WO2015098340A1 - ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 - Google Patents

ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 Download PDF

Info

Publication number
WO2015098340A1
WO2015098340A1 PCT/JP2014/080073 JP2014080073W WO2015098340A1 WO 2015098340 A1 WO2015098340 A1 WO 2015098340A1 JP 2014080073 W JP2014080073 W JP 2014080073W WO 2015098340 A1 WO2015098340 A1 WO 2015098340A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
base station
signal transmission
terminals
user terminal
Prior art date
Application number
PCT/JP2014/080073
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
一樹 武田
和晃 武田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP14874819.7A priority Critical patent/EP3089531B1/en
Priority to CN201911021515.9A priority patent/CN110740518B/zh
Priority to US15/107,162 priority patent/US10631294B2/en
Priority to PL14874819.7T priority patent/PL3089531T3/pl
Priority to CN201480070546.2A priority patent/CN105900508A/zh
Publication of WO2015098340A1 publication Critical patent/WO2015098340A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a user terminal, a radio base station, a radio communication system, and a radio communication method in a next generation mobile communication system.
  • Non-Patent Document 1 In LTE (Long Term Evolution) and LTE successor systems (for example, LTE Advanced, FRA (Future Radio Access), 4G, etc.), D2D (Device to Device) allows terminals to communicate directly without going through a radio base station. ) Technology has been studied (for example, Non-Patent Document 1).
  • D2D terminal When considering communication and discovery technology (D2D communication / discovery) between terminals, a terminal (D2D terminal) that performs D2D operation (direct signal transmission / reception between terminals including D2D communication and D2D discovery) exists in the network coverage. It is one of the important preconditions.
  • the present invention has been made in view of such a point, and when performing D2D signal transmission / reception in a network including a plurality of frequencies, even if a frequency carrier having no area coverage is used as a resource for D2D signal transmission / reception, It is an object of the present invention to provide a user terminal, a radio base station, a radio communication system, and a radio communication method that can suppress an increase in power consumption of a D2D terminal.
  • a user terminal is a user terminal capable of performing direct signal transmission / reception between terminals, and includes at least the resource information for direct signal transmission / reception between terminals transmitted from a connected or located radio base station The terminal in a second frequency carrier different from the first frequency carrier in which the inter-terminal direct signal transmission / reception resource information is transmitted based on the receiving unit for receiving information and the inter-terminal direct signal transmission / reception resource information And a control unit that controls to perform direct signal transmission / reception.
  • the present invention when performing D2D signal transmission / reception in a network including a plurality of frequencies, even if a frequency carrier having no area coverage is used as a resource for D2D signal transmission / reception, it is efficient based on control from the network. D2D signal transmission / reception can be performed, and an increase in power consumption of the D2D terminal can be suppressed.
  • FIG. 1A is a diagram illustrating an example in which a D2D terminal exists in the network coverage
  • FIGS. 1B and 1C are diagrams illustrating an example in which the D2D terminal exists outside the network coverage. It is a figure explaining that a coverage differs for every frequency carrier. It is a figure explaining performing control of D2D signal transmission / reception with the cellular frequency carrier different from the frequency carrier which a D2D terminal uses as a D2D resource. In a 1st aspect, it is a figure explaining allocation of the resource for D2D signal transmission / reception in case a network has a some frequency carrier.
  • a 1st aspect it is a figure explaining the case where the some carrier frequency for D2D is included in the system information which a cellular base station transmits.
  • a 2nd aspect it is a figure explaining D2D signal transmission / reception between operators.
  • a 2nd aspect it is a figure explaining the resource structure for D2D signal transmission / reception.
  • a periodic uplink resource group is assigned to a D2D terminal as a D2D signal transmission / reception resource semi-statically.
  • Each D2D terminal transmits a signal using a part of D2D signal transmission / reception resources.
  • the D2D terminal finds another D2D terminal or performs communication by receiving the signal transmitted from the other D2D terminal from the resources for transmitting and receiving D2D signals.
  • FIG. 1A is a diagram for explaining an example in which a D2D terminal exists in network coverage.
  • the radio base station controls resources used by the D2D terminal in the coverage.
  • the D2D terminal performs signal transmission / reception operation and the like according to network control.
  • FIG. 1B and 1C are diagrams illustrating an example in which a D2D terminal exists outside the network coverage.
  • a D2D terminal exists outside the network coverage
  • a certain D2D terminal becomes a cluster head and controls other D2D terminals.
  • Other D2D terminals perform signal transmission / reception operations and the like according to the control of the cluster head.
  • a signal transmission / reception operation or the like is performed by individually controlling between D2D terminals.
  • the use case and operation of D2D communication differ depending on whether the D2D terminal exists in the network coverage or not.
  • the D2D terminal exists in the network coverage, for example, the use of a commercial use case, that is, the SNS (Social Networking Service) by the direct communication function (Proximity-based service) or the advertisement distribution is used for D2D. Signal transmission / reception is used.
  • the network controls resources used by the D2D terminal.
  • D2D signal transmission / reception is used as a public safety application, that is, an emergency communication in a disaster.
  • autonomous operation of the D2D terminal or control between terminals is required.
  • LTE and LTE advanced networks are assumed to have a configuration including not only a single frequency but also a plurality of frequencies in order to increase network capacity.
  • a macro cell may use a carrier with a relatively low frequency band such as 2 [GHz]
  • a small cell may use a carrier with a relatively high frequency band such as 3.5 [GHz].
  • the coverage differs for each frequency carrier.
  • the macro cell realizes wide coverage by using a low frequency band carrier.
  • Rel. 8 to Rel. 11 existing terminals and Rel.
  • a macro cell is operated at a frequency at which 12 terminals can be connected. Small cells are placed locally to cover high traffic areas.
  • the macro base station forming the macro cell and the small base station forming the small cell are connected via a backhaul link. Specifically, it is assumed that the macro base station cooperates with the small base station via the backhaul, and the macro base station assists the small base station, that is, the macro base station subordinates the small base station. The It is assumed that a plurality of small base stations are connected via a backhaul link.
  • the uplink resource of the macro cell frequency takes advantage of its wide coverage and backward compatibility. 8 to Rel. 11 existing terminals and Rel. It is assumed that it is used for 12 terminals and VoIP (Voice over Internet Protocol). Therefore, the uplink resource of the macro cell frequency has no margin and is not suitable for use as a resource for D2D signal transmission / reception.
  • a small cell using a new high frequency band is Rel. 8 to Rel. It is assumed that uplink resources have a relatively large margin, such as existing terminals up to 11 are not connected. Therefore, it is preferable to use a small cell frequency as a resource for transmitting and receiving D2D signals.
  • a small cell does not have a planar coverage. Therefore, as shown in FIG. 2, it is assumed that many D2D terminals existing in the macro cell coverage exist outside the small cell coverage. In this case, if a small cell frequency is used as a resource for transmitting and receiving D2D signals, an operation is performed when many D2D terminals exist outside the coverage. Specifically, the D2D terminal performs resource control of other D2D terminals using the own terminal as a cluster head. The D2D terminal that has become the cluster head has an inefficient operation such as an increase in power consumption.
  • the present inventors have found that D2D signal transmission / reception is controlled by a cellular frequency carrier different from the frequency carrier used by the D2D terminal as a resource for D2D signal transmission / reception. Thereby, the cluster head operation of the D2D terminal in the network coverage becomes unnecessary, and the power consumption of the D2D terminal can be reduced.
  • the macro cell frequency for example, 2 [ GHz]
  • the macro cell controls resources used by the D2D terminal.
  • the frequency carrier and network used for D2D signal transmission / reception are used.
  • a mechanism is required to operate even if the frequency carrier to be controlled is different. Therefore, the present invention is not limited to the case where the D2D terminal performs D2D signal transmission / reception using the small cell frequency as the D2D signal transmission / reception resource.
  • Resource scheduling will be described.
  • D2D signal transmission / reception resources As a D2D signal transmission / reception resource, a part of uplink resources of normal cellular communication is used. In order to avoid interference, the resources of the cellular communication signal and the D2D signal are time division multiplexed (TDM).
  • TDM time division multiplexed
  • a cellular base station such as a macro cell notifies the D2D signal transmission / reception resource allocation information to D2D terminals in the area using system information included and transmitted in a system information block type x (SIBx: System Information Block). To do.
  • the D2D signal transmission / reception resource allocation information includes the carrier frequency (carrierFreq-D2D) and time domain resource information of the D2D signal transmission / reception resource.
  • the cellular base station may notify the D2D signal transmission / reception resource allocation information to the D2D terminals in the area using higher layer signaling such as RRC (Radio Resource Control) signaling.
