WO2017119299A1 - Monitoring device and monitoring method - Google Patents

Monitoring device and monitoring method Download PDF

Info

Publication number
WO2017119299A1
WO2017119299A1 PCT/JP2016/088133 JP2016088133W WO2017119299A1 WO 2017119299 A1 WO2017119299 A1 WO 2017119299A1 JP 2016088133 W JP2016088133 W JP 2016088133W WO 2017119299 A1 WO2017119299 A1 WO 2017119299A1
Authority
WO
WIPO (PCT)
Prior art keywords
replacement
consumable
deterioration
monitoring method
monitoring
Prior art date
Application number
PCT/JP2016/088133
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 淳輔
彰 伊与泉
典一 斉藤
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2017119299A1 publication Critical patent/WO2017119299A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light

Definitions

  • the present invention relates to a monitoring device and a monitoring method for equipment having consumable parts.
  • Examples of equipment with consumable parts to be monitored include air compressors, air conditioners, general household appliances, general industrial equipment, and automobiles.
  • air compressors are used in various industrial fields and are said to account for about 20 to 30% of the power consumption in factories.
  • Air compressors use multiple consumable parts, such as a belt that transmits power between the compressor body and the motor, and a suction that is provided on the suction side of the compressor body to remove impurities in the intake air.
  • These consumable parts need to be replaced as the deterioration progresses, and if the replacement is not performed at an appropriate timing, the compression efficiency is lowered and the power consumption is increased. For this reason, manufacturers set operating hours and usage times that recommend replacement for each consumable part.
  • the speed of deterioration of consumable parts varies depending on the operating environment, and the air compressor does not always deteriorate as designed. For example, there is a great difference in the deterioration speed of consumable parts between an industrial equipment manufacturing site with a lot of dust and a food manufacturing site with a relatively small amount of dust.
  • Patent Document 1 As background art in the field of the present invention, there is JP2013-213669A (Patent Document 1).
  • Patent Document 1 while acquiring driving information from an apparatus, the said driving information of the preset period is recorded as past driving information, the present driving information and past driving information are compared, and the comparison result The point that the failure stop time is predicted based on the above and the failure stop time is displayed is disclosed.
  • Patent Document 1 a sensor is attached to an air conditioner, and the degree of deterioration of a component is calculated based on the sensed data. The parts replacement time is predicted and notified to the user.
  • Patent Document 1 Although the user is notified of the part replacement time, the effect corresponding to the user merit such as how much power loss can be reduced by the replacement of the part is not performed. Therefore, from the user's standpoint, there is a problem that it is difficult to understand what merits they have by replacing parts.
  • the present invention is, for example, a monitoring method for a monitoring apparatus that outputs information that prompts replacement of consumable parts based on a deterioration state of the consumable parts of the device, and for a certain time It is configured to output the magnitude of power loss with respect to the base point.
  • the monitoring apparatus and monitoring method which implement
  • an air compressor will be described as an example of an application target of the monitoring device.
  • FIG. 1 is an overall configuration diagram of an air compressor including a monitoring device in the present embodiment.
  • an oil supply type air compressor includes a compressor main body 1 that compresses air, an electric motor (motor) 3 that transmits power through a belt 2 to drive the compressor main body 1, and the electric motor 3
  • An inverter 4 that variably controls the rotational speed, a suction filter 5 that is provided on the suction side of the compressor body 1 to remove impurities in the intake air, a suction throttle valve 6 that is provided on the suction side of the compressor body 1, and a compression
  • An oil tank 7 provided on the discharge side of the machine body 1 for primarily separating the lubricating oil 30 from the compressed air, a separator element 8 for secondarily separating the lubricating oil 30 from the compressed air separated by the oil tank 7, and the separator
  • An after cooler 11 is provided for cooling by introducing compressed air separated by the element 8 through a pressure regulating valve 9 and a check valve 10.
  • the lubricating oil 30 separated by the separator element 8 is supplied to the suction side of the compressor body 1.
  • the lubricating oil 30 separated in the oil tank 7 is supplied into the compressor main body 1 through, for example, an oil cooler 12 that cools the lubricating oil and an oil filter 13 that removes impurities in the lubricating oil.
  • a bypass system for bypassing the oil cooler 12 is provided, and a temperature control valve 14 for adjusting a ratio of a cooling flow rate to the oil cooler 12 side and a bypass flow rate to the bypass system is provided at an upstream connection portion of the bypass system. Is provided.
  • the temperature control valve 14 adjusts the ratio of the cooling flow rate and the bypass flow rate according to the temperature of the lubricating oil 30 from the oil tank 7, and thereby adjusts the temperature of the lubricating oil 30 supplied to the compressor body 1.
  • the aftercooler 11 and the oil cooler 12 are air-cooled heat exchangers and are cooled by cooling air generated by the cooling fan 15.
  • a pressure sensor 208 for detecting the discharge pressure of the compressor body 1 is provided on the downstream side of the aftercooler 11. Then, a detection signal from the pressure sensor 208 is output to the control device 17.
  • the control device 17 calculates a deviation between the discharge pressure detection value input from the pressure sensor 208 and a predetermined target value set in advance, and outputs a rotation speed command signal generated based on the deviation to the inverter 4.
  • the inverter 4 outputs a frequency to the electric motor 3 according to the rotational speed command signal, and variably controls the rotational speed of the electric motor 3.
  • the differential pressure sensor 202 is attached to the suction filter 5, and the clogging state of the suction filter 5 can be detected from the differential pressure inside and outside the suction filter 5.
  • the contamination sensor 204 is attached to the oil tank 7, and it is possible to detect the state of contamination of the lubricating oil 30 in the oil tank.
  • the separator element 8 is provided with a differential pressure sensor 206, and can detect a clogging state from the differential pressure inside and outside the element.
  • the monitoring device 100 is connected to these sensors 202, 204, and 206, acquires measurement results, and can grasp the deterioration status of the suction filter 5, the lubricating oil 30, and the separator element 8 from the respective measurement results. .
  • the monitoring device 100 includes a communication unit 102, a deterioration degree calculation unit 104, a deterioration degree storage unit 106, an event storage unit 108, an event management unit 110, a replacement time estimation unit 112, and a display content switching.
  • Unit 114 energy saving effect estimation unit 116, energy saving contribution DB 118, input unit 120, and output display unit 122.
  • the communication unit 102 receives various sensor data of the air compressor and signals from the measurement unit. For example, it is connected to sensors 202, 204, and 206 for detecting the deterioration status of consumable parts such as the suction filter 5, and receives a measurement signal.
  • the communication unit 102 is connected to the operating time measuring unit 50 that measures the operating time of the air compressor and receives operating time information, and is connected to the power measuring unit 60 and receives the power consumption of the air compressor.
  • the deterioration degree calculation unit 104 receives a signal of a sensor attached to the consumable part from the communication unit 102, and calculates the deterioration degree of the consumable part.
  • the degree of deterioration is an index obtained by converting the level of performance of consumable parts into three levels, and is classified into “normal”, “caution”, and “abnormal”. Among these, “abnormal” indicates that the consumable part has reached a level that requires replacement.
  • the deterioration degree calculation unit 104 calculates the deterioration degree for each consumable part based on the sensor signal, the deterioration degree calculation unit 104 outputs the deterioration degree to the deterioration degree storage unit 106.
  • the input unit 120 receives event information regarding replacement work of consumable parts from the user.
  • Event information includes part replacement (removal) and part replacement (attachment).
  • the event management unit 110 uses the event information related to the replacement work accepted by the input unit 120 and the event information related to the replacement work for each consumable part based on the degree of deterioration for each consumable part recorded in the deterioration degree storage unit 106 as an event.
  • the data is output to the storage unit 108 and collectively managed.
  • the replacement time estimation unit 112 estimates the next replacement time based on history information regarding replacement work for each consumable part recorded in the event storage unit 108.
  • the energy saving effect estimation unit 116 saves energy in component replacement based on history information regarding replacement work for each consumable part recorded in the event storage unit 108 and information on the power consumption of the air compressor received from the communication unit 102. Estimate the effect.
  • the output display unit 122 outputs and displays information on the next replacement time for each consumable part in the replacement time estimation unit 112 and information on the energy saving effect in parts replacement in the energy saving effect estimation unit 116.
  • the display content switching unit 114 displays the information on the next replacement time for each consumable part in the replacement time estimation unit 112 and the information on the information on the energy saving effect in the part replacement of the energy saving effect estimation unit 116, and information on the degree of deterioration for each consumable part.
  • the display is switched based on
  • the energy saving contribution DB 118 is a DB that manages the magnitude of energy saving contribution for each consumable part.
  • the deterioration degree calculation unit 104 receives the measurement value of the differential pressure sensor 202 attached to the suction filter 5 received from the communication unit 102, the measurement value of the contamination sensor 204 attached to the oil tank 7, and the separator element 8. The degree of deterioration of each consumable part is calculated based on the measured value of the attached differential pressure sensor 206.
  • the deterioration level calculation unit 104 has a sensor threshold value for determining the deterioration level of each consumable part. Two types of threshold values are held for the measured value P of the differential pressure sensor 202 attached to the suction filter 5, which is an “attention” determination threshold value Pc and an “abnormal” determination threshold value Pa.
  • the degree-of-degradation calculation unit 104 determines that the measured value P of the differential pressure sensor 202 is “normal” when P ⁇ Pc is satisfied, and determines “caution” when Pc ⁇ P ⁇ Pa is satisfied, and Pa ⁇ If P is satisfied, it is judged as “abnormal”.
  • the deterioration degree calculation unit 104 similarly holds two types of threshold values for the contamination sensor 204 for determining deterioration of the lubricating oil 30 and the differential pressure sensor 206 for determining deterioration of the separator element 206, and the suction filter Similar to 5, the degree of deterioration is determined.
  • the deterioration degree calculation unit 104 may receive digital 0s and 1s. In that case, 0 and 1 are classified into degradation levels “normal” and “abnormal”, respectively.
  • FIG. 3 shows a configuration example of the deterioration degree storage unit 106 that outputs the result of the deterioration degree calculation unit 104 calculating the deterioration degree.
  • the degradation record storage unit 106 records a measurement record for each consumable part.
  • the measurement date and time is the measurement date and time with a clock included in the monitoring device 100 (not shown) when the sensor data is received.
  • the accumulated operation time is time information calculated by accumulating the operation time measured by the operation time measuring unit 50 in FIG. 2 from the time of shipment, and records the accumulated operation time received via the communication unit 102.
