WO2017120807A1 - 一种半渗透性元件及其应用和制备方法及3d打印设备 - Google Patents

一种半渗透性元件及其应用和制备方法及3d打印设备 Download PDF

Info

Publication number
WO2017120807A1
WO2017120807A1 PCT/CN2016/070838 CN2016070838W WO2017120807A1 WO 2017120807 A1 WO2017120807 A1 WO 2017120807A1 CN 2016070838 W CN2016070838 W CN 2016070838W WO 2017120807 A1 WO2017120807 A1 WO 2017120807A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
permeable element
permeable
semipermeable
liquid tank
Prior art date
Application number
PCT/CN2016/070838
Other languages
English (en)
French (fr)
Inventor
林文雄
黄见洪
阮开明
刘华刚
黄海洲
吴鸿春
张志�
陈金明
李锦辉
翁文
葛燕
林紫雄
Original Assignee
中国科学院福建物质结构研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院福建物质结构研究所 filed Critical 中国科学院福建物质结构研究所
Priority to PCT/CN2016/070838 priority Critical patent/WO2017120807A1/zh
Priority to US16/069,969 priority patent/US20190016051A1/en
Publication of WO2017120807A1 publication Critical patent/WO2017120807A1/zh
Priority to US17/340,446 priority patent/US20210291451A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/291Arrangements for irradiation for operating globally, e.g. together with selectively applied activators or inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing

