WO2017118178A1 - 一种资源分配方法和装置 - Google Patents

一种资源分配方法和装置 Download PDF

Info

Publication number
WO2017118178A1
WO2017118178A1 PCT/CN2016/103768 CN2016103768W WO2017118178A1 WO 2017118178 A1 WO2017118178 A1 WO 2017118178A1 CN 2016103768 W CN2016103768 W CN 2016103768W WO 2017118178 A1 WO2017118178 A1 WO 2017118178A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
information
pdcch
resource
base station
Prior art date
Application number
PCT/CN2016/103768
Other languages
English (en)
French (fr)
Inventor
陈林
张芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017118178A1 publication Critical patent/WO2017118178A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • This document relates to, but is not limited to, the field of communication technologies, and in particular, to a resource allocation method and apparatus.
  • the two most notable features of 5G are: throughput, peak rate growth of 1-2 orders of magnitude, and several times the end-to-end delay.
  • the use of large bandwidth (500M-1GHz) in the millimeter wave band is the main solution to solve the future data service throughput index growth; and the end-to-end delay is mainly reduced by shortening the subframe structure and reducing HARQ (Hybrid Automatic Repeat Request, hybrid automatic). Retransmit the request) to delay the solution.
  • HARQ Hybrid Automatic Repeat Request, hybrid automatic
  • the transmission of the antenna is usually performed by beamforming.
  • the PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the PDCCH information is distributed in a plurality of symbols in the time domain, and the working mode of the plurality of UEs (User Equipments) that are scheduled to serve simultaneously cannot meet the scheduling policy of the narrow beam; and the PRB is used in the LTE.
  • the Physical Resource Block (physical resource block) does not meet the requirements of flexible scheduling of 5G high-frequency resources.
  • the embodiments of the present invention provide a resource allocation method and device, which can improve the efficiency of narrow beam scheduling resources and reduce the overhead caused by inter-beam switching between base stations.
  • the embodiment of the invention provides a resource allocation method, which is applied to a base station, and the method includes:
  • the PDCCH-specific control information is sent to the user terminal in the direction of the best transmit-receive narrow beam pair optimal transmit beam, where the information of the PDSCH resource corresponding to the user terminal is carried.
  • the physical downlink control channel PDCCH time-frequency resource is allocated to the user terminal according to the scheduling group where the user terminal is located, including:
  • the PDCCH time-frequency resources corresponding to the user terminals in the same scheduling group are located at the same symbol position in the same subframe;
  • the PDCCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the allocating the physical downlink shared channel PDSCH resource to the user terminal according to the scheduling group where the user terminal is located including:
  • the PDSCH resources corresponding to the user terminals in the same scheduling group are in the same or adjacent symbol positions of the same subframe;
  • the PDSCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the allocating the physical downlink control channel PDCCH time-frequency resource and the physical downlink shared channel PDSCH time-frequency resource to the user terminal according to the scheduling group including:
  • the PDCCH and the frequency resource of one symbol in the time domain are used as the basic granularity of resource allocation.
  • the method further includes:
  • the PDCCH common control information of the physical downlink control channel is sent to the user terminal by using the wide beam, and the beam refinement training is performed on the user terminal by using the narrow beam, and the optimal transmit-receive narrow beam pair information fed back by the user terminal is received.
  • the embodiment of the invention further provides a resource allocation method, which is applied to a user terminal, and the method includes:
  • the PDSCH resource is demodulated in the direction of the best receive beam of the best transmit-receive narrow beam pair.
  • the method before receiving the PDCCH-specific control information sent by the base station, the method further includes:
  • the beam refinement training is performed according to the narrow beam sent by the base station, and the optimal transmit-receive narrow beam pair information is fed back to the base station.
  • the embodiment of the invention provides a resource allocation device, which is applied to a base station, and includes:
  • a grouping module configured to divide a scheduling group for the user terminal, and the user terminal in the same scheduling group has the same best transmitting beam in the best transmitting-receiving narrow beam pair fed back during beam training;
  • a resource allocation module configured to allocate a physical downlink control channel PDCCH time-frequency resource and a physical downlink shared channel PDSCH resource to the user terminal according to the scheduling group where the user terminal is located;
  • the information sending module is configured to send PDCCH-specific control information to the user terminal in a direction of an optimal transmit beam of the best transmit-receive narrow beam pair, where the information of the PDSCH resource corresponding to the user terminal is carried.
  • the resource allocation module is configured to allocate a physical downlink control channel PDCCH time-frequency resource to the user terminal according to the scheduling group where the user terminal is located in the following manner:
  • the PDCCH time-frequency resources corresponding to the user terminals in the same scheduling group are located at the same symbol position in the same subframe;
  • the PDCCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the resource allocation module is configured to allocate the physical downlink shared channel PDSCH resource to the user terminal according to the scheduling group where the user terminal is located in the following manner:
  • the PDSCH resources corresponding to the user terminals in the same scheduling group are in the same or adjacent symbol positions of the same subframe;
  • the PDSCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the resource allocation module is configured to allocate, according to the scheduling group, the physical downlink control channel PDCCH time-frequency resource and the physical downlink shared channel PDSCH time-frequency resource according to the scheduling group:
  • the allocation of PDCCH and PDSCH time-frequency resources is performed by using the frequency resource of one symbol in the time domain as the basic granularity of resource allocation.
  • the device further includes:
  • the beam training module is configured to send the physical downlink control channel PDCCH common control information to the user terminal by using a wide beam, perform beam refinement training on the user terminal by using a narrow beam, and receive the best transmit-receive narrow beam pair information fed back by the user terminal.
  • the invention also provides a resource allocation device, which is applied to a user terminal, and includes:
  • the information receiving module is configured to receive the physical downlink control channel PDCCH dedicated control information sent by the base station in a direction of an optimal receive beam of the best transmit-receive narrow beam pair determined in the beam training phase, where the physical downlink shared channel PDSCH resource is carried information;
  • a service module configured to demodulate PDSCH resources in a direction of an optimal receive beam of the best transmit-receive narrow beam pair.
  • the device further includes:
  • a beam training module configured to receive a physical downlink control channel sent by the base station by using a wide beam
  • the PDCCH common control information feeds back the best transmit-receive wide beam pair information to the base station; performs beam refinement training according to the narrow beam sent by the base station, and feeds back the optimal transmit-receive narrow beam pair information to the base station.
  • the embodiment of the invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when executed by a processor.
  • a resource allocation method and apparatus allocates UE PDCCH resources on the same service beam sent by a base station to the same symbol in a control region, and allocates UE PDCCH resources on different service beams.
  • the purpose of transmitting in a narrow beam is to achieve the purpose of transmitting in a narrow beam. Because the signal is transmitted in a narrow beam, the transmitted energy is relatively concentrated, and the coverage of the beam is large.
  • the UE is on the same transmit beam of the base station.
  • the scheduling together reduces the overhead caused by the inter-beam handover between the base stations, and the time division multiplexing is implemented between the PDCCH-SPECIFICs of the different service beam UEs.
  • the frequency resource on one symbol is used as the basic granularity of scheduling, which is beneficial to realize flexible scheduling of resources working in a beam mode.
  • FIG. 1 is a flowchart (base station side) of a resource allocation method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a resource allocation method (user terminal side) according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a resource allocation apparatus (base station side) according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a resource allocation apparatus (user terminal side) according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an uplink high frequency subframe according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a downlink high frequency subframe according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a hybrid beamforming architecture according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a high frequency subframe according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a location of a UE in a beam according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of PDCCH time-frequency resource allocation according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of PDSCH time-frequency resource allocation according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a process of accessing different beam UE services according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a same beam UE service access procedure according to an embodiment of the present invention.
  • the transmission of the antenna is usually performed by beamforming.
  • the beamforming technique it is necessary to consider both the signal coverage effect of the connected state terminal and the signal coverage effect of the idle state terminal.
  • System information for all users in the entire cell can be performed by means of wide beam broadcasting.
  • the public data control information of the cell user needs to be transmitted in a wide beam manner through a physical downlink control channel PDCCH (Physical Downlink Control Channel).
  • PDCCH Physical Downlink Control Channel
  • the purpose of this paper is to give a high-frequency multi-antenna new sub-frame structure physical downlink control channel PDCCH design and corresponding resource allocation method.
  • the PDCCH receiving the same transmit beam user is placed on the same symbol in the control signal region, and a control channel of a single user or multiple users can be placed on one symbol.
  • the common search space and the private search space of the PDCCH are placed with a certain degree of aggregation, and the terminal is directly obtained by blind detection.
  • the information including the PDCCH common search space is transmitted in a wide beam so that multiple UEs receive simultaneously; the PDCCH private search space information for a single UE is transmitted in a narrow beam.
  • the PDCCH narrow beam information used by the UE may notify the UE through a common search space of the wide beam PDCCH.
  • the granularity of the resources allocated by the base station to the terminal is all the frequency resources of one symbol as a basic unit, and the terminals of different beams share the frequency domain resources by means of time division.
  • the problem is solved by placing the public information of a large number of users into the common search space of the PDCCH in a wide beam manner, and putting the special information for individual users into the private search space of the PDCCH to be transmitted in a narrow beam.
  • the high frequency frame structure control region PDCCH transmits only one narrow beam on one OFDM (Orthogonal Frequency Division Multiplexing) symbol, and the UEs in the same narrow beam are simultaneously scheduled, so that the energy of the PDCCH beam is concentrated, and the coverage of the control channel is effectively increased.
  • OFDM Orthogonal Frequency Division Multiplexing
  • This paper proposes a high-frequency frame structure framework, which divides the entire sub-frame structure into independent parts: reference signal and sync signal area, control signal area, data transmission area and control signal feedback area.
