WO2015198490A1 - 通信システム、基地局及び通信端末 - Google Patents

通信システム、基地局及び通信端末 Download PDF

Info

Publication number
WO2015198490A1
WO2015198490A1 PCT/JP2014/067282 JP2014067282W WO2015198490A1 WO 2015198490 A1 WO2015198490 A1 WO 2015198490A1 JP 2014067282 W JP2014067282 W JP 2014067282W WO 2015198490 A1 WO2015198490 A1 WO 2015198490A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
communication terminal
base station
control information
dci
Prior art date
Application number
PCT/JP2014/067282
Other languages
English (en)
French (fr)
Inventor
義博 河▲崎▼
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2014/067282 priority Critical patent/WO2015198490A1/ja
Priority to JP2016528969A priority patent/JP6256607B2/ja
Publication of WO2015198490A1 publication Critical patent/WO2015198490A1/ja
Priority to US15/357,544 priority patent/US9648609B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to a communication system, a base station, and a communication terminal.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • D2D Device to Device
  • communication terminals that are close to each other communicate with each other via a base station
  • communication terminals that are close to each other directly communicate with each other without using a base station.
  • D2D communication In the study on D2D communication, it is considered to perform D2D communication by sharing uplink radio resources of cellular communication with cellular communication. That is, performing D2D communication using the present uplink radio frequency band of cellular communication is being studied. In addition, introduction of a communication terminal capable of performing both cellular communication and D2D communication is also under consideration. Therefore, when performing D2D communication using the uplink radio frequency band of cellular communication, the base station allocates uplink radio resources for cellular communication to one communication terminal in the same radio frequency band. And allocation of radio resources for D2D communication.
  • the layer 1 control information transmitted from the base station to the communication terminal in the current LTE is called “DCI (Downlink Control Information)”, and the DCI depends on the purpose of use, that is, the content of the control information.
  • DCI Downlink Control Information
  • Format 0, 1, 1A, 1B, 1C, 1D, 2, 2A, 2B, 2C, 2D, 3, 3A, 4 is adopted.
  • the format of DCI for notifying the communication terminal of a radio resource allocation result used for the communication terminal to transmit a signal to the base station from the base station is format 0 or 4.
  • DCI is transmitted from the base station to the communication terminal using “PDCCH (Physical Downlink Control Channel)” which is one of the radio physical channels.
  • PDCCH Physical Downlink Control Channel
  • Each PDCCH is mapped to a radio resource area composed of one or a plurality of continuous CCEs (Control Channel Elements).
  • Each PDCCH adopts one of formats 0 to 3 depending on its size.
  • the format 0 PDCCH takes a size of “N” corresponding to “1CCE”
  • the format 1 PDCCH takes a size of “2N” corresponding to “2CCE”.
  • the format 2 PDCCH adopts a size of “4N” corresponding to “4CCE”
  • the format 3 PDCCH adopts a size of “8N” corresponding to “8CCE”. That is, the sizes N, 2N, 4N, and 8N of the PDCCH correspond to the number of connected CCEs 1, 2, 4, and 8, respectively.
  • the number of connected CCEs is referred to as an
  • the DCI is encoded at a coding rate according to the downlink channel quality, and the DCI is encoded at a lower coding rate as the downlink channel quality decreases. Therefore, the size of the DCI after encoding becomes larger as the downlink channel quality decreases.
  • the size of the encoded DCI is matched by rate matching so that it matches any of the four sizes of N to 8N of PDCCH. Adjusted. That is, as the downlink channel quality decreases, a larger PDCCH is used for DCI transmission, and the aggregation level is one of 1, 2, 4, and 8 depending on the size of the DCI after encoding. Selected from.
  • the CCE modulation scheme is constant in QPSK (Quadrature Phase Shift Keying) regardless of the downlink channel quality.
  • FIG. 1 is a diagram for explaining a conventional search space.
  • “SS” indicates a search space
  • “AL” indicates an aggregation level.
  • six search spaces SS0 to SS5 are defined for cellular communication according to the aggregation level.
  • the search spaces SS0 to SS5 are defined for cellular communication according to the aggregation level.
  • four search spaces SS0 to SS3 are unique to each communication terminal
  • two search spaces SS4 to SS5 are search spaces common to all communication terminals. .
  • the DCI before encoding includes a 16-bit CRC (Cyclic Redundancy Check) bit masked with a 16-bit bit string indicating the ID of the communication terminal in order to identify the communication terminal of the DCI transmission destination. Added.
  • Each communication terminal performs CRC by demasking the CRC bit portion of the decoded bit string with the ID of the own terminal, and detects DCI addressed to the own terminal. That is, each communication terminal determines that the received DCI is the DCI addressed to itself when the CRC by demasking with the ID of the terminal is successful.
  • Such detection of DCI by CRC using the ID of the terminal itself is sometimes referred to as “blind detection”.
  • one subframe includes SS4, SS5, and SS0 to SS3 for each communication terminal.
  • a communication terminal performs blind detection for every search unit which comprises each search space.
  • the total number of all search units in SS0 to SS5 is 22.
  • 3GPP TR 36.913 “Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)”, V9.0.0, Release 9, December 2009.
  • 3GPP TR36.912 “Feasibility study for further advancements for E-UTRA (LTE-Advanced)”, V9.3.0, Release 9, June 2010.
  • 3GPP TS36.133 “Requirements for support of radio resource management”, V10.3.0, Release 10, June 2011.
  • 3GPP TS36.213 “Physical layer procedures”, V10.2.0, Release 10, June 2011.
  • 3GPP TS36.300 “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN)”, V10.4.0, Release 10, June 2011.
  • FIG. 2 is a diagram for explaining the problem.
  • “SS” indicates a search space
  • “AL” indicates an aggregation level
  • the numbers in parentheses indicate the number of search units constituting each search space.
  • the number of times of blind detection for cellular communication is 44 times at maximum in one subframe per communication terminal as described above.
  • the disclosed technique has been made in view of the above, and aims to suppress an increase in power consumption of a communication terminal when performing D2D communication.
  • the communication system includes a base station, a first communication terminal, and a second communication terminal capable of communicating directly with the first communication terminal without going through the base station while communicating with the base station. And having.
  • the base station is a base station that notifies the second communication terminal of a radio resource allocation result using control information including a first area, a second area, and a third area.
  • control information including a first area, a second area, and a third area.
  • the base station transmits a second allocation result of a second radio resource allocated to direct communication between the second communication terminal and the first communication terminal to the second communication terminal using the first area.
  • the combination of the value of the second area and the value of the third area is a second specific combination different from the first specific combination.
  • the second communication terminal detects the control information. Further, when the second communication terminal determines that the combination of the value of the second area and the value of the third area is the first specific combination in the detected control information, the first communication terminal It communicates with the base station according to the first allocation result indicated in the area. In addition, when the second communication terminal determines that the combination of the value of the second area and the value of the third area is the second specific combination in the detected control information, the first communication terminal It communicates directly with the first communication terminal according to the second allocation result indicated in the area.
  • the communication system can communicate with the base station, the first communication terminal, and the base station, but can communicate directly with the first communication terminal without going through the base station.
  • a communication terminal The base station, the first control information for notifying the second communication terminal of the first allocation result of the first radio resource allocated to the direct communication between the second communication terminal and the first communication terminal, The second control information for notifying the second communication terminal of the second assignment result of the second radio resource assigned to the communication between the base station and the second communication terminal is the arrangement period of the first control information. Is transmitted to the second communication terminal as a unit with predetermined information indicating whether or not it exists.
  • the second communication terminal detects the first control information, and detects the second control information in the arrangement period based on the predetermined information integrated with the first control information. Determine whether to do it.
  • FIG. 1 is a diagram for explaining a conventional search space.