  • the sensor value and the deterioration degree are the calculation results of the deterioration degree calculation unit 104 described above.
  • the deterioration degree calculation unit 104 sequentially calculates the deterioration state of the consumable parts based on the sensor data attached to each consumable part, and outputs it to the deterioration degree storage unit 106.
  • FIG. 4 is a processing flow of the event management unit 110.
  • the event management unit 110 reads the content of the deterioration degree storage unit 106 in S2000.
  • the event management unit 110 calculates the deterioration degree change for each consumable part in S2100. This is a process for searching whether or not the degree of deterioration has changed in the time series change of the degree of deterioration for each consumable part read in S2000.
  • the first change in the deterioration direction changes as “normal” ⁇ “caution” ⁇ “abnormal”, and recognizes that an event “deterioration progress” has occurred when a level change occurs.
  • the second change in the improvement direction is that the degree of deterioration changes from “abnormal” to “normal”, which is a change that appears when parts are replaced. Accordingly, in this case, the event management unit 110 recognizes that an event of “part replacement (removal)” and “part replacement (attachment)” has occurred.
  • the event management unit 110 confirms the input of event information related to parts replacement from the input unit 120 in S2200.
  • Event information includes part replacement (removal) and part replacement (attachment), which are usually performed at the same timing.
  • event management unit 110 determines YES and proceeds to S2400. If NO, returns to S2000 and performs the processing. repeat.
  • the event management unit 110 generates event information and writes the event information in the event storage unit 108 when the determination in S2300 is YES.
  • FIG. 5 shows a configuration example of the event storage unit 108.
  • the event storage unit 108 stores the date, event information, cycle ID, degree of deterioration, accumulated operation time, Write the cumulative operating time from the replacement and the power consumption.
  • the date means the date when the event occurred, and the event management unit 110 recognizes and writes the date from the internal clock of the monitoring device 100.
  • the event information means the content of the event whose occurrence is recognized in S2300.
  • Cycle ID is an ID that recognizes the replacement cycle of the consumable part.
  • Degradation is the degree of degradation of the consumable part when an event occurs.
  • the sensor is not necessarily attached, so the event management unit 110 performs such a deterioration degree estimation process in order to deal with a case where event information can be acquired only via the input unit 120. Do.
  • the accumulated operating time is information related to the accumulated operating time received from the operating time measuring unit 50 by the event management unit 110 via the communication unit 102.
  • the power consumption means the power consumption received from the power measurement unit 60 by the event management unit 110 via the communication unit 102.
  • the event management unit 110 When the event management unit 110 outputs the above information to the event storage unit 108 in S2400 of FIG. 4, the event management unit 110 returns to S2000 and repeats the process.
  • the replacement time estimation unit 112 determines the next component replacement time for each consumable part based on the information in the event storage unit 108 and the current cumulative operation time information received from the operation time measurement unit 50 via the communication unit 102. presume.
  • FIG. 6 is a diagram for explaining the replacement time estimation process in the present embodiment.
  • the replacement time estimation unit 112 recognizes a deterioration degree change with respect to “cumulative operation time from replacement” for each cycle ID. Thereby, it is possible to calculate the accumulated operation time from the deterioration degree “normal” to “abnormal” for each cycle ID. For devices operating in the same environment, the cumulative operating time until “abnormal” in the past replacement cycle tends to be almost the same, so from “normal” to “abnormal” Can be estimated as an operating time corresponding to the lifetime of the part.
  • the replacement time estimation unit 112 calculates the remaining cumulative operating time until the next replacement based on the difference between the current cumulative operating time and the operating time corresponding to the lifetime in the cycle ID. Normally, since the air compressor operates for about 8 hours per day, the number of days obtained by dividing the remaining accumulated operation time until the next replacement by 8 hours can be estimated as the number of remaining days until the next replacement. Therefore, it can be estimated that the date obtained by adding the remaining number of days to the current date is the next replacement time.
  • the operation time per day is calculated as 8 hours, but the number of days may be strictly calculated based on the information in the event storage unit 108.
  • the accumulated operating time until the next replacement may be estimated based on the design value of the component life.
  • the energy saving effect estimation unit 116 determines that the deterioration level is “normal” for each consumable part based on the information in the event storage unit 108 and the information on the power consumption received from the power measurement unit 60 via the communication unit 102. That is, the power loss rate corresponding to the ratio of the current power consumption to the power consumption when the parts are new is calculated. This power loss rate indicates the magnitude of power loss, and can be estimated as an energy saving effect that can eliminate waste of power consumption by replacing parts.
  • the energy saving effect estimation unit 116 is PW 0.
  • the loss rate Rate loss is calculated by Equation 1.
  • FIG. 7 shows a diagram for explaining the energy saving effect estimation processing in the present embodiment.
  • FIG. 7 shows the power loss rate with respect to the “cumulative operation time from replacement” for each cycle ID.
  • the power loss rate tends to increase as the degree of deterioration of the consumable parts changes from “normal” to “abnormal”.
  • the energy saving effect estimation unit 116 outputs the calculation result of the power loss rate to the display content switching unit 114 and ends the process.
  • the display content switching unit 114 receives, from the event storage unit 108, information on the next replacement time for each consumable part received from the replacement time estimation unit 112 and information on the power loss rate for each consumable part received from the energy saving effect estimation unit 116. Control is performed so as to display on the output display unit 122 while switching according to the degree of deterioration of each read consumable part. That is, the timing for outputting information for prompting replacement of the consumable part and the magnitude of the power loss is changed according to the deterioration state of the consumable part.
  • FIG. 8 is a diagram illustrating an example of a display screen in the output display unit 122.
  • Three representative icons indicating the degree of deterioration “normal”, “caution”, and “abnormal” are prepared on the output display unit 122, and are lit and displayed according to the current state of the consumable parts. Then, detailed information is presented at the bottom.
  • FIG. 8 (1) is an example of a display when the deterioration levels of all consumable parts are “normal”.
  • the icon indicating “normal” on the left side is lit.
  • detailed information “normally operating” is shown.
  • FIG. 8 (2) is an example of a display when the deterioration degree of any consumable part has reached “Caution”.
  • the icon indicating “caution” in the center is turned on.
  • the lower part information indicating that “part replacement time is approaching” is presented, and the names of consumable parts that have actually reached the level of “caution” are displayed.
  • the case of lubricating oil is shown.
  • the information regarding the next replacement time of the said consumable part received from the replacement time estimation part 112 is displayed as detailed information.
  • FIG. 8 (3) is an example of a display when the deterioration degree of any consumable part reaches “abnormal”.
  • the icon indicating “abnormal” on the right side is turned on.
  • the name of the consumable part whose deterioration degree has reached “abnormal” is displayed together with a comment such as “Power is consumed wastefully?”.
  • a numerical value related to the power loss rate of the consumable part received from the energy saving effect estimation unit 116 is output to the “???%” portion of the display content.
  • the display content switching unit 114 lists and displays a plurality of consumable parts when the plurality of consumable parts has reached the deterioration level “caution” in the display of FIG.
  • the display switching unit 114 refers to the energy saving contribution DB 118 to display the consumable parts having the largest power contribution rate in order.
  • FIG. 9 shows a configuration example of the energy saving contribution DB 118.
  • the energy saving contribution DB 118 indicates the power contribution rate for each consumable part.
  • This power contribution rate is power contribution information indicating the magnitude of contribution to power loss in a plurality of consumable parts, and is power loss contribution information indicating the magnitude of contribution to power loss. It shows that the energy saving effect by parts replacement is larger as the contribution ratio is larger.
  • the display content switching unit 114 selects the plurality of consumable parts that need to be replaced in descending order of power contribution ratio.
  • the power loss rate of “???%” the power loss rate of the consumable component having the maximum power contribution ratio among the consumable components that have reached the deterioration level “abnormal” is displayed.
  • the display content switching unit 114 can present information related to effective component replacement to the user by changing the content displayed on the output display unit 122 according to the degree of deterioration of the consumable component. it can.
  • the monitoring target is an air compressor
  • a reduction amount of the compressed air amount or other indexes related to the air compressor may be used.
  • this embodiment is a monitoring method of a monitoring device that outputs information that prompts replacement of consumable parts based on the deterioration state of the consumable parts of the device, and outputs the magnitude of power loss with respect to a certain time base point. To be configured.
  • a monitoring device that outputs information prompting replacement of consumable parts based on the deterioration state of the consumable parts of the device, the communication unit receiving data from the device, and the device based on the data received by the communication unit
  • a deterioration level calculation unit that calculates the deterioration level of consumable parts, a replacement time calculation unit that predicts the replacement time of consumable parts from the relationship between the operating time and the deterioration level of the data received by the communication unit, and a communication unit Energy saving effect estimation means for calculating and outputting the power loss rate corresponding to the ratio of the current power consumption to the power consumption when the deterioration level is normal from the relationship between the power consumption and the deterioration level of the received data It comprises so that it may have.
  • DESCRIPTION OF SYMBOLS 100 ... Monitoring apparatus 102 ... Communication part 104 ... Deterioration degree calculation part 106 ... Deterioration degree memory

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ecology (AREA)
  • Immunology (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Provided are a monitoring device and a monitoring method such that energy saving is achieved by presenting effective information to the user urging replacement of a consumable component. To achieve the abovementioned purpose, the monitoring device that outputs information urging the replacement of a consumable component of a device on the basis of the degradation state of the consumable component is configured to have: a transmission unit that receives data from a device; a degradation degree calculation unit that calculates the degradation degree of a consumable component in the device on the basis of the data received by the transmission unit; a replacement time calculation unit that predicts the replacement time of the consumable component from the relationship between the operating time in the data received by the transmission unit and the degradation degree; and an energy saving effect estimation means for calculating the power loss rate corresponding to a percentage of the current power consumption with respect to the power consumption when the degradation degree is normal from the relationship between the power consumption in the data received by the transmission unit and the degradation degree.