  • the resource allocation method of this paper includes the following steps:
  • the base station transmits broadcast information in a wide beam, and the broadcast information mainly includes MIB (Management Information Base) information; the number of wide beams under one base station may be two, four or eight;
  • MIB Management Information Base
  • the terminal After receiving the broadcast message, the terminal monitors the primary synchronization signal, the secondary synchronization signal and the broadcast signal of different broadcast beams, acquires synchronization parameters, and demodulates system information in the MIB;
  • the terminal further receives the PCFICH (Physical Control Format Indicator Channel) and the PDCCH-COMMON information through the wide beam, and further acquires SIBs (System Information Block) information (SIB1-SIB13); Information in SIBs for cell selection and reselection;
  • PCFICH Physical Control Format Indicator Channel
  • PDCCH-COMMON Physical Control Format Indicator Channel
  • the terminal cyclically scans the direction of the receiving beam, and selects an optimal transmitting-receiving beam pair according to the received synchronization signal energy or the signal to interference and noise ratio of the pilot signal;
  • the terminal initiates a random access request, and notifies the base station of the best transmit-receive beam pair receiving the broadcast;
  • the base station After receiving the random access request message of the terminal, the base station returns a random access response message; the message carries the narrow beam measurement request content of the service, such as a measurement object, a measurement quantity, a measurement period and the like;
  • the terminal measures the narrow beam of different transmission directions of the base station, and the measurement of the narrow beam can be Performing on the symbol of the reference signal; determining the narrow beam optimal transmit-receive beam pair after the end of the terminal measurement; where the concept of the beam is a logical beam, which may be a composite beam of multiple transmit chains;
  • the base station collects the measurement result of the terminal, classifies the terminals of the same best transmit beam in the transmit-receive beam pair in the best transmit-receive beam pair into one class, and performs scheduling on the same transmit beam and the same subframe; PDCCH Scheduling on the same symbol in the control domain; staggering scheduling on the control domain symbols for different transmit-receive beam pairs;
  • the base station transmits the PDCCH-SPECIFIC information for the specific UE, including the symbol position of the service scheduling, the narrow beam ID (Identifier) of the transmission service, the uplink PUCCH (Physical Uplink Control Channel) power control information, and the like;
  • the terminal monitors the PDCCH-SPECIFIC information on the narrow beam, and obtains the information such as the symbol position and the uplink power control scheduled on the PDSCH (Physical Downlink Shared Channel), and demodulates the corresponding PDSCH information.
  • PDSCH Physical Downlink Shared Channel
  • the above resource allocation methods include the following features:
  • the base station service scheduling schedules the UEs with the same best transmit beam in the best transmit-received beam pair by the beam, that is, the PDCCH is scheduled on the same OFDM symbol in the control domain; the service data is also scheduled in the PDSCH region. On adjacent OFDM symbols.
  • the PDCCH is scheduled on different symbols in the control domain; the service data is also scheduled on different symbols in the PDSCH region.
  • the beam carrying the PDCCH-COMMON information is transmitted in a wide beam, and the beam carrying the PDCCH-SPECIFIC information is transmitted in a narrow beam.
  • the beam carrying the PDSCH information is transmitted in a narrow beam, and the beams carrying the PDCCH-SPECIFIC and the PDSCH adopt the same beam pair to save the overhead of beam training.
  • the narrow beam ID of the base station transmission service (PDSCH channel), and the UE is notified by the PDCCH-SPECIFIC message;
  • the PDCCH-SPECIFIC message includes the service narrow beam ID of the UE and the PDSCH channel OFDM symbol position of the service.
  • the terminal resource allocation unit is no longer the RB (Resource Block) level, but the symbol level; the frequency resource of one symbol in the time domain is all allocated to one of the basic granularity of resource allocation. UE.
  • RB Resource Block
  • the PDCCH resources allocated by the UE on the same transmit beam are on the same symbol in the control region; the PDCCH resources allocated by the UE on different transmit beams are on different symbols in the control region.
  • time division multiplexing is implemented between PDCCH-SPECIFICs of different transmit beam UEs, and mutual interference between control beams is reduced.
  • the advantage of this is that the PDCCH-SPECIFIC narrow beam for a specific UE (same beam) monopolizes one OFDM symbol, because the energy concentrated beam coverage is large.
  • UEs on the same beam are scheduled together, which reduces the overhead caused by inter-beam handover.
  • the frequency resource on one symbol is used as the basic granularity of scheduling, which facilitates handover scheduling between different beam UEs by beam scanning.
  • an embodiment of the present invention provides a resource allocation method, which is applied to a base station, and includes:
  • the scheduling group is divided into user terminals, and the user terminals in the same scheduling group have the same best transmit beam in the best transmit-receive narrow beam pair fed back during beam training;
  • the physical downlink control channel PDCCH time-frequency resource and the physical downlink shared channel PDSCH resource are allocated to the user terminal according to the scheduling group where the user terminal is located.
  • the best transmit beam refers to a transmit beam on the base station side
  • the best receive beam refers to a receive beam on the terminal side
  • the method further includes:
  • the PDCCH common control information of the physical downlink control channel is sent to the user terminal by using the wide beam, and the beam refinement training is performed on the user terminal by using the narrow beam, and the optimal transmit-receive narrow beam pair information fed back by the user terminal is received.
  • the method before the sending, by the wide beam, the physical downlink control channel PDCCH common control information to the user equipment, the method further includes:
  • the synchronization message includes a primary synchronization signal PSS and a secondary synchronization signal SSS;
  • the broadcast message includes a management information base MIB information;
  • the MIB information mainly includes a downlink system bandwidth, a number of transmit antenna ports, a system frame number, and the like.
  • System parameters mainly includes a downlink system bandwidth, a number of transmit antenna ports, a system frame number, and the like.
  • the PDCCH common control information PDCCH-COMMON information includes at least one of the following information: SIBs resource block allocation information, a transport block size index; and the SIBs resource block allocation information includes a resource location of the SIB1-SIB 13 in the PDSCH;
  • the narrow beam is used to perform beam refinement training on the user terminal, and the best transmit-receive narrow beam pair information fed back by the user terminal is received, including:
  • the beam refinement training request carries at least one of the following information: a measurement object, a measurement quantity, and a measurement period;
  • the physical downlink control channel PDCCH time-frequency resource is allocated to the user terminal according to the scheduling group where the user terminal is located, including:
  • the PDCCH time-frequency resources corresponding to the user terminals in the same scheduling group are located at the same symbol position in the same subframe;
  • the PDCCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe;
  • the information about the PDSCH resource corresponding to the user terminal includes at least one of the following information: a symbol location where the PDSCH resource corresponding to the user terminal is located, a narrow beam information of the PDSCH, and a PUCCH (Physical Uplink Control Channel) power.
  • Control information includes at least one of the following information: a symbol location where the PDSCH resource corresponding to the user terminal is located, a narrow beam information of the PDSCH, and a PUCCH (Physical Uplink Control Channel) power.
  • the symbol position of the PDSCH resource corresponding to the user terminal is represented by a start symbol and a symbol length (SymbStart, SymLLength); wherein the narrow beam information of the PDSCH includes information for transmitting a narrow beam and receiving a narrow beam;
  • the allocating physical downlink sharing to the user terminal according to the scheduling group where the user terminal is located Channel PDSCH resources including:
  • the PDSCH resources corresponding to the user terminals in the same scheduling group are in the same or adjacent symbol positions of the same subframe;
  • the PDSCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the allocating the physical downlink control channel PDCCH time-frequency resource and the physical downlink shared channel PDSCH time-frequency resource to the user terminal according to the scheduling group including:
  • an embodiment of the present invention provides a resource allocation method, which is applied to a terminal, and the method includes:
  • S201 Receive, in a direction of an optimal transmit-receive narrow beam pair, an optimal receive beam, in a beam training phase, a physical downlink control channel PDCCH-specific control information that is sent by the base station, where the information of the physical downlink shared channel PDSCH resource is carried.
  • the method before receiving the PDCCH-specific control information sent by the base station, the method further includes:
  • the PDCCH common control information includes at least one of the following information: the PDCCH common control information
  • PDCCH-COMMON information includes at least one of the following information: SIBs resource block allocation information, a transport block size index, and the SIBs.
  • the resource block allocation information includes a resource location of the SIB1-SIB13 in the PDSCH;
  • the information about the PDSCH resource includes at least one of the following information: a symbol location where a PDSCH resource corresponding to the user terminal is located, a narrow beam information of the PDSCH, and PUCCH (Physical Uplink Control Channel) power control information;
  • PUCCH Physical Uplink Control Channel
  • an embodiment of the present invention provides a resource allocation apparatus, which is applied to a base station, and includes:
  • a grouping module configured to divide a scheduling group for the user terminal, and the user terminal in the same scheduling group has the same best transmitting beam in the best transmitting-receiving narrow beam pair fed back during beam training;
  • a resource allocation module configured to allocate a physical downlink control channel PDCCH time-frequency resource and a physical downlink shared channel PDSCH resource to the user terminal according to the scheduling group where the user terminal is located;
  • the information sending module is configured to send PDCCH-specific control information to the user terminal in a direction of an optimal transmit beam of the best transmit-receive narrow beam pair, where the information of the PDSCH resource corresponding to the user terminal is carried.
  • the device further includes:
  • the beam training module is configured to send the physical downlink control channel PDCCH common control information to the user terminal by using a wide beam, perform beam refinement training on the user terminal by using a narrow beam, and receive the best transmit-receive narrow beam pair information fed back by the user terminal.