  • RRC Radio Resource Control
  • the time domain resource information includes the top frame number, the subframe offset value, the number of subframes, the D2D resource period, and the like.
  • the cellular base station uses the system information to notify all the D2D terminals in the area of the allocation information of the resource for D2D signal transmission / reception, so that all the terminals in the area including the idle terminal have the same time frequency resource as D2D. Recognized as a signal transmission / reception resource.
  • the terminal transmits / receives the D2D signal according to the allocation information of the resource for transmitting / receiving the D2D signal included in the system information of the connected or located cell.
  • D2D synchronization (D2D synchronization) after receiving system information from the cellular base station
  • D2D terminal that has received the system information performs synchronization for D2D signal transmission / reception.
  • the D2D terminal synchronizes D2D signal transmission / reception resources using PSS / SSS (Primary Synchronization Signal / Secondary Synchronization Signal) which is a synchronization signal of the macro cell as a synchronization source.
  • PSS / SSS Primary Synchronization Signal / Secondary Synchronization Signal
  • all D2D terminals in the macro cell coverage can use the same synchronization timing.
  • the D2D terminal detects the synchronization signal at the small cell frequency and synchronizes the resources for transmitting and receiving the D2D signal.
  • the D2D terminal uses the PSS / SSS transmitted by the small cell as a synchronization source and transmits and receives the D2D signal Synchronize Further, the D2D terminal transmits a D2D synchronization signal (PD2DSS: Physical D2D Syncronization Signal).
  • P2DSS Physical D2D Syncronization Signal
  • D2D signal transmission / reception resources are synchronized using a D2D synchronization signal (PD2DSS) transmitted by the D2D terminal as a synchronization source.
  • P2DSS D2D synchronization signal
  • the macro cell and the small cell are operated asynchronously, and the D2D terminal is outside the small cell coverage and is located far from the small cell, and the small cell transmits the PSS / SSS and the small cell coverage.
  • the D2D terminals synchronize the resources for D2D signal transmission / reception with the PSS / SSS transmitted by the macro cell as a synchronization source.
  • the D2D terminal that is in the small cell coverage or outside the small cell coverage but is in the vicinity of the small cell coverage uses the same timing synchronized with the downlink timing of the small cell to synchronize the resources for D2D signal transmission / reception. use.
  • interference with cellular uplink communication can be avoided by time division multiplexing.
  • a D2D terminal that is outside the small cell coverage and is far from the small cell coverage uses a unique timing such as a macro cell downlink timing for synchronization of D2D signal transmission / reception resources.
  • a unique timing such as a macro cell downlink timing for synchronization of D2D signal transmission / reception resources.
  • the interference with the cellular uplink communication at the small cell frequency is not a problem because the small cell and the D2D terminal are geographically separated.
  • a D2D terminal existing at a position far from such a small cell coverage cannot transmit / receive a D2D signal to / from a D2D terminal existing in or near the small cell coverage.
  • the D2D terminal that exists far from the small cell coverage is located in the small cell coverage or a position that is close to the D2D terminal that exists in the vicinity of the small cell coverage, the D2D terminal that is originally present in the small cell coverage Should be able to detect the D2D synchronization signal (PD2DSS) transmitted.
  • P2DSS D2D synchronization signal
  • D2D synchronization signal (PD2DSS) is geographically distant from other D2D terminals in the first place, and is not in an environment where D2D signals can be transmitted and received. It will be.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the cellular base station When a plurality of D2D carrier frequencies are included in system information transmitted by a cellular base station such as a macro cell, the cellular base station notifies D2D signal transmission / reception resources used for D2D transmission or reception (D2D transmission / reception). In addition, a D2D carrier is designated.
  • the system information transmitted by the cellular base station includes two carrier frequencies of D2D carriers # 1 and # 2.
  • the cellular base station when notifying the resource index #a used for D2D transmission or reception (D2D transmission / reception), the cellular base station also specifies the D2D carrier # 2 including the resource index #a.
  • the D2D carrier is notified using, for example, a CIF (Carrier Indicator Field) in carrier aggregation.
  • CIF Carrier Indicator Field
  • the D2D terminal within the network coverage is controlled.
  • the cluster head operation is unnecessary, and the power consumption of the D2D terminal can be reduced.
  • D2D signal transmission / reception should not be limited to operations within a single operator. If D2D signal transmission / reception between different operators is not supported, the use cases for D2D signal transmission / reception are very limited.
  • a different frequency is set as a D2D carrier for each operator, except when a frequency shared between operators is used as a D2D carrier (see FIG. 6B).
  • the D2D terminal receives not only the D2D signal transmission / reception on the operator's D2D carrier contracted by the terminal itself but also the D2D signal reception on the other operator's D2D carrier. Must be supported at least (see FIG. 6A).
  • the D2D terminal In order for the D2D terminal to receive the D2D signal on the other operator's D2D carrier, the D2D terminal needs to know the other operator's D2D carrier and D2D signal transmission / reception resource configuration.
  • the D2D terminal In an operation in which D2D signal transmission / reception resources are allocated in a completely asynchronous manner between operators, the D2D terminal must hold a plurality of synchronization sources and perform observations at a plurality of timings for transmission / reception of D2D signals between operators. This method is not practical from the viewpoint of power consumption and efficiency of the D2D terminal, such as a longer period during which the D2D terminal performs observation.
  • the D2D terminal recognizes the configuration of D2D signal transmission / reception resources of other operators as follows.
  • the D2D terminal scans the entire supported band and recognizes the D2D carrier and time domain resource information of each operator. For signal transmission in D2D signal transmission / reception, the D2D terminal uses D2D signal transmission / reception resources in the frequency carrier of the operator with whom the terminal is contracted. The D2D terminal also uses the D2D signal transmission / reception resources in the frequency carrier of the recognized other operator for signal reception in the D2D signal transmission / reception.
  • the D2D terminal is based on the premise that a plurality of frequency carriers for D2D cannot be observed at the same time, the resources for transmitting and receiving D2D signals need to be shifted in time between operators (see FIG. 7).
  • the position of the D2D signal transmission / reception resource is temporally shifted between the operator A D2D carrier and the operator B D2D carrier.
  • the D2D terminal does not observe the frequency carrier adopting the configuration in which the resource for D2D signal transmission / reception is set at a position apart from the resource for D2D signal transmission / reception of the operator contracted by the terminal at a certain time or more.
  • the D2D carrier of the operator with whom the terminal is contracted and the D2D carrier of another operator are assumed to be in asynchronous operation, resulting in a significant increase in power consumption.
  • FIG. 8 is a schematic configuration diagram showing an example of a radio communication system according to the present embodiment.
  • the radio communication system 1 is in a cell formed by a plurality of radio base stations 10 (11 and 12) and each radio base station 10, and is configured to be able to communicate with each radio base station 10.
  • Each of the radio base stations 10 is connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the radio base station 11 is composed of, for example, a macro base station having a relatively wide coverage, and forms a macro cell C1.
  • the radio base station 12 is configured by a small base station having local coverage, and forms a small cell C2.
  • the number of radio base stations 11 and 12 is not limited to the number shown in FIG.
  • the same frequency band may be used, or different frequency bands may be used.
  • the radio base stations 11 and 12 are connected to each other via an inter-base station interface (for example, optical fiber, X2 interface).
  • the user terminal 20 is a terminal that supports various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • the user terminal 20 can execute communication with other user terminals 20 via the radio base station 10. Further, the user terminal 20 can execute direct communication (D2D) with other user terminals 20 without going through the radio base station 10.
  • D2D direct communication
  • the upper station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel) shared by each user terminal 20, a downlink control channel (PDCCH: Physical Downlink Control Channel, EPDCCH: Enhanced Physical Downlink Control Channel). ), A broadcast channel (PBCH) or the like is used.
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PBCH broadcast channel
  • DCI Downlink control information
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel) shared by each user terminal 20, an uplink control channel (PUCCH: Physical Uplink Control Channel), or the like is used as an uplink channel.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • User data and higher layer control information are transmitted by PUSCH.
  • discovery signals for detecting each other are transmitted between the user terminals 20 in the uplink.
  • FIG. 9 is an overall configuration diagram of the radio base station 10 according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO (Multiple Input Multiple Output) transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and an interface unit. 106.
  • MIMO Multiple Input Multiple Output
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the interface unit 106.
  • PDCP Packet Date Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ Hybrid ARQ
