电池组为例来进行说明,但是同样适用于三元锂离子电池组、磷酸亚铁锂离子电池组、锰酸锂离子电池组等可充电电池组所构成的电池组或能源模块。
本发明虽然是以汽车启动电源为例在进行说明,但是同样使用于电池组在低温情况下需要高功率输出的工况,例如无人机电池组、发动机启动电池组等。
实施例2
本实施例与实施例1不同在于,在本实例中,MOS管2采用P沟道增强型MOS管,如图7所示,一种便携式电池组低温高功率输出辅助装置,包括功率电阻1、MOS管2、按钮开关3、时间控制开关4和温度保护开关5;其中,按钮开关3、时间控制开关4和温度保护开关5的依次通过正极导线串联,温度保护开关5的一端同时与PMOS管2的S极相连,PMOS管2的D极通过第二负极导线81与功率电阻1的一端相连,功率电阻1的另一端与第一负极导线82相连,PMOS管2的G极连接第一负极导线82;按钮开关3、时间控制开关4、温度保护开关5、PMOS管2、第二负极导线81、功率电阻1和第一负极导线82构成电路为一次回路,按钮开关3、时间控制开关4、温度保护开关5、PMOS管2和负极第一导线82构成的电路为二次回路,一次回路为工作回路,对低温电池组实施温度辅助调整;二次回路为控制回路,实施对一次回路工作的时间和温度控制。
实施例3
本实施例与实施例1实施例2不同在于,在本实例中,省去了MOS管的设置,直接将控制单元设置为控制开关,将控制开关与功率电阻串联用于实现对一次回路的控制。如图8所示,一种便携式电池组低温高功率输出辅助装置,包括功率电阻1、按钮开关3、时间控制开关4和温度保护开关5;其中,按钮开关3、时间控制开关4和温度保护开关5通过正极导线依次相连,温度保护开关5的一端同时通过负极第二导线81与功率电阻1的一端相连,功率电阻1的另一端与第一负极导线82相连。按钮开关3、时间控制开关4、温度保护开关5、第二负极导线81、功率电阻1和第一负极导线82构成电池组的工作回路,并通过按钮开关3、时间控制开关4、温度保护开关5对该工作回路的通断进行控制。
以上所述仅是本发明的优选的实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和修饰,这 些改进和修饰也应该视为本发明的保护范围。

Claims (10)

  1. 一种便携式电池组低温高功率输出辅助装置,其特征在于:包括一次回路和控制单元;
    所述的一次回路设置为电池组的工作回路,其包括功率电阻,所述的功率电阻的两端分别与电池组的正极、负极电连接,电池组在低温下通过所述功率电阻进行电流放电,使电池组内部温度上升;
    所述控制单元用于对所述一次回路的通断进行控制。
  2. 根据权利要求1所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述一次回路还包括MOS管,所述功率电阻的一端与电池组的正/负极电连接,所述功率电阻的另一端通过所述MOS管与电池组的负/正极电连接。
  3. 根据权利要求2所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述控制单元设置为二次回路,所述二次回路包括按钮开关,所述按钮开关电连接于所述电池组正极和MOS管之间,所述按钮开关通过控制所述MOS管的通断而控制所述第一回路的通断。
  4. 根据要求3所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述二次回路还包括时间控制开关,所述时间控制开关与所述按钮开关串联,所述时间控制开关通过控制所述MOS管的通断而控制第一回路的通断。
  5. 根据要求4所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述二次回路还包括温度保护开关,所述温度保护开关与所述按钮开关、时间控制开关串联,所述温度保护开关通过控制所述MOS管的通断而控制所述第一回路的通断。
  6. 根据权利要求1所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述控制单元设置为控制开关,所述控制开关与所述功率电阻串联,用 于控制所述一次回路的通断。
  7. 根据权利要求6所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述控制开关包括串联的按钮开关、温度控制开关和时间控制开关。
  8. 根据权利要求1所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述功率电阻的阻值满足公式(1),功率电阻的质量和比热的乘积满足公式(2),
    Figure PCTCN2016075468-appb-100001
    Figure PCTCN2016075468-appb-100002
    其中:N为组成电池组的单体电池数量,I为电池组的低温最大允许放电电流,R为功率电阻的阻值,m为功率电阻的质量,CP为功率电阻的比热,t为便携式电池组低温高功率输出辅助装置使用前所处的环境温度。
  9. 根据权利要求4或5所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述时间控制开关的闭合工作时间设定为20~60S。
  10. 根据权利要求5所述的一种便携式电池组低温高功率输出辅助装置,其特征在于:所述温度保护开关的动作温度设定为10~55℃。
PCT/CN2016/075468 2016-01-13 2016-03-03 一种便携式电池组低温高功率输出辅助装置 WO2017121021A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/365,966 US10128673B2 (en) 2016-01-13 2016-12-01 Portable device for aiding low temperature high power output of battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610020916.2 2016-01-13
CN201610020916.2A CN105449298B (zh) 2016-01-13 2016-01-13 一种便携式电池组低温高功率输出辅助装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/365,966 Continuation US10128673B2 (en) 2016-01-13 2016-12-01 Portable device for aiding low temperature high power output of battery pack