  • the resource allocation module is configured to allocate a physical downlink control channel PDCCH time-frequency resource to the user terminal according to the scheduling group where the user terminal is located in the following manner:
  • the PDCCH time-frequency resources corresponding to the user terminals in the same scheduling group are located at the same symbol position in the same subframe;
  • the PDCCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the resource allocation module is configured to allocate the physical downlink shared channel PDSCH resource to the user terminal according to the scheduling group where the user terminal is located in the following manner:
  • the PDSCH resources corresponding to the user terminals in the same scheduling group are in the same or adjacent symbol positions of the same subframe;
  • the PDSCH time-frequency resources corresponding to the user terminals in different scheduling groups are located on different subframes or different symbol positions in the same subframe.
  • the resource allocation module is configured to allocate, according to the scheduling group, the physical downlink control channel PDCCH time-frequency resource and the physical downlink shared channel PDSCH time-frequency resource according to the scheduling group:
  • the allocation of PDCCH and PDSCH time-frequency resources is performed by using the frequency resource of one symbol in the time domain as the basic granularity of resource allocation.
  • an embodiment of the present invention provides a resource allocation apparatus, which is applied to a user terminal, and includes:
  • the information receiving module is configured to receive the physical downlink control channel PDCCH dedicated control information sent by the base station in a direction of an optimal receive beam of the best transmit-receive narrow beam pair determined in the beam training phase, where the physical downlink shared channel PDSCH resource is carried information;
  • a service module configured to demodulate PDSCH resources in a direction of an optimal receive beam of the best transmit-receive narrow beam pair.
  • the device further includes:
  • the beam training module is configured to receive the physical downlink control channel PDCCH common control information sent by the base station by using the wide beam, and feed back the best transmit-receive wide beam pair information to the base station; perform beam refinement training according to the narrow beam sent by the base station, and feed back to the base station. Optimal transmit-receive narrow beam pair information.
  • an embodiment of the present invention provides an uplink high frequency subframe, including: an uplink reference signal and a synchronization signal region, an uplink control signal region, an uplink data transmission region, and an uplink control signal feedback region.
  • the uplink reference signal and the synchronization signal region include an uplink sounding reference signal (SRS) and a preamble (Preamble);
  • the uplink control signal region includes an uplink control channel;
  • the uplink data transmission region includes an uplink data channel; and uplink control signal feedback
  • the area includes a guard interval (GP) and a downlink control channel, and the downlink control channel mainly transmits ACK/NACK feedback information.
  • the embodiment of the present invention provides a downlink high frequency subframe, including: a downlink reference signal and a synchronization signal region, a downlink control signal region, a downlink data transmission region, and a downlink control signal feedback region.
  • the downlink reference signal and the synchronization signal region include a reference signal (RS), a primary synchronization signal (PSS), and a secondary synchronization signal (SSS);
  • the downlink control signal region includes a downlink control channel and a DM-RS;
  • the data transmission area includes a downlink data channel;
  • the downlink control signal feedback area includes a GP and an uplink control channel, and the uplink control channel mainly transmits ACK/NACK feedback information.
  • each transceiver is connected to M antennas.
  • ABF Analog Beamforming
  • DBF Digital Beamforming
  • the DAC Digital Analog Converter
  • the PA Power Amplifier
  • Antenna 0, Antenna 1, ..., Antenna (M-1) represent different antennas of a transceiver, respectively.
  • a transceiver chain is configured as one port, or two transceiver chains are configured as one port, depending on the implementation.
  • a high frequency subframe structure includes the following parts: an uplink subframe includes an uplink SRS (Sounding Reference Symbol)/Preamble, an uplink control, an uplink data channel, a GP (Guard Period), and a downlink.
  • Control downlink control mainly transmits ACK/NACK feedback information.
  • the downlink subframe includes an RS/PSS/SSS (Reference Signal/Primary Synchronization Signal/Second Synchronization Signal), a downlink control, a DM-RS, a downlink data channel, a GP, and an uplink control, and the uplink control mainly transmits ACK/NACK feedback information.
  • RS/PSS/SSS Reference Signal/Primary Synchronization Signal/Second Synchronization Signal
  • a downlink control mainly transmits ACK/NACK feedback information.
  • Radio frame contains 10 radio subframes, each subframe contains 2 slots, each slot packet Contains 7-30 OFDM symbols.
  • Each sub-frame is 100 to 250 microseconds in length.
  • the location of the UE in the beam includes two cases: In the first case, there is only one UE in each beam. For example, the UE1 location is in the beam Beam1, and the UE2 location is in the beam Beam2, as shown in FIG. As shown in (a). In the second case, there may be multiple UEs in each beam, the UE1 and UE2 locations are in the beam Beam1, and the UE3 location is in the beam Beam2, as shown in (b) of FIG.
  • the PDCCH time-frequency resource allocation includes two cases: in the first case, there is only one UE in each beam, and the PDCCH resources of each UE are allocated on different OFDM symbols in the downlink control region, as shown in FIG. 10 As shown in (a). In the second case, if there are multiple UEs in one beam, the PDCCH resources of different UEs in the same beam are allocated on the same OFDM symbol in the downlink control region, and the PDCCH resource allocation of the UEs in different beams is different in the downlink control region.
  • the OFDM symbol is specifically as shown in (b) of FIG.
  • the length of the high-frequency subframe structure is short, usually 100 to 250 microseconds, the number of simultaneously scheduled UEs in each subframe is small (1-6), and one subframe is simultaneously scheduled in 1-3 beams.
  • the UE can meet the needs of most hotspot scenarios.
  • a PDCCH-COMMON occupies a CCEs (Control Channel Element) resource of 8, that is, a common search space has a degree of aggregation of 8, and a total of PDCCH-COMMON #0 and PDCCH-COMMON #1 are allocated.
  • the CCEs resources occupied by the PDCCH-SPECIFIC of the UE are 1, 2, 4, and 8, that is, the degree of aggregation of the private search space is 1, 2, 4, and 8, and multiple UEs can be allocated on one symbol.
  • the UE common search space stores resource block allocation information related to system information, a transport block size index, and the like; the resource block allocation information related to the service allocation, the narrow beam ID (Identifier) of the transport service, and the transport block size index are stored in the UE private search space.
  • Information such as the number of HARQ processes, the PUCCH (Physical Uplink Control CHannel), and the power control commands.
  • the UE obtains specific information in the public search space and the private search space through blind detection.
  • the PDSCH Physical Downlink Shared Channel
  • each UE allocates several OFDM symbols of the downlink data channel.
  • UE1 allocates two consecutive OFDM symbols
  • UE2 allocates three consecutive OFDM symbols.
  • the main feature of OFDM symbol allocation is that 1 OFDM symbol is allocated to only 1 UE.
  • the resource allocation method includes the following steps:
  • Step S1200 The base station periodically sends a synchronization and broadcast message;
  • the synchronization signal includes a primary synchronization information PSS and a secondary synchronization signal SSS, and the broadcast message includes MIB information;
  • the MIB information mainly includes a downlink system bandwidth, a number of transmit antenna ports, and a system frame number. And other system parameters; the base station transmits the message in the form of a wide beam;
  • Step S1201 UE1 acquires a specific physical cell number of the base station by performing PSS and SSS, and performs downlink synchronization; UE1 obtains system parameters in the MIB by demodulating a PBCH (Physical Broadcast Channel, Physical Broadcast Channel);
  • PBCH Physical Broadcast Channel, Physical Broadcast Channel
  • Step S1202 UE2 acquires a specific physical cell number of the base station by performing PSS and SSS, and performs downlink synchronization; UE2 obtains system parameters in the MIB by demodulating PBCH (Physical Broadcast Channel);
  • PBCH Physical Broadcast Channel
  • Step S1203 The base station sends a PDCCH common message, where the PDCCH-COMMON information includes the SIBs resource block allocation information and the transport block size index; the SIBs resource block allocation information includes the location of the SIB1-SIB13 resource in the PDSCH; the base station transmits the wide beam form.
  • the PDCCH-COMMON information includes the SIBs resource block allocation information and the transport block size index; the SIBs resource block allocation information includes the location of the SIB1-SIB13 resource in the PDSCH; the base station transmits the wide beam form.
  • Step S1204 The UE1 obtains the resource location of the SIBs in the PDSCH by using the information in the PDCCH-COMMON, and demodulates the corresponding information, and performs cell selection and reselection according to the cell information included in the SIBs.
  • Step S1205 UE1 cyclically scans the direction of the received beam, and obtains a wide beam optimal transmit-receive beam pair 1 (base station transmit-UE reception) by measuring the synchronization signal energy or measuring the downlink pilot signal signal dry-noise ratio SINR. ;
  • Step S1206 The UE2 obtains the resource location of the SIBs in the PDSCH by using the information in the PDCCH-COMMON, and demodulates the corresponding information, and performs cell selection and reselection according to the cell information included in the SIBs.