  • IFFT Inverse Fast Fourier Transform
  • precoding processing is performed, and each transmission / reception section 103 Forwarded to
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to each transmitting / receiving unit 103.
  • Each transmission / reception unit 103 converts the downlink signal output from the baseband signal processing unit 104 by precoding for each antenna to a radio frequency band.
  • Each amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits it by each transmitting / receiving antenna 101.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • Each transmission / reception unit 103 notifies each user terminal 20 of the D2D discovery resource group.
  • Each transmitting / receiving unit 103 transmits, to each user terminal 20, initial allocation position information of resources for transmitting discovery signals used for D2D discovery.
  • Each transmission / reception part 103 notifies each user terminal 20 of a prior rule.
  • the baseband signal processing unit 104 performs FFT (Fast Fourier Transform) processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, PDCP layer processing on user data included in the input uplink signal. Reception processing is performed, and the data is transferred to the upper station apparatus 30 via the interface unit 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the interface unit 106 transmits and receives signals (backhaul signaling) to and from adjacent radio base stations via an inter-base station interface (for example, an optical fiber or an X2 interface). Alternatively, the interface unit 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • an inter-base station interface for example, an optical fiber or an X2 interface.
  • the interface unit 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • FIG. 10 is a main functional configuration diagram of the baseband signal processing unit 104 included in the radio base station 10 according to the present embodiment.
  • the baseband signal processing unit 104 included in the radio base station 10 includes a control unit 301, a downlink control signal generation unit 302, a downlink data signal generation unit 303, a mapping unit 304, and a demapping unit. 305, a channel estimation unit 306, an uplink control signal decoding unit 307, an uplink data signal decoding unit 308, and a determination unit 309 are included.
  • the control unit 301 controls scheduling of downlink user data transmitted on the PDSCH, downlink control information transmitted on both or either of the PDCCH and the extended PDCCH (EPDCCH), downlink reference signals, and the like.
  • the control unit 301 controls the RA preamble transmitted by the PRACH (Physical Radio Access Channel), the uplink data transmitted by the PUSCH, the uplink control information transmitted by the PUCCH or the PUSCH, and the scheduling control (allocation control) of the uplink reference signal. ).
  • Information related to allocation control of uplink signals (uplink control signals, uplink user data) is notified to the user terminal 20 using downlink control signals (DCI: Downlink Contrl Information).
  • the control unit 301 controls allocation of radio resources to the downlink signal and the uplink signal based on the instruction information from the higher station apparatus 30 and the feedback information from each user terminal 20. That is, the control unit 301 has a function as a scheduler.
  • the control unit 301 controls the user terminal 20 to notify system information including at least resource information for D2D signal transmission / reception.
  • the control unit 301 notifies the user terminal 20 of the synchronization information of the frequency carrier on which the user terminal 20 executes D2D signal transmission / reception and the frequency carrier that controls the D2D signal transmission / reception on the user terminal 20 in the system information. Control as follows.
  • the downlink control signal generation unit 302 generates a downlink control signal (both PDCCH signal and EPDCCH signal or one of them) whose assignment is determined by the control unit 301. Specifically, the downlink control signal generation unit 302 generates a downlink assignment for notifying downlink signal allocation information and an UL grant for notifying uplink signal allocation information based on an instruction from the control unit 301. To do.
  • the downlink data signal generation unit 303 generates a downlink data signal (PDSCH signal) determined to be allocated to resources by the control unit 301.
  • the data signal generated by the downlink data signal generation unit 303 is subjected to coding processing and modulation processing according to the coding rate and modulation method determined based on CSI (Channel State Information) from each user terminal 20 and the like. .
  • CSI Channel State Information
  • the mapping unit 304 allocates the downlink control signal generated by the downlink control signal generation unit 302 and the downlink data signal generated by the downlink data signal generation unit 303 to radio resources. Control.
  • the demapping unit 305 demaps the uplink signal transmitted from the user terminal 20 and separates the uplink signal.
  • Channel estimation section 306 estimates the channel state from the reference signal included in the received signal separated by demapping section 305, and outputs the estimated channel state to uplink control signal decoding section 307 and uplink data signal decoding section 308.
  • the uplink control signal decoding unit 307 decodes a feedback signal (such as a delivery confirmation signal) transmitted from the user terminal through the uplink control channel (PRACH, PUCCH) and outputs the decoded signal to the control unit 301.
  • Uplink data signal decoding section 308 decodes the uplink data signal transmitted from the user terminal through the uplink shared channel (PUSCH), and outputs the decoded signal to determination section 309.
  • the determination unit 309 performs retransmission control determination (A / N determination) based on the decoding result of the uplink data signal decoding unit 308 and outputs the result to the control unit 301.
  • FIG. 11 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit (reception unit) 203, a baseband signal processing unit 204, an application unit 205, It is equipped with.
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are each amplified by an amplifier unit 202, converted in frequency by a transmission / reception unit 203, and converted into a baseband signal.
  • the baseband signal is subjected to FFT processing, error correction decoding, retransmission control reception processing, and the like by the baseband signal processing unit 204.
  • downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 transmission processing of retransmission control (HARQ: Hybrid ARQ), channel coding, precoding, DFT processing, IFFT processing, and the like are performed and transferred to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 receives system information including at least D2D signal transmission / reception resource information transmitted from the connected or located radio base station 10.
  • the transmission / reception unit 203 transmits a signal using a part of the specified D2D signal transmission / reception resource in the specified frequency carrier.
  • the transmission / reception unit 203 receives a signal transmitted from another user terminal 20 from among resources for transmitting / receiving D2D signals.
  • FIG. 12 is a main functional configuration diagram of the baseband signal processing unit 204 included in the user terminal 20.
  • the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, an uplink control signal generation unit 402, an uplink data signal generation unit 403, a mapping unit 404, and a demapping unit 405.
  • the control unit 401 determines the uplink control signal (A / N signal, etc.) and the uplink data signal. Control generation.
  • the downlink control signal received from the radio base station is output from the downlink control signal decoding unit 407, and the retransmission control determination result is output from the determination unit 409.
  • the control unit 401 controls the allocation of the signal in the D2D signal transmission / reception to the D2D signal transmission / reception resource based on the D2D signal transmission / reception resource information notified from the radio base station 10.
  • the control unit 401 controls synchronization of D2D signal transmission / reception resources based on the system information.
  • the uplink control signal generation unit 402 generates an uplink control signal (feedback signal such as a delivery confirmation signal or channel state information (CSI)) based on an instruction from the control unit 401.
  • Uplink data signal generation section 403 generates an uplink data signal based on an instruction from control section 401. Note that the control unit 401 instructs the uplink data signal generation unit 403 to generate an uplink data signal when the UL grant is included in the downlink control signal notified from the radio base station.
  • the mapping unit 404 controls allocation of uplink control signals (delivery confirmation signals and the like) and uplink data signals to radio resources (PUCCH, PUSCH) based on an instruction from the control unit 401. Based on an instruction from the control unit 401, the mapping unit 404 controls allocation of signals in D2D signal transmission / reception to resources for D2D signal transmission / reception.
  • the demapping unit 405 demaps the downlink signal transmitted from the radio base station 10 and separates the downlink signal.
  • Channel estimation section 406 estimates the channel state from the reference signal included in the received signal separated by demapping section 405, and outputs the estimated channel state to downlink control signal decoding section 407 and downlink data signal decoding section 408.
  • the downlink control signal decoding unit 407 decodes the downlink control signal (PDCCH signal) transmitted on the downlink control channel (PDCCH), and outputs scheduling information (allocation information to uplink resources) to the control unit 401. Also, when the downlink control signal includes information on a cell that feeds back a delivery confirmation signal and information on whether or not RF (Radio Frequency) adjustment is applied, the information is also output to the control unit 401.
  • RF Radio Frequency
  • the downlink data signal decoding unit 408 decodes the downlink data signal transmitted through the downlink shared channel (PDSCH), and outputs the decoded signal to the determination unit 409.
  • the determination unit 409 performs retransmission control determination (A / N determination) based on the decoding result of the downlink data signal decoding unit 408 and outputs the result to the control unit 401.