Description

監視装置及び監視方法Monitoring device and monitoring method
 本発明は消耗部品を備えた機器の監視装置及び監視方法に関する。 The present invention relates to a monitoring device and a monitoring method for equipment having consumable parts.
 監視対象の消耗部品を備えた機器として、例えば空気圧縮機や空調機、家電品一般、産業機器全般、自動車等がある。 Examples of equipment with consumable parts to be monitored include air compressors, air conditioners, general household appliances, general industrial equipment, and automobiles.
 例えば、空気圧縮機は、様々な産業分野で利用されており、工場内の電力消費量の約2~3割を占めているといわれている。 For example, air compressors are used in various industrial fields and are said to account for about 20 to 30% of the power consumption in factories.
 空気圧縮機には、複数の消耗部品が使われており、例えば、圧縮機本体と電動機との間で動力を伝達するベルト、圧縮機本体の吸込側に設けられ吸気中の不純物を除去するサクションフィルタ、圧縮機本体に供給する潤滑油、圧縮機本体で生成した圧縮空気から潤滑油を分離するセパレータエレメント、および潤滑油中の不純物を除去するオイルフィルタなどがある。これらの消耗部品は、劣化が進行すると交換が必要であり、適切なタイミングで交換を実施しないと圧縮効率の低下を招き電力消費量の増大に繋がってしまう。そのため、メーカは各消耗部品について交換を推奨する稼働時間や利用時間などを定めている。しかしながら、空気圧縮機は、稼働環境によって消耗部品の劣化スピードが異なり、必ずしも設計値どおりに劣化するとは限らない。例えば、粉塵の多い産業機器製造現場と比較的粉塵の少ない食料品製造現場とでは、当然のことながら消耗部品の劣化スピードには大きな差が生じる。 Air compressors use multiple consumable parts, such as a belt that transmits power between the compressor body and the motor, and a suction that is provided on the suction side of the compressor body to remove impurities in the intake air. There are a filter, lubricating oil supplied to the compressor body, a separator element that separates the lubricating oil from compressed air generated in the compressor body, and an oil filter that removes impurities in the lubricating oil. These consumable parts need to be replaced as the deterioration progresses, and if the replacement is not performed at an appropriate timing, the compression efficiency is lowered and the power consumption is increased. For this reason, manufacturers set operating hours and usage times that recommend replacement for each consumable part. However, the speed of deterioration of consumable parts varies depending on the operating environment, and the air compressor does not always deteriorate as designed. For example, there is a great difference in the deterioration speed of consumable parts between an industrial equipment manufacturing site with a lot of dust and a food manufacturing site with a relatively small amount of dust.
 本発明分野の背景技術として、特開2013-213669号公報(特許文献1)がある。特許文献1では、機器から運転情報を取得するとともに、予め設定された期間の前記運転情報を過去の運転情報として記録し、現在の運転情報と過去の運転情報とを比較して、その比較結果に基づき故障停止時期を予測し故障停止時期を表示する点が開示されている。 As background art in the field of the present invention, there is JP2013-213669A (Patent Document 1). In patent document 1, while acquiring driving information from an apparatus, the said driving information of the preset period is recorded as past driving information, the present driving information and past driving information are compared, and the comparison result The point that the failure stop time is predicted based on the above and the failure stop time is displayed is disclosed.
特開2013-213669号公報JP 2013-213669 A
 特許文献1では、空気調和機にセンサを取付け、センシングしたデータをもとに部品の劣化度を計算する。そして、部品交換時期を予測してユーザに通知するようにしている。 In Patent Document 1, a sensor is attached to an air conditioner, and the degree of deterioration of a component is calculated based on the sensed data. The parts replacement time is predicted and notified to the user.
 しかしながら、特許文献1では部品交換時期をユーザに通知することは行うが、その部品交換により、どの程度、電力損失を低減できるのかといったユーザメリットに相当する効果を通知することを行っていない。そのため、ユーザの立場からすると、部品交換により自分たちにどのようなメリットがあるのか分かりにくいといった課題があった。 However, in Patent Document 1, although the user is notified of the part replacement time, the effect corresponding to the user merit such as how much power loss can be reduced by the replacement of the part is not performed. Therefore, from the user's standpoint, there is a problem that it is difficult to understand what merits they have by replacing parts.
 上記課題を解決するために、本発明は、その一例を挙げるならば、機器の消耗部品の劣化状態に基づいて消耗部品の交換を促す情報を出力する監視装置の監視方法であって、ある時間基点に対する電力損失の大きさを出力するように構成する。 In order to solve the above-described problems, the present invention is, for example, a monitoring method for a monitoring apparatus that outputs information that prompts replacement of consumable parts based on a deterioration state of the consumable parts of the device, and for a certain time It is configured to output the magnitude of power loss with respect to the base point.
 本発明によれば、消耗部品交換を促す効果的な情報提示を行うことで省エネを実現する
監視装置及び監視方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the monitoring apparatus and monitoring method which implement | achieve energy saving by performing the effective information presentation which encourages consumable parts replacement | exchange can be provided.
本実施例における監視装置を含む空気圧縮機の全体構成図である。It is a whole block diagram of the air compressor containing the monitoring apparatus in a present Example. 本実施例における監視装置の構成図である。It is a block diagram of the monitoring apparatus in a present Example. 本実施例における劣化度記憶部の構成図である。It is a block diagram of the deterioration degree memory | storage part in a present Example. 本実施例におけるイベント管理部の処理フローである。It is a processing flow of the event management part in a present Example. 本実施例におけるイベント記憶部の構成図である。It is a block diagram of the event memory | storage part in a present Example. 本実施例における交換時期推定処理を説明する図である。It is a figure explaining the exchange time estimation process in a present Example. 本実施例における省エネ効果推定処理を説明する図である。It is a figure explaining the energy-saving effect estimation process in a present Example. 本実施例における出力表示部への表示画面例である。It is an example of the display screen to the output display part in a present Example. 本実施例における省エネ寄与DBの構成図である。It is a block diagram of energy saving contribution DB in a present Example.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本実施例は、監視装置の適用対象として空気圧縮機を例に挙げて説明する。 In the present embodiment, an air compressor will be described as an example of an application target of the monitoring device.
 図1は、本実施例における監視装置を含む空気圧縮機の全体構成図である。図1において、給油式の空気圧縮機は、空気を圧縮する圧縮機本体1と、ベルト2を介して動力を伝達して圧縮機本体1を駆動する電動機(モータ)3と、この電動機3の回転数を可変制御するインバータ4と、圧縮機本体1の吸込側に設けられ吸気中の不純物を除去するサクションフィルタ5と、圧縮機本体1の吸込側に設けられた吸込み絞り弁6と、圧縮機本体1の吐出側に設けられ圧縮空気から潤滑油30を一次分離するオイルタンク7と、このオイルタンク7で分離された圧縮空気から潤滑油30を二次分離するセパレータエレメント8と、このセパレータエレメント8で分離された圧縮空気を調圧弁9および逆止弁10を介して導入して冷却するアフタークーラ11とを備えている。 FIG. 1 is an overall configuration diagram of an air compressor including a monitoring device in the present embodiment. In FIG. 1, an oil supply type air compressor includes a compressor main body 1 that compresses air, an electric motor (motor) 3 that transmits power through a belt 2 to drive the compressor main body 1, and the electric motor 3 An inverter 4 that variably controls the rotational speed, a suction filter 5 that is provided on the suction side of the compressor body 1 to remove impurities in the intake air, a suction throttle valve 6 that is provided on the suction side of the compressor body 1, and a compression An oil tank 7 provided on the discharge side of the machine body 1 for primarily separating the lubricating oil 30 from the compressed air, a separator element 8 for secondarily separating the lubricating oil 30 from the compressed air separated by the oil tank 7, and the separator An after cooler 11 is provided for cooling by introducing compressed air separated by the element 8 through a pressure regulating valve 9 and a check valve 10.
 セパレータエレメント8で分離された潤滑油30は、圧縮機本体1の吸込側に供給される。一方、オイルタンク7で分離された潤滑油30は、例えば潤滑油を冷却するオイルクーラ12および潤滑油中の不純物を除去するオイルフィルタ13を介して、圧縮機本体1内部に供給される。また、オイルクーラ12をバイパスするバイパス系統が設けられ、このバイパス系統の上流側接続部にはオイルクーラ12側への冷却流量とバイパス系統へのバイパス流量との割合を調整する温調弁14が設けられている。温調弁14は、オイルタンク7からの潤滑油30の温度に応じて冷却流量とバイパス流量との割合を調整し、これによって圧縮機本体1に供給する潤滑油30の温度を調整する。なお、アフタークーラ11およびオイルクーラ12は、空冷式の熱交換器であり、冷却ファン15によって生起された冷却風で冷却する。 The lubricating oil 30 separated by the separator element 8 is supplied to the suction side of the compressor body 1. On the other hand, the lubricating oil 30 separated in the oil tank 7 is supplied into the compressor main body 1 through, for example, an oil cooler 12 that cools the lubricating oil and an oil filter 13 that removes impurities in the lubricating oil. In addition, a bypass system for bypassing the oil cooler 12 is provided, and a temperature control valve 14 for adjusting a ratio of a cooling flow rate to the oil cooler 12 side and a bypass flow rate to the bypass system is provided at an upstream connection portion of the bypass system. Is provided. The temperature control valve 14 adjusts the ratio of the cooling flow rate and the bypass flow rate according to the temperature of the lubricating oil 30 from the oil tank 7, and thereby adjusts the temperature of the lubricating oil 30 supplied to the compressor body 1. The aftercooler 11 and the oil cooler 12 are air-cooled heat exchangers and are cooled by cooling air generated by the cooling fan 15.
 また、圧縮機本体1の吐出圧力を検出する圧力センサ208がアフタークーラ11の下流側に設けられている。そして、圧力センサ208からの検出信号が制御装置17に出力される。 Further, a pressure sensor 208 for detecting the discharge pressure of the compressor body 1 is provided on the downstream side of the aftercooler 11. Then, a detection signal from the pressure sensor 208 is output to the control device 17.
 制御装置17は、圧力センサ208から入力した吐出圧力の検出値と予め設定された所定の目標値との偏差を演算し、これに基づいて生成した回転数指令信号をインバータ4に出力する。インバータ4は、回転数指令信号に応じて周波数を電動機3に出力して、電動機3の回転数を可変制御する。 The control device 17 calculates a deviation between the discharge pressure detection value input from the pressure sensor 208 and a predetermined target value set in advance, and outputs a rotation speed command signal generated based on the deviation to the inverter 4. The inverter 4 outputs a frequency to the electric motor 3 according to the rotational speed command signal, and variably controls the rotational speed of the electric motor 3.
 サクションフィルタ5には、差圧センサ202が取り付けられており、サクションフィルタ5の内外の差圧からサクションフィルタ5の目詰まりの状況を検知できる。 The differential pressure sensor 202 is attached to the suction filter 5, and the clogging state of the suction filter 5 can be detected from the differential pressure inside and outside the suction filter 5.
 オイルタンク7には、コンタミセンサ204が取り付けられており、オイルタンク内の潤滑油30の不純物の混入程度の状況を検知できる。 The contamination sensor 204 is attached to the oil tank 7, and it is possible to detect the state of contamination of the lubricating oil 30 in the oil tank.