  • Step S1207 The UE2 cyclically scans the direction of the receiving beam, and obtains the wide beam optimal transmit-receive beam pair 2 (base station transmission-UE reception) by measuring the synchronization signal energy or measuring the downlink pilot signal signal dry-to-noise ratio SINR. ;
  • Step S1208 UE1 initiates a random access request, and notifies the base station of the best transmit-receive beam pair 1 information of the wide beam;
  • Step S1209 UE2 initiates a random access request, and notifies the base station of the best transmit-receive beam pair 2 information of the wide beam;
  • Step S1210 The base station notifies the UE 1 of the refined training request of the beam in the random access response message that is subsequently initiated;
  • the refined training request cell of the beam includes specific measurement objects, measurement quantities, measurement periods, and the like;
  • Step S1211 The base station notifies the UE 2 of the refined training request of the beam in the random access response message that is subsequently initiated;
  • the refined training request cell of the beam includes specific measurement objects, measurement quantities, measurement periods, and the like;
  • Step S1212 UE1 performs training of narrow beam: by cyclically scanning the direction of the received beam, measuring the energy or signal to interference and noise ratio (SINR) of different transmit beams of the base station, and selecting the transmit-receive beam pair with the best capability or the best signal to interference and noise ratio as Narrow beam optimal transmit-receive beam pair 3;
  • SINR signal to interference and noise ratio
  • Step S1213 UE2 performs training of narrow beam: by cyclically scanning the direction of the received beam, measuring the energy or signal to interference and noise ratio SINR of different transmit beams of the base station, and selecting the transmit-receive beam pair with the best capability or the best signal to interference and noise ratio as Narrow beam optimal transmit-receive beam pair 4;
  • Step S1214 UE1 notifies the base station of the narrow beam optimal transmit-receive beam pair 3 by using the refined training response message of the beam;
  • Step S1215 UE2 notifies the base station of the narrow beam optimal transmit-receive beam pair 4 by using the refined training response message of the beam;
  • Step S1216 The base station schedules the UEs that report the same best transmit-receive beam pair in the same subframe according to the result of different UE narrow beam training, and allocates the PDCCH resources to the same symbol in the control channel region; For a UE transmitting/receiving a pair of beams, the PDCCH resources are allocated on different symbols of the control channel region or are scheduled in different subframes;
  • Step S1217 The base station indicates, in the PDCCH, resources allocated by the PDSCH region for each UE. Location; the resource location is represented by a start symbol and a symbol length (SymbStart, SymbLength);
  • Step S1218 The base station notifies the UE1 PDCCH-SPECIFIC message in the best transmit-receive beam pair transmission direction fed back by the UE1, where the message includes the resource allocation information of the UE1 in the PDSCH area and the narrow beam transmit-receive narrow beam pair 3 carrying the service;
  • the base station transmits the message in a narrow beam manner;
  • Step S1219 The base station notifies the UE2 PDCCH-SPECIFIC message in the best transmit-receive beam pair transmission direction fed back by the UE2, where the message includes the resource allocation information of the UE2 in the PDSCH area and the narrow beam transmit-receive narrow beam pair 4 carrying the service;
  • the base station transmits the message in a narrow beam manner;
  • Step S1220 UE1 demodulates the PDSCH resource in the direction of the receive beam corresponding to the best transmit-receive narrow beam pair 3;
  • Step S1221 The UE2 demodulates the PDSCH resource in the direction of the receive beam corresponding to the best transmit-receive narrow beam pair 4.
  • the combination of the UE and the beam can be extended to any scenario of more than two beams.
  • the resource allocation method includes the following steps:
  • Step S1300 The base station periodically sends a synchronization and broadcast message;
  • the synchronization signal includes a primary synchronization information PSS and a secondary synchronization signal SSS, and the broadcast message includes MIB information;
  • the MIB information mainly includes a downlink system bandwidth, a number of transmit antenna ports, and a system frame number. And other system parameters; the base station transmits the message in the form of a wide beam;
  • Step S1301 UE1 acquires a specific physical cell number of the base station by performing PSS and SSS, and performs downlink synchronization; UE1 obtains system parameters in the MIB by demodulating the PBCH (Physical Broadcast Channel);
  • PBCH Physical Broadcast Channel
  • Step S1302 UE2 acquires a specific physical cell number of the base station by performing PSS and SSS, and performs downlink synchronization; UE2 obtains MIB by demodulating PBCH (Physical Broadcast Channel). System parameters in ;
  • PBCH Physical Broadcast Channel
  • Step S1303 The base station sends a PDCCH common message, where the PDCCH-COMMON information includes the SIBs resource block allocation information and the transport block size index; the SIBs resource block allocation information includes the location of the SIB1-SIB13 resource in the PDSCH; and the base station transmits the signal in the form of a wide beam.
  • the PDCCH-COMMON information includes the SIBs resource block allocation information and the transport block size index
  • the SIBs resource block allocation information includes the location of the SIB1-SIB13 resource in the PDSCH
  • the base station transmits the signal in the form of a wide beam.
  • Step S1304 The UE1 obtains the resource location of the SIBs in the PDSCH by using the information in the PDCCH-COMMON, and demodulates the corresponding information, and performs cell selection and reselection according to the cell information included in the SIBs.
  • Step S1305 The UE1 cyclically scans the direction of the receiving beam, and obtains the wide beam optimal transmit-receive beam pair 1 (base station transmission-UE reception) by measuring the synchronization signal energy or measuring the downlink pilot signal signal dry-to-noise ratio SINR. ;
  • Step S1306 The UE2 obtains the resource location of the SIBs in the PDSCH by using the information in the PDCCH-COMMON, and demodulates the corresponding information, and performs cell selection and reselection according to the cell information included in the SIBs.
  • Step S1307 UE2 cyclically scans the direction of the receiving beam, and obtains a wide beam optimal transmit-receive beam pair 1 (base station transmission-UE reception) by measuring the synchronization signal energy or measuring the downlink pilot signal signal dry-to-noise ratio SINR. ;
  • Step S1308 UE1 initiates a random access request, and notifies the base station of the best transmit-receive beam pair 1 information of the wide beam;
  • Step S1309 UE2 initiates a random access request, and notifies the base station of the best transmit-receive beam pair 1 information of the wide beam;
  • Step S1310 The base station notifies the UE 1 of the refined training request of the beam in the random access response message that is subsequently initiated;
  • the refined training request cell of the beam includes specific measurement objects, measurement quantities, measurement periods, and the like;
  • Step S1311 The base station notifies the UE 2 of the refined training request of the beam in the random access response message that is subsequently initiated;
  • the refined training request cell of the beam includes specific measurement objects, measurement quantities, measurement periods, and the like;
  • Step S1312 UE1 performs training of narrow beam: by cyclically scanning the direction of the received beam, measuring the energy or signal to interference and noise ratio SINR of different transmit beams of the base station, and selecting the maximum capacity or the signal to interference and noise ratio The best transmit-receive beam pair as the narrow beam best transmit-receive beam pair 2;
  • Step S1313 UE2 performs training of narrow beam: by cyclically scanning the direction of the received beam, measuring the energy or signal to interference and noise ratio SINR of different transmit beams of the base station, and selecting the transmit-receive beam pair with the best capability or the best signal to interference and noise ratio as Narrow beam optimal transmit-receive beam pair 2;
  • Step S1314 UE1 notifies the base station of the narrow beam optimal transmit-receive beam pair 2 by using the refined training response message of the beam;
  • Step S1315 UE2 notifies the base station of the narrow beam optimal transmit-receive beam pair 2 by using the refined training response message of the beam;
  • Step S1316 The base station schedules the UEs that report the same best transmit-receive beam pair in the same subframe according to the result of different UE narrow beam training, and allocates the PDCCH resources on the same symbol in the control channel region;
  • Step S1317 The base station indicates, in the PDCCH, a resource location allocated by the PDSCH region for each UE; the resource location is represented by a start symbol and a symbol length (SymbStart, SymBLength);
  • Step S1318 The base station notifies the UE1 and the UE2 PDCCH-SPECIFIC message in the transmission direction of the best transmit-receive beam pair 2 fed back by the UE1 and the UE2, and the message includes the resource allocation information of the UE1 and the UE2 in the PDSCH area, and the narrowest beam of the service.
  • Step S1319 UE1 demodulates the PDSCH resource in the direction of the receive beam corresponding to the best transmit-receive narrow beam pair 2;
  • Step S1320 The UE2 demodulates the PDSCH resource in the direction of the receive beam corresponding to the best transmit-receive narrow beam pair 2.
  • each beam only two UEs in each beam are used for description.
  • the combination of the UE and the beam can be easily extended to any scenario in which each UE includes more than two UEs and two or more beams.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, which are implemented when executed by a processor.
  • the foregoing embodiment provides a resource allocation method and apparatus.
  • the base station side transmits synchronous broadcast information and PDCCH common information in a wide beam manner, and the UE side performs wide beam training to obtain an optimal wide beam transmit-receive beam pair. Then, the base station side initiates a narrow beam refinement training request, and the UE side performs narrow beam training to obtain an optimal narrow beam transmit-receive beam pair.
  • the base station performs resource allocation of the PDCCH and the PDSCH according to the result of the narrow beam training.
  • the UE PDCCH resources on the same optimal transmit beam are allocated on the same symbol in the control region, and the UE PDCCH resources on different optimal transmit beams are allocated different symbols in the control region.
  • the resource allocation of the uplink and downlink shared channel PDSCH is based on the frequency resource on one symbol, which is beneficial to realize flexible scheduling of resources working in a beam mode.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. Instructions to achieve their corresponding functions. This application is not limited to any specific combination of hardware and software.
  • the technical solution provided by the embodiment of the present invention allocates UE PDCCH resources on the same service beam sent by the base station to the same symbol in the control region, and UE PDCCH on different service beams.
  • the resource is allocated on the different symbols of the control area to achieve the purpose of transmitting in a narrow beam. Because the signal is transmitted in a narrow beam, the transmitted energy is relatively concentrated, and the coverage of the beam is large.
  • the base station is on the same transmit beam.
  • the UEs are scheduled together to reduce the overhead caused by the inter-beam handover between the base stations, and the time division multiplexing is implemented between the PDCCH-SPECIFICs of the different service beam UEs.