Abstract

 複数周波数を含むネットワークにおいてD2D動作を行う場合に、面的なカバレッジを有しない周波数キャリアをD2D信号送受信用リソースとして使用したとしても、D2D端末の消費電力の増大を抑制すること。端末間直接信号送受信を実行可能なユーザ端末は、接続中または在圏中の無線基地局から送信される、端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を受信する受信部と、端末間直接信号送受信用リソース情報に基づいて、端末間直接信号送受信用リソース情報が送信された第1の周波数キャリアとは異なる第2の周波数キャリアにおいて端末間直接信号送受信を行うよう制御する制御部と、を備える。

Description

ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局、無線通信システムおよび無線通信方法に関する。
 LTE(Long Term Evolution)やLTEの後継システム(たとえば、LTEアドバンスト、FRA(Future Radio Access)、4Gなどともいう)では、端末同士が無線基地局を介さないで直接通信を行うD2D(Device to Device)技術が検討されている(たとえば、非特許文献1)。
 端末間の通信および発見技術(D2D communication/discovery)を検討する上で、D2D動作(D2D通信およびD2D発見を含む端末間直接信号送受信)を行う端末(D2D端末)がネットワークカバレッジ内に存在しているか否かが重要な前提条件の1つとなる。
"Key drivers for LTE success: Services Evolution"、2011年9月、3GPP、インターネットURL: http://www.3gpp.org/ftp/Information/presentations/presentations_2011/2011_09_LTE_Asia/2011_LTE-Asia_3GPP_Service_evolution.pdf
 複数周波数を含むネットワークにおいてD2D信号送受信を行う際に、面的なカバレッジを有しない周波数キャリアをD2D信号送受信用リソースとして使用すると、多くのD2D端末が当該カバレッジ外に存在することとなり、ネットワークからのコントロールに基づく効率的なD2D信号送受信が行えず、D2D端末の消費電力が増大するという課題がある。
 本発明は、かかる点に鑑みてなされたものであり、複数周波数を含むネットワークにおいてD2D信号送受信を行う場合に、面的なカバレッジを有しない周波数キャリアをD2D信号送受信用リソースとして使用したとしても、D2D端末の消費電力の増大を抑制できるユーザ端末、無線基地局、無線通信システムおよび無線通信方法を提供することを目的とする。
 本発明のユーザ端末は、端末間直接信号送受信を実行可能なユーザ端末であって、接続中または在圏中の無線基地局から送信される、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を受信する受信部と、前記端末間直接信号送受信用リソース情報に基づいて、前記端末間直接信号送受信用リソース情報が送信された第1の周波数キャリアとは異なる第2の周波数キャリアにおいて前記端末間直接信号送受信を行うよう制御する制御部と、を備えることを特徴とする。
 本発明によれば、複数周波数を含むネットワークにおいてD2D信号送受信を行う場合に、面的なカバレッジを有しない周波数キャリアをD2D信号送受信用リソースとして使用したとしても、ネットワークからのコントロールに基づく効率的なD2D信号送受信を行うことができるようになり、D2D端末の消費電力の増大を抑制できる。
図1Aは、D2D端末がネットワークカバレッジ内に存在する例を説明する図であり、図1Bおよび図1Cは、D2D端末がネットワークカバレッジ外に存在する例を説明する図である。 周波数キャリアごとにカバレッジが異なることを説明する図である。 D2D端末がD2Dリソースとして使用する周波数キャリアとは異なるセルラ周波数キャリアによって、D2D信号送受信の制御を行うことを説明する図である。 第1の態様において、ネットワークが複数の周波数キャリアを有する場合のD2D信号送受信用リソースの割り当てについて説明する図である。 第1の態様において、セルラ基地局が送信するシステム情報に複数のD2D用キャリア周波数が含まれる場合について説明する図である。 第2の態様において、オペレータ間でのD2D信号送受信について説明する図である。 第2の態様において、D2D信号送受信用リソース構成について説明する図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成の説明図である。 本実施の形態に係る無線基地局の機能構成の説明図である。 本実施の形態に係るユーザ端末の全体構成の説明図である。 本実施の形態に係るユーザ端末の機能構成の説明図である。
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 D2D信号送受信において、D2D端末にはD2D信号送受信用リソースとして周期的な上りリンクリソース群が準静的(semi-static)に割り当てられる。各D2D端末は、D2D信号送受信用リソースの一部を用いて信号を送信する。また、D2D端末は、他のD2D端末から送信された信号をD2D信号送受信用リソースの中から受信することにより、他のD2D端末を見つけ出したり、通信を行ったりする。
 図1Aは、D2D端末がネットワークカバレッジ内に存在する例を説明する図である。図1Aに示すように、D2D端末がネットワークカバレッジ内に存在する場合には、無線基地局がカバレッジ内のD2D端末の使用リソースなどを制御する。D2D端末はネットワークの制御に従って信号の送受信動作等を行う。
 図1Bおよび図1Cは、D2D端末がネットワークカバレッジ外に存在する例を説明する図である。図1Bに示すように、D2D端末がネットワークカバレッジ外に存在する場合には、あるD2D端末がクラスタヘッドとなって他のD2D端末を制御する。他のD2D端末はクラスタヘッドの制御に従って信号の送受信動作等を行う。あるいは、図1Cに示すように、D2D端末間で個々に制御して信号の送受信動作等を行う。
 D2D端末がネットワークカバレッジ内に存在する場合とネットワークカバレッジ外に存在する場合とでは、D2D通信のユースケースも動作も異なる。
 D2D端末がネットワークカバレッジ内に存在する場合には、たとえば商業的なユースケースの用途、すなわち端末間直接通信機能(Proximity-based service)によるSNS(Social Networking Service)や広告配信などの用途として、D2D信号送受信が利用される。この場合には、上述のとおり、ネットワークがD2D端末の使用リソースなどを制御する。
 D2D端末がネットワークカバレッジ外に存在する場合には、たとえば公衆安全の用途、すなわち災害時の緊急通信などの用途として、D2D信号送受信が利用される。この場合には、上述のとおり、D2D端末の自律的な動作または端末間での制御が必要となる。
 LTEやLTEアドバンストのネットワークは、ネットワーク容量増大のため、単一周波数だけでなく複数周波数を含む構成となることが想定される。たとえば、マクロセルでは2[GHz]など相対的に低い周波数帯のキャリアを利用し、スモールセルでは3.5[GHz]など相対的に高い周波数帯のキャリアを利用する構成が考えられる。
 この場合、図2に示すように、周波数キャリアごとにカバレッジが異なる。マクロセルは低周波数帯キャリアを利用することにより広いカバレッジを実現する。一般的にはRel.8からRel.11までの既存の端末およびRel.12の端末を接続可能な周波数でマクロセルを運用する。スモールセルは高トラフィック領域をカバーするように局所的に配置される。
 マクロセルを形成するマクロ基地局とスモールセルを形成するスモール基地局(図2において不図示)間とは、バックホールリンクを介して接続される。具体的には、マクロ基地局とスモール基地局間とをバックホールを介して連携し、マクロ基地局がスモール基地局をアシストする運用、すなわちマクロ基地局がスモール基地局を従属させる運用が想定される。複数のスモール基地局間についても、バックホールリンクを介して接続することが想定される。
 マクロセル周波数の上りリンクリソースはその広いカバレッジや後方互換性を活かすため、Rel.8からRel.11までの既存の端末およびRel.12の端末やVoIP(Voice over Internet Protocol)に使用されることが想定される。そのためマクロセル周波数の上りリンクリソースには余裕がなく、D2D信号送受信用リソースとして使用するには不適である。
 一方、たとえば新しい高周波数帯を使用するスモールセルにはRel.8からRel.11までの既存の端末が接続されないなど、上りリンクリソースに比較的余裕があることが想定される。したがって、D2D信号送受信用リソースとしてスモールセル周波数を使用することが好ましい。
 ところが、スモールセルはマクロセルとは異なり面的なカバレッジを有しない。そのため、図2に示すように、マクロセルカバレッジ内に存在する多くのD2D端末が、スモールセルカバレッジ外に存在することが想定される。この場合、D2D信号送受信用リソースとしてスモールセル周波数を使用すると、多くのD2D端末がカバレッジ外に存在する場合の動作をしてしまう。具体的には、D2D端末は自端末をクラスタヘッドとして他のD2D端末のリソース制御などを行う。クラスタヘッドとなったD2D端末は消費電力が増大するなど、非効率な動作となる。
 これに対して、本発明者らは、D2D端末がD2D信号送受信用リソースとして使用する周波数キャリアとは異なるセルラ周波数キャリアによって、D2D信号送受信の制御を行うことを見出した。これによりネットワークカバレッジ内でのD2D端末のクラスタヘッド動作が不要となり、D2D端末の消費電力を削減できる。