  • FIG. 2 is a diagram for explaining the problem.
  • FIG. 3 is a diagram illustrating an example of a configuration of the communication system according to the first embodiment.
  • FIG. 4 is a functional block diagram illustrating an example of the configuration of the base station according to the first embodiment.
  • FIG. 5 is a diagram illustrating a format example of DCI of format 0.
  • FIG. 6 is a functional block diagram illustrating an example of the configuration of the communication terminal according to the first embodiment.
  • FIG. 7 is a diagram for explaining operations of the base station and the communication terminal according to the first embodiment.
  • FIG. 8 is a flowchart for explaining processing of the communication terminal according to the first embodiment.
  • FIG. 1 is a diagram for explaining a conventional search space.
  • FIG. 2 is a diagram for explaining the problem.
  • FIG. 3 is a diagram illustrating an example of a configuration of the communication system according to the first embodiment.
  • FIG. 4 is a functional block diagram illustrating
  • FIG. 9 is a functional block diagram illustrating an example of the configuration of the base station according to the second embodiment.
  • FIG. 10 is a diagram illustrating a format example of the DCI for D2D communication according to the second embodiment.
  • FIG. 11 is a functional block diagram illustrating an example of the configuration of the communication terminal according to the second embodiment.
  • FIG. 12 is a diagram for explaining operations of the base station and the communication terminal according to the second embodiment.
  • FIG. 13 is a flowchart for explaining processing of the base station according to the second embodiment.
  • FIG. 14 is a flowchart for explaining processing of the communication terminal according to the second embodiment.
  • FIG. 15 is a diagram illustrating a hardware configuration example of the base station.
  • FIG. 16 is a diagram illustrating a hardware configuration example of the communication terminal.
  • FIG. 3 is a diagram illustrating an example of a configuration of the communication system according to the first embodiment.
  • the communication system 1 includes a base station BS1 connected to a network (not shown), a communication terminal UE1, and a communication terminal UE2.
  • the communication terminal UE1 can communicate with the base station BS1. Further, the communication terminal UE1 can directly communicate with the communication terminal UE2 without going through the base station BS1, that is, D2D communication with the communication terminal UE2. That is, the communication terminal UE1 is a communication terminal capable of performing both cellular communication and D2D communication.
  • Base station BS1 forms cell C1. The communication terminal UE1 receives DCI from the base station BS1 when performing cellular communication and D2D communication.
  • FIG. 4 is a functional block diagram illustrating an example of the configuration of the base station according to the first embodiment.
  • the base station 10 shown in FIG. 4 corresponds to the base station BS1 shown in FIG.
  • the base station 10 includes a DCI forming unit 11, PDCCH signal generation units 102 and 105, a mapping unit 107, a radio transmission unit 108, and a transmission antenna 109.
  • the DCI forming unit 11 includes a D2D communication DCI forming unit 101 and a cellular communication DCI forming unit 104.
  • the base station 10 includes a reception antenna 111, a wireless reception unit 112, and a user data acquisition unit 113.
  • the D2D communication DCI forming unit 101 may be referred to as an allocation result of radio resources allocated to D2D communication between the communication terminal UE1 and the communication terminal UE2 (hereinafter referred to as “D2D communication RA (Resource Allocation) result”). ) Is entered.
  • the D2D communication DCI forming unit 101 forms a D2D communication DCI indicating the RA result for D2D communication according to a specific format, and outputs the formed D2D communication DCI to the PDCCH signal generation unit 102.
  • the cellular communication DCI forming unit 104 receives an assignment result of radio resources assigned to the cellular communication between the base station 10 and the communication terminal UE1 (hereinafter may be referred to as “cellular communication RA result”).
  • the cellular communication DCI forming unit 104 forms a cellular communication DCI indicating the RA result for cellular communication according to a specific format, and outputs the formed DCI for cellular communication to the PDCCH signal generation unit 105.
  • the DCI for D2D communication formed by the DCI forming unit 101 for D2D communication and the DCI for cellular communication formed by the DCI forming unit 104 for cellular communication adopt the same specific format.
  • both the D2D communication DCI and the cellular communication DCI adopt the conventional format 0.
  • FIG. 5 is a diagram showing an example of format 0 DCI format.
  • the DCI of format 0 has an NDI (New Data Indicator) field, an RA (Resource Allocation) field, an MCS (Modulation and Coding Scheme) field, and other fields.
  • the RA field indicates a radio resource allocation result (hereinafter may be referred to as “RA result”).
  • the communication terminal can know from the value indicated in the NDI field whether the radio resource allocated from the base station is for new data transmission or data retransmission.
  • the MCS field indicates the MCS level of the data signal transmitted from the communication terminal UE1, and the MCS level takes any value from 0 to 31, for example.
  • the specific coding rate and modulation scheme (QPSK, 16QAM, 64QAM, etc.) that each value of 0 to 31 indicates is specified in, for example, a document describing 3GPP specifications.
  • the DCI for D2D communication and the DCI for cellular communication adopt, for example, the format 0 shown in FIG.
  • the value of the NDI field hereinafter may be referred to as “NDI value”
  • the value of the MCS field hereinafter, referred to as “MCS value”.
  • the PDCCH signal generation unit 102 performs encoding processing and modulation processing on the DCI for D2D communication to generate a PDCCH signal for D2D communication, and outputs the generated PDCCH signal to the mapping unit 107.
  • the PDCCH signal generation unit 105 performs coding processing and modulation processing on the DCI for cellular communication to generate a PDCCH signal for cellular communication, and outputs the generated PDCCH signal to the mapping unit 107.
  • PDCCH signal generation sections 102 and 105 encode the DCI after adding a CRC bit masked with a bit string indicating the ID of communication terminal UE1 to DCI. Also, PDCCH signal generation sections 102 and 105 encode DCI at a lower coding rate as the downlink channel quality to communication terminal UE1 decreases. PDCCH signal generation units 102 and 105 perform the same encoding process on DCI addressed to communication terminals other than communication terminal UE1.
  • Mapping section 107 maps the PDCCH signal for D2D communication to the search unit of any one of the search spaces SS0 to SS3 shown in FIG. Further, mapping section 107 maps the PDCCH signal for cellular communication to the search unit of any one of the search spaces SS0 to SS5 shown in FIG. However, the PDCCH signal for D2D communication and the PDCCH signal for cellular communication are mapped to different search units.
  • the radio transmission unit 108 performs digital-analog conversion, up-conversion, and the like on the baseband PDCCH signal to obtain a radio signal, and transmits the radio signal to the communication terminal UE1 via the transmission antenna 109. Through the transmission of this radio signal, the DCI for D2D communication and the DCI for cellular communication are notified to the communication terminal UE1.
  • the radio reception unit 112 performs down-conversion, analog-digital conversion, etc. on the radio signal received from the communication terminal UE1 via the reception antenna 111 to obtain a baseband signal and outputs it to the user data acquisition unit 113 To do.
  • the user data acquisition unit 113 extracts a data signal from the baseband signal in accordance with the mapping result in the communication terminal UE1 for the uplink (UpLink: UL) signal, performs demodulation processing and decoding processing on the extracted data signal, and performs user processing. Get the data. Since the mapping at the communication terminal UE1 for the UL signal is performed according to the DCI for cellular communication, the user data obtaining unit 113 can know the mapping result of the UL signal from the RA result for cellular communication input to the DCI forming unit 11. it can.
  • FIG. 6 is a functional block diagram illustrating an example of the configuration of the communication terminal according to the first embodiment.
  • the communication terminal 20 illustrated in FIG. 6 corresponds to the communication terminal UE1 illustrated in FIG.
  • the communication terminal 20 includes a reception antenna 201, a separator 202, radio reception units 203 and 206, demodulation units 204 and 207, decoding units 205 and 208, a blind detection unit 209, and a communication control unit 21.