Publications (1)

Publication Number Publication Date
WO2017121021A1 true WO2017121021A1 (zh) 2017-07-20

Family

ID=55559249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075468 WO2017121021A1 (zh) 2016-01-13 2016-03-03 一种便携式电池组低温高功率输出辅助装置

Country Status (2)

Country Link
CN (1) CN105449298B (zh)
WO (1) WO2017121021A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301927A (zh) * 2018-11-14 2019-02-01 天津瑞能电气有限公司 风力发电机组变流器的低温快速启动电路
CN114313277A (zh) * 2021-12-03 2022-04-12 彩虹无人机科技有限公司 一种无人机启动电源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110138027A (zh) * 2019-04-29 2019-08-16 安徽师范大学 一种低温下锂电池高效放电控制系统及控制方法
CN116111692B (zh) * 2023-03-14 2023-09-29 深圳市拓普泰克技术股份有限公司 一种基于户外便携式的储能电源控制系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203721844U (zh) * 2014-01-07 2014-07-16 同济大学 一种用于锂离子电池模块的低温自加热电路
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置
CN105216632A (zh) * 2014-06-30 2016-01-06 观致汽车有限公司 用于车辆电池组管理系统和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001047A1 (de) * 2009-02-20 2010-08-26 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erwärmen von Speicherzellen
CN202042572U (zh) * 2010-07-30 2011-11-16 比亚迪股份有限公司 一种电池的加热电路
CN103165960B (zh) * 2013-03-20 2015-03-18 淮安苏能电动车有限公司 一种用于电动车电池的加热保温系统
CN204088524U (zh) * 2014-08-20 2015-01-07 中航锂电(洛阳)有限公司 一种锂离子启停电源
CN204118216U (zh) * 2014-10-13 2015-01-21 智慧城市系统服务(中国)有限公司 一种带加热功能的电池模组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN203721844U (zh) * 2014-01-07 2014-07-16 同济大学 一种用于锂离子电池模块的低温自加热电路
CN105216632A (zh) * 2014-06-30 2016-01-06 观致汽车有限公司 用于车辆电池组管理系统和方法
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109301927A (zh) * 2018-11-14 2019-02-01 天津瑞能电气有限公司 风力发电机组变流器的低温快速启动电路
CN114313277A (zh) * 2021-12-03 2022-04-12 彩虹无人机科技有限公司 一种无人机启动电源

Also Published As

Publication number Publication date
CN105449298B (zh) 2018-02-23
CN105449298A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US5990660A (en) Process for improving the charging and discharging capacity of storage batteries
CN111211587A (zh) 一种均衡电路、充电装置及储能装置
US10647211B2 (en) Power consumption control device
JP5547342B2 (ja) 高度蓄電池システム
US20190039477A1 (en) Heating control device
JP5422016B2 (ja) 充電制御装置
TWI338394B (en) Apparatus for protection of secondary battery
CN106329692B (zh) 一种汽车应急启动电源及其启动控制方法
WO2017121021A1 (zh) 一种便携式电池组低温高功率输出辅助装置
US20090295335A1 (en) Battery pack and charging method for the same
EP3614485B1 (en) Battery device and battery temperature adjusting method
JP6648539B2 (ja) 電力貯蔵システム
KR101641762B1 (ko) 프리차지 저항 및 릴레이 파손 방지 장치 및 방법
US20240194967A1 (en) Heating control method for energy storage, energy storage system, and photovoltaic energy storage system
TW388999B (en) Overcharge preventing device
Longchamps et al. Transforming rate capability through self-heating of energy-dense and next-generation batteries
CN108879006B (zh) 电池组加热控制策略
KR102063937B1 (ko) 배터리 팩 관리 장치 및 관리 방법
Vo et al. Experimental comparison of charging algorithms for a lithium-ion battery
US10128673B2 (en) Portable device for aiding low temperature high power output of battery pack
JP3378293B2 (ja) 機器システム
EP2978099A1 (en) Protective circuit of unit cell
JP6707119B2 (ja) 電池段別充電方法及びシステム
CN206077042U (zh) 一种汽车应急启动电源
JPH06284591A (ja) 充電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 19/09/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16884581

Country of ref document: EP

Kind code of ref document: A1