 たとえば図3に示すように、D2D端末がD2D信号送受信用リソースとしてスモールセル周波数(たとえば3.5[GHz])を使用してD2D信号送受信を行う場合であっても、マクロセル周波数(たとえば2[GHz])のカバレッジ内に存在するD2D端末に対しては、マクロセルがD2D端末の使用リソースなどを制御する。これにより、マクロセルカバレッジ内に存在するすべてのD2D端末をネットワークから制御できるため、マクロセルカバレッジ内でのD2D端末のクラスタヘッド動作が不要となる。
 仮にD2D端末がD2D信号送受信用リソースとして専用周波数を使用する場合であっても、既存のLTEネットワークを利用して効率的な制御を行うためには、D2D信号送受信で使用する周波数キャリアとネットワークから制御を行う周波数キャリアとが異なっていても動作するような仕組みが必要となる。したがって、本発明はD2D端末がD2D信号送受信用リソースとしてスモールセル周波数を使用してD2D信号送受信を行う場合に限らず適用できる。
 以下、D2D端末がD2D信号送受信用リソースとして使用する周波数キャリアとは異なるセルラ周波数キャリアによって、D2D信号送受信を制御する方法について、詳細に説明する。
(第1の態様)
 第1の態様では、D2D端末がD2D信号送受信用リソースとして使用する周波数キャリアとは異なるセルラ周波数キャリアによって、D2D信号送受信を制御する方法における、D2D信号送受信用リソースの割り当て、D2D同期およびD2D信号送受信用リソースのスケジューリングについて説明する。
 最初に、D2D信号送受信用リソースの割り当てについて説明する。D2D信号送受信用リソースとしては、通常のセルラ通信の上りリンクリソースの一部を使用する。干渉を避けるために、セルラ通信信号とD2D信号とはリソースを時分割多重(TDM:Time Division Multiplexing)される。
 マクロセルなどのセルラ基地局は、システム情報ブロックタイプx(SIBx:System Information Block)などに含まれて送信されるシステム情報を用いて、エリア内のD2D端末にD2D信号送受信用リソースの割当情報を通知する。D2D信号送受信用リソースの割当情報には、D2D信号送受信用リソースのキャリア周波数(carrierFreq-D2D)および時間領域リソース情報が含まれる。
 セルラ基地局は、RRC(Radio Resource Control)シグナリングなどの上位レイヤシグナリングを用いて、エリア内のD2D端末にD2D信号送受信用リソースの割当情報を通知してもよい。
 図4に示すように、ネットワークが複数の周波数キャリアを有している場合には、D2D信号送受信用リソースのキャリア周波数として特定の周波数キャリアを通知する。時間領域リソース情報には、先頭フレーム番号、サブフレームオフセット値、サブフレーム数およびD2Dリソース周期などが含まれる。
 セルラ基地局がシステム情報を用いてエリア内のすべてのD2D端末にD2D信号送受信用リソースの割当情報を通知することにより、アイドル端末も含めたエリア内のすべての端末が同一の時間周波数リソースをD2D信号送受信用リソースとして認識する。端末は接続中または在圏中のセルのシステム情報に含まれるD2D信号送受信用リソースの割当情報に従ってD2D信号の送受信を行う。
 続いて、セルラ基地局からシステム情報を受信した後のD2D同期(D2D synchronization)について説明する。システム情報を受信したD2D端末は、D2D信号送受信のための同期を行う。
 マクロセルとスモールセル間が同期運用されている場合には、D2D端末はマクロセルの同期信号であるPSS/SSS(Primary Synchronization Signal/Secondary Synchronization Signal)を同期ソースとしてD2D信号送受信用リソースを同期する。この場合、マクロセルカバレッジ内のすべてのD2D端末が同一の同期タイミングを使用可能となる。
 マクロセルとスモールセル間が非同期運用されている場合には、D2D端末はスモールセル周波数での同期信号検出を行い、D2D信号送受信用リソースを同期する。
 マクロセルとスモールセル間が非同期運用されており、かつ、D2D端末がスモールセルカバレッジ内に存在する場合には、当該D2D端末は当該スモールセルが送信するPSS/SSSを同期ソースとしてD2D信号送受信用リソースを同期する。さらに当該D2D端末はD2D同期信号(PD2DSS:Physical D2D Syncronization Signal)を送信する。
 マクロセルとスモールセル間が非同期運用されており、かつ、D2D端末がスモールセルカバレッジ外ではあるが当該スモールセルカバレッジに近い位置に存在する場合には、当該D2D端末は当該スモールセルカバレッジ内に存在するD2D端末が送信するD2D同期信号(PD2DSS)を同期ソースとしてD2D信号送受信用リソースを同期する。
 マクロセルとスモールセル間が非同期運用されており、かつ、D2D端末がスモールセルカバレッジ外であって当該スモールセルから遠い位置に存在し、かつ、上記スモールセルが送信するPSS/SSSおよびスモールセルカバレッジ内に存在するD2D端末が送信するD2D同期信号(PD2DSS)のいずれも検出できない場合には、当該D2D端末はマクロセルが送信するPSS/SSSを同期ソースとしてD2D信号送受信用リソースを同期する。
 このように、スモールセルカバレッジ内あるいはスモールセルカバレッジ外であるが当該スモールセルカバレッジの近辺に存在するD2D端末は、スモールセルの下りリンクタイミングに同期した同一のタイミングをD2D信号送受信用リソースの同期に使用する。この場合、セルラ上りリンク通信との干渉は、時分割多重により回避できる。
 また、スモールセルカバレッジ外であって当該スモールセルカバレッジから遠い位置に存在するD2D端末は、たとえばマクロセルの下りリンクタイミングなど独自のタイミングをD2D信号送受信用リソースの同期に使用する。この場合、スモールセル周波数でのセルラ上りリンク通信との干渉は、スモールセルとD2D端末とが地理的に離れているため問題とはならない。
 このようなスモールセルカバレッジから遠い位置に存在するD2D端末は、スモールセルカバレッジ内あるいはスモールセルカバレッジの近辺に存在するD2D端末とは、D2D信号送受信できない。しかし、スモールセルカバレッジから遠い位置に存在するD2D端末が、スモールセルカバレッジ内あるいはスモールセルカバレッジの近辺に存在するD2D端末に近い位置に存在していれば、本来スモールセルカバレッジ内に存在するD2D端末が送信するD2D同期信号(PD2DSS)を検出できるはずである。したがって、スモールセルカバレッジから遠い位置に存在するD2D端末がD2D同期信号(PD2DSS)を検出できないということは、そもそも他のD2D端末とも地理的に離れており、D2D信号を送受信可能な環境にないということになる。
 続いて、D2D信号送受信に用いる個別のリソースのスケジューリングについて説明する。
 D2D送信または受信においてはSC-FDMA(Single Carrier-Frequency Division Multiple Access)を基本の信号フォーマットとする。D2D端末は1つの上りリンク周波数で送信および受信を行うため、送信している間は受信ができないという半二重(half duplex)の制約を受ける。
 マクロセルなどのセルラ基地局が送信するシステム情報に複数のD2D用キャリア周波数が含まれる場合には、セルラ基地局はD2D送信または受信(D2D transmission/reception)に用いるD2D信号送受信用リソースを通知する際に併せてD2D用キャリアを指定する。
 図5に示す例では、セルラ基地局が送信するシステム情報にはD2Dキャリア#1と#2の2つのキャリア周波数が含まれる。この場合、セルラ基地局はD2D送信または受信(D2D transmission/reception)に用いるリソースインデックス#aを通知する際に、そのリソースインデックス#aが含まれるD2Dキャリア#2を併せて指定する。D2D用キャリアは、たとえばキャリアアグリゲーションにおけるCIF(Carrier Indicator Field)を用いて通知する。
 このようにD2D端末がD2D信号送受信用リソースとして使用する周波数キャリア(たとえばスモールセル周波数)とは異なるセルラ周波数キャリア(たとえばマクロセル周波数)によってD2D信号送受信を制御することにより、ネットワークカバレッジ内におけるD2D端末のクラスタヘッド動作が不要となり、D2D端末の消費電力を削減できる。
(第2の態様)
 第2の態様では、異なるオペレータ間におけるD2D信号送受信の制御について説明する。
 D2D信号送受信は単一オペレータ内のみでの動作に限定されるべきではない。異なるオペレータ間でのD2D信号送受信がサポートされない場合には、D2D信号送受信のユースケースは非常に限定されてしまう。
 異なるオペレータ間でのD2D信号送受信において、オペレータ間で共用の周波数をD2D用キャリアとして用いる場合を除いて、オペレータごとに異なる周波数がD2D用キャリアとして設定される(図6B参照)。
 この場合、異なるオペレータ間でのD2D信号送受信をサポートするためには、D2D端末は自端末が契約するオペレータのD2D用キャリアにおけるD2D信号送受信だけでなく、他オペレータのD2D用キャリアでのD2D信号受信を少なくともサポートする必要がある(図6A参照)。
 D2D端末が他オペレータのD2D用キャリアでのD2D信号受信を行うためには、D2D端末が他オペレータのD2D用キャリアおよびD2D信号送受信用リソース構成を知る必要がある。
 オペレータ間が完全非同期でD2D信号送受信用リソースが割り当てられる運用においては、D2D端末はオペレータ間D2D信号送受信のために複数の同期ソースを保持し、複数のタイミングで観測を行わなければならない。この方法は、D2D端末が観測を行う期間が長くなるなど、D2D端末の消費電力や効率の観点から現実的ではない。