  • the communication control unit 21 includes a type determination unit 211, a D2D communication control unit 212, and a cellular communication control unit 213.
  • the communication terminal 20 includes a D2D communication unit 22, a cellular communication unit 23, a wireless transmission unit 225, and a transmission antenna 226.
  • the D2D communication unit 22 includes a D2D signal forming unit 215, an encoding unit 216, a modulation unit 217, and a mapping unit 218.
  • the cellular communication unit 23 includes a UL signal forming unit 221, an encoding unit 222, a modulation unit 223, and a mapping unit 224.
  • the separator 202 separates the radio signal received via the reception antenna 201 into a radio signal from the communication terminal UE2 and a radio signal from the base station BS1, and transmits the radio signal from the communication terminal UE2 to the radio reception unit. 203, and a radio signal from the base station BS1 is output to the radio reception unit 206.
  • the radio reception unit 203 performs down-conversion, analog-digital conversion, etc. on the radio signal from the communication terminal UE2, obtains a baseband signal, and outputs it to the demodulation unit 204.
  • Demodulation section 204 performs demodulation processing on the baseband signal input from wireless reception section 203 and outputs the demodulated signal to decoding section 205.
  • the decoding unit 205 performs a decoding process on the signal input from the demodulation unit 204.
  • the data transmitted from the communication terminal UE2 is obtained by the decoding process in the decoding unit 205.
  • the radio reception unit 206 performs down-conversion, analog-digital conversion, etc. on the radio signal from the base station BS1 to obtain a baseband PDCCH signal and outputs it to the demodulation unit 207.
  • Demodulation section 207 performs demodulation processing on the PDCCH signal input from radio reception section 206 and outputs the demodulated PDCCH signal to decoding section 208.
  • the decoding unit 208 performs a decoding process on the PDCCH signal input from the demodulation unit 207.
  • a plurality of DCIs transmitted from the base station BS1 are obtained.
  • the plurality of DCIs include those addressed to the communication terminal 20 and those addressed to other communication terminals other than the communication terminal 20.
  • Each DCI is added with a CRC bit masked with a bit string indicating the ID of each communication terminal.
  • Decoding section 208 outputs the decoded bit string, that is, DCI to which the CRC bits are added, to blind detection section 209.
  • the blind detection unit 209 performs blind detection for each search unit in each of the search spaces SS0 to SS5 shown in FIG. 1 to detect the DCI addressed to the communication terminal 20, and uses the detected DCI as the type determination unit 211. Output to.
  • the type determination unit 211 determines the type of DCI detected by blind detection.
  • the type of DCI is D2D communication DCI or cellular communication DCI.
  • the type determination unit 211 determines whether the detected DCI is the DCI for D2D communication or the DCI for cellular communication based on the combination of the NDI value and the MCS value in the detected DCI.
  • the type determination unit 211 outputs the DCI input from the blind detection unit 209 to the D2D communication control unit 212.
  • the type determination unit 211 determines that the detected DCI is the DCI for cellular communication
  • the type determination unit 211 outputs the DCI input from the blind detection unit 209 to the cellular communication control unit 213. That is, D2D communication DCI is input to the D2D communication control unit 212, and cellular communication DCI is input to the cellular communication control unit 213. Details of the determination processing in the type determination unit 211 will be described later.
  • the D2D communication control unit 212 notifies the mapping unit 218 of the RA result indicated in the RA field of the DCI for D2D communication. In addition, when the DCI is input from the type determining unit 211, the D2D communication control unit 212 issues a signal formation instruction to the D2D signal forming unit 215.
  • the D2D signal formation unit 215 Upon receiving a signal formation instruction from the D2D communication control unit 212, the D2D signal formation unit 215 converts user data addressed to the communication terminal UE2 into a predetermined signal format for D2D communication to form a D2D signal, and the formed D2D signal The data is output to the encoding unit 216.
  • Encoder 216 encodes the D2D signal and outputs the encoded D2D signal to modulator 217.
  • Modulation section 217 modulates the encoded D2D signal and outputs the modulated D2D signal to mapping section 218.
  • the mapping unit 218 maps the D2D signal to the wireless communication resource indicated by the RA result notified from the D2D communication control unit 212 and outputs the D2D signal to the wireless transmission unit 225.
  • the cellular communication control unit 213 notifies the mapping unit 224 of the RA result indicated in the RA field of the DCI for cellular communication. In addition, when the DCI is input from the type determination unit 211, the cellular communication control unit 213 issues a signal formation instruction to the UL signal formation unit 221.
  • the UL signal forming unit 221 When the UL signal forming unit 221 receives a signal forming instruction from the cellular communication control unit 213, the UL signal forming unit 221 converts the user data addressed to the base station BS1 into a predetermined signal format of the UL signal to form a UL signal, and the formed UL signal The data is output to the encoding unit 222.
  • Encoder 222 encodes the UL signal and outputs the encoded UL signal to modulator 223.
  • Modulation section 223 modulates the encoded UL signal, and outputs the modulated UL signal to mapping section 224.
  • the mapping unit 224 maps the UL signal to the radio communication resource indicated by the RA result notified from the cellular communication control unit 213, and outputs the UL signal to the radio transmission unit 225.
  • the wireless transmission unit 225 performs digital-analog conversion, up-conversion, and the like on the baseband D2D signal and the baseband UL signal to obtain each wireless signal, and transmits each wireless signal to the communication terminal via the transmission antenna 226. It transmits to UE2 and base station BS1, respectively.
  • FIG. 7 is a diagram for explaining operations of the base station and the communication terminal according to the first embodiment.
  • FIG. 7 shows an example of a combination of the NDI value and the MCS value in the format 0 DCI (DCI_f0).
  • the base station 10 changes the combination of the NDI value and the MCS value to the following first specific combination in the format 0 DCI.
  • This first specific combination is, for example, the following combinations A and B.
  • the NDI value is “0” (new)
  • the MCS value is any value from 0 to 28.
  • the NDI value is “1” (retransmission)
  • the MCS value is any one of 29 to 31.
  • the base station 10 changes the combination of the NDI value and the MCS value to the following second specific combination in the format 0 DCI.
  • This second specific combination is, for example, the following combinations C and D.
  • the NDI value is “0” (new)
  • the MCS value is any one of 29 to 31.
  • the combination D the NDI value is “1” (retransmission)
  • the MCS value is any value from 0 to 28.
  • This second specific combination is a new combination that is not defined in the current LTE, and is a combination different from the first specific combination. That is, the second specific combination is a combination other than the first specific combination.
  • the D2D communication DCI forming unit 101 sets the D2D communication RA result in the RA field of the DCI having the second specific combination to form the D2D communication DCI.
  • the cellular communication DCI forming unit 104 sets the cellular communication RA result in the RA field of the DCI having the first specific combination to form the cellular communication DCI.
  • the type determination unit 211 determines whether the blind detected DCI is the DCI for cellular communication or the DCI for D2D communication between the NDI value and the MCS value in the blind detected DCI. Judgment based on the combination.
  • the blind detected DCI is format 0 DCI.
  • the type determining unit 211 determines that the blindly detected DCI is the DCI for cellular communication when the combination of the NDI value and the MCS value is the first specific combination. .
  • the type determining unit 211 determines that the blindly detected DCI is the DCI for D2D communication. To do.
  • DCIs of the same format 0 can be selectively used for the DCI for cellular communication and the DCI for D2D communication according to the combination of the NDI value and the MCS value.
  • MCS value of the DCI for D2D communication does not necessarily indicate the MCS level.
  • FIG. 8 is a flowchart for explaining processing of the communication terminal according to the first embodiment. This flowchart is started when DCI detected blind is input to the type determination unit 211.