Definitions

  • the invention belongs to the field of 3D printing, and in particular relates to a semi-permeable element, an application and preparation method thereof and a 3D printing device.
  • 3D manufacturing is a technique for constructing three-dimensional objects by layer-by-layer printing and layer-by-layer accumulation based on digital model files.
  • a three-dimensional object is constructed by layer-by-layer curing of a photosensitive resin by irradiation with visible light or ultraviolet light, which is generally referred to as a stereoscopic light curing technique (SLA).
  • SLA stereoscopic light curing technique
  • These elements are either flexible materials or have a small pore size and the microporous structure is a sponge labyrinth structure.
  • the air permeability is poor, and in some embodiments a pure oxygen or pressurized manner is required to increase the air permeability.
  • the present invention provides a semi-permeable element for 3D printing curing inhibitor penetration, an application and preparation method thereof, and a 3D printing device,
  • the semi-permeable element curing inhibitor has a high transmittance, and the requirement for suppressing the thickness of the solidified layer can be achieved by simply introducing air into the continuous three-dimensional object.
  • the invention provides a semi-permeable element for 3D printing curing inhibitor penetration, the semi-permeable element having a pore density of 10 7 -10 11 /cm 2 and/or the pore diameter of 0.01 ⁇ m -5 ⁇ m.
  • the semipermeable element has a gas permeability of not less than 100 bar. It is used to pass a gaseous curing inhibitor.
  • the semipermeable element has a pore density of from 10 8 to 10 10 /cm 2 and/or a pore size of from 0.02 ⁇ m to 0.2 ⁇ m.
  • gas permeability is not less than 120 bar, and may not be less than 150 bar.
  • the semi-permeable element is prepared by etching micropores on an optically transparent substrate material by a nuclear track etching technique, wherein the hole density and the pore size can be controlled as needed during the preparation process.
  • the substrate material comprises polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI), polyethylene (PE), polypropylene (PP), quartz crystal, Mica or a combination thereof.
  • the base material is quartz crystal or mica, or the base material comprises quartz crystals and/or mica.
  • a rigid support member is disposed outside or inside the semi-permeable member for increasing the rigidity of the semi-permeable member.
  • the present invention also proposes the use of a semi-permeable element as described above in 3D printing.
  • the present invention also proposes a method for preparing a semi-permeable element as described above, the method comprising the steps of:
  • Step (1) irradiating the optically transparent base material with a nuclear reaction fission fragment or an accelerator heavy ion beam to leave an irradiation passage on the base material;
  • Step (2) chemically etching the aforementioned irradiated base material to etch the micropores, thereby preparing a semi-permeable member.
  • the present invention also proposes a 3D printing apparatus comprising a semi-permeable member and a liquid tank as described above, wherein the semi-permeable member constitutes a part of the bottom or bottom of the liquid tank, the liquid tank and The semi-permeable element constitutes a polymerizable liquid container; or the semi-permeable element constitutes a part of the top or top of the liquid tank, the liquid tank and the semi-permeable element constitute a closed or semi-closed polymerizable liquid container; or semi-permeable The permeable element is located inside the liquid tank.
  • the 3D printing apparatus further includes a curing inhibitor source for providing a curing inhibitor storage or circulation area; the curing inhibitor source is located between the semi-permeable element and the light source of the 3D printing apparatus, and is attached to the semi-permeable
  • the surface of the semi-permeable element away from the light source is a manufacturing surface, and the curing inhibitor can form a liquid suppression solidified layer on the manufacturing surface through the semi-permeable element.
  • the curing inhibitor or polymerization inhibitor used in the present invention may be in a liquid or gaseous form.
  • the gas inhibitor is a gas.
  • the specific inhibitor depends on the polymerized monomer and the polymerization reaction.
  • the inhibitor may conveniently be oxygen, which may be provided in the form of a gas, such as air, an oxygen-rich gas (optionally, but in some embodiments preferably comprises other inert gases to reduce their flammability) And, in some embodiments, pure oxygen.
  • the inhibitor can be a base such as ammonia, a trace amine such as methylamine, ethylamine, a di- and trialkylamine such as dimethylamine, Diethylamine, trimethylamine, triethylamine, etc.) or carbon dioxide, including mixtures or combinations thereof.
  • a base such as ammonia, a trace amine such as methylamine, ethylamine, a di- and trialkylamine such as dimethylamine, Diethylamine, trimethylamine, triethylamine, etc.
  • carbon dioxide including mixtures or combinations thereof.
  • the upper surface of the semi-permeable element is a manufacturing surface, and the construction of the three-dimensional object is formed between the manufacturing surface and the lower surface of the table of the 3D printing apparatus.
  • the region; the curing inhibitor is capable of entering the build region through the semi-permeable element to form a liquid inhibiting solidified layer on the surface of the manufacture.
  • the lower surface of the semi-permeable member is a manufacturing surface
  • the construction surface forms a construction region of the three-dimensional object with the upper surface of the table of the 3D printing apparatus; curing inhibition
  • the agent can enter the build region through the semi-permeable element to form a liquid inhibiting solidified layer on the surface of the manufacture.
  • the semi-permeable element is fixed to a support element which is a rigid, optically transparent element with grooves on the surface of the support element for gas circulation.
  • a cure inhibitor can flow through these channels to the surface of the fabrication.
  • the semipermeable element of the present invention has a nearly cylindrical straight pore structure, which has a better transmittance to a gaseous curing inhibitor than a general polymer, and can be increased by at least 20% under the same porosity (for example, 5%).
  • the transmittance of -30% can be up to 5 times or even 10 times that of a semi-permeable polymer (such as a sponge-like microporous polymer).
  • the method for preparing a semi-permeable element proposed by the present invention can control the pore density of a semi-permeable element and Aperture to improve the accuracy and speed of 3D printing.
  • the three-dimensional object forming speed of the 3D printing apparatus using the semipermeable element described above may exceed 600 mm/h.
  • the semipermeable element proposed by the present invention comprises a rigid support member such as quartz crystal, mica or the like to overcome the deficiencies of the flexible material.
  • the rigid support element is used to secure or flatten the semi-permeable element.
  • FIG. 1 is a schematic view showing the structure and principle of a 3D printing apparatus of the present invention.
  • FIG. 2 is a schematic illustration of one embodiment of a semipermeable element of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of a 3D printing apparatus of the present invention.
  • FIG. 4 is a schematic view of another embodiment of a 3D printing apparatus of the present invention.
  • Figure 5 is an electron micrograph of a semi-permeable element in another embodiment of the 3D printing apparatus of the present invention.
  • the semi-permeable element proposed by the invention is prepared by etching micropores on an optically transparent base material by using a nuclear track etching technique, specifically using nuclear reaction fission fragments, or irradiating the base material with an accelerator heavy ion beam stream, followed by chemical etching.
  • the treatment produces a nearly cylindrical straight hole and can control its pore density and pore size as required.
  • the semipermeable member has a pore density of 10 7 - 10 11 /cm 2 and/or a pore size of 0.01 ⁇ m - 5 ⁇ m and a gas permeability of not less than 100 bar.
  • the semipermeable element has a pore density of from 10 8 to 10 10 /cm 2 and/or a pore size of from 0.02 ⁇ m to 0.2 ⁇ m.
  • the base material is made of polycarbonate (PC), polyethylene terephthalate (PET), polyimide (PI), polyethylene (PE), polypropylene (PP), quartz crystal. , mica or a combination of them.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PI polyimide
  • PE polyethylene
  • PP polypropylene
  • quartz crystal quartz crystal.
  • mica quartz crystal.
  • rigid support elements can be placed outside or inside the semi-permeable element for increasing the rigidity of the semi-permeable element, such as the semi-permeable nature of the support element and the case. Stretching, flattening, and fixing to increase the rigidity of the semi-permeable element; when the supporting element is located on the illumination path of the light source, the supporting element allows the energy of the light source to pass through; when the supporting element is located in the polymerization inhibitor The support element allows the polymerization inhibitor to pass through when in the permeation path.