  • the frequency resource on one symbol is used as the basic granularity of scheduling, which is beneficial to realize flexible scheduling of resources working in a beam mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种资源分配方法,应用于基站,该方法包括:为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。

Description

一种资源分配方法和装置 技术领域
本文涉及但不限于通信技术领域,尤其涉及的是一种资源分配方法和装置。
背景技术
为了实现5G目标:每区域1000倍的移动数据流量增长,每用户10到100倍的吞吐量增长,连接设备数10到100倍的增长,低功率设备10倍的电池寿命延长和端到端5倍延迟的下降,5G中必须提出一些新的无线技术解决方案。
5G中两个最显著的特征是:吞吐量、峰值速率1-2个数量级的增长和端到端延迟数倍的下降。在毫米波频段使用大带宽(500M-1GHz)是解决未来数据业务吞吐量指数增长的主要解决方案;而端到端延迟的下降主要通过缩短子帧结构、降低HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)延迟的方案来解决。
对于高频通信,由于高频段在空气中的传播损耗较大,天线的发射通常采用波束赋形的方式进行。为保证通信的质量,传输业务时的下行控制信道PDCCH(Physical Downlink Control Channel,物理下行控制信道)、下行共享信道PDSCH(Physical Downlink Shared Channel,物理下行共享信道)都需要在时域符号级上以窄波束的方式发送。而现有LTE技术中,PDCCH信息分布在时域的多个符号上同时为调度的多个UE(User Equipment,用户终端)服务的工作方式不能满足窄波束的调度策略;且LTE中以PRB(Physical Resource Block,物理资源块)为资源调度粒度不能满足5G高频资源灵活调度的需求。
因此,考虑到5G中使用波束赋形和多天线传输,用户的调度、无线资源的分配及控制信道等都需要重新设计,以满足5G的特点。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种资源分配方法和装置,能够提高窄波束调度资源的效率,降低基站侧波束间切换带来的额外开销。
本发明实施例提供了一种资源分配方法,应用于基站,该方法包括:
为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
可选地,根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源,包括:
同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,所述根据用户终端所在的调度组为用户终端分配物理下行共享信道PDSCH资源,包括:
同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,所述根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源,包括:
以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和 PDSCH时频资源的分配。
可选地,在为用户终端划分调度组之前,还包括:
以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
本发明实施例还提供了一种资源分配方法,应用于用户终端,该方法包括:
在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控制信息,其中携带物理下行共享信道PDSCH资源的信息;
在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源。
可选地,在接收基站发送的PDCCH专用控制信息之前,还包括:
接收基站以宽波束发送的物理下行控制信道PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;
根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息。
本发明实施例提供了一种资源分配装置,应用于基站,包括:
分组模块,设置为为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
资源分配模块,设置为根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
信息发送模块,设置为在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
可选地,资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源:
同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行共享信道PDSCH资源:
同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,资源分配模块,设置为采用以下方式根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源:
以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和PDSCH时频资源的分配。
可选地,所述装置还包括:
波束训练模块,设置为以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
本发明还提供了一种资源分配装置,应用于用户终端,包括:
信息接收模块,设置为在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控制信息,其中携带物理下行共享信道PDSCH资源的信息;
业务模块,设置为在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源。
可选地,所述装置还包括:
波束训练模块,设置为接收基站以宽波束发送的物理下行控制信道 PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息。
本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
与相关技术相比,本发明实施例提供的一种资源分配方法和装置,将基站发送的同一业务波束上的UE PDCCH资源分配在控制区域同一个符号上,不同业务波束上的UE PDCCH资源分配在控制区域不同符号上,达到以窄波束的方式发送的目的,由于以窄波束的方式发送,发送的能量相对集中,波束的覆盖范围较大,业务调度时,处于基站同一发射波束上的UE一起调度,降低了基站侧波束间切换带来的额外开销,不同业务波束UE的PDCCH-SPECIFIC之间实现时分复用。资源分配时,以一个符号上的频率资源作为调度的基本粒度,有利于实现以波束方式工作的资源灵活调度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例的一种资源分配方法流程图(基站侧)。
图2为本发明实施例的一种资源分配方法流程图(用户终端侧)。
图3为本发明实施例的一种资源分配装置示意图(基站侧)。
图4为本发明实施例的一种资源分配装置示意图(用户终端侧)。
图5为本发明实施例的一种上行高频子帧结构示意图。
图6为本发明实施例的一种下行高频子帧结构示意图。
图7为本发明实施例的一种混合波束赋形架构图。
图8为本发明实施例的一种高频子帧结构示意图。
图9为本发明实施例的一种UE在波束中的位置示意图。
图10为本发明实施例的一种PDCCH时频资源分配示意图。
图11为本发明实施例的一种PDSCH时频资源分配示意图。
图12为本发明实施例的不同波束UE业务接入过程示意图。
图13为本发明实施例的相同波束UE业务接入过程示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
对于高频通信,由于高频段在空气中的传播损耗较大,天线的发射通常采用波束赋形的方式进行。在采用波束赋形技术时,既要考虑连接态终端的信号覆盖效果,又要考虑空闲态终端的信号覆盖效果。对于整个小区所有用户的系统信息,可以采用宽波束广播的方式进行。针对小区用户的公共数据控制信息,需要通过物理下行控制信道PDCCH(Physical Downlink Control Channel)以宽波束的方式发送。
本文的目的是给出一种高频多天线新型子帧结构物理下行控制信道PDCCH的设计及相应的资源分配方法。针对天线发射的一个波束(可推广到逻辑波束),接收相同发射波束用户的PDCCH放置在控制信号区域同一个符号上,一个符号上可以放置单个用户或多个用户的控制信道。PDCCH的公共搜索空间、私有搜索空间以一定的聚合度放置,终端直接通过盲检方式获取。包含PDCCH公共搜索空间的信息以宽波束放送,以便多个UE同时接收;针对单个UE的PDCCH私有搜索空间信息以窄波束发送。UE使用的PDCCH窄波束信息可以通过宽波束PDCCH的公共搜索空间通知UE。基站给终端分配资源的粒度以一个符号上所有的频率资源作为一个基本单位,不同波束的终端通过时分的方式共享频域资源。在基站调度用户时,处于天线同一个发射波束覆盖下的用户,优先考虑同时调度。
为克服高频技术中存在的PDCCH窄波束仅能为发起业务的用户使用所 面临的问题,通过把大量用户的公共信息放入PDCCH的公共搜索空间以宽波束方式发送,而把针对个别用户的特殊信息放入PDCCH的私有搜索空间以窄波束发送来解决。高频帧结构控制区域PDCCH一个OFDM(Orthogonal Frequency Division Multiplexing)符号上仅发送一个窄波束,处于相同窄波束中的UE同时调度,使得发送PDCCH波束的能量集中,有效增加控制信道的覆盖范围。解决了同一个OFDM符号上需同时发送多个PDCCH波束带来的有效覆盖范围减小的问题。
本文提出了一种高频帧结构框架,把整个子帧结构分成独立的几个部分:参考信号和同步信号区域、控制信号区域、数据传输区域和控制信号反馈区域。
本文的资源分配方法包括以下步骤:
(1)基站以宽波束发送广播信息,广播信息中主要包含MIB(Management Information Base,管理信息库)信息;一个基站下的宽波束个数可以为2个、4个或8个;
(2)终端接收广播消息后,对不同广播波束的主同步信号、辅同步信号和广播信号进行监测,获取同步参数、解调MIB中的系统信息;
(3)终端通过宽波束进一步接收PCFICH(Physical Control Format Indicator Channel,物理控制格式指示信道)、PDCCH-COMMON信息,进一步获取SIBs(System Information Block,系统信息块)(SIB1-SIB13)信息;终端根据SIBs中的信息进行小区选择与重选;
(4)终端循环扫描接收波束方向,根据接收到的同步信号能量或导频信号的信干噪比选取最佳的发射-接收波束对;
(5)终端发起随机接入请求,把接收广播的最佳发射-接收波束对通知基站;
(6)基站收到终端的随机接入请求消息后,回随机接入响应消息;消息中携带业务的窄波束测量请求内容,如测量对象、测量量、测量周期等参数;
(7)终端对基站不同发射方向的窄波束进行测量,窄波束的测量可以 针对参考信号的符号进行;终端测量结束后,确定窄波束最佳发射-接收波束对;这里波束的概念是一个逻辑波束,可以是多个发射链合成的波束;
(8)基站收集终端的测量结果,把最佳发射-接收波束对中发射-接收波束对中相同最佳发射波束的终端归为一类,在相同发射波束、相同子帧上进行调度;PDCCH在控制域调度在同一个符号上;对不同发射-接收波束对,在控制域符号上错开调度;
(9)基站针对特定UE发送PDCCH-SPECIFIC信息,包括业务调度的符号位置、传送业务的窄波束ID(Identifier)、上行PUCCH(Physical Uplink Control Channel)功率控制信息等;
(10)终端在窄波束上监测PDCCH-SPECIFIC信息,获取业务在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)上调度的符号位置及上行功控等信息,解调相应的PDSCH信息。
上述资源分配方法包括以下特点:
1)基站业务调度时对最佳发射-接收波束对中相同最佳发射波束的UE按波束进行调度,即PDCCH在控制域调度在同一个OFDM符号上;业务数据在PDSCH区域也调度在相同或相邻的OFDM符号上。
2)基站业务调度时对最佳发射-接收波束对中不同最佳发射波束的UE,PDCCH在控制域调度在不同符号上;业务数据在PDSCH区域也调度在不同的符号上。
3)对携带PDCCH-COMMON信息的波束以宽波束发送,对携带PDCCH-SPECIFIC信息的波束以窄波束发送。
4)对携带PDSCH信息的波束以窄波束发送,携带PDCCH-SPECIFIC和PDSCH的波束采用相同的波束对,以节省波束训练的开销。
5)基站传送业务(PDSCH信道)的窄波束ID,通过PDCCH-SPECIFIC消息通知UE;在PDCCH-SPECIFIC消息中包含通知UE的业务窄波束ID及业务的PDSCH信道OFDM符号位置。