 セパレータエレメント8は、差圧センサ206が取り付けられており、エレメント内外の差圧から目詰まりの状況を検知できる。 The separator element 8 is provided with a differential pressure sensor 206, and can detect a clogging state from the differential pressure inside and outside the element.
 監視装置100は、これらのセンサ202、204、206と接続されており、計測結果を取得するとともに、それぞれの計測結果からサクションフィルタ5と、潤滑油30と、セパレータエレメント8の劣化状況を把握できる。 The monitoring device 100 is connected to these sensors 202, 204, and 206, acquires measurement results, and can grasp the deterioration status of the suction filter 5, the lubricating oil 30, and the separator element 8 from the respective measurement results. .
 次に、図2を用いて監視装置100の構成について説明する。図2において、監視装置100は、通信部102と、劣化度計算部104と、劣化度記憶部106と、イベント記憶部108と、イベント管理部110と、交換時期推定部112と、表示内容切替部114と、省エネ効果推定部116と、省エネ寄与DB118と、入力部120と、出力表示部122と、を有している。 Next, the configuration of the monitoring device 100 will be described with reference to FIG. In FIG. 2, the monitoring device 100 includes a communication unit 102, a deterioration degree calculation unit 104, a deterioration degree storage unit 106, an event storage unit 108, an event management unit 110, a replacement time estimation unit 112, and a display content switching. Unit 114, energy saving effect estimation unit 116, energy saving contribution DB 118, input unit 120, and output display unit 122.
 通信部102は、空気圧縮機の各種センサデータおよび計測ユニットからの信号を受信している。例えば、サクションフィルタ5などの消耗部品の劣化状況を検知するためのセンサ202、204、206と接続され、計測信号を受信する。また、通信部102は、空気圧縮機の稼動時間を計測する稼働時間計測ユニット50と接続され稼働時間情報を受信するとともに、電力計測ユニット60と接続され空気圧縮機の電力消費量を受信する。 The communication unit 102 receives various sensor data of the air compressor and signals from the measurement unit. For example, it is connected to sensors 202, 204, and 206 for detecting the deterioration status of consumable parts such as the suction filter 5, and receives a measurement signal. The communication unit 102 is connected to the operating time measuring unit 50 that measures the operating time of the air compressor and receives operating time information, and is connected to the power measuring unit 60 and receives the power consumption of the air compressor.
 劣化度計算部104は、通信部102から消耗部品に取り付けたセンサの信号を受信し、消耗部品の劣化度を計算する。劣化度とは、消耗部品の性能の程度を3段階のレベルに変換した指標であり、“正常”、“注意”、“異常”に分類される。このなかで“異常”は消耗部品が交換必要なレベルに達していることを示している。劣化度計算部104は、各消耗部品についてセンサ信号に基づいて劣化度を計算すると劣化度記憶部106に出力する。 The deterioration degree calculation unit 104 receives a signal of a sensor attached to the consumable part from the communication unit 102, and calculates the deterioration degree of the consumable part. The degree of deterioration is an index obtained by converting the level of performance of consumable parts into three levels, and is classified into “normal”, “caution”, and “abnormal”. Among these, “abnormal” indicates that the consumable part has reached a level that requires replacement. When the deterioration degree calculation unit 104 calculates the deterioration degree for each consumable part based on the sensor signal, the deterioration degree calculation unit 104 outputs the deterioration degree to the deterioration degree storage unit 106.
 入力部120は、ユーザからの消耗部品の交換作業に関するイベント情報を受け付ける。イベント情報としては、部品交換(取外し)と部品交換(取付け)がある。 The input unit 120 receives event information regarding replacement work of consumable parts from the user. Event information includes part replacement (removal) and part replacement (attachment).
 イベント管理部110は、入力部120で受け付けた交換作業に関するイベント情報と、劣化度記憶部106に記録されている消耗部品ごとの劣化度をもとに消耗部品ごとの交換作業に関するイベント情報をイベント記憶部108に出力して一括管理している。 The event management unit 110 uses the event information related to the replacement work accepted by the input unit 120 and the event information related to the replacement work for each consumable part based on the degree of deterioration for each consumable part recorded in the deterioration degree storage unit 106 as an event. The data is output to the storage unit 108 and collectively managed.
 交換時期推定部112は、イベント記憶部108に記録されている消耗部品ごとの交換作業に関する履歴情報に基づいて次回の交換時期を推定する。 The replacement time estimation unit 112 estimates the next replacement time based on history information regarding replacement work for each consumable part recorded in the event storage unit 108.
 省エネ効果推定部116は、イベント記憶部108に記録されている消耗部品ごとの交換作業に関する履歴情報と、通信部102から受信する空気圧縮機の電力消費量との情報に基づいて部品交換における省エネ効果を推定する。 The energy saving effect estimation unit 116 saves energy in component replacement based on history information regarding replacement work for each consumable part recorded in the event storage unit 108 and information on the power consumption of the air compressor received from the communication unit 102. Estimate the effect.
 出力表示部122は、交換時期推定部112の消耗部品ごとの次回交換時期に関する情報や、省エネ効果推定部116の部品交換における省エネ効果に関する情報を出力表示する。 The output display unit 122 outputs and displays information on the next replacement time for each consumable part in the replacement time estimation unit 112 and information on the energy saving effect in parts replacement in the energy saving effect estimation unit 116.
 表示内容切替部114は、交換時期推定部112の消耗部品ごとの次回交換時期に関する情報と、省エネ効果推定部116の部品交換における省エネ効果に関する情報の表示内容を、消耗部品ごとの劣化度の情報に基づいて表示切替を行う。 The display content switching unit 114 displays the information on the next replacement time for each consumable part in the replacement time estimation unit 112 and the information on the information on the energy saving effect in the part replacement of the energy saving effect estimation unit 116, and information on the degree of deterioration for each consumable part. The display is switched based on
 省エネ寄与DB118は、消耗部品ごとの省エネ寄与の大きさを管理したDBである。 The energy saving contribution DB 118 is a DB that manages the magnitude of energy saving contribution for each consumable part.
 次に、劣化度計算部104の処理内容について説明する。劣化度計算部104は、通信部102から受信するサクションフィルタ5に取付けられている差圧センサ202の計測値と、オイルタンク7に取付けられているコンタミセンサ204の計測値と、セパレータエレメント8に取付けられている差圧センサ206の計測値と、に基づいてそれぞれの消耗部品における劣化度を計算する。 Next, processing contents of the deterioration degree calculation unit 104 will be described. The deterioration degree calculation unit 104 receives the measurement value of the differential pressure sensor 202 attached to the suction filter 5 received from the communication unit 102, the measurement value of the contamination sensor 204 attached to the oil tank 7, and the separator element 8. The degree of deterioration of each consumable part is calculated based on the measured value of the attached differential pressure sensor 206.
 劣化度計算部104は、各消耗部品の劣化度を判定するためにセンサ閾値を有している。サクションフィルタ5に取付けられた差圧センサ202の計測値Pに対しては2種類の閾値を保持しており、“注意”判定閾値Pcと、“異常”判定閾値 Paである。劣化度計算部104は差圧センサ202の計測値Pについて、P<Pcを満足する場合は“正常”と判断し、Pc≦P<Paを満足する場合は“注意”と判断し、Pa≦Pを満足する場合は“異常”と判断する。劣化度計算部104は、潤滑油30の劣化を判断するためのコンタミセンサ204と、セパレータエレメント206の劣化を判断するための差圧センサ206についても同様に2種類の閾値を保持し、サクションフィルタ5と同様に劣化度を判定する。 The deterioration level calculation unit 104 has a sensor threshold value for determining the deterioration level of each consumable part. Two types of threshold values are held for the measured value P of the differential pressure sensor 202 attached to the suction filter 5, which is an “attention” determination threshold value Pc and an “abnormal” determination threshold value Pa. The degree-of-degradation calculation unit 104 determines that the measured value P of the differential pressure sensor 202 is “normal” when P <Pc is satisfied, and determines “caution” when Pc ≦ P <Pa is satisfied, and Pa ≦ If P is satisfied, it is judged as “abnormal”. The deterioration degree calculation unit 104 similarly holds two types of threshold values for the contamination sensor 204 for determining deterioration of the lubricating oil 30 and the differential pressure sensor 206 for determining deterioration of the separator element 206, and the suction filter Similar to 5, the degree of deterioration is determined.
 ここで、劣化度計算部104は、各種センサ値としてアナログを想定したが、デジタルの0と1を受信するようにしても構わない。その場合には0と1をそれぞれに対応する劣化度“正常”、“異常”に分類するようにする。 Here, although the deterioration degree calculation unit 104 assumes analog as various sensor values, it may receive digital 0s and 1s. In that case, 0 and 1 are classified into degradation levels “normal” and “abnormal”, respectively.
 図3は、劣化度計算部104が劣化度を計算した結果を出力する劣化度記憶部106の構成例を示したものである。 FIG. 3 shows a configuration example of the deterioration degree storage unit 106 that outputs the result of the deterioration degree calculation unit 104 calculating the deterioration degree.
 図3に示すように、劣化度記憶部106には、消耗部品ごとに計測レコードを記録している。計測レコードには、計測日時と、累積稼働時間と、計測センサ値と、劣化度の判定結果とを記録している。計測日時は、当該センサデータを受信したときの図示しない監視装置100の内部に有する時計での計測日時である。累積稼働時間は、図2の稼働時間計測ユニット50で計測した稼働時間を出荷時から累積して計算した時間情報であり、通信部102を介して受信した累積稼働時間を記録する。センサ値と劣化度については、前記した劣化度計算部104の計算結果である。 As shown in FIG. 3, the degradation record storage unit 106 records a measurement record for each consumable part. In the measurement record, the measurement date and time, the accumulated operation time, the measurement sensor value, and the determination result of the deterioration degree are recorded. The measurement date and time is the measurement date and time with a clock included in the monitoring device 100 (not shown) when the sensor data is received. The accumulated operation time is time information calculated by accumulating the operation time measured by the operation time measuring unit 50 in FIG. 2 from the time of shipment, and records the accumulated operation time received via the communication unit 102. The sensor value and the deterioration degree are the calculation results of the deterioration degree calculation unit 104 described above.
 以上のように、劣化度計算部104は、各消耗部品に取付けたセンサデータをもとに消耗部品の劣化状況を逐次計算して劣化度記憶部106に出力している。 As described above, the deterioration degree calculation unit 104 sequentially calculates the deterioration state of the consumable parts based on the sensor data attached to each consumable part, and outputs it to the deterioration degree storage unit 106.
 次にイベント管理部110の処理内容について図4、図5を用いて説明する。 Next, processing contents of the event management unit 110 will be described with reference to FIGS.
 図4はイベント管理部110の処理フローである。図4において、まず、イベント管理部110は、S2000において、劣化度記憶部106の内容を読み込む。 FIG. 4 is a processing flow of the event management unit 110. In FIG. 4, first, the event management unit 110 reads the content of the deterioration degree storage unit 106 in S2000.