  • FIG. 1 A schematic diagram of the structure and principle of a 3D printing apparatus using the above-described semi-permeable element proposed by the present invention is shown in FIG.
  • the device comprises: (a) a main body frame for connecting or fixing other components, components; (b) a workbench, a three-dimensional object built on the workbench, and capable of moving the three-dimensional object up and down; (c) a semi-permeable component Is an optically transparent element and is transparent to a curing inhibitor (oxygen).
  • the surface of the semi-permeable element near the table is a manufacturing surface, and the construction area between the manufacturing surface and the table limits the three-dimensional object, and the curing inhibitor passes through the semi-permeation.
  • the sexual element penetrates into the manufacturing surface; (d) a liquid tank, in some embodiments, the liquid tank and the semi-permeable element constitute a container of polymerizable liquid, fixed between the work table and the source of the curing inhibitor, wherein the surface is made A part of the inner bottom surface or the inner bottom surface of the polymer liquid container is to be covered with a polymerizable liquid having a thickness of not less than 0.1 mm during the 3D printing process.
  • the liquid tank is fixed to the underside of the manufacturing surface and the table, the liquid level of the polymerizable liquid is not lower than the surface of the manufacturing surface, and the surface of the manufacturing surface is contacted with the polymerizable liquid;
  • the source of the curing inhibitor provides curing The inhibitor storage or circulation area, preferably an optically transparent container;
  • a light source that illuminates the build region through the curing inhibitor source and the semi-permeable element to initiate curing of the polymerizable liquid;
  • a controller, a connection station, and The light source controls the intensity and shape of the table motion and source radiation.
  • the light source illuminates the build region through the source of the cure inhibitor and the semi-permeable element, causing the polymerizable liquid of the build region to solidify to form a cured region. Due to the presence of the curing inhibitor, a liquid inhibiting solidified layer is formed between the solidified region and the semipermeable member; when the working table drives the three-dimensional object to move, the solidified region and the semi-permeate are formed due to the formation of the liquid inhibiting solidified layer
  • the components can be easily separated from each other, and the cured layer and the cured region are shown in Fig. 2.
  • a continuous construction of a three-dimensional object can be achieved using a 3D printing apparatus of the semi-permeable element described above, and the construction speed can exceed 600 mm/h.
  • Fig. 3 is an embodiment of the aforementioned 3D printing apparatus using the above semipermeable element. This embodiment constructs a three-dimensional object in a "bottom-up" manner.
  • the device includes the following structure:
  • the main body frame 1 constitutes a frame structure of the device
  • the workbench 2 constructs a three-dimensional object on the workbench, and the workbench 2 is connected to a one-dimensional electric platform, and the one-dimensional electric platform drives the workbench 2 to move up and down under the control of the controller 7;
  • the semi-permeable element 3 is an optically transparent, oxygen-permeable element prepared by a nuclear track etching technique; in the embodiment, the semi-permeable element has a hole density of 10 7 /cm 2 and an aperture of 1 ⁇ m. .
  • the gas permeability is not less than 100 bar.
  • the liquid tank 4, the semi-permeable element 3 and the liquid tank 4 constitute a polymerizable liquid container, the surface of the semi-permeable element 3 near the table is a manufacturing surface of a three-dimensional object, as the bottom of the polymerizable liquid container; the lower surface of the table 2 Forming a three-dimensional object 10 between the manufacturing surface;
  • the curing inhibitor source 5 is for providing a curing inhibitor; the lower surface of the semi-permeable element 3 is in contact with the curing inhibitor source 5, and the curing inhibitor can be infiltrated into the construction region through the semi-permeable member 3, in the manufacturing surface and the curing region 8 A liquid inhibiting solidified layer 9 is formed between them, and in the present embodiment, oxygen or air is used as a curing inhibitor;
  • the light source 6 is located below the semi-permeable element 3, and the light source is irradiated through the semi-permeable element 3 to illuminate the build region to initiate curing of the polymerizable liquid;
  • the controller 7 connects and controls the light source 6 and the table 2.
  • the working process of the device is as follows:
  • the light source 6 illuminates the build region while introducing a curing inhibitor.
  • the light source 6 illuminates the build region to form a solidified region 8, and the cure inhibitor in the cure inhibitor source 5 is enriched in the manufacture through the semi-permeable member 3.
  • a liquid suppression solidified layer 9 is formed between the manufacturing surface and the curing region 8;
  • the controller 7 controls the table 2 to move away from the manufacturing surface. Due to the presence of the liquid-inhibited solidified layer 9, the solidified region 8 is separated from the manufactured surface easily and without damage, forming a subsequent build region, while the polymerizable liquid is filled. Subsequent build area;
  • the semi-permeable elements of the present invention Compared with commercially available spongy microporous polymers as semi-permeable elements, the semi-permeable elements of the present invention produce a five-fold increase in gas transmission rate and a printing speed of up to 500 mm/h in 3D printing equipment.
  • Fig. 4 is another embodiment of the aforementioned 3D printing apparatus using the above semipermeable element. This embodiment constructs a three-dimensional object in a "top-down" manner.
  • the device includes the following structure:
  • the main body frame 31 constitutes a frame structure of the 3D printing device
  • the worktable 32 constructs a three-dimensional object on the workbench, and the workbench 2 is connected to a one-dimensional electric platform, and the one-dimensional electric platform drives the worktable 32 to move up and down under the control of the controller 37;
  • the semi-permeable element 33 is an optically transparent, oxygen-permeable element prepared by a nuclear track etching technique; in this embodiment, as shown in the scanning electron microscope of FIG. 5, the semi-permeable element has a density of 10 8 /cm. a pore density of 2 , and a pore size of 0.15 ⁇ m, the gas permeability is not less than 100 bar;
  • the lower surface of the semi-permeable element 33 is a manufacturing surface that forms a build region of a three-dimensional object with the upper surface of the table 32;
  • the liquid tank 34 is a container of a polymerizable liquid, and the table 32 is located inside the liquid tank 34;
  • a liquid inhibiting solidified layer 39 is formed between 38, in this embodiment, oxygen or air is used as a curing inhibitor;
  • the light source 36 illuminating the build region through the semi-permeable element 33 can initiate curing of the polymerizable liquid
  • the controller 37 connects and controls the light source 36 and the table 32.
  • the controller 37 controls the table 2 to move away from the manufacturing surface. Due to the presence of the liquid inhibiting solidified layer 39, the solidified region 38 is separated from the manufacturing surface easily and without damage, forming a subsequent build region, while the polymerizable liquid is filled into Subsequent build area;
  • the gas permeability of the semi-permeable element of the present invention is increased by 6 times, and the printing speed of the 3D printing apparatus can reach 550 mm/h.
  • Example 2 The same method as in Example 1 was employed, except that the semipermeable member had a pore density of 10 9 /cm 2 and/or a pore size of 0.1 ⁇ m.
  • the gas permeability is not less than 120 bar.
  • the semi-permeable element of the present invention produces a gas transmission rate of 7 times and a 3D printing apparatus with a printing speed of 570 mm/h.
  • Example 2 The same method as in Example 2 was employed, except that the semipermeable member had a pore density of 2 ⁇ 10 9 /cm 2 and/or a pore size of 0.05 ⁇ m.
  • the gas permeability is not less than 150 bar.
  • the semi-permeable element of the present invention Compared with a commercially available spongy microporous polymer as a semi-permeable element, the semi-permeable element of the present invention produces a gas transmission rate of 8 times and a 3D printing apparatus with a printing speed of 600 mm/h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