  • the type determining unit 211 determines whether or not the NDI value is “0” (new) in the blindly detected DCI (step S11).
  • step S11 determines whether the MCS value is any of 0 to 28 in the blindly detected DCI. (Step S12).
  • the type determination unit 211 performs the blind detection in the DCI. It is determined whether or not the MCS value is any of 29 to 31 (step S15).
  • the UL signal forming unit 221 uses the UL signal as the UL signal. Then, a new data signal is formed to the base station BS1 (step S13).
  • the UL signal forming unit 221 uses the UL signal as the UL signal. Then, a retransmission data signal to the base station BS1 is formed (step S16).
  • step S11: Yes When the NDI value is “0” (new) (step S11: Yes) and the MCS value is not any of 0 to 28, that is, any of 29 to 31 (step S12: No)
  • the D2D signal forming unit 215 forms a data signal to the communication terminal UE2 (step S14).
  • the D2D signal forming unit 215 forms a data signal to the communication terminal UE2 (step S14).
  • the communication system 1 includes the base station BS1, the communication terminal UE1, and the communication terminal UE2.
  • the communication terminal UE1 can perform cellular communication with the base station BS1, but can perform D2D communication with the communication terminal UE2 without going through the base station BS1.
  • the base station BS1 notifies the RA result to the communication terminal UE1 using DCI including the RA field, the NDI field, and the MCS field.
  • the base station BS1 sets the combination of the NDI value and the MCS value as the first specific combination. Further, when the base station BS1 notifies the communication terminal UE1 of the RA result for D2D communication using the RA field, the combination of the NDI value and the MCS value is different from the first specific combination.
  • the communication terminal UE1 detects DCI from the base station BS1.
  • the communication terminal UE1 performs cellular communication with the base station BS1 according to the RA result indicated in the RA field.
  • the communication terminal UE1 determines that the combination of the NDI value and the MCS value is the second specific combination in the detected DCI, the communication terminal UE1 performs D2D communication with the communication terminal UE2 according to the RA result indicated in the RA field. .
  • the base station 10 can communicate the RA result with the base station 10 using DCI including the RA field, the NDI field, and the MCS field, and can perform D2D communication with the communication terminal UE2. 20 is notified.
  • the base station 10 includes a cellular communication DCI forming unit 104 and a D2D communication DCI forming unit 101.
  • the cellular communication DCI forming unit 104 notifies the communication terminal 20 of the cellular communication RA result using the RA field
  • the DCI forming unit 104 forms a DCI in which the combination of the NDI value and the MCS value is the first specific combination. .
  • the D2D communication DCI forming unit 101 notifies the communication terminal 20 of the D2D communication RA result using the RA field, the combination of the NDI value and the MCS value is different from the first specific combination.
  • the DCI is formed as a specific combination of the two.
  • the communication terminal 20 can perform cellular communication with the base station 10 that notifies the RA result using DCI including the RA field, the NDI field, and the MCS field, but does not pass through the base station 10.
  • UE2 and D2D communication are possible.
  • the communication terminal 20 includes a blind detection unit 209, a type determination unit 211, a cellular communication unit 23, and a D2D communication unit 22.
  • the blind detection unit 209 detects DCI addressed to the communication terminal 20.
  • the type determination unit 211 determines a combination of the NDI value and the MCS value in the detected DCI.
  • the cellular communication unit 23 performs cellular communication with the base station 10 according to the RA result indicated in the RA field.
  • the D2D communication unit 22 communicates with the communication terminal UE2 according to the RA result indicated in the RA field. D2D communication.
  • DCI adopting an existing format (for example, format 0) is diverted to DCI for D2D communication, and the RA result for D2D communication is used as communication terminal UE1. (Communication terminal 10) can be notified. Further, if the DCI adopting the existing format is diverted to the DCI for D2D communication, the format size can be made the same between the DCI for cellular communication and the DCI for D2D communication. This eliminates the need to prepare a new search space for DCI in a new format for D2D communication. Therefore, the maximum number of blind detections in one subframe at the communication terminal UE1 is the same as the conventional method ( For example, 44 times).
  • the communication terminal UE1 determines whether the detected DCI is the DCI for cellular communication or the DCI for D2D communication. Judgment can be made with certainty.
  • the first specific combination is a combination of the NDI value “0” (new data) and the MCS value “0 to 28”, or the NDI value “1” (retransmission data). , MCS value “29 to 31”.
  • the second specific combination is a combination of the NDI value “1” (retransmission data) and the MCS value “0 to 28”, or the NDI value “0” (new data) and the MCS value “29 to 31”. ”.
  • a combination that does not exist in the existing first specific combination among a plurality of types of combinations of the NDI value and the MCS value can be set as a new second specific combination.
  • a second specific combination different from the specific combination can be easily defined.
  • Example 2 ⁇ Configuration of communication system> Since the configuration of the communication system of the second embodiment is the same as that of the first embodiment, description thereof is omitted.
  • FIG. 9 is a functional block diagram illustrating an example of the configuration of the base station according to the second embodiment.
  • the base station 30 shown in FIG. 9 corresponds to the base station BS1 shown in FIG.
  • the base station 30 includes a DCI forming unit 31, PDCCH signal generation units 102 and 105, a mapping unit 305, a wireless transmission unit 108, and a transmission antenna 109.
  • the DCI forming unit 31 includes a D2D communication DCI forming unit 301 and a cellular communication DCI forming unit 302.
  • the base station 30 includes a reception antenna 111, a wireless reception unit 112, and a user data acquisition unit 113.
  • the D2D communication RA result is input to the D2D communication DCI forming unit 301.
  • the D2D communication DCI forming unit 301 transmits next time among the subframes 0 to 9 that are sequentially transmitted. It is determined whether or not there is a free resource in the subframe #k.
  • the D2D communication DCI forming unit 301 sequentially makes this determination for the subframes 0 to 9.
  • the D2D communication DCI forming unit 301 notifies the mapping unit 305 of the subframe #x in which there is an available resource, forms the D2D communication DCI indicating the D2D communication RA result, and forms the formed D2D communication DCI. Is output to the PDCCH signal generation unit 102.
  • the cellular communication RA result is input to the cellular communication DCI forming unit 302.
  • the cellular communication DCI forming unit 302 transmits the next time among the subframes 0 to 9 sequentially transmitted. It is determined whether or not there is a free resource in the subframe #k. Cellular communication DCI forming section 302 sequentially makes this determination for subframes 0-9. Then, the cellular communication DCI forming unit 302 notifies the mapping unit 305 of the subframe #y in which there is a free resource, forms a cellular communication DCI indicating the cellular communication RA result, and forms the formed cellular communication DCI. Is output to the PDCCH signal generation unit 105.
  • the cellular communication DCI forming unit 302 notifies the D2D communication DCI forming unit 301 of the subframe #y in which there is an available resource.
  • the D2D communication DCI forming unit 301 determines whether or not the subframe #x and the subframe #y match, that is, whether or not the D2D communication DCI and the cellular communication DCI are transmitted in the same subframe. to decide. Then, the D2D communication DCI forming unit 301 forms the flag shown in FIG. 10 and adds it to the D2D communication DCI according to the result of this determination.
  • FIG. 10 is a diagram illustrating a format example of the DCI for D2D communication according to the second embodiment.
  • the D2D communication DCI forming unit 301 determines that the D2D communication DCI and the cellular communication DCI are transmitted in different subframes.
  • the DCI for D2D communication 301 determines that the DCI for D2D communication and the DCI for cellular communication are transmitted in different subframes, that is, in the subframe in which the DCI for D2D communication is transmitted, the DCI for cellular communication If it is determined that is not transmitted, the value forms a '0' flag.