 次にイベント管理部110は、S2100において、消耗部品ごとに劣化度変化を計算する。これは、S2000において読み込んだ消耗部品ごとの劣化度の時系列変化において、劣化度が変化したか否かを検索する処理である。劣化度の変化には劣化方向の変化と改善方向の変化の2通りが存在する。一つ目の劣化方向の変化は、“正常”→“注意”→“異常”のように変化するもので、レベル変化が生じた場合に“劣化進行”というイベントが発生したと認識する。二つ目の改善方向の変化は、劣化度が“異常”→“正常”のように変化するもので、これは部品交換が行われた場合に現れる変化である。従って、イベント管理部110は、この場合には“部品交換(取外し)”、“部品交換(取付け)”のイベントが発生したと認識する。 Next, the event management unit 110 calculates the deterioration degree change for each consumable part in S2100. This is a process for searching whether or not the degree of deterioration has changed in the time series change of the degree of deterioration for each consumable part read in S2000. There are two types of changes in the degree of deterioration: a change in the deterioration direction and a change in the improvement direction. The first change in the deterioration direction changes as “normal” → “caution” → “abnormal”, and recognizes that an event “deterioration progress” has occurred when a level change occurs. The second change in the improvement direction is that the degree of deterioration changes from “abnormal” to “normal”, which is a change that appears when parts are replaced. Accordingly, in this case, the event management unit 110 recognizes that an event of “part replacement (removal)” and “part replacement (attachment)” has occurred.
 また、イベント管理部110は、S2200において、入力部120から部品交換に関するイベント情報の入力を確認する。イベント情報としては、部品交換(取外し)と部品交換(取付け)があり、これらは通常、同タイミングで実施される。 Also, the event management unit 110 confirms the input of event information related to parts replacement from the input unit 120 in S2200. Event information includes part replacement (removal) and part replacement (attachment), which are usually performed at the same timing.
 イベント管理部110は、S2300において、S2100とS2200の処理結果からいずれかのイベントが発生した場合には、YESと判定してS2400に進み、NOの判定の場合には、S2000に戻って処理を繰り返す。 In S2300, if any event occurs from the processing results of S2100 and S2200 in S2300, event management unit 110 determines YES and proceeds to S2400. If NO, returns to S2000 and performs the processing. repeat.
 イベント管理部110は、S2300において、YESの判定になった場合に、イベント情報を生成してイベント記憶部108に書き込む。 The event management unit 110 generates event information and writes the event information in the event storage unit 108 when the determination in S2300 is YES.
 図5にイベント記憶部108の構成例を示す。イベント管理部110は、イベントが発生したと認識した場合には、図5に示すように、イベント記憶部108に、日付と、イベント情報と、サイクルIDと、劣化度と、累積稼働時間と、交換からの累積稼働時間と、電力消費量と、を書き込む。 FIG. 5 shows a configuration example of the event storage unit 108. When the event management unit 110 recognizes that an event has occurred, as shown in FIG. 5, the event storage unit 108 stores the date, event information, cycle ID, degree of deterioration, accumulated operation time, Write the cumulative operating time from the replacement and the power consumption.
 日付とは、イベントの発生した日付を意味し、イベント管理部110は監視装置100の内部時計から日付を認識して書き込む。 The date means the date when the event occurred, and the event management unit 110 recognizes and writes the date from the internal clock of the monitoring device 100.
 イベント情報は、S2300において、発生を認識したイベントの内容を意味している。 The event information means the content of the event whose occurrence is recognized in S2300.
 サイクルIDとは、当該消耗部品の交換サイクルを認識するIDである。市場に出荷された際の1回目の部品をサイクルID=1として、それ以降、部品交換が行われるごとにIDを1ずつインクリメントしていく。このサイクルIDとイベント情報によって、同一部品に関する使用期間や電力消費量の比較が可能となる。 Cycle ID is an ID that recognizes the replacement cycle of the consumable part. The first part when shipped to the market is set to cycle ID = 1, and thereafter, the ID is incremented by 1 each time the part is replaced. By using this cycle ID and event information, it is possible to compare the period of use and power consumption for the same component.
 劣化度は、イベント発生時の当該消耗部品における劣化度である。イベント管理部110は、基本的には劣化度記憶部106から読み込んだ劣化度を出力するようにするが、劣化度記憶部106に情報がない場合には、イベントの内容と紐付けて推定した劣化度を出力するようにする。すなわち、イベント情報=“交換(取外)”のときは劣化度=“異常”とし、イベント情報=“交換(取付)”のときは劣化度=“正常”と推定して出力する。消耗部品によっては、必ずしもセンサが取付けられているとは限らないため、入力部120を介してのみイベント情報が取得できるケースに対応するためにイベント管理部110はこのような劣化度の推定処理を行う。 Degradation is the degree of degradation of the consumable part when an event occurs. The event management unit 110 basically outputs the degradation level read from the degradation level storage unit 106, but when there is no information in the degradation level storage unit 106, the event management unit 110 estimates it in association with the content of the event. Output the degree of deterioration. That is, when the event information = “exchange (removal)”, the degree of deterioration = “abnormal”, and when the event information = “exchange (attachment)”, the degree of deterioration = “normal” is estimated and output. Depending on the consumable parts, the sensor is not necessarily attached, so the event management unit 110 performs such a deterioration degree estimation process in order to deal with a case where event information can be acquired only via the input unit 120. Do.
 累積稼働時間は、イベント管理部110が、通信部102を介して、稼働時間計測ユニット50から受信した累積稼働時間に関する情報である。 The accumulated operating time is information related to the accumulated operating time received from the operating time measuring unit 50 by the event management unit 110 via the communication unit 102.
 交換からの累積稼働時間は、同一部品における累積稼働時間であり、サイクルIDが同一で、なおかつイベント情報=“交換(取付)”のときを基準0[hr]として、それからの累積稼働時間を示している。 Cumulative operating time from replacement is the cumulative operating time for the same part, the cycle ID is the same, and the event information = “replacement (mounting)” is taken as the standard 0 [hr], indicating the cumulative operating time from that time ing.
 電力消費量は、イベント管理部110が、通信部102を介して、電力計測ユニット60から受信した電力消費量を意味している。 The power consumption means the power consumption received from the power measurement unit 60 by the event management unit 110 via the communication unit 102.
 イベント管理部110は、図4のS2400において、以上の情報をイベント記憶部108に出力すると、S2000に戻って処理を繰り返す。 When the event management unit 110 outputs the above information to the event storage unit 108 in S2400 of FIG. 4, the event management unit 110 returns to S2000 and repeats the process.
 次に交換時期推定部112の処理内容について説明する。交換時期推定部112は、イベント記憶部108の情報と、通信部102を介して稼働時間計測ユニット50から受信する現在の累積稼働時間の情報をもとに消耗部品ごとの次回の部品交換時期を推定する。 Next, the processing content of the replacement time estimation unit 112 will be described. The replacement time estimation unit 112 determines the next component replacement time for each consumable part based on the information in the event storage unit 108 and the current cumulative operation time information received from the operation time measurement unit 50 via the communication unit 102. presume.
 図6は、本実施例における交換時期推定処理を説明する図である。図6に示すように、交換時期推定部112は、サイクルIDごとに、“交換からの累積稼働時間”に対する劣化度変化を認識する。これによって、サイクルIDごとに劣化度“正常”から“異常”に至るまでの累積稼働時間を計算することが可能である。同一環境下で稼動している機器であれば、過去の交換サイクルにおいて“異常”に至るまでの累積稼働時間はほぼ同程度を示す傾向があることから、“正常”から“異常”に至るまでの平均的な累積稼働時間を計算し、それを当該部品の寿命に相当する稼働時間と推定することができる。 FIG. 6 is a diagram for explaining the replacement time estimation process in the present embodiment. As illustrated in FIG. 6, the replacement time estimation unit 112 recognizes a deterioration degree change with respect to “cumulative operation time from replacement” for each cycle ID. Thereby, it is possible to calculate the accumulated operation time from the deterioration degree “normal” to “abnormal” for each cycle ID. For devices operating in the same environment, the cumulative operating time until “abnormal” in the past replacement cycle tends to be almost the same, so from “normal” to “abnormal” Can be estimated as an operating time corresponding to the lifetime of the part.
 そして、交換時期推定部112は、当該サイクルIDにおける現在の累積稼働時間と寿命に相当する稼働時間との差分から次回交換までの残りの累積稼働時間を計算する。通常、空気圧縮機は一日あたり8hr程度稼動することから、次回交換までの残りの累積稼働時間を8hrで割った日数が次回交換までの残日数と推定することが可能となる。よって、現在の日付にこの残日数を足し合わせた日付が次回交換時期であると推定可能である。 Then, the replacement time estimation unit 112 calculates the remaining cumulative operating time until the next replacement based on the difference between the current cumulative operating time and the operating time corresponding to the lifetime in the cycle ID. Normally, since the air compressor operates for about 8 hours per day, the number of days obtained by dividing the remaining accumulated operation time until the next replacement by 8 hours can be estimated as the number of remaining days until the next replacement. Therefore, it can be estimated that the date obtained by adding the remaining number of days to the current date is the next replacement time.
 なお、ここでは、一日あたりの稼働時間を8hrとして計算したが、イベント記憶部108の情報に基づいて厳密に日数を計算するようにしてもよい。また、サイクルID=1の初回については、過去の履歴が無いため、部品寿命の設計値に基づいて次回交換までの累積稼働時間を推定するようにしてもよい。 In this example, the operation time per day is calculated as 8 hours, but the number of days may be strictly calculated based on the information in the event storage unit 108. In addition, since there is no past history for the first cycle ID = 1, the accumulated operating time until the next replacement may be estimated based on the design value of the component life.
 次に、省エネ効果推定部116の処理内容について説明する。省エネ効果推定部116は、イベント記憶部108の情報と、通信部102を介して電力計測ユニット60から受信する電力消費量の情報をもとに、消耗部品ごとに、劣化度“正常”のとき、すなわち、部品新品時の電力消費量に対する現在の電力消費量の割合に相当する電力損失率を計算する。この電力損失率は、電力損失の大きさを示すもので、部品交換によって電力消費量の無駄を解消できる省エネ効果として見積もることができる。 Next, processing contents of the energy saving effect estimation unit 116 will be described. The energy saving effect estimation unit 116 determines that the deterioration level is “normal” for each consumable part based on the information in the event storage unit 108 and the information on the power consumption received from the power measurement unit 60 via the communication unit 102. That is, the power loss rate corresponding to the ratio of the current power consumption to the power consumption when the parts are new is calculated. This power loss rate indicates the magnitude of power loss, and can be estimated as an energy saving effect that can eliminate waste of power consumption by replacing parts.