公开了一种用于固化抑制剂渗透的半渗透性元件及其应用和制备方法及3D打印设备,所述半渗透性元件(3)的孔密度为107-1011/cm2和/或孔径为0.01μm-5μm。所述半渗透性元件(3)具有良好的固化抑制剂透过率,通入空气即可满足连续三维物体制造对抑制固化层厚度的要求。

Description

一种半渗透性元件及其应用和制备方法及3D打印设备 技术领域
本发明属于3D打印领域,具体涉及一种半渗透性元件及其应用和制备方法及3D打印设备。
背景技术
三维制造(又称3D打印)是一种以数字模型文件为基础,通过逐层打印、层层累积的方式来构造三维物体的技术。特别地,采用可见光或紫外光照射光敏树脂逐层固化来构造三维物体,通常称之为立体光固化技术(SLA)。
在现有的SLA技术中,一种为逐层光固化方式,该种方式可参阅申请号为201410795471.6的中国专利申请《一种具有刮平功能的激光3D打印机及其光固化打印方法》。在这种方式实施过程中,层与层之间需中断光照射,然后在已固化区域表面重新覆盖或填充精确、均匀的打印原液层,然后再进行光照射形成新的固化层,层层累积构造出三维物体。这种逐层固化的方式的主要缺点是,每固化一层需启动复杂的机械运动装置进行液面刮平,以此来重新形成精确、均匀的液体光敏树脂覆盖层,因此采用这种方式系统复杂且耗时。
连续构造三维物体的方法见申请号为201480008397.7的中国专利申请《三维制造的方法和设备》。该技术通过半渗透性元件引入聚合抑制剂在构建表面与聚合区域之间形成由光敏树脂液体组成的液膜脱离层,从而无需在一层固化完成后,停止光照射并进行新液面层的填充和刮平,可以连续地实施三维物体的构建工作。但这种技术所使用的半渗透性元件为高分子聚合物或多孔玻璃,这些元件要么是柔性材料,要么孔径较小且微孔结构均为海绵状迷宫结构,对固化抑制剂(主要是氧气)透气率差,在某些实施方案中需要纯氧或加压的方式来增大透气率。
发明内容
为克服现有3D打印设备中半渗透性元件透气率低或柔性薄膜的不足,本发明提供一种用于3D打印固化抑制剂渗透的半渗透性元件及其应用和制备方法及3D打印设备,该半渗透性元件固化抑制剂透过率高,只需通入空气即可实现连续三维物体制造对抑制固化层厚度的要求。
本发明提出的一种用于3D打印的固化抑制剂渗透的半渗透性元件,所述半渗透性元件的孔密度为107-1011/cm2,和/或,所述孔径为0.01μm-5μm。
根据本发明,所述半渗透性元件的气体渗透率不小于100巴。其用于透过气态的固化抑制剂。
根据本发明,所述的半渗透性元件的具有108-1010/cm2的孔密度,和/或具有0.02μm-0.2μm大小的孔径。
进一步地,所述气体透过率不小于120巴,还可以不小于150巴。
进一步地,所述半渗透性元件采用核径迹蚀刻技术在光学透明的基底材料上刻蚀微孔制备而成,其中在制备过程中可根据需要控制孔密度和孔径。
进一步地,所述基底材料包括聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚酰亚胺(PI)、聚乙烯(PE)、聚丙烯(PP)、石英晶体、云母或它们的组合。
优选地,所述基底材料为石英晶体或云母,或者,所述基底材料包括石英晶体和/或云母。
进一步地,所述半渗透性元件外侧或内部设置刚性的支撑元件,用于提高半渗透性元件的刚性。
并且,本发明还提出了一种如前所述的半渗透性元件在3D打印中的应用。
而且,本发明还提出了一种用于制备如前所述的半渗透性元件的方法,该方法包括如下步骤:
步骤(1):采用核反应裂变碎片,或加速器重离子束流辐照光学透明的基底材料,在基底材料上留下辐照通道;
步骤(2):对前述经辐照的基底材料进行化学蚀刻处理刻蚀出微孔,从而制得半渗透性元件。
另外,本发明还提出了一种3D打印设备,该3D打印设备包括如前所述的半渗透性元件和液体槽,其中,半渗透性元件构成液体槽的底部或底部的一部分,液体槽和半渗透性元件组成可聚合液体容器;或者半渗透性元件构成液体槽的顶部或顶部的一部分,液体槽和半渗透性元件组成封闭或半封闭可聚合液体容器;或者半渗 透性元件位于液体槽内部。
进一步地,该3D打印设备还包括固化抑制剂源,用以提供固化抑制剂存储或流通区域;该固化抑制剂源位于半渗透性元件与3D打印设备的光源之间,并贴覆于半渗透性元件;半渗透性元件中远离光源的表面为制造表面,固化抑制剂能够通过半渗透性元件在制造表面形成一层液态抑制固化层。
根据本发明,用于本发明的固化抑制剂或聚合抑制剂可为液体或气体形式。在一些实施方案中,优选气体抑制剂为气体。具体的抑制剂取决于聚合的单体和聚合反应。对于自由基聚合单体,抑制剂可方便地为氧,其可提供为气体形式,例如空气、富氧气体(任选地,但是在一些实施方案中优选地包含其它惰性气体以减少它们的可燃性),或在一些实施方案中为纯氧气。在一些实施方案中,例如其中通过光致产酸剂引发剂聚合单体,抑制剂可为碱,例如氨、微量胺(例如甲胺、乙胺、二和三烷基胺例如二甲胺、二乙胺、三甲胺、三乙胺等)或二氧化碳,包括它们的混合物或组合。