  • the D2D communication DCI forming unit 301 determines that the D2D communication DCI and the cellular communication DCI are transmitted in the same subframe.
  • the D2D communication DCI forming unit 301 determines that the D2D communication DCI and the cellular communication DCI are transmitted in the same subframe, that is, the cellular communication DCI is also transmitted in the subframe in which the D2D communication DCI is transmitted. If it is determined that it is transmitted, a flag having a value of “1” is formed.
  • the subframe corresponds to one unit period in which DCI is arranged. For this reason, the flag formed in accordance with the determination result of whether or not the D2D communication DCI and the cellular communication DCI are transmitted in the same subframe is present in the arrangement period of the D2D communication DCI. This corresponds to predetermined information indicating whether or not to do so.
  • mapping unit 305 uses the search unit for D2D communication in the search unit of any one of search spaces SS6 to SS9 shown in FIG.
  • the PDCCH signal is mapped and output to radio transmission section 108.
  • the mapping 305 is for cellular communication in the search unit of any one of the search spaces SS0 to SS5 shown in FIG. 2 in the subframe #y notified from the DCI forming unit 302 for cellular communication.
  • the PDCCH signal is mapped and output to radio transmitting section 108.
  • the radio transmission unit 108 performs digital-analog conversion, up-conversion, and the like on the baseband PDCCH signal to obtain a radio signal, and transmits the radio signal to the communication terminal UE1 via the transmission antenna 109. Through the transmission of this radio signal, the DCI for D2D communication and the DCI for cellular communication are notified to the communication terminal UE1. Further, as shown in FIG. 10 above, since the flag taking the value of “0” or “1” is added to the DCI for D2D communication, the transmission of this radio signal causes the DCI for D2D communication and the flag to be changed. The communication terminal UE1 is notified as a unit.
  • FIG. 11 is a functional block diagram illustrating an example of the configuration of the communication terminal according to the second embodiment.
  • a communication terminal 40 illustrated in FIG. 11 corresponds to the communication terminal UE1 illustrated in FIG.
  • the communication terminal 40 includes a reception antenna 201, a separator 202, radio reception units 203 and 206, demodulation units 204 and 207, decoding units 205 and 208, a buffer 401, and a blind detection unit 45.
  • the blind detection unit 45 includes a blind detection unit 402 for D2D communication and a blind detection unit 403 for cellular communication.
  • the communication terminal 40 includes a communication control unit 46, a D2D communication unit 22, a cellular communication unit 23, a wireless transmission unit 225, and a transmission antenna 226.
  • the communication control unit 46 includes a D2D communication control unit 411 and a cellular communication control unit 412.
  • the D2D communication unit 22 includes a D2D signal forming unit 215, an encoding unit 216, a modulation unit 217, and a mapping unit 218.
  • the cellular communication unit 23 includes a UL signal forming unit 221, an encoding unit 222, a modulation unit 223, and a mapping unit 224.
  • the decoding unit 208 performs a decoding process on the PDCCH signal input from the demodulation unit 207.
  • a plurality of DCIs transmitted from the base station BS1 are obtained.
  • the plurality of DCIs include those addressed to the communication terminal 40 and those addressed to other communication terminals other than the communication terminal 40.
  • Each DCI is added with a CRC bit masked with a bit string indicating the ID of each communication terminal.
  • the decoding unit 208 outputs the decoded bit string, that is, the DCI to which the CRC bits are added, to the buffer 401.
  • Buffer 401 temporarily stores a plurality of DCIs output from decoding section 208 for each subframe of subframes 0-9.
  • the blind detection unit 402 for D2D communication refers to the buffer 401 and performs blind detection for each search unit in each of the search spaces SS6 to SS9 (FIG. 2) for each subframe of the subframes 0 to 9.
  • the D2D communication blind detection unit 402 When detecting the D2D communication DCI addressed to the communication terminal 40 by blind detection, the D2D communication blind detection unit 402 acquires a flag added to the detected D2D communication DCI and detects the detected D2D communication DCI. Is output to the D2D communication control unit 411. At this time, the D2D communication blind detection unit 402 outputs the acquired flag to the cellular communication blind detection unit 403, and also detects the subframe #a in which the D2D communication DCI to which the flag was added is detected. The cellular communication blind detection unit 403 is notified in association with the flag.
  • the D2D communication blind detection unit 402 detects the subframe #b in which the D2D communication DCI is not detected as the blind detection for the cellular communication. Notification to the unit 403. Since no flag is acquired when DCI for D2D communication is not detected, no flag is associated with subframe #b.
  • the blind detection unit for cellular communication 403 determines whether or not to perform blind detection of DCI for cellular communication in the subframe #a based on the flag value input from the blind detection unit 402 for D2D communication.
  • cellular communication blind detection unit 403 determines that the DCI blind detection for cellular communication is not performed in subframe #a. Therefore, cellular communication blind detection section 403 does not perform blind detection of DCI for cellular communication in subframe #a when the value of the flag is “0”.
  • cellular communication blind detection unit 403 determines that blind detection of cellular communication DCI is performed in subframe #a. . Therefore, when the flag value is “1”, the cellular communication blind detection unit 403 refers to the buffer 401 and performs the blind detection of the DCI for cellular communication in the subframe #a. Then, the blind detection unit for cellular communication 403 detects the DCI for cellular communication addressed to the communication terminal 40 by blind detection, and outputs the detected DCI for cellular communication to the cellular communication control unit 412.
  • the cellular communication blind detection unit 403 refers to the buffer 401 for the subframe #b not associated with the flag, and performs the blind detection of the DCI for cellular communication in the subframe #b.
  • the cellular communication blind detection unit 403 detects the cellular communication DCI addressed to the communication terminal 40 by blind detection, the cellular communication blind detection unit 403 outputs the detected cellular communication DCI to the cellular communication control unit 412.
  • the D2D communication control unit 411 notifies the mapping unit 218 of the RA result indicated in the RA field of the DCI for D2D communication. In addition, when the D2D communication DCI is input from the D2D communication blind detection unit 402, the D2D communication control unit 411 issues a signal formation instruction to the D2D signal formation unit 215.
  • the cellular communication control unit 412 notifies the mapping unit 224 of the RA result indicated in the RA field of the DCI for cellular communication. In addition, when the cellular communication control unit 412 receives the DCI for cellular communication from the blind detection unit 403 for cellular communication, the cellular communication control unit 412 issues a signal formation instruction to the UL signal forming unit 221.
  • FIG. 12 is a diagram for explaining operations of the base station and the communication terminal according to the second embodiment.
  • the value of the flag added to the DCI for D2D communication is set to “0”. To do. Therefore, in the subframe # 0, the communication terminal 40 from which the D2D communication DCI is detected recognizes that there is no cellular communication DCI in the subframe # 0 because the flag value is “0”. Therefore, in subframe # 0, communication terminal 40 does not perform blind detection for DCI for cellular communication.
  • the base station 30 transmits DCI for cellular communication, but does not transmit DCI for D2D communication. Therefore, in the subframe # 1, since the communication terminal 40 does not detect the DCI for D2D communication, the communication terminal 40 performs blind detection on the DCI for cellular communication.
  • the base station 30 when transmitting both the D2D communication DCI and the cellular communication DCI, the base station 30 sets the value of the flag added to the D2D communication DCI to “1”. Therefore, in the subframe # 2, the communication terminal 40 from which the D2D communication DCI is detected recognizes that the cellular communication DCI exists in the subframe # 0 because the flag value is “1”. Therefore, in subframe # 0, communication terminal 40 performs blind detection on DCI for cellular communication.
  • the flag and the DCI for D2D communication it is not always necessary to integrate the flag by adding the flag to the DCI for D2D communication.
  • the flag and the DCI for D2D communication may be integrated by forming the DCI for D2D communication including the flag.