 そこでD2D端末は、次のように他オペレータのD2D信号送受信用リソースの構成を認識することが好ましい。
 D2D端末は、サポートする帯域全体をスキャンし、各オペレータのD2D用キャリアおよび時間領域リソース情報を認識する。D2D端末はD2D信号送受信における信号送信には、自端末が契約するオペレータの周波数キャリアにおけるD2D信号送受信用リソースを使用する。D2D端末はD2D信号送受信における信号受信には、認識した他オペレータの周波数キャリアにおけるD2D信号送受信用リソースも使用する。
 D2D端末は複数のD2D用周波数キャリアを同時に観測できないことを前提とするため、D2D信号送受信用リソースはオペレータ間で時間的にシフトしている必要がある(図7参照)。図7に示す例では、オペレータAのD2D用キャリアとオペレータBのD2D用キャリアとで、D2D信号送受信用リソースの位置が時間的にシフトしている。
 D2D端末は、自端末が契約するオペレータのD2D信号送受信用リソースから時間的に一定以上離れた位置に、D2D信号送受信用リソースを設定する構成を採用する周波数キャリアについては、観測を行わない。このような場合には、自端末が契約するオペレータのD2D用キャリアと他オペレータのD2D用キャリアとが非同期運用であると想定され、消費電力が非常に増えてしまうためである。
 このように異なるオペレータ間でのD2D信号送受信をサポートすることにより、D2D信号送受信の幅広い活用が期待できる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記第1の態様および第2の態様に係る無線通信方法が適用される。
 図8は、本実施の形態に係る無線通信システムの一例を示す概略構成図である。図8に示すように、無線通信システム1は、複数の無線基地局10(11および12)と、各無線基地局10によって形成されるセル内にあり、各無線基地局10と通信可能に構成された複数のユーザ端末20と、を備えている。無線基地局10は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。
 図8において、無線基地局11は、たとえば相対的に広いカバレッジを有するマクロ基地局で構成され、マクロセルC1を形成する。無線基地局12は、局所的なカバレッジを有するスモール基地局で構成され、スモールセルC2を形成する。なお、無線基地局11および12の数は、図8に示す数に限られない。
 マクロセルC1およびスモールセルC2では、同一の周波数帯が用いられてもよいし、異なる周波数帯が用いられてもよい。また、無線基地局11および12は、基地局間インターフェース(たとえば、光ファイバ、X2インターフェース)を介して互いに接続される。
 ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでいてもよい。ユーザ端末20は、無線基地局10を経由して他のユーザ端末20と通信を実行できる。また、ユーザ端末20は、無線基地局10を経由せずに、他のユーザ端末20と直接通信(D2D)を実行できる。
 上位局装置30には、たとえば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)等が含まれるが、これに限定されるものではない。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、下り制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel)、報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、所定のSIB(System Information Block)が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。
 無線通信システム1では、上りリンクにおいて、ユーザ端末20間で互いを検出するための発見用信号が送信される。
 図9は、本実施の形態に係る無線基地局10の全体構成図である。無線基地局10は、MIMO(Multiple Input Multiple Output)伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、インターフェース部106とを備えている。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30からインターフェース部106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCP(Packet Date Convergence Protcol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、たとえば、HARQ(Hybrid ARQ)の送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナごとにプリコーディングして出力された下り信号を無線周波数帯に変換する。各アンプ部102は、周波数変換された無線周波数信号を増幅して各送受信アンテナ101により送信する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 各送受信部103は、各ユーザ端末20に対して、D2Dディスカバリリソース群を通知する。各送受信部103は、各ユーザ端末20に対して、D2Dディスカバリに用いる発見用信号を送信するリソースの初期割り当て位置情報を送信する。各送受信部103は、各ユーザ端末20に対して、事前ルールを通知する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT(Fast Fourier Transform)処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、インターフェース部106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 インターフェース部106は、基地局間インターフェース(たとえば、光ファイバ、X2インターフェース)を介して隣接無線基地局と信号を送受信(バックホールシグナリング)する。あるいは、インターフェース部106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。
 図10は、本実施の形態に係る無線基地局10が有するベースバンド信号処理部104の主な機能構成図である。図10に示すように、無線基地局10が有するベースバンド信号処理部104は、制御部301と、下り制御信号生成部302と、下りデータ信号生成部303と、マッピング部304と、デマッピング部305と、チャネル推定部306と、上り制御信号復号部307と、上りデータ信号復号部308と、判定部309と、を少なくとも含んで構成されている。
 制御部301は、PDSCHで送信される下りユーザデータ、PDCCHと拡張PDCCH(EPDCCH)の両方、またはいずれか一方で伝送される下り制御情報、下り参照信号などのスケジューリングを制御する。また、制御部301は、PRACH(Physical Radom Access Channel)で伝送されるRAプリアンブル、PUSCHで伝送される上りデータ、PUCCHまたはPUSCHで伝送される上り制御情報、上り参照信号のスケジューリングの制御(割り当て制御)も行う。上りリンク信号(上り制御信号、上りユーザデータ)の割り当て制御に関する情報は、下り制御信号(DCI:Downlink Contrl Information)を用いてユーザ端末20に通知される。
 制御部301は、上位局装置30からの指示情報や各ユーザ端末20からのフィードバック情報に基づいて、下りリンク信号および上りリンク信号に対する無線リソースの割り当てを制御する。つまり、制御部301は、スケジューラとしての機能を有している。
 制御部301は、ユーザ端末20に対して、D2D信号送受信用リソース情報を少なくとも含むシステム情報を通知するよう制御する。制御部301は、ユーザ端末20がD2D信号送受信を実行する周波数キャリアと、ユーザ端末20に対するD2D信号送受信の制御を行う周波数キャリアとの同期状態情報を、システム情報に含めてユーザ端末20に通知するよう制御する。
 下り制御信号生成部302は、制御部301により割り当てが決定された下り制御信号(PDCCH信号とEPDCCH信号の両方、またはいずれか一方)を生成する。具体的に、下り制御信号生成部302は、制御部301からの指示に基づいて、下りリンク信号の割り当て情報を通知する下りリンクアサインメントと、上りリンク信号の割り当て情報を通知するULグラントを生成する。
 下りデータ信号生成部303は、制御部301によりリソースへの割り当てが決定された下りデータ信号(PDSCH信号)を生成する。下りデータ信号生成部303により生成されるデータ信号には、各ユーザ端末20からのCSI(Channel State Information)等に基づいて決定された符号化率、変調方式に従って符号化処理、変調処理が行われる。
 マッピング部304は、制御部301からの指示に基づいて、下り制御信号生成部302で生成された下り制御信号と、下りデータ信号生成部303で生成された下りデータ信号の無線リソースへの割り当てを制御する。
 デマッピング部305は、ユーザ端末20から送信された上りリンク信号をデマッピングして、上りリンク信号を分離する。チャネル推定部306は、デマッピング部305で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を上り制御信号復号部307、上りデータ信号復号部308に出力する。