进一步地,当半渗透性元件构成液体槽的底部或底部的一部分时,半渗透性元件上表面为制造表面,该制造表面与该3D打印设备的工作台的下表面之间形成三维物体的构建区域;固化抑制剂能够通过半渗透性元件进入构建区域,在制造表面形成液态抑制固化层。
进一步地,当半渗透性元件位于液体槽内部时,半渗透性元件的下表面为制造表面,该制造表面与该3D打印设备的工作台的上表面之间形成三维物体的构建区域;固化抑制剂能够通过半渗透性元件进入构建区域,在制造表面形成液态抑制固化层。
根据本发明,所述半渗透性元件固定在支撑元件上,支撑元件为刚性、光学透明元件,在支撑元件表面刻有沟槽,用于气体流通。固化抑制剂可流经这些沟槽渗透至制造表面。
本发明的有益效果:
1.本发明的半渗透性元件具有近圆柱型直孔结构,对气态固化抑制剂的透过率比一般聚合物好,在同样孔隙率(例如5%)的条件下,最少可以增加20%-30%的透过率,最高可以为半渗透性聚合物(如海绵状微孔聚合物)材料的透过率的5倍,甚至达到10倍。
2.本发明提出的半渗透性元件的制备方法可按要求控制半渗透性元件孔密度和 孔径,提高3D打印的精度和速度。使用上述半渗透性元件的3D打印设备的三维物体成型速度可超过600mm/h。
3.本发明提出的半渗透性元件包含刚性支撑元件,如石英晶体、云母等,用以克服柔性材料的不足。所述的刚性支撑元件来固定或拉平半渗透性元件。
附图说明
图1是本发明3D打印设备的结构与原理示意图。
图2是本发明的半渗透性元件的一种实施例的示意图。
图3是本发明3D打印设备的一实施例示意图。
图4是本发明3D打印设备的另一个实施例示意图。
图5是本发明3D打印设备的另一个实施例中半渗透性元件的电镜扫描图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于附图和以下实施例。
本发明提出的半渗透性元件采用核径迹蚀刻技术在光学透明的基底材料上刻蚀微孔制备而成,具体采用核反应裂变碎片,或加速器重离子束流辐照基底材料后再经化学蚀刻处理制备出近圆柱型直孔,并可按要求控制其孔密度和孔径。半渗透性元件具有107-1011/cm2的孔密度,和/或具有0.01μm-5μm大小的孔径,气体渗透率不小于100巴。优选地,所述半渗透性元件具有108-1010/cm2的孔密度,和/或具有0.02μm-0.2μm大小的孔径。
根据本发明,所述基底材料由聚碳酸酯(PC),聚对苯二甲酸乙二酯(PET)、聚酰亚胺(PI)、聚乙烯(PE)、聚丙烯(PP)、石英晶体、云母或它们的组合组成。针对晶体材料,其由于各向异性的特点,可在特定方向获得均匀的柱状孔,又由于本身为刚性材料,可克服柔性材料的不足。
由于某些半渗透性元件具有柔性的特点,因此可以在所述半渗透性元件外侧或内部设置刚性的支撑元件,用于增加半渗透性元件的刚性,例如支撑元件对半渗透性与案件进行拉伸、压平、固定来增加半渗透性元件的刚性;当支撑元件位于光源的照射路径上时,该支撑元件允许该光源的能量透过;当支撑元件位于聚合抑制剂 的渗透路径上时,该支撑元件允许聚合抑制剂透过。
本发明提出的使用上述半渗透性元件的3D打印设备的结构与原理示意图如图1所示。该设备包括:(a)主体框架,用于其他部件、元件的连接或固定;(b)工作台,在工作台上构建三维物体,并能带动三维物体上下移动;(c)半渗透性元件,为光学透明元件且可透固化抑制剂(氧气),半渗透性元件的靠近工作台的表面为制造表面,制造表面与工作台之间限制了三维物体的构建区域,固化抑制剂通过半渗透性元件渗透至制造表面;(d)液体槽,在一些实施方案中,液体槽与半渗透性元件组成可聚合液体的容器,固定于工作台和固化抑制剂源之间,其中制造表面作为可聚合液体容器的内底面或内底面的一部分,在3D打印实施过程中,制造表面需始终覆盖一层厚度不小于0.1mm的可聚合液体。在一些实施方案中,液体槽固定于制造表面和工作台的下面,装入可聚合液体液面不低于制造表面,确保制造表面与可聚合液体接触;(e)固化抑制剂源,提供固化抑制剂存储或流通区域,优选的为光学透明容器;(f)光源,透过固化抑制剂源和半渗透性元件照射构建区域,引发可聚合液体固化;(g)控制器,连接工作台和光源,控制工作台运动和光源辐射的强度和形状。
光源透过固化抑制剂源和半渗透性元件照射构建区域,引发构建区域的可聚合液体固化,形成固化区域。由于固化抑制剂的存在,在固化区域和半渗透性元件之间,形成一层液态抑制固化层;当工作台带动三维物体移动时,由于形成有该液态抑制固化层,因此固化区域与半渗透性元件之间能够轻松地分离,抑制固化层与固化区域示意图如图2所示。使用上述半渗透性元件的3D打印设备可实现三维物体的连续构造,构造速度可超过600mm/h。
实施例1:
图3是前述使用上述半渗透性元件的3D打印设备的一个实施方案。该实施方案采用“自下而上”的方式构建三维物体。
该设备包括以下结构:
主体框架1,构成该设备的框架结构;
工作台2,在工作台上构建三维物体,工作台2连接一个一维电动平台,一维电动平台在控制器7的控制下驱动工作台2上下移动;
半渗透性元件3,为光学透明、透氧气元件,采用核径迹蚀刻技术制备而成;本 实施例中,所述半渗透性元件具有107/cm2的孔密度,和1μm大小的孔径。气体渗透率不小于100巴。