  • FIG. 13 is a flowchart for explaining processing of the base station according to the second embodiment. This flowchart is started when the power of the base station 30 is turned on.
  • the DCI forming unit 31 sets k to an initial value “10” (step S101).
  • the DCI forming unit 31 determines whether there is a D2D communication RA result to be transmitted to the communication terminal 40 (step S103).
  • the DCI forming unit 31 determines whether or not there is a free resource capable of transmitting the D2D communication DCI in the subframe #k. (Step S104).
  • step S104 If there is an empty resource in the subframe #k (step S104: Yes), the DCI forming unit 31 determines whether there is a cellular communication RA result to be transmitted to the communication terminal 40 (step S105).
  • step S105 When there is an RA result for cellular communication to be transmitted to the communication terminal 40 (step S105: Yes), the DCI forming unit 31 determines whether there is a free resource capable of transmitting the DCI for cellular communication in the subframe #k. (Step S106).
  • step S106 When there is an empty resource in the subframe #k (step S106: Yes), the DCI forming unit 31 sets a flag to “1” (step S108), and the wireless transmission unit 108 sets the DCI for cellular communication to the subframe #. k is transmitted (step S109).
  • step S105 If there is no cellular communication RA result (step S105: No), or if there is no free resource that can transmit cellular communication DCI in subframe #k (step S106: No), the DCI forming unit 31 sets a flag. “0” is set (step S107).
  • the wireless transmission unit 108 transmits D2D communication DCI in subframe #k (step S110). Thereafter, the DCI forming unit 31 increments k by 1 (step S111), and the process returns to step S102.
  • the cellular communication DCI and the D2D communication DCI having a flag value of “1” Are transmitted in the same subframe #k.
  • step S103 When there is no RA result for D2D communication (step S103: No), or when there is no free resource that can transmit DCI for D2D communication in subframe #k (step S104: No), the DCI forming unit 31 is a communication terminal It is determined whether there is a cellular communication RA result to be transmitted to 40 (step S115).
  • the DCI forming unit 31 determines whether or not there is a free resource capable of transmitting the cellular communication DCI in the subframe #k. (Step S116).
  • radio transmission section 108 transmits cellular communication DCI in subframe #k (step S117). Thereafter, the DCI forming unit 31 increments k by 1 (step S118), and the process returns to step S102.
  • step S115 When there is no cellular communication RA result (step S115: No), or when there is no free resource capable of transmitting the DCI for cellular communication in the subframe #k (step S116: No), the DCI forming unit 31 k is incremented by 1 (step S118), and the process returns to step S102.
  • FIG. 14 is a flowchart for explaining processing of the communication terminal according to the second embodiment. This flowchart is started when the communication terminal 40 is turned on.
  • the blind detection unit 45 sets k to the initial value “10” (step S201).
  • the blind detection unit 45 performs blind detection on the DCI for D2D communication in the subframe #k (step S203).
  • the blind detection unit 45 determines whether the value of the D2D communication DCI flag is “1” (step S205). .
  • step S205 When the value of the flag is “1” (step S205: Yes), the blind detection unit 45 performs the blind detection on the DCI for cellular communication in the subframe #k to detect the DCI for cellular communication addressed to its own terminal (Ste S206). Then, the cellular communication control unit 412 and the cellular communication unit 23 perform transmission processing for cellular communication (step S207).
  • step S205 When the flag value is not “1”, that is, when the flag value is “0” (step S205: No), the processing of step S206 and step S207 is not performed, and the D2D communication control unit 411 and the D2D communication unit 22 Then, transmission processing for D2D communication is performed (step S208). That is, when the flag value is “0”, blind detection for DCI for cellular communication is not performed in subframe #k.
  • the blind detection unit 45 increments k by 1 (step S209), and the process returns to step S202.
  • step S204 When the DCI for D2D communication addressed to the terminal is not detected in step S204 (step S204: No), the blind detection unit 45 performs blind detection for the DCI for cellular communication in the subframe #k (step S215).
  • step S216 when the DCI for cellular communication addressed to the terminal itself is detected by the blind detection in step S215 (step S216: Yes), the cellular communication control unit 412 and the cellular communication unit 23 perform transmission processing for cellular communication ( Step S217).
  • the blind detection unit 45 increments k by 1 (step S218), and the process returns to step S202.
  • step S216 If the DCI for cellular communication addressed to the terminal is not detected in step S216 (step S216: No), the blind detection unit 45 increments k by 1 (step S218), and the process returns to step S202.
  • the communication system 1 includes the base station BS1, the communication terminal UE1, and the communication terminal UE2.
  • the communication terminal UE1 can perform cellular communication with the base station BS1, but can perform D2D communication with the communication terminal UE2 without going through the base station BS1.
  • the base station BS1 has a flag indicating whether the D2D communication DCI for notifying the D2D communication RA result and the cellular communication DCI for notifying the cellular communication RA result are present in the transmission subframe of the D2D communication DCI. Are transmitted as a unit to the communication terminal UE1.
  • the communication terminal UE1 detects the DCI for D2D communication notified to the communication terminal UE1. Then, based on the flag integrated with the DCI for D2D communication, the communication terminal UE1 determines whether or not to detect the DCI for cellular communication in the transmission subframe of the DCI for D2D communication.
  • the base station 30 notifies the RA result to the communication terminal UE1 capable of D2D communication with the communication terminal UE2 while being able to communicate with the base station 30.
  • the base station 30 includes a DCI forming unit 31 and a wireless transmission unit 108.
  • the DCI forming unit 31 indicates whether or not the D2D communication DCI for notifying the D2D communication RA result and the cellular communication DCI for notifying the cellular communication RA result are present in the transmission subframe of the D2D communication DCI. And form.
  • the radio transmission unit 108 transmits the D2D communication DCI and the flag together to the communication terminal UE1.
  • the communication terminal 40 can communicate with the base station 30 that notifies the RA result, but can perform D2D communication with the communication terminal UE2 without passing through the base station 30.
  • the communication terminal 40 includes a D2D communication blind detection unit 402 and a cellular communication blind detection unit 403.
  • the D2D communication blind detection unit 402 detects the D2D communication DCI that notifies the communication terminal 40 of the D2D communication RA result.
  • the cellular communication blind detection unit 403 uses the cellular communication DCI to notify the communication terminal 40 of the cellular communication RA result based on a flag indicating whether or not the cellular communication DCI exists in the transmission subframe of the DCI for D2D communication. It is determined whether or not to detect DCI in the transmission subframe of DCI for D2D communication. This flag is integrated with the DCI for D2D communication.
  • the communication terminal UE1 determines whether the DCI for cellular communication is present in each subframe based on the flag integrated with the DCI for D2D communication. Can be determined before blind detection. Therefore, the communication terminal UE1 can avoid without performing blind detection for the DCI for cellular communication in the subframe determined that the DCI for cellular communication does not exist. As a result, the maximum number of times of blind detection in a subframe where there is no DCI for cellular communication can be made smaller than the maximum number of times of blind detection in a subframe where there is DCI for cellular communication.
  • the maximum number of times of blind detection in one subframe Is 60 times as described above.
  • 44 unnecessary blind detections for DCI for cellular communication can be avoided, so the maximum number of blind detections is the above 16 times for DCI for D2D communication. . Therefore, according to the second embodiment, even when a new search space for DCI having a new format for D2D communication is prepared in performing D2D communication, the power consumption of the communication terminal UE1 when performing D2D communication is increased. Can be suppressed.
  • Example 3 ⁇ Configuration of base station and communication terminal> Since the configurations of the base station and the communication terminal according to the third embodiment are the same as those according to the second embodiment, the processes of the base station and the communication terminal will be described below with reference to FIGS.