 省エネ効果推定部116は、通信部102から受信した現在の電力消費量wをPWnow、同一サイクルIDにおける“交換からの累積稼働時間”=0のときの電力消費量をPW0とすると、電力損失率Ratelossを式1で計算する。 When the current power consumption w received from the communication unit 102 is PW now , and the “cumulative operating time from replacement” = 0 in the same cycle ID is PW 0 , the energy saving effect estimation unit 116 is PW 0. The loss rate Rate loss is calculated by Equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図7に本実施例における省エネ効果推定処理を説明する図を示す。図7は、サイクルIDごとの“交換からの累積稼働時間”に対する電力損失率を示している。通常、電力損失率は、消耗部品の劣化度が“正常”のときから“異常”に推移するとともに大きくなる傾向を示す。省エネ効果推定部116はこの電力損失率の計算結果を表示内容切替部114に出力して処理を終了する。 FIG. 7 shows a diagram for explaining the energy saving effect estimation processing in the present embodiment. FIG. 7 shows the power loss rate with respect to the “cumulative operation time from replacement” for each cycle ID. Usually, the power loss rate tends to increase as the degree of deterioration of the consumable parts changes from “normal” to “abnormal”. The energy saving effect estimation unit 116 outputs the calculation result of the power loss rate to the display content switching unit 114 and ends the process.
 次に、表示内容切替部114の処理内容について説明する。表示内容切替部114は、交換時期推定部112から受信する消耗部品ごとの次回交換時期に関する情報と、省エネ効果推定部116から受信する消耗部品ごとの電力損失率に関する情報を、イベント記憶部108から読み込んだ各消耗部品の劣化度に応じて切り替えつつ出力表示部122へ表示するように制御する。すなわち、消耗部品の劣化状態に応じて、消耗部品の交換を促す情報と電力損失の大きさを出力するタイミングを変更する。 Next, the processing content of the display content switching unit 114 will be described. The display content switching unit 114 receives, from the event storage unit 108, information on the next replacement time for each consumable part received from the replacement time estimation unit 112 and information on the power loss rate for each consumable part received from the energy saving effect estimation unit 116. Control is performed so as to display on the output display unit 122 while switching according to the degree of deterioration of each read consumable part. That is, the timing for outputting information for prompting replacement of the consumable part and the magnitude of the power loss is changed according to the deterioration state of the consumable part.
 図8は、出力表示部122における表示画面の一例を示す図である。出力表示部122には劣化度“正常”、“注意”、“異常”を示す代表アイコンを3つ用意し、現在の消耗部品の状況に応じて点灯表示する。そして、その下部に詳細な情報を提示する。 FIG. 8 is a diagram illustrating an example of a display screen in the output display unit 122. Three representative icons indicating the degree of deterioration “normal”, “caution”, and “abnormal” are prepared on the output display unit 122, and are lit and displayed according to the current state of the consumable parts. Then, detailed information is presented at the bottom.
 図8(1)は、すべての消耗部品の劣化度が“正常”である場合の表示の一例である。左側の“正常”を示すアイコンを点灯するようにする。そして、その下部には“正常に稼働中”の詳細情報を示す。 FIG. 8 (1) is an example of a display when the deterioration levels of all consumable parts are “normal”. The icon indicating “normal” on the left side is lit. In the lower part, detailed information “normally operating” is shown.
 図8(2)は、いずれかの消耗部品の劣化度が“注意”に達しているときの表示の一例である。この場合、中央の“注意”を示すアイコンを点灯するようにする。そして、その下部には“部品交換時期が迫っています”の情報を提示するとともに、実際に“注意”のレベルに達している消耗部品の名称を表示する。本例では潤滑油の場合を示している。そして、交換時期推定部112から受信した当該消耗部品の次回交換時期に関する情報を詳細情報として表示する。 FIG. 8 (2) is an example of a display when the deterioration degree of any consumable part has reached “Caution”. In this case, the icon indicating “caution” in the center is turned on. In the lower part, information indicating that “part replacement time is approaching” is presented, and the names of consumable parts that have actually reached the level of “caution” are displayed. In this example, the case of lubricating oil is shown. And the information regarding the next replacement time of the said consumable part received from the replacement time estimation part 112 is displayed as detailed information.
 図8(3)は、いずれかの消耗部品の劣化度が“異常”に達したときの表示の一例である。この場合、右側の“異常”を示すアイコンを点灯するようにする。そして、下部には“電力を??%無駄に消費中です”といったコメントとともに劣化度が“異常”に達している消耗部品名称を表示する。ここで、表示内容の“??%”の部分には、省エネ効果推定部116から受信した消耗部品の電力損失率に関する数値を出力する。これによって、部品交換を行わなければ無駄な電力を消費し、ユーザとして損をしていることを伝えることが可能である。また、部品交換を行うことで、この電力損失を解消し省エネを実現できることも合わせて伝えることが可能である。 FIG. 8 (3) is an example of a display when the deterioration degree of any consumable part reaches “abnormal”. In this case, the icon indicating “abnormal” on the right side is turned on. In the lower part, the name of the consumable part whose deterioration degree has reached “abnormal” is displayed together with a comment such as “Power is consumed wastefully?”. Here, a numerical value related to the power loss rate of the consumable part received from the energy saving effect estimation unit 116 is output to the “???%” portion of the display content. As a result, if parts are not replaced, useless power is consumed, and it is possible to tell that the user is losing money. It is also possible to tell that the replacement of parts can eliminate this power loss and realize energy saving.
 ここで、表示内容切替部114は、図8(2)の表示において複数の消耗部品が劣化度“注意”に達していた場合には複数の消耗部品を列挙して表示する。この場合、表示切替部114は、省エネ寄与DB118を参照して電力寄与率の大きい消耗部品から順番に表示するようにする。 Here, the display content switching unit 114 lists and displays a plurality of consumable parts when the plurality of consumable parts has reached the deterioration level “caution” in the display of FIG. In this case, the display switching unit 114 refers to the energy saving contribution DB 118 to display the consumable parts having the largest power contribution rate in order.
 図9に省エネ寄与DB118の構成例を示す。図9に示すように省エネ寄与DB118は、消耗部品ごとの電力寄与率を示している。この電力寄与率は、複数の消耗部品における電力損失への寄与の大きさを示す電力寄与情報であって、電力損失への寄与の大きさを示す電力損失寄与情報であり、すべての総和が100%になるように構成し、寄与率の大きいものほど部品交換による省エネ効果が大きいことを示している。 FIG. 9 shows a configuration example of the energy saving contribution DB 118. As shown in FIG. 9, the energy saving contribution DB 118 indicates the power contribution rate for each consumable part. This power contribution rate is power contribution information indicating the magnitude of contribution to power loss in a plurality of consumable parts, and is power loss contribution information indicating the magnitude of contribution to power loss. It shows that the energy saving effect by parts replacement is larger as the contribution ratio is larger.
 また、表示内容切替部114は、図8(3)の表示において複数の消耗部品が劣化度“異常”に達していた場合には交換必要な複数の消耗部品を電力寄与率の大きいものから順に列挙して表示するとともに、“??%”の電力損失率については、劣化度“異常”に達している消耗部品のうちで電力寄与率が最大の消耗部品の電力損失率を表示する。これにより、表示内容切替部114は、消耗部品の劣化度の大きさに応じて出力表示部122に表示する内容を変更することでユーザに対して効果的な部品交換に関する情報提示を行うことができる。 In addition, when the plurality of consumable parts have reached the deterioration level “abnormal” in the display of FIG. 8C, the display content switching unit 114 selects the plurality of consumable parts that need to be replaced in descending order of power contribution ratio. As for the power loss rate of “???%”, the power loss rate of the consumable component having the maximum power contribution ratio among the consumable components that have reached the deterioration level “abnormal” is displayed. Thereby, the display content switching unit 114 can present information related to effective component replacement to the user by changing the content displayed on the output display unit 122 according to the degree of deterioration of the consumable component. it can.
 なお、図8の電力損失率に代えて、電気料金や、監視対象が空気圧縮機の場合には圧縮空気量の低減量や、その他空気圧縮機に関する指標でも良い。 In addition, instead of the power loss rate of FIG. 8, when the monitoring target is an air compressor, a reduction amount of the compressed air amount or other indexes related to the air compressor may be used.
 以上のように、本実施例は、機器の消耗部品の劣化状態に基づいて消耗部品の交換を促す情報を出力する監視装置の監視方法であって、ある時間基点に対する電力損失の大きさを出力するように構成する。 As described above, this embodiment is a monitoring method of a monitoring device that outputs information that prompts replacement of consumable parts based on the deterioration state of the consumable parts of the device, and outputs the magnitude of power loss with respect to a certain time base point. To be configured.
 また、機器の消耗部品の劣化状態に基づいて消耗部品の交換を促す情報を出力する監視装置であって、機器からのデータを受信する通信部と、通信部で受信したデータをもとに機器の消耗部品における劣化度を計算する劣化度計算部と、通信部で受信したデータのうちの稼働時間と劣化度との関係から消耗部品の交換時期を予測する交換時期計算部と、通信部で受信したデータのうちの電力消費量と劣化度との関係から劣化度が正常のときの電力消費量に対する現在の電力消費量の割合に相当する電力損失率を計算して出力する省エネ効果推定手段とを有するように構成する。 Also, a monitoring device that outputs information prompting replacement of consumable parts based on the deterioration state of the consumable parts of the device, the communication unit receiving data from the device, and the device based on the data received by the communication unit A deterioration level calculation unit that calculates the deterioration level of consumable parts, a replacement time calculation unit that predicts the replacement time of consumable parts from the relationship between the operating time and the deterioration level of the data received by the communication unit, and a communication unit Energy saving effect estimation means for calculating and outputting the power loss rate corresponding to the ratio of the current power consumption to the power consumption when the deterioration level is normal from the relationship between the power consumption and the deterioration level of the received data It comprises so that it may have.
 これにより、消耗部品交換を促す効果的な情報提示を行うことで省エネを実現する監視装置及び監視方法を提供することができる。 Thus, it is possible to provide a monitoring device and a monitoring method that realize energy saving by providing effective information that prompts replacement of consumable parts.
 以上実施例について説明したが、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、実施例の構成の一部を他の構成に置き換えることも可能である。 Although the embodiments have been described above, the present invention is not limited to the above-described embodiments, and includes various modifications. The above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. In addition, a part of the configuration of the embodiment can be replaced with another configuration.
100…監視装置、102…通信部、104…劣化度計算部、106…劣化度記憶部、108…イベント記憶部、110…イベント管理部、112…交換時期推定部、114…表示内容切替部、116…省エネ効果推定部、118…省エネ寄与DB、120…入力部、122…出力表示部 DESCRIPTION OF SYMBOLS 100 ... Monitoring apparatus 102 ... Communication part 104 ... Deterioration degree calculation part 106 ... Deterioration degree memory | storage part 108 ... Event storage part 110 ... Event management part 112 ... Replacement time estimation part 114 ... Display content switching part, 116: Energy saving effect estimation unit, 118 ... Energy saving contribution DB, 120 ... Input unit, 122 ... Output display unit