液体槽4,半渗透性元件3与液体槽4组成可聚合液体容器,半渗透性元件3靠近工作台的表面为三维物体的制造表面,作为可聚合液体容器的底部;工作台2的下表面与制造表面之间形成三维物体10的构建区域;
固化抑制剂源5,用于提供固化抑制剂;半渗透性元件3下表面与固化抑制剂源5接触,固化抑制剂可通过半渗透性元件3渗透进入构建区域,在制造表面与固化区域8之间会形成一层液态抑制固化层9,在本实施例中,使用氧气或空气作为固化抑制剂;
光源6,位于半渗透性元件3下方,光源透过半渗透性元件3照射构建区域可以引发可聚合液体固化;
控制器7,连接并控制光源6和工作台2。
该设备的工作过程如下:
(1)在液体槽4中加入足量可聚合液体(足以形成最终三维物体),工作台2下降并靠近覆盖表面;
(2)光源6照射构建区域同时通入固化抑制剂,在此步骤中,光源6照射构建区域形成固化区域8,固化抑制剂源5中的固化抑制剂透过半渗透性元件3富集在制造表面上,由于固化抑制剂的作用,在制造表面与固化区域8之间会形成一层液态抑制固化层9;
(3)控制器7控制工作台2移动,远离制造表面,由于液态抑制固化层9的存在,固化区域8与制造表面轻松地和无损伤地分离,形成后续构建区域,同时可聚合液体填充进入后续构建区域;
(4)重复上述步骤(2)和(3),层层沉积直至形成最终三维物体10。
与市售的海绵状微孔聚合物作为半渗透性元件相比,本发明的半渗透性元件产生的气体透过率增加5倍,3D打印设备的打印速度可达500mm/h。
实施例2:
图4是前述使用上述半渗透性元件的3D打印设备的另一个实施方案。该实施方案采用“自上而下”的方式构建三维物体。
该设备包括以下结构:
主体框架31,构成3D打印造设备的框架结构;
工作台32,在工作台上构建三维物体,工作台2连接一个一维电动平台,一维电动平台在控制器37的控制下驱动工作台32上下移动;
半渗透性元件33,为光学透明、透氧气元件,采用核径迹蚀刻技术制备而成;本实施例中,如图5所示的电镜扫描图,所述半渗透性元件具有108/cm2的孔密度,和0.15μm大小的孔径,气体渗透率不小于100巴;
半渗透性元件33的下表面为制造表面,其与工作台32的上表面之间形成三维物体的构建区域;
液体槽34,为可聚合液体的容器,工作台32位于液体槽34的内部;
固化抑制剂源35,用于提供固化抑制剂;半渗透性元件33上表面与固化抑制剂源35接触,固化抑制剂可通过半渗透性元件33渗透进入构建区域,在制造表面与光固化区域38之间会形成一层液态抑制固化层39,在本实施例中,使用氧气或空气作为固化抑制剂;
照射6,位于半渗透性元件33上方,光源36通过半渗透性元件33照射构建区域可以引发可聚合液体固化;
控制器37连接并控制光源36和工作台32。
本设备的工作过程如下:
(1)在液体槽34中加入足量可聚合液体(足以形成最终三维物体),且使液面不低于制造表面,工作台32上升并靠近制造表面;
(2)打开光源36照射构建区域同时通入固化抑制剂,在此步骤中,光源36照射构建区域形成固化区域38,固化抑制剂源35中的固化抑制剂透过半渗透性元件33富集在制造表面上,由于固化抑制剂的作用,在制造表面与光固化区域38之间会形成一层液态抑制固化层39;
(3)控制器37控制工作台2移动,远离制造表面,由于液态抑制固化层39的存在,固化区域38与制造表面轻松地和无损伤地分离,形成后续构建区域,同时可聚合液体填充进入后续构建区域;
(4)重复上述步骤(2)和(3),层层沉积直至形成三维物体30。
与市售的海绵状微孔聚合物作为半渗透性元件相比,本发明的半渗透性元件的气体透过率增加6倍,3D打印设备的打印速度可达550mm/h。
实施例3
采用如实施例1相同的方法,其区别在于,所述半渗透性元件具有109/cm2的孔密度,和/或具有0.1μm大小的孔径。气体渗透率不小于120巴。
与市售的海绵状微孔聚合物作为半渗透性元件相比,本发明的半渗透性元件产生的气体透过率增加7倍,3D打印设备的打印速度可达570mm/h。
实施例4
采用如实施例2相同的方法,其区别在于,所述半渗透性元件具有2×109/cm2的孔密度,和/或具有0.05μm大小的孔径。气体渗透率不小于150巴。
与市售的海绵状微孔聚合物作为半渗透性元件相比,本发明的半渗透性元件产生的气体透过率增加8倍,3D打印设备的打印速度可达600mm/h。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种用于3D打印的固化抑制剂渗透的半渗透性元件,其特征在于,所述半渗透性元件的孔密度为107-1011/cm2,和/或,所述孔径为0.01μm-5μm。
  2. 根据权利要求1所述的半渗透性元件,其特征在于,所述半渗透性元件的气体渗透率不小于100巴。
  3. 根据权利要求1或2所述的半渗透性元件,其特征在于,所述半渗透性元件的孔密度为108-1010/cm2,和/或,所述孔径为0.02μm-0.2μm。