 上り制御信号復号部307は、上り制御チャネル(PRACH,PUCCH)でユーザ端末から送信されたフィードバック信号(送達確認信号等)を復号し、制御部301へ出力する。上りデータ信号復号部308は、上り共有チャネル(PUSCH)でユーザ端末から送信された上りデータ信号を復号し、判定部309へ出力する。判定部309は、上りデータ信号復号部308の復号結果に基づいて、再送制御判定(A/N判定)を行うとともに結果を制御部301に出力する。
 図11は、本実施の形態に係るユーザ端末20の全体構成図である。図11に示すように、ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部(受信部)203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 下りリンクのデータについては、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換されてベースバンド信号に変換される。このベースバンド信号は、ベースバンド信号処理部204でFFT処理や、誤り訂正復号、再送制御の受信処理などがなされる。この下りリンクのデータのうち、下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(HARQ:Hybrid ARQ)の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理などが行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 送受信部203は、接続中または在圏中の無線基地局10から送信される、D2D信号送受信用リソース情報を少なくとも含むシステム情報を受信する。送受信部203は、指定された周波数キャリアにおける指定されたD2D信号送受信用リソースの一部を用いて信号を送信する。送受信部203は、他のユーザ端末20から送信された信号をD2D信号送受信用リソースの中から受信する。
 図12は、ユーザ端末20が有するベースバンド信号処理部204の主な機能構成図である。図12に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、上り制御信号生成部402と、上りデータ信号生成部403と、マッピング部404と、デマッピング部405と、チャネル推定部406と、下り制御信号復号部407と、下りデータ信号復号部408と、判定部409と、を少なくとも含んで構成されている。
 制御部401は、無線基地局10から送信された下り制御信号(PDCCH信号)や、受信したPDSCH信号に対する再送制御判定結果に基づいて、上り制御信号(A/N信号等)や上りデータ信号の生成を制御する。無線基地局から受信した下り制御信号は下り制御信号復号部407から出力され、再送制御判定結果は、判定部409から出力される。
 制御部401は、無線基地局10から通知されたD2D信号送受信用リソース情報に基づいて、D2D信号送受信における信号のD2D信号送受信用リソースへの割り当てを制御する。制御部401は、システム情報に基づいて、D2D信号送受信用リソースの同期を制御する。
 上り制御信号生成部402は、制御部401からの指示に基づいて上り制御信号(送達確認信号やチャネル状態情報(CSI)等のフィードバック信号)を生成する。上りデータ信号生成部403は、制御部401からの指示に基づいて上りデータ信号を生成する。なお、制御部401は、無線基地局から通知される下り制御信号にULグラントが含まれている場合に、上りデータ信号生成部403に上りデータ信号の生成を指示する。
 マッピング部404は、制御部401からの指示に基づいて、上り制御信号(送達確認信号等)と、上りデータ信号の無線リソース(PUCCH、PUSCH)への割り当てを制御する。マッピング部404は、制御部401からの指示に基づいて、D2D信号送受信における信号のD2D信号送受信用リソースへの割り当てを制御する。
 デマッピング部405は、無線基地局10から送信された下りリンク信号をデマッピングして、下りリンク信号を分離する。チャネル推定部406は、デマッピング部405で分離された受信信号に含まれる参照信号からチャネル状態を推定し、推定したチャネル状態を下り制御信号復号部407、下りデータ信号復号部408に出力する。
 下り制御信号復号部407は、下り制御チャネル(PDCCH)で送信された下り制御信号(PDCCH信号)を復号し、スケジューリング情報(上りリソースへの割り当て情報)を制御部401へ出力する。また、下り制御信号に送達確認信号をフィードバックするセルに関する情報や、RF(Radio Frequency)調整の適用有無に関する情報が含まれている場合も、制御部401へ出力する。
 下りデータ信号復号部408は、下り共有チャネル(PDSCH)で送信された下りデータ信号を復号し、判定部409へ出力する。判定部409は、下りデータ信号復号部408の復号結果に基づいて、再送制御判定(A/N判定)を行うとともに、結果を制御部401に出力する。
 なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。
 本出願は、2013年12月26日出願の特願2013-269756に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  端末間直接信号送受信を実行可能なユーザ端末であって、
     接続中または在圏中の無線基地局から送信される、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を受信する受信部と、
     前記端末間直接信号送受信用リソース情報に基づいて、前記端末間直接信号送受信用リソース情報が送信された第1の周波数キャリアとは異なる第2の周波数キャリアにおいて前記端末間直接信号送受信を行うよう制御する制御部と、を備えることを特徴とするユーザ端末。
  2.  前記制御部は、前記システム情報に含まれる前記第1の周波数キャリアと前記第2の周波数キャリアとの同期状態情報に基づいて、前記端末間直接信号送受信を行う際の同期ソースを決定することを特徴とする請求項1に記載のユーザ端末。
  3.  前記ユーザ端末は、マクロ基地局および前記マクロ基地局配下の複数のスモール基地局から送信される下りリンク信号を受信可能であり、
     前記制御部は、前記マクロ基地局と前記スモール基地局とが同期運用されている場合には、前記マクロ基地局が送信する同期信号を前記同期ソースとして決定することを特徴とする請求項2に記載のユーザ端末。
  4.  前記ユーザ端末は、マクロ基地局および前記マクロ基地局配下の複数のスモール基地局から送信される下りリンク信号を受信可能であり、
     前記制御部は、前記マクロ基地局と前記スモール基地局とが非同期運用されており、かつ、自端末が前記スモール基地局と接続中または在圏中である場合には、前記スモール基地局が送信する同期信号を前記同期ソースとして決定し、自端末が同期信号を送信することを特徴とする請求項2に記載のユーザ端末。
  5.  前記ユーザ端末は、マクロ基地局および前記マクロ基地局配下の複数のスモール基地局から送信される下りリンク信号を受信可能であり、
     前記制御部は、前記マクロ基地局と前記スモール基地局とが非同期運用されており、かつ、自端末が前記スモール基地局と接続中または在圏中でない場合には、前記スモール基地局と接続中または在圏中のユーザ端末が送信する同期信号またはマクロ基地局が送信する同期信号を前記同期ソースとして決定することを特徴とする請求項2に記載のユーザ端末。
  6.  端末間直接信号送受信を実行可能なユーザ端末と通信可能な無線基地局であって、
     前記ユーザ端末に対して、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を通知する制御部を備え、
     前記ユーザ端末に対して前記端末間直接信号送受信を制御する第1の周波数キャリアと、前記端末間直接信号送受信用リソースが割り当てられる第2の周波数キャリアとが、異なる周波数キャリアであることを特徴とする無線基地局。
  7.  前記制御部は、前記第1の周波数キャリアと前記第2の周波数キャリアとの同期状態情報を前記システム情報に含めて前記ユーザ端末に通知することを特徴とする請求項6に記載の無線基地局。
  8.  上位レイヤシグナリングまたは制御チャネルを用いて、前記第2の周波数キャリアを前記端末間直接信号送受信用リソース情報とともに前記ユーザ端末に通知することを特徴とする請求項6または請求項7に記載の無線基地局。
  9.  端末間直接信号送受信を実行可能なユーザ端末と、前記ユーザ端末と通信可能な無線基地局とを含む無線通信システムであって、
     前記無線基地局は、前記ユーザ端末に対して、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を通知する制御部を備え、
     前記ユーザ端末は、接続中または在圏中の前記無線基地局から送信される、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を受信する受信部と、
     前記端末間直接信号送受信用リソース情報に基づいて、前記端末間直接信号送受信用リソース情報が送信された第1の周波数キャリアとは異なる第2の周波数キャリアにおいて前記端末間直接信号送受信を行うよう制御する制御部と、を備えることを特徴とする無線通信システム。
  10.  端末間直接信号送受信を実行可能なユーザ端末の無線通信方法であって、
     接続中または在圏中の無線基地局から送信される、前記端末間直接信号送受信用リソース情報を少なくとも含むシステム情報を受信する工程と、
     前記端末間直接信号送受信用リソース情報に基づいて、前記端末間直接信号送受信用リソース情報が送信された第1の周波数キャリアとは異なる第2の周波数キャリアにおけるリソースを用いて前記端末間直接信号送受信を行う工程と、を備えることを特徴とする無線通信方法。
     