  • the mapping unit 305 searches for any one of the search spaces SS6 to SS9 shown in FIG. 2 in the subframe #x notified from the DCI forming unit 301 for D2D communication.
  • a PDCCH signal for D2D communication is mapped to a space search unit and output to radio transmitting section 108.
  • the mapping 305 is for cellular communication in the search unit of any one of the search spaces SS0 to SS5 shown in FIG. 2 in the subframe #y notified from the DCI forming unit 302 for cellular communication.
  • the PDCCH signal is mapped and output to radio transmitting section 108.
  • the PDCCH signal generation units 102 and 105 encode the DCI at a lower coding rate as the downlink channel quality to the communication terminal UE1 decreases.
  • the PDCCH signal generation units 102 and 105 encode DCI according to the same parameter value representing the downlink channel quality. Accordingly, the size of the encoded DCI for D2D communication and the size of the DCI for cellular communication after encoding are the same.
  • mapping section 305 uses the same aggregation for both DCIs. Map to different search spaces. For example, when the mapping unit 305 maps the DCI for D2D communication to SS9 in FIG. 2 described above, the mapping unit 305 maps the DCI for cellular communication to SS3.
  • the aggregation levels of SS9 and SS3 are both “8”.
  • the communication terminal 40 further performs the following processing in addition to the processing in the second embodiment.
  • the blind detection unit for D2D communication 402 sets the aggregation level of the search space to which the detected DCI for D2D communication is mapped (hereinafter sometimes referred to as “D2D communication aggregation level”) from the following formulas (1) to Determine using (3).
  • Start position of each search unit L ⁇ Yk ⁇ mod ( NCCE, k / L) ⁇ + i (1)
  • Y k (A ⁇ Y k ⁇ 1 ) mod D (2)
  • Y ⁇ 1 n RNTI (3)
  • start position of each search unit is indicated by the CCE index number, and “L” is one of aggregation levels 1, 2, 4, and 8.
  • N CCE, k is the total number of DCI CCEs included in subframe k, “k” is any of subframe numbers 0 to 9, and “i” is the search space of aggregation level L. The number of search units included. “A” and “D” are mutually different integer values.
  • N RNTI is the ID number of the communication terminal and is used as the initial value Y ⁇ 1 of Y k .
  • the ID number of a communication terminal is assigned from the base station to the communication terminal in the process in which the communication terminal is connected to the base station and enters an active state (RRC Connected mode).
  • RRC Connected mode When the communication terminal is in an idle state or when the communication terminal is connected to another base station, the assigned ID number becomes invalid.
  • the decimal part In the calculation result of mod, the decimal part is rounded down.
  • the blind detection unit 402 for D2D communication can recognize the start position of the search unit to which the DCI for D2D communication detected by the blind detection is mapped. Therefore, the D2D communication blind detection unit 402 can determine the D2D communication aggregation level according to the above (1) to (3) from the recognized start position. Therefore, the D2D communication blind detection unit 402 notifies the cellular communication blind detection unit 403 of the D2D communication aggregation level.
  • the blind detection unit 403 for cellular communication performs blind detection only for search spaces having the same aggregation level as the D2D communication aggregation level notified from the blind detection unit 402 for D2D communication among SS0 to SS5 in FIG. I do. Therefore, for example, when the base station 30 maps the DCI for D2D communication to SS9 and maps the DCI for cellular communication to SS3, the blind detection unit 403 for cellular communication performs the search for SS3 and SS5 in the search space for cellular communication. Blind detection only. That is, the cellular communication blind detection unit 403 does not perform blind detection for SS0 to SS2 and SS4 in the search space for cellular communication.
  • the base station BS1 when mapping the DCI for cellular communication to the transmission subframe of the DCI for D2D communication, the base station BS1 (base station 30) maps each DCI as follows. That is, the base station BS1 has a second aggregation level that is the same as the aggregation level of the first search space to which the DCI for D2D communication is mapped among the plurality of search spaces included in the transmission subframe of the DCI for D2D communication. DCI mapping for cellular communication is performed in the search space.
  • the third embodiment compared with the second embodiment, an increase in power consumption of the communication terminal UE1 when performing D2D communication can be further suppressed.
  • FIG. 15 is a diagram illustrating a hardware configuration example of the base station.
  • the base stations 10 and 30 include a processor 10a, a memory 10b, a wireless communication module 10c, and a network interface module 10d as hardware components.
  • the processor 10a include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and an FPGA (Field Programmable Gate Array).
  • the base stations 10 and 30 may include an LSI (Large Scale Integrated circuit) including a processor 10a and peripheral circuits.
  • the memory 10b include RAM such as SDRAM, ROM, flash memory, and the like.
  • the wireless transmission unit 108, the transmission antenna 109, the reception antenna 111, and the wireless reception unit 112 are realized by the wireless communication module 10c.
  • the DCI forming units 11 and 31, the PDCCH signal generation units 102 and 105, the mapping units 107 and 305, and the user data acquisition unit 113 are realized by the processor 10a.
  • FIG. 16 is a diagram illustrating a hardware configuration example of the communication terminal.
  • the communication terminals 20 and 40 include a processor 20a, a memory 20b, and a wireless communication module 20c as hardware components.
  • the processor 20a include a CPU, DSP, FPGA, and the like.
  • the communication terminals 20 and 40 may include an LSI including the processor 20a and peripheral circuits.
  • the memory 20b include RAM such as SDRAM, ROM, flash memory, and the like.
  • the reception antenna 201, the separator 202, the wireless reception units 203 and 206, the wireless transmission unit 225, and the transmission antenna 226 are realized by the wireless communication module 20c.
  • the demodulation units 204 and 207, the decoding units 205 and 208, the blind detection units 209 and 45, the communication control units 21 and 46, the D2D communication unit 22, and the cellular communication unit 23 are realized by the processor 20a.
  • the buffer 401 is realized by the memory 20b.
  • a communication terminal may be called a wireless terminal, a mobile station, or a user terminal (UE).