6)终端资源分配单位不再是RB(Resource Block,资源块)级,而是符号级;时域上一个符号的频率资源作为资源分配的基本粒度全部分配给一个 UE。
上述方法中,在相同发射波束上的UE分配的PDCCH资源在控制区域同一个符号上;不同发射波束上的UE分配的PDCCH资源在控制区域不同符号上。这样处于不同发射波束UE的PDCCH-SPECIFIC之间实现时分复用,降低控制波束之间相互的干扰。这样带来的好处是针对特定UE(同一个波束)的PDCCH-SPECIFIC窄波束独占一个OFDM符号,由于能量集中波束覆盖范围较大。业务调度时,处于同一波束上的UE一起调度,降低了波束间切换带来的额外开销。资源分配时,以一个符号上的频率资源作为调度的基本粒度,有利于通过波束扫描实现不同波束UE之间的切换调度。
如图1所示,本发明实施例提供了一种资源分配方法,应用于基站,该方法包括:
S101,为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
S102,根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
S103,在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
其中,最佳发射波束是指基站侧的发射波束,最佳接收波束是指终端侧的接收波束;
可选地,在为用户终端划分调度组之前,还包括:
以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
可选地,在以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息之前,还包括:
周期性发送同步消息和广播消息;
其中,所述同步消息中包括主同步信号PSS和辅同步信号SSS;所述广播消息中包括管理信息库MIB信息;所述MIB信息中主要包括下行系统带宽、发送天线端口数、系统帧号等系统参数;
其中,所述PDCCH公共控制信息PDCCH-COMMON信息中包含以下信息的至少一种:SIBs资源块分配信息、传输块大小索引;所述SIBs资源块分配信息包含SIB1-SIB13在PDSCH中的资源位置;
可选地,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息,包括:
接收用户终端发送的随机接入请求,所述随机接入请求中携带用户终端反馈的最佳发射-接收宽波束对信息;
向用户终端发送波束精细化训练请求,所述波束精细化训练请求携带以下信息的至少一种:测量对象、测量量、测量周期;
接收用户终端发送的波束精细化训练响应消息,所述波束精细化训练响应消息中携带最佳发射-接收窄波束对信息;
可选地,根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源,包括:
同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上;
其中,所述用户终端对应的PDSCH资源的信息包括以下信息的至少一种:用户终端对应的PDSCH资源所在的符号位置、PDSCH的窄波束信息和PUCCH(Physical Uplink Control Channel,物理上行控制信道)功率控制信息;
其中,所述用户终端对应的PDSCH资源所在的符号位置通过起始符号、符号长度(SymbStart,SymbLength)来表示;其中,PDSCH的窄波束信息包括发射窄波束和接收窄波束的信息;
可选地,所述根据用户终端所在的调度组为用户终端分配物理下行共享 信道PDSCH资源,包括:
同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上;
可选地,所述根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源,包括:
以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和PDSCH时频资源的分配;
如图2所示,本发明实施例提供了一种资源分配方法,应用于终端,该方法包括:
S201,在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控制信息,其中携带物理下行共享信道PDSCH资源的信息;
S202,在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源;
可选地,在接收基站发送的PDCCH专用控制信息之前,还包括:
接收基站以宽波束发送的物理下行控制信道PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息;
其中,所述PDCCH公共控制信息,包括以下信息的至少一种:所述PDCCH公共控制信息PDCCH-COMMON信息中包含以下信息的至少一种:SIBs资源块分配信息、传输块大小索引;所述SIBs资源块分配信息包含SIB1-SIB13在PDSCH中的资源位置;
其中,所述PDSCH资源的信息包括以下信息的至少一种:用户终端对应的PDSCH资源所在的符号位置、PDSCH的窄波束信息和 PUCCH(Physical Uplink Control Channel,物理上行控制信道)功率控制信息;
如图3所示,本发明实施例提供了一种资源分配装置,应用于基站,包括:
分组模块,设置为为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
资源分配模块,设置为根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
信息发送模块,设置为在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
可选地,所述装置还包括:
波束训练模块,设置为以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
可选地,资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源:
同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行共享信道PDSCH资源:
同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
可选地,资源分配模块,设置为采用以下方式根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源:
以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和PDSCH时频资源的分配。
如图4所示,本发明实施例提供了一种资源分配装置,应用于用户终端,包括:
信息接收模块,设置为在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控制信息,其中携带物理下行共享信道PDSCH资源的信息;
业务模块,设置为在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源。
可选地,所述装置还包括:
波束训练模块,设置为接收基站以宽波束发送的物理下行控制信道PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息。
如图5所示,本发明实施例提供了一种上行高频子帧,包括:上行参考信号和同步信号区域、上行控制信号区域、上行数据传输区域和上行控制信号反馈区域。
其中,所述上行参考信号和同步信号区域包括上行探测参考信号(SRS)和前导码(Preamble);所述上行控制信号区域包括上行控制信道;上行数据传输区域包括上行数据信道;上行控制信号反馈区域包括保护间隔(GP,Guard Period)和下行控制信道,下行控制信道主要传输ACK/NACK反馈信息。
如图6所示,本发明实施例提供了一种下行高频子帧,包括:下行参考信号和同步信号区域、下行控制信号区域、下行数据传输区域和下行控制信号反馈区域。
其中,所述下行参考信号和同步信号区域包括参考信号(RS)、主同步信号(PSS)和辅同步信号(SSS);所述下行控制信号区域包括下行控制信道和DM-RS;所述下行数据传输区域包括下行数据信道;所述下行控制信号反馈区域包括GP和上行控制信道,上行控制信道主要传输ACK/NACK反馈信息。
如图7所示,一种N×M的混合波束赋形架构中,有N个收发器,每个收发器连接到M个天线。ABF(Analog Beamforming,模拟波束赋形)是对每个收发器的M个天线进行操作,可以针对每个天线的相位进行调整。DBF(Digital Beamforming,数字波束赋形)是对N个收发器进行操作,可以针对不同的频点进行不同的相位操作。DAC(Digital Analog Converter)是数字-模拟转换器,PA(Power Amplifier,功率放大器)是针对每个天线的功率放大器。Antenna 0,Antenna 1,…,Antenna(M-1)分别代表一个收发器的不同天线。一个收发链配置为一个端口,或两个收发链配置为一个端口,具体决定于实现。
如图8所示,一种高频子帧结构,包括如下部分:上行子帧包括上行SRS(Sounding Reference Symbol,探测参考信号)/Preamble、上行控制、上行数据信道、GP(Guard Period)和下行控制,下行控制主要传输ACK/NACK反馈信息。
下行子帧包括RS/PSS/SSS(Reference Signal/Primary Synchronization Signal/Second Synchronization Signal)、下行控制、DM-RS、下行数据信道、GP和上行控制,上行控制主要传输ACK/NACK反馈信息。
1个无线帧包含10个无线子帧,每个子帧包含2个时隙,每个时隙包 含7-30个OFDM符号。每个子帧长度100~250微妙。
如图9所示,UE在波束中的位置,包括两种情况:第一种情况,每个波束中只有一个UE,比如,UE1位置处于波束Beam1中,UE2位置处于波束Beam2中,如图9中(a)所示。第二种情况,每个波束中可以有多个UE,UE1和UE2位置处于波束Beam1中,UE3位置处于波束Beam2中,如图9中(b)所示。
如图10所示,PDCCH时频资源分配包括两种情况:第一种情况,每个波束中只有一个UE,每个UE的PDCCH资源分配在下行控制区域的不同OFDM符号上,具体如图10中(a)所示。第二种情况,一个波束中有多个UE,则处于同一个波束中的不同UE的PDCCH资源分配在下行控制区域的相同OFDM符号上,不同波束的UE的PDCCH资源分配在下行控制区域的不同OFDM符号上,具体如图10中(b)所示。考虑到高频子帧结构的长度较短,通常为100~250微妙,每个子帧中同时调度的UE数较少(1-6个),一个子帧中同时调度1-3个波束中的UE可以满足大多数热点场景的需求。
在图10中,一个PDCCH-COMMON所占的CCEs(Control Channel Element,控制信道单元)资源为8,即公共搜索空间的聚合度为8,共分配PDCCH-COMMON#0和PDCCH-COMMON#1两组资源。UE的PDCCH-SPECIFIC所占的CCEs资源为1、2、4、8,即私有搜索空间的聚合度为1、2、4、8,一个符号上可以分配多个UE。UE公共搜索空间中保存系统信息相关的资源块分配信息、传输块大小索引等;UE私有搜索空间中保存业务分配相关的资源块分配信息、传送业务的窄波束ID(Identifier)、传输块大小索引、HARQ进程数、PUCCH(Physical Uplink Control CHannel,物理上行链路控制信道)功控命令等信息。UE通过盲检获取公共搜索空间、私有搜索空间中具体信息。
如图11所示,PDSCH(Physical Downlink Shared Channel,物理下行共 享信道)时频资源分配时,每个UE分配下行数据信道的几个OFDM符号,图10中,UE1分配连续2个OFDM符号、UE2分配连续3个OFDM符号。OFDM符号分配的主要特征是1个OFDM符号仅分配给1个UE。
如图12所示,考虑每个业务波束中有1个UE、共有2个波束的情况,资源分配方法包括以下步骤:
步骤S1200:基站周期性发送同步、广播消息;同步信号中包括主同步信息PSS、辅同步信号SSS,广播消息中包括MIB信息;MIB信息中主要包括下行系统带宽、发送天线端口数、系统帧号等系统参数;基站以宽波束形式发送该消息;
步骤S1201:UE1通过解PSS、SSS获取基站具体的物理小区号,并进行下行同步;UE1通过对PBCH(Physical Broadcast Channel,Physical Broadcast Channel,物理广播信道)的解调获取MIB中的系统参数;
步骤S1202:UE2通过解PSS、SSS获取基站具体的物理小区号,并进行下行同步;UE2通过对PBCH(Physical Broadcast Channel)的解调获取MIB中的系统参数;
步骤S1203:基站发送PDCCH公共消息,PDCCH-COMMON信息中包含SIBs资源块分配信息、传输块大小索引;SIBs资源块分配信息包含了SIB1-SIB13在PDSCH中资源的位置;基站以宽波束形式发送该消息;
步骤S1204:UE1通过盲检PDCCH-COMMON中的信息,获取SIBs在PDSCH中的资源位置并解调相应信息,根据SIBs中包含的信元信息进行小区选择与重选;
步骤S1205:UE1循环扫描接收波束的方向,通过对同步信号能量的测量或对下行导频信号信干噪比SINR的测量,获取宽波束最佳发射-接收波束对1(基站发射-UE接收);