PCT/JP2014/080073 2013-12-26 2014-11-13 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法 WO2015098340A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP14874819.7A EP3089531B1 (en) 2013-12-26 2014-11-13 User terminal and radio communication method
CN201911021515.9A CN110740518B (zh) 2013-12-26 2014-11-13 终端、无线通信方法
US15/107,162 US10631294B2 (en) 2013-12-26 2014-11-13 User terminal, radio base station, radio communication system and radio communication method
PL14874819.7T PL3089531T3 (pl) 2013-12-26 2014-11-13 Terminal użytkownika i sposób łączności radiowej
CN201480070546.2A CN105900508A (zh) 2013-12-26 2014-11-13 用户终端、无线基站、无线通信系统以及无线通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013269756A JP2015126393A (ja) 2013-12-26 2013-12-26 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
JP2013-269756 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098340A1 true WO2015098340A1 (ja) 2015-07-02

Family

ID=53478216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080073 WO2015098340A1 (ja) 2013-12-26 2014-11-13 ユーザ端末、無線基地局、無線通信システムおよび無線通信方法

Country Status (6)

Country Link
US (1) US10631294B2 (ja)
EP (1) EP3089531B1 (ja)
JP (1) JP2015126393A (ja)
CN (2) CN110740518B (ja)
PL (1) PL3089531T3 (ja)
WO (1) WO2015098340A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017033486A1 (en) * 2015-08-21 2017-03-02 Nec Corporation Vehicle to everything (v2x) communication method and system
CN108029153A (zh) * 2015-08-13 2018-05-11 意大利电信股份公司 用于启用plmn间接近服务的方法和系统
CN111279737A (zh) * 2017-09-08 2020-06-12 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015198490A1 (ja) * 2014-06-27 2015-12-30 富士通株式会社 通信システム、基地局及び通信端末
JP2016096475A (ja) * 2014-11-14 2016-05-26 Kddi株式会社 無線制御装置、端末装置、および通信方法
WO2016208098A1 (ja) * 2015-06-25 2016-12-29 日本電気株式会社 D2d通信制御装置、無線端末、中継無線端末候補選択方法及び非一時的なコンピュータ可読媒体
EP3322233B1 (en) 2015-07-09 2020-09-09 LG Electronics Inc. Synchronization method of user equipment in wireless communication system and user equipment using method
CN106454746B (zh) 2015-08-13 2020-06-26 华为技术有限公司 设备到设备通信方法、装置和系统
JPWO2017026543A1 (ja) * 2015-08-13 2018-05-31 株式会社Nttドコモ ユーザ装置、及びd2d信号送信方法
CN107645392B (zh) 2016-07-20 2020-07-10 电信科学技术研究院 一种用户设备间的通信方法及装置、通信控制方法及装置
US10631173B2 (en) 2016-09-02 2020-04-21 Qualcomm Incorporated Radio (NR) procedures for shared spectrum
EP3534660B1 (en) * 2017-11-03 2020-10-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device
EP3528582B1 (en) * 2018-02-15 2023-08-16 Comcast Cable Communications, LLC Random access using supplementary uplink
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation
WO2020031342A1 (ja) * 2018-08-09 2020-02-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110972104B (zh) * 2018-09-28 2021-07-09 展讯通信(上海)有限公司 V2x通信方法及装置
JP6766232B2 (ja) * 2019-07-08 2020-10-07 Kddi株式会社 基地局装置、端末装置、および通信方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044718A1 (zh) * 2011-09-30 2013-04-04 华为技术有限公司 一种实现设备到设备的通讯方法、终端及系统
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011043413A1 (ja) * 2009-10-07 2011-04-14 住友電気工業株式会社 基地局装置
KR102088021B1 (ko) * 2011-03-11 2020-03-11 엘지전자 주식회사 반송파 집성 기법이 적용된 무선 통신 시스템에서 단말이 신호를 송수신하는 방법 및 이를 위한 장치
US8705421B2 (en) * 2011-04-22 2014-04-22 Qualcomm Incorporated Methods and apparatus for timing synchronization for peer to peer devices operating in WWAN spectrum
US10833994B2 (en) 2011-06-01 2020-11-10 Ntt Docomo, Inc. Enhanced local access in mobile communications
GB2498765A (en) * 2012-01-27 2013-07-31 Renesas Mobile Corp Discovery signalling in a device-to-device communication system
JP5940867B2 (ja) 2012-04-18 2016-06-29 株式会社Nttドコモ 無線通信システム、通信制御装置、無線通信端末及び通信制御方法
US9019913B2 (en) 2012-05-21 2015-04-28 Qualcomm Incorporated Methods and apparatus for providing D2D system information to a UE served by a home evolved Node-B
US10070417B2 (en) 2012-05-23 2018-09-04 Kyocera Corporation Transmission of device-to-device (D2D) control data from a first D2D device to a second D2D device in a cellular communication system
WO2013179472A1 (ja) * 2012-05-31 2013-12-05 富士通株式会社 無線通信システム、無線基地局装置、端末装置、及び無線リソースの割り当て方法
CN102843162B (zh) * 2012-09-12 2014-11-05 西安交通大学 一种蜂窝网络中采用d2d技术的扩频通信方法
CN104798353B (zh) * 2012-11-23 2019-08-06 瑞典爱立信有限公司 用于无线电资源管理的方法、装置和通信节点
CN103874205B (zh) 2012-12-12 2019-01-08 中兴通讯股份有限公司 数据的传输、接收方法及装置
US9042938B2 (en) * 2012-12-27 2015-05-26 Google Technology Holdings LLC Method and apparatus for device-to-device communication
WO2014182341A1 (en) * 2013-05-06 2014-11-13 Intel IP Corporation Access network discovery and selection
CN103298141B (zh) * 2013-06-09 2016-01-06 北京邮电大学 蜂窝与终端直通混合网络中d2d通信的载波复用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044718A1 (zh) * 2011-09-30 2013-04-04 华为技术有限公司 一种实现设备到设备的通讯方法、终端及系统
JP2013229746A (ja) * 2012-04-25 2013-11-07 Ntt Docomo Inc 課金システム、課金装置及び課金方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
B. BERTENYI: "Key Drivers for LTE Success: Services Evolution", 3GPP SEMINAR, LTE ASIA, 6 September 2011 (2011-09-06), Retrieved from the Internet <URL:ftp://www.3gpp.org/Information/presentations/presentations_2011/2011_09_LTE_Asia/2011_LTE-Asia_3GPP_Service_evolution.pdf>
CATT: "Discussion on synchronization for D2D operation", 3GPP TSG-RAN WG1#75 R1- 135091, XP050734794, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_75/Docs/R1-135091.zip> *
NEC: "Synchronisation of D2D UEs outside of E- UTRAN network coverage", 3GPP TSG-RAN WG1#75 RL-135268, XP050734964, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_75/Docs/R1-135268.zip> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108029153A (zh) * 2015-08-13 2018-05-11 意大利电信股份公司 用于启用plmn间接近服务的方法和系统
CN108029153B (zh) * 2015-08-13 2021-10-01 意大利电信股份公司 用于启用plmn间接近服务的方法和系统
WO2017033486A1 (en) * 2015-08-21 2017-03-02 Nec Corporation Vehicle to everything (v2x) communication method and system
CN107925854A (zh) * 2015-08-21 2018-04-17 日本电气株式会社 车辆到任意对象(v2x)通信方法和系统
CN107925854B (zh) * 2015-08-21 2020-10-16 日本电气株式会社 车辆到任意对象(v2x)通信方法和系统
US10952043B2 (en) 2015-08-21 2021-03-16 Nec Corporation Vehicle to everything (V2X) communication method and system
CN111279737A (zh) * 2017-09-08 2020-06-12 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111279737B (zh) * 2017-09-08 2023-11-21 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
CN105900508A (zh) 2016-08-24
EP3089531A1 (en) 2016-11-02
CN110740518A (zh) 2020-01-31
PL3089531T3 (pl) 2022-07-18
JP2015126393A (ja) 2015-07-06
CN110740518B (zh) 2023-10-24
EP3089531B1 (en) 2022-05-18
US20170034825A1 (en) 2017-02-02
US10631294B2 (en) 2020-04-21
EP3089531A4 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2015098340A1 (ja) ユーザ端末、無線基地局、無線通信システムおよび無線通信方法
JP5739027B1 (ja) ユーザ端末、無線基地局および無線通信方法
JP6698519B2 (ja) 無線基地局、ユーザ端末及び無線通信方法
US11582720B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
US11576155B2 (en) Communication apparatus, communication method, and program
WO2013151158A1 (ja) 通信システム、ローカルエリア基地局装置、移動端末装置、及び通信方法
EP3101927A1 (en) User terminal, wireless base station, wireless communication method, and wireless communication system
EP3413662B1 (en) Radio base station, user terminal and radio communication method
US11611985B2 (en) Grant of resources for downlink and uplink communication via one or more relay user equipment
US11659369B2 (en) Distributed sidelink (SL) architecture and protocol stack
US9794767B2 (en) User terminal, radio communication system and radio communication method
WO2020165396A1 (en) Timing alignment for wireless device to wireless device measurements
US11723012B2 (en) Vehicle-to-everything (V2X) destination identification sharing for inter-user equipment (UE) coordination
US11540224B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
US11831572B2 (en) Vehicle-to-everything (V2X) inter-user equipment (UE) coordination
WO2023123007A1 (en) Reconfigurable intelligent surface (ris) reservation for sidelink communications
US20230037156A1 (en) On demand assistance for sidelink mode 1 communication
CN112219444B (zh) 用于双连接的通信资源配置
KR20240036584A (ko) 반이중 주파수 분할 듀플렉스(hd-fdd) 모드에서의 랜덤 액세스 채널(rach) 절차를 위한 사용자 장비(ue) 업링크 송신

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107162

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016014820

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2014874819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014874819

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112016014820

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160623