WO2017119992A2 - Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) - Google Patents

Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) Download PDF

Info

Publication number
WO2017119992A2
WO2017119992A2 PCT/US2016/066298 US2016066298W WO2017119992A2 WO 2017119992 A2 WO2017119992 A2 WO 2017119992A2 US 2016066298 W US2016066298 W US 2016066298W WO 2017119992 A2 WO2017119992 A2 WO 2017119992A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna ports
combined
combining
res
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2016/066298
Other languages
English (en)
French (fr)
Other versions
WO2017119992A3 (en
Inventor
Peter Gaal
Hao Xu
Wanshi Chen
Xiaofeng Wang
Alberto Rico-Alvarino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018535089A priority Critical patent/JP7094883B2/ja
Priority to EP20190574.2A priority patent/EP3767867A1/en
Priority to CN202011318392.8A priority patent/CN112491761B/zh
Priority to CN201680078076.3A priority patent/CN108476113B/zh
Priority to KR1020187019209A priority patent/KR102611210B1/ko
Priority to KR1020237015203A priority patent/KR102637584B1/ko
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Priority to EP16871794.0A priority patent/EP3400668A2/en
Publication of WO2017119992A2 publication Critical patent/WO2017119992A2/en
Publication of WO2017119992A3 publication Critical patent/WO2017119992A3/en
Anticipated expiration legal-status Critical
Priority to JP2022100348A priority patent/JP7431892B2/ja
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0684Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different training sequences per antenna
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0606Space-frequency coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems

Definitions

  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). It is designed to better support mobile broadband Internet access by improving spectral efficiency, lower costs, improve services, make use of new spectrum, and better integrate with other open standards using OFDMA on the downlink (DL), SC-FDMA on the uplink (UL), and multiple- input multiple-output (MIMO) antenna technology.
  • UMTS Universal Mobile Telecommunications System
  • 3GPP Third Generation Partnership Project
  • Certain aspects of the present disclosure provide a method for wireless communications by a User Equipment (UE).
  • the method generally includes combining pairs of antenna ports to generate at least first and second combined antenna ports, receiving reference signals transmitted in a narrow band region of a larger system bandwidth, for each combined antenna port, adding the reference signals received on resource elements (REs) of each of the combined pair of antenna ports, and determining channel estimates for each combined antenna port based on the added reference signals for the combined antenna port.
  • REs resource elements
  • FIG. 2 is a diagram illustrating an example of an access network.
  • FIG. 4 is a diagram illustrating an example of an UL frame structure in LTE.
  • FIG. 9 illustrates example operations performed by a base station for implementing a transmission scheme for NB IoT, in accordance with certain aspects of the present disclosure.
  • the in-band version of NB-IoT uses signals embedded in the wide-band LTE signal.
  • an eNB transmits one of 1-port CRS, 2-port CRS, and 4-port CRS.
  • an NB-IoT device e.g., UE
  • the eNB may typically transmit a full power signal only if all existing ports participate in the signal/data transmission. But, at the UE end, this would require estimating the channel for four eNB antennas for a UE Rx antenna.
  • Certain aspects of the present disclosure provide a new transmission scheme for the NB-IoT.
  • the functions described may be implemented in hardware, software, or combinations thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium.
  • Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer.
  • such computer- readable media can comprise RAM, ROM, EEPROM, PCM (phase change memory), flash memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • FIG. 1 is a diagram illustrating an LTE network architecture 100 in which aspects of the present disclosure may be practiced.
  • the Operator's IP Services 122 may include, for example, the Internet, the Intranet, an IP Multimedia Subsystem (IMS), and a PS (packet-switched) Streaming Service (PSS).
  • IMS IP Multimedia Subsystem
  • PS packet-switched
  • Streaming Service PSS
  • FIG. 2 is a diagram illustrating an example of an access network 200 in an LTE network architecture in which aspects of the present disclosure may be practiced.
  • UEs 206 and e Bs 204 may be configured to implement techniques for implementing a new transmission scheme for B-IoT described in aspects of the present disclosure.
  • an e B may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the eNB.
  • the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix (CP).
  • the synchronization signals may be used by UEs for cell detection and acquisition.
  • the eNB may send a Physical Broadcast Channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
  • PBCH Physical Broadcast Channel
  • FIG. 5 is a diagram 500 illustrating an example of a radio protocol architecture for the user and control planes in LTE.
  • the radio protocol architecture for the UE and the eNB is shown with three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (LI layer) is the lowest layer and implements various physical layer signal processing functions.
  • the LI layer will be referred to herein as the physical layer 506.
  • Layer 2 (L2 layer) 508 is above the physical layer 506 and is responsible for the link between the UE and e B over the physical layer 506.
  • the PDCP sublayer 514 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 514 also provides header compression for upper layer data packets to reduce radio transmission overhead, security by ciphering the data packets, and handover support for UEs between eNBs.
  • the RLC sublayer 512 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to hybrid automatic repeat request (HARQ).
  • HARQ hybrid automatic repeat request
  • the MAC sublayer 510 provides multiplexing between logical and transport channels.
  • the MAC sublayer 510 is also responsible for allocating the various radio resources (e.g., resource blocks) in one cell among the UEs.
  • the MAC sublayer 510 is also responsible for HARQ operations.
  • upper layer packets from the core network are provided to a controller/processor 675.
  • the controller/processor 675 implements the functionality of the L2 layer.
  • the controller/processor 675 provides header compression, ciphering, packet segmentation and reordering, multiplexing between logical and transport channels, and radio resource allocations to the UE 650 based on various priority metrics.