Claims (15)

  1.  機器の消耗部品の劣化状態に基づいて消耗部品の交換を促す情報を出力する監視装置の監視方法であって、
     ある時間基点に対する電力損失の大きさを出力することを特徴とする監視方法。
    A monitoring method for a monitoring device that outputs information prompting replacement of consumable parts based on a deterioration state of consumable parts of the device,
    A monitoring method that outputs the magnitude of power loss with respect to a certain time base point.
  2.  請求項1に記載の監視方法であって、
     前記消耗部品の劣化状態は、外部から受け付けた部品交換に関するイベント情報に基づいて判断することを特徴とする監視方法。
    The monitoring method according to claim 1,
    The monitoring method, wherein the deterioration state of the consumable parts is determined based on event information relating to parts replacement received from the outside.
  3.  請求項1に記載の監視方法であって、
     前記時間基点は、前記消耗部品の劣化状態が正常であった時点を基点とすることを特徴とする監視方法。
    The monitoring method according to claim 1,
    The monitoring method according to claim 1, wherein the time base point is a time point when the deterioration state of the consumable part is normal.
  4.  請求項3に記載の監視方法であって、
     前記消耗部品の劣化状態が正常であることの判断は、前記消耗部品に取り付けたセンサで計測したデータに基づいて判断することを特徴とする監視方法。
    The monitoring method according to claim 3, wherein
    The monitoring method according to claim 1, wherein the determination that the deterioration state of the consumable part is normal is made based on data measured by a sensor attached to the consumable part.
  5.  請求項3に記載の監視方法であって、
     前記消耗部品の劣化状態が正常であるとの判断は、外部から受け付けた部品交換に関するイベント情報に基づいて判断することを特徴とする監視方法。
    The monitoring method according to claim 3, wherein
    The monitoring method according to claim 1, wherein the determination that the deterioration state of the consumable part is normal is made based on event information relating to part replacement received from outside.
  6.  請求項1に記載の監視方法であって、
     前記消耗部品の劣化状態に応じて、前記消耗部品の交換を促す情報と前記電力損失の大きさを出力するタイミングを変更することを特徴とする監視方法。
    The monitoring method according to claim 1,
    A monitoring method characterized by changing information for prompting replacement of the consumable part and a timing of outputting the magnitude of the power loss according to a deterioration state of the consumable part.
  7.  請求項1に記載の監視方法であって、
     前記消耗部品の交換を促す情報は前記消耗部品の交換時期であることを特徴とする監視
    方法。
    The monitoring method according to claim 1,
    The information for prompting replacement of the consumable part is a replacement time of the consumable part.
  8.  請求項1に記載の監視方法であって、
     複数の消耗部品における電力損失への寄与の大きさを示す電力寄与情報を有し、前記電力寄与情報に基づいて電力損失への寄与の大きい消耗部品について優先的に部品交換を促す情報を出力することを特徴とする監視方法。
    The monitoring method according to claim 1,
    It has power contribution information indicating the magnitude of contribution to power loss in a plurality of consumable parts, and outputs information that promptly prompts parts replacement for consumable parts that have a large contribution to power loss based on the power contribution information. A monitoring method characterized by that.
  9.  機器の消耗部品の劣化状態に基づいて消耗部品の交換を促す情報を出力する監視装置であって、
     前記機器からのデータを受信する通信部と、
     前記通信部で受信した前記データをもとに前記機器の消耗部品における劣化度を計算する劣化度計算部と、
     前記通信部で受信した前記データのうちの稼働時間と前記劣化度との関係から消耗部品の交換時期を予測する交換時期計算部と、
     前記通信部で受信した前記データのうちの電力消費量と前記劣化度との関係から劣化度が正常のときの電力消費量に対する現在の電力消費量の割合に相当する電力損失率を計算して出力する省エネ効果推定手段とを有することを特徴とする監視装置。
    A monitoring device that outputs information prompting replacement of consumable parts based on the deterioration state of the consumable parts of the device,
    A communication unit for receiving data from the device;
    A deterioration degree calculation unit that calculates the deterioration degree of the consumable parts of the device based on the data received by the communication unit;
    A replacement time calculation unit that predicts a replacement time of consumable parts from the relationship between the operating time and the deterioration degree of the data received by the communication unit,
    Calculate a power loss rate corresponding to the ratio of the current power consumption to the power consumption when the deterioration level is normal from the relationship between the power consumption of the data received by the communication unit and the deterioration level. A monitoring device comprising: an energy saving effect estimating means for outputting.
  10.  請求項9に記載の監視装置であって、
     前記通信部で受信した前記データは、前記消耗部品に取り付けたセンサで計測したデータであることを特徴とする監視装置。
    The monitoring device according to claim 9,
    The monitoring apparatus, wherein the data received by the communication unit is data measured by a sensor attached to the consumable part.
  11.  請求項9に記載の監視装置であって、
     前記消耗部品における劣化度は、外部から受け付けた部品交換に関するイベント情報に基づいて判断することを特徴とする監視装置。
    The monitoring device according to claim 9,
    The degree of deterioration of the consumable part is determined based on event information regarding part replacement received from the outside.
  12.  請求項9に記載の監視装置であって、
     前記消耗部品の交換時期と前記電力損失率を出力するタイミングを前記消耗部品の劣化度に応じて変更する表示内容切替部を有することを特徴とする監視装置。
    The monitoring device according to claim 9,
    A monitoring apparatus comprising: a display content switching unit configured to change a replacement timing of the consumable part and a timing of outputting the power loss rate according to a deterioration degree of the consumable part.
  13.  請求項12に記載の監視装置であって、
     複数の消耗部品における電力損失への寄与の大きさを示す電力寄与情報を有する省エネ寄与DBを有し、
     前記表示内容切替部は、前記電力寄与情報に基づいて電力損失への寄与の大きい消耗部品について優先的に消耗部品の交換を促す情報を出力することを特徴とする監視装置。
    The monitoring device according to claim 12, wherein
    An energy saving contribution DB having power contribution information indicating the magnitude of contribution to power loss in a plurality of consumable parts,
    The display content switching unit outputs information prompting replacement of a consumable part preferentially for a consumable part having a large contribution to power loss based on the power contribution information.
  14.  請求項9に記載の監視装置であって、
     前記機器は空気圧縮機であることを特徴とする監視装置。
    The monitoring device according to claim 9,
    The monitoring device according to claim 1, wherein the device is an air compressor.
  15.  請求項14に記載の監視装置であって、
     前記消耗部品は、サクションフィルタ、潤滑油、セパレータエレメントのいずれかであることを特徴とする監視装置。
    15. The monitoring device according to claim 14, wherein
    The monitoring device according to claim 1, wherein the consumable part is one of a suction filter, a lubricating oil, and a separator element.
PCT/JP2016/088133 2016-01-04 2016-12-21 Monitoring device and monitoring method WO2017119299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-000205 2016-01-04
JP2016000205A JP6797528B2 (en) 2016-01-04 2016-01-04 Monitoring device and monitoring method