  4. 根据权利要求1-3中任一项所述的半渗透性元件,其特征在于,所述气体透过率不小于120巴,还可以不小于150巴。
  5. 根据权利要求1-4中任一项所述的半渗透性元件,其特征在于,所述半渗透性元件采用核径迹蚀刻技术在光学透明的基底材料上刻蚀微孔制备而成,其中在制备过程中可根据需要控制孔密度和孔径。
  6. 根据权利要求1-5中任一项所述的半渗透性元件,其特征在于,所述基底材料包括聚碳酸酯(PC)、聚对苯二甲酸乙二酯(PET)、聚酰亚胺(PI)、聚乙烯(PE)、聚丙烯(PP)、石英晶体、云母或它们的组合;优选地,所述基底材料为石英晶体或云母,或者,所述基底材料包括石英晶体和/或云母。
  7. 根据权利要求1-6中任一项所述的半渗透性元件,其特征在于,所述半渗透性元件外侧或内部设置刚性的支撑元件,用于提高半渗透性元件的刚性。
  8. 一种如权利要求1至7中任一项所述的半渗透性元件在3D打印中的应用。
  9. 一种用于制备如权利要求1至7中任一项所述的半渗透性元件的方法,其特征在于,该方法包括如下步骤:
    步骤(1):采用核反应裂变碎片,或加速器重离子束流辐照光学透明的基底材料,在基底材料上留下辐照通道;
    步骤(2):对前述经辐照的基底材料进行化学蚀刻处理刻蚀出微孔,从而制得半渗透性元件。
  10. 一种3D打印设备,其特征在于,该3D打印设备包括如权利要求1至7中任一项所述的半渗透性元件和液体槽,
    其中,半渗透性元件构成液体槽的底部或底部的一部分,液体槽和半渗透性元 件组成可聚合液体容器;或者,半渗透性元件构成液体槽的顶部或顶部的一部分,液体槽和半渗透性元件组成封闭或半封闭可聚合液体容器;或者半渗透性元件位于液体槽内部。
  11. 根据权利要求10所述的3D打印设备,其特征在于,该3D打印设备还包括固化抑制剂源,用以提供固化抑制剂存储或流通区域;该固化抑制剂源位于半渗透性元件与3D打印设备的光源之间,并贴覆于半渗透性元件;半渗透性元件中远离光源的表面为制造表面,固化抑制剂能够通过半渗透性元件在制造表面形成一层液态抑制固化层。
  12. 根据权利要求10或11所述的3D打印设备,其特征在于,当半渗透性元件构成液体槽的底部或底部的一部分时,半渗透性元件上表面为制造表面,该制造表面与该3D打印设备的工作台的下表面之间形成三维物体的构建区域;固化抑制剂能够通过半渗透性元件进入构建区域,在制造表面形成液态抑制固化层。
  13. 根据权利要求10或11所述的3D打印设备,其特征在于,当半渗透性元件位于液体槽内部时,半渗透性元件的下表面为制造表面,该制造表面与该3D打印设备的工作台的上表面之间形成三维物体的构建区域;固化抑制剂能够通过半渗透性元件进入构建区域,在制造表面形成液态抑制固化层。
PCT/CN2016/070838 2016-01-13 2016-01-13 一种半渗透性元件及其应用和制备方法及3d打印设备 WO2017120807A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/070838 WO2017120807A1 (zh) 2016-01-13 2016-01-13 一种半渗透性元件及其应用和制备方法及3d打印设备
US16/069,969 US20190016051A1 (en) 2016-01-13 2016-01-13 Semi-permeable element, use thereof and preparation method therefor and 3d printing device
US17/340,446 US20210291451A1 (en) 2016-01-13 2021-06-07 Semi-permeable element, use thereof and preparation method therefor and 3d printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070838 WO2017120807A1 (zh) 2016-01-13 2016-01-13 一种半渗透性元件及其应用和制备方法及3d打印设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/069,969 A-371-Of-International US20190016051A1 (en) 2016-01-13 2016-01-13 Semi-permeable element, use thereof and preparation method therefor and 3d printing device
US17/340,446 Division US20210291451A1 (en) 2016-01-13 2021-06-07 Semi-permeable element, use thereof and preparation method therefor and 3d printing device