  • the controller/processor 675 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the UE 650.
  • the controller/processor 659 implements the L2 layer.
  • the controller/processor can be associated with a memory 660 that stores program codes and data.
  • the memory 660 may be referred to as a computer-readable medium.
  • the controller/processor 659 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to a data sink 662, which represents all the protocol layers above the L2 layer.
  • Various control signals may also be provided to the data sink 662 for L3 processing.
  • the controller/processor 659 is also responsible for error detection using an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support HARQ operations.
  • ACK acknowledgement
  • NACK negative acknowledgement
  • the UL transmission is processed at the eNB 610 in a manner similar to that described in connection with the receiver function at the UE 650.
  • Each receiver 618RX receives a signal through its respective antenna 620.
  • Each receiver 618RX recovers information modulated onto an RF carrier and provides the information to a RX processor 670.
  • the RX processor 670 may implement the LI layer.
  • the Internet of Things is a network of physical objects or "things" embedded with, e.g., electronics, software, sensors, and network connectivity, which enable these objects to collect and exchange data.
  • the Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit.
  • IoT is augmented with sensors and actuators, the technology becomes an instance of the more general class of cyber-physical systems, which also encompasses technologies such as smart grids, smart homes, intelligent transportation and smart cities.
  • Each "thing” is generally uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure.
  • the UE combines pairs of antenna ports after performing some initial processing. For example, the UE descrambles CRS port 0 and CRS port 2 with a first and second scrambling sequence, and combines the resulting descrambled signal. Similarly, the UE descrambles CRS port 1 and CRS port 3 with a third and fourth scrambling sequence, and combines the resulting descrambled signal. In another example, the UE might perform time and/or frequency interpolation on the CRS RE corresponding to ports 0-3 (possibly after performing the descrambling operation indicated above) before combining. In yet another example, the UE might perform descrambling of the CRS RE and Doppler compensation/filtering before combining.
  • the UE then processes two channel estimates based on the combined ports, for example, one estimate for combined ports 0+2 and another estimate for combined ports 1+3.
  • the UE processes all data REs as simple SFBC pairs based on the two channel estimates.
  • the eNB transmits the same data content on matching REs of the combined ports, for example, REs of both ports 0 and 2 or ports 1 and 3.
  • RS positions e.g., REs
  • RS positions corresponding to AP2 are left empty and RS for API is power boosted.
  • RS positions corresponding to AP2 are filled with RS corresponding to API .
  • FIG 12 illustrates operations 1200 for using different sequences in different RBs in a cell, in accordance with certain aspects of the present disclosure.
  • Operations 1200 begin, at 1202, by configuring two or more RBs for transmission in a cell.
  • a different scrambling sequence is configured for each of the two or more RBs for the transmission in the cell.
  • data to be transmitted in each of the RBs is scrambled using a scrambling sequence configured for the RB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Communication Control (AREA)
PCT/US2016/066298 2016-01-07 2016-12-13 Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot) Ceased WO2017119992A2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20190574.2A EP3767867A1 (en) 2016-01-07 2016-12-13 Methods and apparatus for a data transmission scheme for narrow-band internet of things
CN202011318392.8A CN112491761B (zh) 2016-01-07 2016-12-13 用于窄带物联网(nb-iot)的数据传输方案的方法和装置
CN201680078076.3A CN108476113B (zh) 2016-01-07 2016-12-13 用于窄带物联网(nb-iot)的数据传输方案的方法和装置
KR1020187019209A KR102611210B1 (ko) 2016-01-07 2016-12-13 협대역 사물 인터넷(nb-iot)을 위한 데이터 송신 방식에 대한 방법들 및 장치
KR1020237015203A KR102637584B1 (ko) 2016-01-07 2016-12-13 협대역 사물 인터넷(nb-iot)을 위한 데이터 송신 방식에 대한 방법들 및 장치
JP2018535089A JP7094883B2 (ja) 2016-01-07 2016-12-13 狭帯域モノのインターネット(NB-IoT)のためのデータ送信スキームのための方法および装置
EP16871794.0A EP3400668A2 (en) 2016-01-07 2016-12-13 Methods and apparatus for a data transmission scheme for narrow-band internet of things
JP2022100348A JP7431892B2 (ja) 2016-01-07 2022-06-22 狭帯域モノのインターネット(NB-IoT)のためのデータ送信スキームのための方法および装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201662276219P 2016-01-07 2016-01-07
US62/276,219 2016-01-07
US201662280590P 2016-01-19 2016-01-19
US62/280,590 2016-01-19
US201662292194P 2016-02-05 2016-02-05
US62/292,194 2016-02-05
US15/376,490 2016-12-12
US15/376,490 US11212141B2 (en) 2016-01-07 2016-12-12 Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT)