Publications (1)

Publication Number Publication Date
WO2017119299A1 true WO2017119299A1 (en) 2017-07-13

Family

ID=59274266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088133 WO2017119299A1 (en) 2016-01-04 2016-12-21 Monitoring device and monitoring method

Country Status (3)

Country Link
JP (1) JP6797528B2 (en)
TW (1) TW201725347A (en)
WO (1) WO2017119299A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019806A1 (en) * 2019-07-31 2021-02-04 日立グローバルライフソリューションズ株式会社 Notification management server and notification management method
CN113465814A (en) * 2021-05-25 2021-10-01 国网宁夏电力有限公司检修公司 Carrier gas pressure monitoring and early warning method, medium and system of oil chromatography device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669606B (en) * 2017-11-20 2019-08-21 財團法人資訊工業策進會 Diagnostic method for machine and diagnostic system thereof
WO2019123510A1 (en) 2017-12-18 2019-06-27 三菱電機株式会社 Display control device, display system, display device, display method, and display program
CN112601934B (en) 2018-09-03 2023-02-17 三菱电机株式会社 Signal display control device and computer-readable recording medium
TWI732165B (en) * 2018-12-24 2021-07-01 高聖精密機電股份有限公司 Dlt-based system for supplying and marketing cutting equipment and method thereof
JP7009408B2 (en) * 2019-03-29 2022-01-25 日立建機株式会社 Work machine
JP7285196B2 (en) * 2019-11-05 2023-06-01 日立建機株式会社 WORKING MACHINE PARTS DETERIORATION ESTIMATION SYSTEM AND WORKING MACHINE PARTS DETERIORATION ESTIMATION METHOD
WO2022044863A1 (en) * 2020-08-24 2022-03-03 株式会社日立産機システム Oil feed type air compressor
JP7543233B2 (en) 2021-09-28 2024-09-02 コベルコ・コンプレッサ株式会社 Filter maintenance frequency machine learning device and method, and oil-cooled compression system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005450A (en) * 2002-03-06 2004-01-08 Thomson Licensing Sa Method and system for automatically ordering replacement of consumable component of system
JP2015028760A (en) * 2013-06-27 2015-02-12 株式会社東芝 Household electrical appliance and network system
JP5696773B2 (en) * 2013-12-11 2015-04-08 株式会社リコー Image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014118049A1 (en) * 2013-02-01 2014-08-07 Tetra Laval Holdings & Finance S.A. A method for providing maintenance data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004005450A (en) * 2002-03-06 2004-01-08 Thomson Licensing Sa Method and system for automatically ordering replacement of consumable component of system
JP2015028760A (en) * 2013-06-27 2015-02-12 株式会社東芝 Household electrical appliance and network system
JP5696773B2 (en) * 2013-12-11 2015-04-08 株式会社リコー Image forming apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021019806A1 (en) * 2019-07-31 2021-02-04 日立グローバルライフソリューションズ株式会社 Notification management server and notification management method
JP2021026258A (en) * 2019-07-31 2021-02-22 日立グローバルライフソリューションズ株式会社 Notification management server and notification management method
JP7240984B2 (en) 2019-07-31 2023-03-16 日立グローバルライフソリューションズ株式会社 Notification management server and notification management method
CN113465814A (en) * 2021-05-25 2021-10-01 国网宁夏电力有限公司检修公司 Carrier gas pressure monitoring and early warning method, medium and system of oil chromatography device

Also Published As

Publication number Publication date
JP2017122585A (en) 2017-07-13
TW201725347A (en) 2017-07-16
JP6797528B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
WO2017119299A1 (en) Monitoring device and monitoring method
US9061224B2 (en) System for monitoring and indicating filter life
US9200995B2 (en) Method and apparatus for monitoring air filter condition
JP5274937B2 (en) air compressor
JP6902057B2 (en) Industrial equipment monitoring equipment
JP5362692B2 (en) Cooling performance deterioration diagnosis system for refrigerator and cooling performance deterioration diagnosis method for refrigerator
JP2009056446A (en) Filter history management apparatus
CN114341495A (en) Compressor, monitoring system and monitoring method of compressor
JP2010243092A (en) Method and system of detecting deterioration of refrigerating machine
US9753456B2 (en) Device for detecting decrease in rotational speed of cooling fan of machine tool
JP2007318872A (en) Controller
CN114383262B (en) Method for detecting cleanliness of air conditioner indoor unit and air conditioner thereof
JP2007318838A (en) Controller
JP2003254253A (en) Compressor and maintenance method therefor
JP2006162213A (en) Remote control device for air conditioning
JP3888364B2 (en) refrigerator
US20120253700A1 (en) Stall detection in fans utilizing frequency converter
KR20120090375A (en) Method sensing pollusion of filter in air conditioner
US20210388835A1 (en) Gas Compressor
WO2011155519A1 (en) Energy management apparatus
JP5831197B2 (en) Evaluation apparatus, evaluation method, and evaluation program
US8818765B2 (en) System and method to monitor compressor rack operation
WO2024070824A1 (en) State monitoring system and state monitoring method
US8924181B2 (en) Operating refrigeration systems
JP5279383B2 (en) Lifetime detector for refrigerated / frozen showcase components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883798

Country of ref document: EP

Kind code of ref document: A1