Publications (1)

Publication Number Publication Date
WO2017120807A1 true WO2017120807A1 (zh) 2017-07-20

Family

ID=59310610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070838 WO2017120807A1 (zh) 2016-01-13 2016-01-13 一种半渗透性元件及其应用和制备方法及3d打印设备

Country Status (2)

Country Link
US (2) US20190016051A1 (zh)
WO (1) WO2017120807A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017210384B3 (de) * 2017-06-21 2018-08-30 Sirona Dental Systems Gmbh Behälter zum Einsatz in Stereolithographie-Anlagen und Stereolithographie-Anlage

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122441A (en) * 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
CN101119791A (zh) * 2004-12-22 2008-02-06 德雷斯尔私人有限公司 膜卡及其生产方法以及其用途
CN202782049U (zh) * 2012-09-04 2013-03-13 上海沥高科技有限公司 半渗透性透气膜
CN104890245A (zh) * 2015-04-28 2015-09-09 北京金达雷科技有限公司 一种光敏树脂池及利用其的光固化3d打印机和打印方法
CN105109048A (zh) * 2015-09-24 2015-12-02 北京金达雷科技有限公司 用于光固化3d打印机的树脂池及3d打印机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525180A (ja) * 2004-12-22 2008-07-17 ドレセル プライヴェイト リミテッド メンブレンカード並びにその製造方法及び使用方法
US8326024B2 (en) * 2009-04-14 2012-12-04 Global Filtration Systems Method of reducing the force required to separate a solidified object from a substrate
US20110223486A1 (en) * 2010-03-12 2011-09-15 Xiaomin Zhang Biaxially oriented porous membranes, composites, and methods of manufacture and use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122441A (en) * 1990-10-29 1992-06-16 E. I. Du Pont De Nemours And Company Method for fabricating an integral three-dimensional object from layers of a photoformable composition
CN101119791A (zh) * 2004-12-22 2008-02-06 德雷斯尔私人有限公司 膜卡及其生产方法以及其用途
CN202782049U (zh) * 2012-09-04 2013-03-13 上海沥高科技有限公司 半渗透性透气膜
CN104890245A (zh) * 2015-04-28 2015-09-09 北京金达雷科技有限公司 一种光敏树脂池及利用其的光固化3d打印机和打印方法
CN105109048A (zh) * 2015-09-24 2015-12-02 北京金达雷科技有限公司 用于光固化3d打印机的树脂池及3d打印机

Also Published As

Publication number Publication date
US20210291451A1 (en) 2021-09-23
US20190016051A1 (en) 2019-01-17

Similar Documents

Publication Publication Date Title
WO2016172804A1 (en) Improved stereolithography system
CN106976230B (zh) 一种3d打印设备和方法
CN106976232B (zh) 一种半渗透性元件及其应用和制备方法及3d打印设备
Takahashi et al. Scalable fabrication of PEGDA microneedles using UV exposure via a rotating prism
WO2017120807A1 (zh) 一种半渗透性元件及其应用和制备方法及3d打印设备
KR102274419B1 (ko) 스테레오리소그래피 시스템에 사용하기 위한 용기
JP6492904B2 (ja) 成形体
US11661490B2 (en) Method of producing porous molded body
US11123920B2 (en) 3D printing apparatus and method
US20220161492A1 (en) A vessel for receiving a stereolithographic resin, a device at which a stereolithographic object is made, a method for making a stereolithographic object and a method for making a vessel for receiving a stereolithographic resin
US11440223B2 (en) Static liquid interface production of lenses and other contoured objects
CN105619819B (zh) 一种三维成型装置及方法
WO2019130734A1 (ja) 立体造形装置および立体造形物の製造方法
US11938678B2 (en) Adhesion blocking element, three-dimensional printing device, and three-dimensional printing method
US20220195129A1 (en) Method for producing microparticles
JP6385045B2 (ja) 成形体の製造方法
RU2783378C2 (ru) Пористый полимерный трехмерный объект сложной формы и способ изготовления пористого полимерного трехмерного объекта сложной формы
CN205522528U (zh) 一种三维成型装置
RU2631794C1 (ru) Полимерный трехмерный объект сложной формы и способ изготовления полимерного трехмерного объекта сложной формы
US10661476B2 (en) Porous nanostructures and methods of fabrication
JP2015056548A (ja) インプリント装置及びインプリント方法
KR20170052037A (ko) 스테레오리소그래피 장치 및 그 제조 방법
JP2013055226A (ja) インプリント用テンプレート及びインプリント方法
JPH04176636A (ja) 光学的造型法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884370

Country of ref document: EP

Kind code of ref document: A1