Publications (2)

Publication Number Publication Date
WO2017119992A2 true WO2017119992A2 (en) 2017-07-13
WO2017119992A3 WO2017119992A3 (en) 2017-10-26

Family

ID=59014712

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/066298 Ceased WO2017119992A2 (en) 2016-01-07 2016-12-13 Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot)

Country Status (7)

Country Link
US (2) US11212141B2 (OSRAM)
EP (2) EP3400668A2 (OSRAM)
JP (2) JP7094883B2 (OSRAM)
KR (2) KR102637584B1 (OSRAM)
CN (2) CN108476113B (OSRAM)
TW (2) TWI713319B (OSRAM)
WO (1) WO2017119992A2 (OSRAM)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170142615A1 (en) * 2015-11-18 2017-05-18 Prakash Bhalerao Method and apparatus for communicating additional narrowband traffic over an existing 4g/lte network
EP3399815B1 (en) * 2016-01-08 2021-07-28 Huawei Technologies Co., Ltd. Information sending method, apparatus and system
EP3411991B1 (en) * 2016-02-04 2019-11-27 Telefonaktiebolaget LM Ericsson (PUBL) Narrowband service deployment in wideband carrier guard-band
US10873380B2 (en) 2016-02-15 2020-12-22 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive beam selection in a wireless communication system
CN107196734A (zh) * 2016-03-15 2017-09-22 株式会社Ntt都科摩 主信息块生成方法、主信息块处理方法、基站及移动台
US10608770B2 (en) * 2017-03-23 2020-03-31 Qualcomm Incorporated Techniques and apparatuses for channel processing backwards compatibility
KR102437642B1 (ko) 2017-08-18 2022-08-30 삼성전자주식회사 무선 통신 시스템에서 상향링크 전송을 스케줄링하기 위한 장치 및 방법
US10356802B2 (en) 2017-12-20 2019-07-16 Industrial Technology Research Institute Base station and scheduling method of uplink resource unit
EP3729893B1 (en) 2017-12-22 2022-06-15 Telefonaktiebolaget LM Ericsson (publ) A method and a device for sharing resource
CN108024226A (zh) * 2018-01-04 2018-05-11 李江成 一种基于NB-IoT的低功耗无线传感数据采集装置、系统及方法
US10869268B2 (en) * 2018-01-19 2020-12-15 Mediatek Inc. NR power saving enhancements
WO2020028510A1 (en) * 2018-08-01 2020-02-06 Intel Corporation Narrowband reference signal transmission for measurement and synchronization
KR102353062B1 (ko) 2018-09-03 2022-01-19 주식회사 엘지에너지솔루션 분리막 기재가 없는 이차전지용 분리막
CA3113920C (en) * 2018-09-25 2022-10-25 Hughes Network Systems, Llc Efficient transport of internet of things (iot) traffic in terrestrial wireless and satellite networks
KR102066977B1 (ko) 2018-12-26 2020-01-15 우송대학교산학협력단 NB-IoT망을 이용한 IoT 시스템 및 이의 시간 동기화 방법
KR102751536B1 (ko) 2019-06-07 2025-01-07 삼성전자주식회사 전자 장치 및 그 시스템
CN110689696A (zh) * 2019-08-29 2020-01-14 湖北民族大学 基于NB-IoT模块的森林火灾救援系统及救援方法
CN112004205A (zh) * 2020-08-25 2020-11-27 惠州市智源物联科技有限公司 一种基于窄带物联网的工业数据采集系统及采集方法
CN113395346A (zh) * 2021-06-11 2021-09-14 徐涛 一种基于nb-iot的局域网抄表系统
CN117255351A (zh) * 2022-06-10 2023-12-19 中兴通讯股份有限公司 窄带物联网的部署方法、装置、电子设备及存储介质
CN119316844B (zh) * 2024-10-14 2025-07-15 西安电子科技大学 基于uav的空对地混合通信方法、装置和通信系统