步骤S1206:UE2通过盲检PDCCH-COMMON中的信息,获取SIBs在PDSCH中的资源位置并解调相应信息,根据SIBs中包含的信元信息进行小区选择与重选;
步骤S1207:UE2循环扫描接收波束的方向,通过对同步信号能量的测量或对下行导频信号信干噪比SINR的测量,获取宽波束最佳发射-接收波束对2(基站发射-UE接收);
步骤S1208:UE1发起随机接入请求,把宽波束的最佳发射-接收波束对1信息通知基站;
步骤S1209:UE2发起随机接入请求,把宽波束的最佳发射-接收波束对2信息通知基站;
步骤S1210:基站在随后发起的随机接入响应消息中,把波束的精细化训练请求通知UE1;波束的精细化训练请求信元中包括具体的测量对象、测量量、测量周期等信息;
步骤S1211:基站在随后发起的随机接入响应消息中,把波束的精细化训练请求通知UE2;波束的精细化训练请求信元中包括具体的测量对象、测量量、测量周期等信息;
步骤S1212:UE1进行窄波束的训练:通过循环扫描接收波束的方向,测量基站不同发射波束的能量或信干噪比SINR,选取能力最大或信干噪比最好的发射-接收波束对,作为窄波束最佳发射-接收波束对3;
步骤S1213:UE2进行窄波束的训练:通过循环扫描接收波束的方向,测量基站不同发射波束的能量或信干噪比SINR,选取能力最大或信干噪比最好的发射-接收波束对,作为窄波束最佳发射-接收波束对4;
步骤S1214:UE1通过波束的精细化训练响应消息,把窄波束最佳发射-接收波束对3通知基站;
步骤S1215:UE2通过波束的精细化训练响应消息,把窄波束最佳发射-接收波束对4通知基站;
步骤S1216:基站根据不同UE窄波束训练的结果,把上报相同最佳发射-接收波束对的UE调度在同一个子帧上,且PDCCH资源分配在控制信道区域相同的符号上;把上报不同最佳发射-接收波束对的UE,PDCCH资源分配在控制信道区域不同的符号上或调度在不同的子帧上;
步骤S1217:基站在PDCCH中为每个UE指示PDSCH区域分配的资源 位置;资源位置通过起始符号、符号长度(SymbStart,SymbLength)来表示;
步骤S1218:基站在UE1反馈的最佳发射-接收波束对发射方向上,通知UE1PDCCH-SPECIFIC消息,消息中包含UE1在PDSCH区域的资源分配信息、携带业务的窄波束发射-接收窄波束对3;基站以窄波束方式发送这一消息;
步骤S1219:基站在UE2反馈的最佳发射-接收波束对发射方向上,通知UE2PDCCH-SPECIFIC消息,消息中包含UE2在PDSCH区域的资源分配信息、携带业务的窄波束发射-接收窄波束对4;基站以窄波束方式发送这一消息;
步骤S1220:UE1在最佳发射-接收窄波束对3对应的接收波束方向上,解调PDSCH资源;
步骤S1221:UE2在最佳发射-接收窄波束对4对应的接收波束方向上,解调PDSCH资源。
以上实施例仅用2个波束作说明,UE和波束的组合情况,可以推广到2个以上波束的任意场景。
如图13所示,考虑一个波束中有2个UE的情况,资源分配方法包括以下步骤:
步骤S1300:基站周期性发送同步、广播消息;同步信号中包括主同步信息PSS、辅同步信号SSS,广播消息中包括MIB信息;MIB信息中主要包括下行系统带宽、发送天线端口数、系统帧号等系统参数;基站以宽波束形式发送该消息;
步骤S1301:UE1通过解PSS、SSS获取基站具体的物理小区号,并进行下行同步;UE1通过对PBCH(Physical Broadcast Channel)的解调获取MIB中的系统参数;
步骤S1302:UE2通过解PSS、SSS获取基站具体的物理小区号,并进行下行同步;UE2通过对PBCH(Physical Broadcast Channel)的解调获取MIB 中的系统参数;
步骤S1303:基站发送PDCCH公共消息,PDCCH-COMMON信息中包含SIBs资源块分配信息、传输块大小索引;SIBs资源块分配信息包含了SIB1-SIB13在PDSCH中资源的位置;基站以宽波束形式发送该消息;
步骤S1304:UE1通过盲检PDCCH-COMMON中的信息,获取SIBs在PDSCH中的资源位置并解调相应信息,根据SIBs中包含的信元信息进行小区选择与重选;
步骤S1305:UE1循环扫描接收波束的方向,通过对同步信号能量的测量或对下行导频信号信干噪比SINR的测量,获取宽波束最佳发射-接收波束对1(基站发射-UE接收);
步骤S1306:UE2通过盲检PDCCH-COMMON中的信息,获取SIBs在PDSCH中的资源位置并解调相应信息,根据SIBs中包含的信元信息进行小区选择与重选;
步骤S1307:UE2循环扫描接收波束的方向,通过对同步信号能量的测量或对下行导频信号信干噪比SINR的测量,获取宽波束最佳发射-接收波束对1(基站发射-UE接收);
步骤S1308:UE1发起随机接入请求,把宽波束的最佳发射-接收波束对1信息通知基站;
步骤S1309:UE2发起随机接入请求,把宽波束的最佳发射-接收波束对1信息通知基站;
步骤S1310:基站在随后发起的随机接入响应消息中,把波束的精细化训练请求通知UE1;波束的精细化训练请求信元中包括具体的测量对象、测量量、测量周期等信息;
步骤S1311:基站在随后发起的随机接入响应消息中,把波束的精细化训练请求通知UE2;波束的精细化训练请求信元中包括具体的测量对象、测量量、测量周期等信息;
步骤S1312:UE1进行窄波束的训练:通过循环扫描接收波束的方向,测量基站不同发射波束的能量或信干噪比SINR,选取能力最大或信干噪比 最好的发射-接收波束对,作为窄波束最佳发射-接收波束对2;
步骤S1313:UE2进行窄波束的训练:通过循环扫描接收波束的方向,测量基站不同发射波束的能量或信干噪比SINR,选取能力最大或信干噪比最好的发射-接收波束对,作为窄波束最佳发射-接收波束对2;
步骤S1314:UE1通过波束的精细化训练响应消息,把窄波束最佳发射-接收波束对2通知基站;
步骤S1315:UE2通过波束的精细化训练响应消息,把窄波束最佳发射-接收波束对2通知基站;
步骤S1316:基站根据不同UE窄波束训练的结果,把上报相同最佳发射-接收波束对的UE调度在同一个子帧上,且PDCCH资源分配在控制信道区域相同的符号上;
步骤S1317:基站在PDCCH中为每个UE指示PDSCH区域分配的资源位置;资源位置通过起始符号、符号长度(SymbStart,SymbLength)来表示;
步骤S1318:基站在UE1、UE2反馈的最佳发射-接收波束对2的发射方向上,通知UE1和UE2PDCCH-SPECIFIC消息,消息中包含UE1和UE2在PDSCH区域的资源分配信息、业务的窄波束最佳发射-接收波束对2;基站以窄波束方式发送这一消息;
步骤S1319:UE1在最佳发射-接收窄波束对2对应的接收波束方向上,解调PDSCH资源;
步骤S1320:UE2在最佳发射-接收窄波束对2对应的接收波束方向上,解调PDSCH资源。
以上实施例仅用每个波束中2个UE作说明,UE和波束的组合情况,很容易推广到每个波束中包含2个以上UE、2个以上波束的任意场景。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
上述实施例提供的一种资源分配方法和装置,基站侧以宽波束的方式发送同步广播信息、PDCCH公共信息,UE侧进行宽波束训练获取最佳宽波束发射-接收波束对。随后,基站侧发起窄波束精细化训练请求,UE侧进行窄波束训练获取最佳窄波束发射-接收波束对。基站根据窄波束训练的结果进行PDCCH、PDSCH的资源分配,相同最佳发射波束上的UE PDCCH资源分配在控制区域同一个符号上,不同最佳发射波束上的UE PDCCH资源分配在控制区域不同符号上,下行共享信道PDSCH的资源分配以一个符号上的频率资源作为基本粒度,有利于实现以波束方式工作的资源灵活调度。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
需要说明的是,本申请还可有其他多种实施例,在不背离本申请精神及其实质的情况下,熟悉本领域的技术人员可根据本申请作出各种相应的改变和变形,但这些相应的改变和变形都应属于本申请所附的权利要求的保护范围。
工业实用性
本发明实施例提供的技术方案,将基站发送的同一业务波束上的UE PDCCH资源分配在控制区域同一个符号上,不同业务波束上的UE PDCCH 资源分配在控制区域不同符号上,达到以窄波束的方式发送的目的,由于以窄波束的方式发送,发送的能量相对集中,波束的覆盖范围较大,业务调度时,处于基站同一发射波束上的UE一起调度,降低了基站侧波束间切换带来的额外开销,不同业务波束UE的PDCCH-SPECIFIC之间实现时分复用。资源分配时,以一个符号上的频率资源作为调度的基本粒度,有利于实现以波束方式工作的资源灵活调度。

Claims (14)

  1. 一种资源分配方法,应用于基站,该方法包括:
    为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
    根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
    在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
  2. 如权利要求1所述的方法,其中:
    根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源,包括:
    同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
    不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
  3. 如权利要求1所述的方法,其中:
    所述根据用户终端所在的调度组为用户终端分配物理下行共享信道PDSCH资源,包括:
    同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
    不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
  4. 如权利要求1或2或3所述的方法,其中:
    所述根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源,包括:
    以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和 PDSCH时频资源的分配。
  5. 如权利要求1所述的方法,在为用户终端划分调度组之前,所述方法还包括:
    以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
  6. 一种资源分配方法,应用于用户终端,该方法包括:
    在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控制信息,其中携带物理下行共享信道PDSCH资源的信息;
    在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源。
  7. 如权利要求6所述的方法,在接收基站发送的PDCCH专用控制信息之前,所述方法还包括:
    接收基站以宽波束发送的物理下行控制信道PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;
    根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息。
  8. 一种资源分配装置,应用于基站,包括:
    分组模块,设置为为用户终端划分调度组,同一调度组内的用户终端在波束训练时反馈的最佳发射-接收窄波束对中具有相同的最佳发射波束;
    资源分配模块,设置为根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH资源;
    信息发送模块,设置为在最佳发射-接收窄波束对的最佳发射波束的方向上向用户终端发送PDCCH专用控制信息,其中携带所述用户终端对应的PDSCH资源的信息。
  9. 如权利要求8所述的装置,其中:
    资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行控制信道PDCCH时频资源:
    同一调度组内的用户终端对应的PDCCH时频资源位于同一子帧内的相同符号位置上;
    不同调度组内的用户终端对应的PDCCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
  10. 如权利要求8所述的装置,其中:
    资源分配模块,设置为采用以下方式根据用户终端所在的调度组为用户终端分配物理下行共享信道PDSCH资源:
    同一调度组内的用户终端对应的PDSCH资源在同一子帧的相同或相邻符号位置上;
    不同调度组内的用户终端对应的PDSCH时频资源位于不同子帧上或同一子帧内的不同符号位置上。
  11. 如权利要求8或9或10所述的装置,其中:
    资源分配模块,设置为采用以下方式根据调度组为用户终端分配物理下行控制信道PDCCH时频资源和物理下行共享信道PDSCH时频资源:
    以时域上一个符号的频率资源作为资源分配的基本粒度进行PDCCH和PDSCH时频资源的分配。
  12. 如权利要求8所述的装置,所述装置还包括:
    波束训练模块,设置为以宽波束向用户终端发送物理下行控制信道PDCCH公共控制信息,采用窄波束对用户终端进行波束精细化训练,接收用户终端反馈的最佳发射-接收窄波束对信息。
  13. 一种资源分配装置,应用于用户终端,包括:
    信息接收模块,设置为在波束训练阶段确定的最佳发射-接收窄波束对的最佳接收波束的方向上接收基站发送的物理下行控制信道PDCCH专用控 制信息,其中携带物理下行共享信道PDSCH资源的信息;
    业务模块,设置为在所述最佳发射-接收窄波束对的最佳接收波束的方向上解调PDSCH资源。
  14. 如权利要求13所述的装置,所述装置还包括:
    波束训练模块,设置为接收基站以宽波束发送的物理下行控制信道PDCCH公共控制信息,向基站反馈最佳发射-接收宽波束对信息;根据基站发送的窄波束进行波束精细化训练,向基站反馈最佳发射-接收窄波束对信息。
PCT/CN2016/103768 2016-01-07 2016-10-28 一种资源分配方法和装置 WO2017118178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610007971.8A CN106954260B (zh) 2016-01-07 2016-01-07 一种资源分配方法和装置
CN201610007971.8 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017118178A1 true WO2017118178A1 (zh) 2017-07-13

Family

ID=59273179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103768 WO2017118178A1 (zh) 2016-01-07 2016-10-28 一种资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN106954260B (zh)
WO (1) WO2017118178A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600844A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 确定时频资源的方法及装置
CN111132245A (zh) * 2018-10-31 2020-05-08 中兴通讯股份有限公司 网络切换方法及装置、系统、终端、存储介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102338507B1 (ko) * 2017-08-04 2021-12-13 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 송수신하는 방법 및 장치
WO2019030874A1 (ja) * 2017-08-09 2019-02-14 株式会社Nttドコモ ユーザ装置
CN109391435B (zh) * 2017-08-11 2021-05-25 电信科学技术研究院有限公司 Pucch传输方法、用户设备和装置
CN109391949B (zh) * 2017-08-11 2021-11-02 大唐移动通信设备有限公司 Pucch传输方法、用户设备和装置
EP3687236B1 (en) 2017-09-21 2022-01-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and device
CN110299935B (zh) * 2018-03-21 2022-11-08 中兴通讯股份有限公司 一种通信方法、基站、终端、存储介质、电子装置
CN108449798B (zh) * 2018-03-27 2020-09-11 北京邮电大学 用户终端、基站及其用户终端的调度方法和装置
US11166265B2 (en) * 2018-04-06 2021-11-02 Qualcomm Incorporated Downlink control channel beam sweeping
ES2971801T3 (es) * 2018-05-11 2024-06-07 Nokia Technologies Oy Aparatos y métodos para la priorización entre la recepción del bloque de canal compartido de enlace descendente físico y señal de sincronización
CN110620642B (zh) * 2018-06-20 2021-02-09 上海华为技术有限公司 分配时频资源的方法和装置
WO2020065894A1 (ja) * 2018-09-27 2020-04-02 三菱電機株式会社 基地局、端末装置および測位方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873609A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继系统中的数据发送方法和装置
WO2013157789A1 (en) * 2012-04-16 2013-10-24 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
WO2014014291A1 (en) * 2012-07-20 2014-01-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in wireless communication system
CN104412638A (zh) * 2013-08-20 2015-03-11 华为技术有限公司 通信方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110194511A1 (en) * 2010-02-10 2011-08-11 Qualcomm Incorporated Multi-user control channel assignment
US20130286960A1 (en) * 2012-04-30 2013-10-31 Samsung Electronics Co., Ltd Apparatus and method for control channel beam management in a wireless system with a large number of antennas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873609A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种中继系统中的数据发送方法和装置
WO2013157789A1 (en) * 2012-04-16 2013-10-24 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
WO2014014291A1 (en) * 2012-07-20 2014-01-23 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving control information in wireless communication system
CN104412638A (zh) * 2013-08-20 2015-03-11 华为技术有限公司 通信方法及装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600844A (zh) * 2017-09-30 2019-04-09 中兴通讯股份有限公司 确定时频资源的方法及装置
CN109600844B (zh) * 2017-09-30 2021-08-24 中兴通讯股份有限公司 确定时频资源的方法及装置
US11212038B2 (en) 2017-09-30 2021-12-28 Zte Corporation Method and device for determining time frequency resources
US11646821B2 (en) 2017-09-30 2023-05-09 Zte Corporation Method and device for determining time frequency resources
US12021623B2 (en) 2017-09-30 2024-06-25 Zte Corporation Method and device for determining time frequency resources
CN111132245A (zh) * 2018-10-31 2020-05-08 中兴通讯股份有限公司 网络切换方法及装置、系统、终端、存储介质
CN111132245B (zh) * 2018-10-31 2022-04-22 中兴通讯股份有限公司 网络切换方法及装置、系统、终端、存储介质

Also Published As

Publication number Publication date
CN106954260A (zh) 2017-07-14
CN106954260B (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
WO2017118178A1 (zh) 一种资源分配方法和装置
US11122632B2 (en) Method for adjusting size of contention window in wireless communication system, and communication device using method
US11303349B2 (en) Resource use method of node in wireless communication system and device using same
CN111066360B (zh) 先进无线电系统的重映射和速率匹配的方法和设备
US20210243762A1 (en) Nr v2x resource pool design
US11063703B2 (en) Method and apparatus for supporting mixed numerologies for URLLC usage scenarios in wireless communication system
CN107925499B (zh) 用于在无线通信系统中为窄带ue指示中心频率偏移的方法和设备
US11089579B2 (en) Method and apparatus for supporting multiple services in advanced MIMO communication systems
US11197282B2 (en) Method and apparatus for sidelink communications in communication system
US20190394804A1 (en) Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
CN107210810B (zh) 使用统一的灵活5g空中接口的设备、系统和方法
CN109863795B (zh) 用于在第5代网络中的同步、调度、带宽分配和参考信号传输的技术和装置
EP3032862B1 (en) Information sending and receiving method and device
US20180092067A1 (en) System and Method for D2D Communication
US20200068610A1 (en) Resource scheduling method, network device, and communications device
US11184915B2 (en) Sidelink communication method, terminal and network equipment
WO2015098340A1 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
US12075390B2 (en) Transmission resource determining method and apparatus
CN103959826A (zh) 信号传输和接收的方法和系统以及相关的发送方法
US9900887B2 (en) Communication control device and method for communicating subframe information with a terminal device
WO2013151158A1 (ja) 通信システム、ローカルエリア基地局装置、移動端末装置、及び通信方法
US10952168B2 (en) Method for transmitting downlink control signal and apparatus
WO2016191994A1 (zh) 一种通信的方法、基站及用户设备
KR20120120109A (ko) 무선 통신 시스템에서 그룹 통신을 위한 제어 정보 송수신 방법
KR20140106365A (ko) 캐리어 병합을 수행하는 방법 및 그 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883306

Country of ref document: EP

Kind code of ref document: A1