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001091318A1 (en) 2000-05-25 2001-11-29 Samsung Electronics Co., Ltd Apparatus and method for transmission diversity using more than two antennas
CN1162997C (zh) * 2000-10-04 2004-08-18 三星电子株式会社 用于移动通信系统中下行链路共享信道的功率控制的装置和方法
JP3956085B2 (ja) * 2000-12-20 2007-08-08 日本電気株式会社 送信回路
JP4785377B2 (ja) * 2004-12-14 2011-10-05 株式会社エヌ・ティ・ティ・ドコモ 無線回線制御局、移動通信システム及び移動通信方法
JP2007300217A (ja) * 2006-04-27 2007-11-15 Toshiba Corp Ofdm信号の送信方法、ofdm送信機及びofdm受信機
CN101479975B (zh) 2006-04-28 2011-12-21 三菱电机株式会社 无线通信装置
US8290088B2 (en) * 2007-08-07 2012-10-16 Research In Motion Limited Detecting the number of transmit antennas in a base station
US8369450B2 (en) * 2007-08-07 2013-02-05 Samsung Electronics Co., Ltd. Pilot boosting and traffic to pilot ratio estimation in a wireless communication system
US8509291B2 (en) * 2008-02-08 2013-08-13 Qualcomm Incorporated Open-loop transmit diversity schemes with four transmit antennas
WO2009131163A1 (ja) * 2008-04-25 2009-10-29 シャープ株式会社 移動通信システム、基地局装置、移動局装置および移動通信方法
ATE484119T1 (de) * 2008-08-01 2010-10-15 Panasonic Corp Ressourcenblockzuordnung für wiederholte symbole
WO2010103989A1 (ja) * 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信装置の制御プログラム
EP2442471A4 (en) * 2009-06-12 2017-08-02 Mitsubishi Electric Corporation Communication apparatus
US8300587B2 (en) * 2009-08-17 2012-10-30 Nokia Corporation Initialization of reference signal scrambling
CN102598537B (zh) 2009-09-07 2016-01-27 Lg电子株式会社 在无线通信系统中发送/接收参考信号的方法和装置
EP3410789B1 (en) * 2009-10-02 2025-03-19 InterDigital Patent Holdings, Inc. Method and apparatus for transmit power control for multiple antenna transmissions in the uplink
WO2011052220A1 (ja) * 2009-10-30 2011-05-05 パナソニック株式会社 無線送信装置及び参照信号送信方法
US9407409B2 (en) * 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
KR101541636B1 (ko) * 2011-05-02 2015-08-03 블랙베리 리미티드 원격 라디오 헤드에 의한 무선 통신 방법 및 시스템
WO2013010305A1 (en) 2011-07-15 2013-01-24 Panasonic Corporation Method of scrambling signals, transmission point device and user equipment using the method
CN103621030B (zh) * 2011-07-15 2017-02-15 太阳专利信托公司 信号加扰方法、使用该方法的发送点装置和用户设备
US9014111B2 (en) * 2011-08-10 2015-04-21 Industrial Technology Research Institute Multi-block radio access method and transmitter module and receiver module using the same
US9084242B2 (en) * 2011-08-15 2015-07-14 Texas Instruments Incorporated On transparency of CoMP
US9509417B2 (en) * 2011-10-13 2016-11-29 Lg Electronics Inc. Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
CN102413090B (zh) * 2011-11-04 2014-10-22 电信科学技术研究院 一种传输信息的方法、系统和设备
EP2792096B1 (en) 2012-01-13 2016-04-27 Huawei Technologies Co., Ltd. Method for generating and transmitting demodulation reference signals
JP5744238B2 (ja) 2012-01-18 2015-07-08 京セラ株式会社 無線通信装置および無線通信方法
WO2013107025A1 (en) * 2012-01-19 2013-07-25 Panasonic Corporation Method of scrambling reference signals, device and user equipment using the method
KR20130130593A (ko) 2012-05-22 2013-12-02 삼성전자주식회사 분산 안테나를 사용하는 복수 개의 기지국을 포함하는 무선통신 시스템에서 기준 신호 측정 방법 및 장치
JP5990793B2 (ja) * 2012-06-07 2016-09-14 シャープ株式会社 端末装置、基地局装置、通信方法および集積回路
US8787225B2 (en) * 2012-07-11 2014-07-22 Blackberry Limited Phase-rotated reference signals for multiple antennas
WO2014019181A1 (zh) * 2012-08-01 2014-02-06 华为技术有限公司 一种控制信道传输方法及装置
US9155089B2 (en) 2012-08-10 2015-10-06 Qualcomm Incorporated Cell ID and antenna port configurations for EPDCCH
CN103716917B (zh) * 2012-09-29 2018-07-03 索尼公司 基站设备、终端设备及通信系统
CN104885497A (zh) * 2012-11-14 2015-09-02 Lg电子株式会社 用于监视下行控制信道的方法和装置
US9755768B2 (en) 2013-02-07 2017-09-05 Lg Electronics Inc. Method for measuring channel and interference in wireless communication system
JP6151108B2 (ja) * 2013-06-28 2017-06-21 株式会社Nttドコモ 無線基地局、ユーザ端末及び参照信号送信方法
US9270350B2 (en) * 2013-12-31 2016-02-23 Spreadtrum Communications (Shanghai) Co., Ltd. OFDM communication system, method and device for transceiving signal
JP2015201804A (ja) * 2014-04-10 2015-11-12 富士通株式会社 受信装置、受信方法、送信装置、送信方法、及び、無線通信システム
EP3264626B1 (en) * 2015-03-27 2020-07-29 Huawei Technologies Co., Ltd. Method, apparatus, device and system for acquiring beam identifier
WO2017014602A1 (ko) * 2015-07-22 2017-01-26 삼성전자 주식회사 셀룰러 시스템에서 iot 운영 방법 및 그 시스템
WO2017026971A1 (en) * 2015-08-12 2017-02-16 Intel IP Corporation Configuration of non-ue-specific search space for m-pdcch
US10673671B2 (en) * 2015-09-02 2020-06-02 Lg Electronics Inc. Method and apparatus for performing cell search in wireless communication system
WO2017058096A2 (en) * 2015-10-02 2017-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Narrowband carrier searching
US11121744B2 (en) * 2015-11-04 2021-09-14 Lg Electronics Inc. Method for transmitting and receiving downlink data in wireless communication system, and apparatus therefor
CN108353050B (zh) * 2015-11-06 2020-07-14 华为技术有限公司 一种上下行载频间隔指示、获得方法及装置
US11159355B2 (en) * 2015-11-06 2021-10-26 Apple Inc. Synchronization signal design for narrowband Internet of Things communications
US10104651B2 (en) * 2015-12-17 2018-10-16 Mediatek Inc. Physical downlink control channel design for narrow band internet of things
CN108029136B (zh) * 2015-12-29 2021-01-15 华为技术有限公司 用于随机接入的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
CN112491761B (zh) 2024-05-03
KR20180104608A (ko) 2018-09-21
KR102611210B1 (ko) 2023-12-06
TW202044782A (zh) 2020-12-01
TWI713319B (zh) 2020-12-11
US20170201393A1 (en) 2017-07-13
CN112491761A (zh) 2021-03-12
US20220094573A1 (en) 2022-03-24
JP7094883B2 (ja) 2022-07-04
JP2019503138A (ja) 2019-01-31
TW201733284A (zh) 2017-09-16
CN108476113B (zh) 2022-09-02
CN108476113A (zh) 2018-08-31
WO2017119992A3 (en) 2017-10-26
EP3400668A2 (en) 2018-11-14
TWI784300B (zh) 2022-11-21
KR20230066487A (ko) 2023-05-15
JP7431892B2 (ja) 2024-02-15
KR102637584B1 (ko) 2024-02-15
US11212141B2 (en) 2021-12-28
EP3767867A1 (en) 2021-01-20
JP2022126784A (ja) 2022-08-30

Similar Documents

Publication Publication Date Title
US20220094573A1 (en) Methods and apparatus for a data transmission scheme for narrow-band internet of things (nb-iot)
US10624079B2 (en) Coexistence of narrow-band internet-of-things/enhanced machine type communication and 5G
US10447447B2 (en) Methods and apparatus for multiplexing reference signals for multiple input multiple output (MIMO) layers
CN111556472B (zh) 用于无执照频谱的物联网设计
EP3465961B1 (en) Uplink control information reporting
US9641310B2 (en) Network assisted interference cancellation signaling
US20130308567A1 (en) Methods and apparatus for positioning reference signals in a new carrier type
WO2015123834A1 (en) TIME DOMAIN DUPLEXING CONFIGURATION FOR eIMTA
WO2018165941A1 (en) Random access optimization for narrow-band system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16871794

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20187019209

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018535089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016871794

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016871794

Country of ref document: EP

Effective date: 20180807