  • the base station may also be called a radio base station, Base Station, eNodeB, or NodeB.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 D2D通信を行う際の通信端末の消費電力の増大を抑えることができる通信システム。この通信システム(1)は、基地局(BS1)と、第一の通信端末(UE1)と、第二の通信端末(UE2)とを有する。第一の通信端末(UE1)は、基地局(BS1)とセルラ通信が可能な一方で、基地局(BS1)を介さずに第二の通信端末(UE2)とD2D通信が可能である。基地局(BS1)は、RA(Resource Allocation)フィールドと、NDI(New Data Indicator)フィールドと、MCS(Modulation and Coding Scheme)フィールドとを含むDCI(Downlink Control Information)を用いて、RA結果を第一の通信端末(UE1)へ通知する。基地局(BS1)は、セルラ通信用RA結果をRAフィールドを用いて第一の通信端末(UE1)へ通知するときは、NDI値とMCS値との組合せを第一の特定の組合せとする。また、基地局(BS1)は、D2D通信用RA結果をRAフィールドを用いて第一の通信端末(UE1)へ通知するときは、NDI値とMCS値との組合せを、第一の特定の組合せと異なる第二の特定の組合せとする。

Description

通信システム、基地局及び通信端末
 本発明は、通信システム、基地局及び通信端末に関する。
 近年、携帯電話システムの一つであるセルラシステム等の無線通信システムにおいて、無線通信の更なる高速化・大容量化等を図るため、次世代の無線通信技術についての検討が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、「LTE(Long Term Evolution)」と呼ばれる通信規格の策定に続けて、LTEの無線通信技術をベースとして、更なる性能向上を図るために、「LTE-A(LTE-Advanced)」と呼ばれる通信規格についての検討が行われている。
 今後LTE-Aに導入される可能性があり、かつ、現在、基本的な技術検討が3GPPにおいて行われている通信技術の一つに、「D2D(Device to Device)通信」と呼ばれる通信端末間直接通信がある。従来のセルラ通信では、互いに近接する通信端末同士であっても基地局を介して通信を行うのに対し、D2D通信では、互いに近接する通信端末同士が基地局を介さずに直接通信を行う。D2D通信が可能になることで、例えば、災害時等において基地局の機能が停止して基地局を介した通信が行えなくなった場合でも、通信端末同士で通信を行うことが可能となる。
 D2D通信についての検討において、セルラ通信の上りリンクの無線リソースをセルラ通信と共用してD2D通信を行うことが検討されている。つまり、D2D通信を、セルラ通信の現状の上りリンクの無線周波数帯を利用して行うことが検討されている。また、セルラ通信及びD2D通信の双方を行うことが可能な通信端末の導入も検討されている。よって、セルラ通信の上りリンクの無線周波数帯を利用してD2D通信を行う場合、基地局は、同一の無線周波数帯において、1つの通信端末に対し、セルラ通信用の上りリンクの無線リソースの割当と、D2D通信用の無線リソースの割当との双方を行うことになる。
 ここで、現状のLTEにおいて基地局から通信端末へ送信されるレイヤ1制御情報は「DCI(Downlink Control Information)」と呼ばれ、DCIは、その使用目的、つまり、制御情報の内容に応じて、フォーマット0,1,1A,1B,1C,1D,2,2A,2B,2C,2D,3,3A,4のうちの何れかのフォーマットを採る。例えば、通信端末が基地局へ信号を送信するために使用する無線リソースの割当結果を基地局から通信端末へ通知するためのDCIのフォーマットは、フォーマット0または4を採る。
 また、DCIは、無線物理チャネルの一つである「PDCCH(Physical Downlink Control Channel)」を用いて基地局から通信端末へ送信される。各PDCCHは、1つ又は連続する複数のCCE(Control Channel Element)で構成される無線リソース領域にマッピングされる。また、各PDCCHは、そのサイズに応じて、フォーマット0~3の何れかを採る。フォーマット0のPDCCHは「1CCE」に相当する「N」のサイズを採り、フォーマット1のPDCCHは「2CCE」に相当する「2N」のサイズを採る。また、フォーマット2のPDCCHは「4CCE」に相当する「4N」のサイズを採り、フォーマット3のPDCCHは「8CCE」に相当する「8N」のサイズを採る。つまり、PDCCHのサイズN,2N,4N,8Nは、CCEの連結数1,2,4,8にそれぞれ相当し、CCEの連結数は「アグリゲーションレベル(Aggregation Level)」と呼ばれる。
 DCIは、下りリンクの伝搬路品質に応じた符号化率で符号化され、下りリンクの伝搬路品質が低下するほど、より低い符号化率でDCIが符号化される。よって、符号化後のDCIのサイズは、下りリンクの伝搬路品質が低下するほど、より大きくなる。一方で、符号化後のDCIをPDCCHを用いて送信する際には、符号化後のDCIのサイズが、PDCCHのN~8Nの4つのサイズのうちの何れかに一致するようにレートマッチングによって調節される。つまり、下りリンクの伝搬路品質が低下するほど、より大きいサイズのPDCCHがDCIの送信に用いられ、符号化後のDCIのサイズに応じて、アグリゲーションレベルは、1,2,4,8の中から選択される。なお、CCEの変調方式は、下りリンクの伝搬路品質にかかわらず、QPSK(Quadrature Phase Shift Keying)で一定である。
 また、各通信端末に対するPDCCHがマッピングされる無線リソース領域は「サーチスペース(Search Space)」と呼ばれ、サーチスペースは、図1に示すように、アグリゲーションレベルごとに決められている。図1は、従来のサーチスペースの説明に供する図である。図1において、「SS」はサーチスペースを示し、「AL」はアグリゲーションレベルを示す。現状のLTEでは、セルラ通信用として、図1に示すように、アグリゲーションレベルに応じて、SS0~SS5の6つのサーチスペースが規定されている。サーチスペースSS0~SS5のうち、SS0~SS3の4つのサーチスペースは、各通信端末毎に固有のサーチスペースであり、SS4~SS5の2つのサーチスペースは、全通信端末に共通のサーチスペースである。
 図1において、AL=1のSS0は、フォーマット0のPDCCHをマッピング可能な6つのサーチ単位から構成され、各サーチ単位は、1CCEに相当する。AL=2のSS1は、フォーマット1のPDCCHをマッピング可能な6つのサーチ単位から構成され、各サーチ単位は、2CCEに相当する。AL=4のSS2は、フォーマット2のPDCCHをマッピング可能な2つのサーチ単位から構成され、各サーチ単位は、4CCEに相当する。AL=8のSS3は、フォーマット3のPDCCHをマッピング可能な2つのサーチ単位から構成され、各サーチ単位は、8CCEに相当する。AL=4のSS4は、フォーマット2のPDCCHをマッピング可能な4つのサーチ単位から構成され、各サーチ単位は、4CCEに相当する。AL=8のSS5は、フォーマット3のPDCCHをマッピング可能な2つのサーチ単位から構成され、各サーチ単位は、8CCEに相当する。
 また、符号化前のDCIには、DCIの送信先の通信端末を識別するために、通信端末のIDを示す16ビット長のビット列でマスキングされた16ビット長のCRC(Cyclic Redundancy Check)ビットが付加される。そして、各通信端末は、復号後のビット列のCRCビット部分を自端末のIDでデマスキングすることによりCRCを行って自端末宛てのDCIを検出する。すなわち、各通信端末は、自端末のIDによるデマスキングによるCRCが成功したときに、受信したDCIが自端末宛てのDCIであると判断する。このような自端末のIDを用いたCRCによるDCIの検出は「ブラインド検出」と呼ばれることがある。
 ここで、1サブフレームには、SS4と、SS5と、各通信端末毎にSS0~SS3とが含まれる。そして、通信端末は、各サーチスペースを構成するサーチ単位毎にブラインド検出を行う。図1に示すように、SS0~SS5における全サーチ単位の合計数は22個である。また、符号化前のDCIのサイズはフォーマット毎に異なり、2種類のサイズのDCIが存在するため、通信端末は、各サーチ単位において、2種類のサイズのDCIの各々に対してブラインド検出を行う。よって、1サブフレームにおいて行われるブラインド検出の回数は、1通信端末あたり、最大で22回×2=44回となる。
3GPP TR 36.913, "Requirements for further advancements for Evolved Universal Terrestrial Radio Access (E-UTRA) (LTE-Advanced)", V9.0.0, Release 9, December 2009. 3GPP TR36.912, "Feasibility study for further advancements for E-UTRA (LTE-Advanced)", V9.3.0, Release 9, June 2010. 3GPP TS36.321, "Medium Access Control (MAC) protocol specification", V10.2.0, Release 10, June 2011. 3GPP TS36.133, "Requirements for support of radio resource management", V10.3.0, Release 10, June 2011. 3GPP TS36.213, "Physical layer procedures", V10.2.0, Release 10, June 2011. 3GPP TS36.300, "Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN)", V10.4.0, Release 10, June 2011.
 ここで、現状のLTEには、D2D通信用の無線リソースの割当結果を基地局から通信端末へ通知するためのDCIのフォーマットは存在しない。そこで、D2D通信用の無線リソースの割当結果を通知するための新たなフォーマットのDCIを導入することが考えられる。しかし、D2D通信用の新たなフォーマットのDCIの導入は、通信端末におけるブラインド検出の回数の増加を招く。
 図2は、課題の説明に供する図である。図2において、「SS」はサーチスペースを示し、「AL」はアグリゲーションレベルを示し、括弧内の数字は、各サーチスペースを構成するサーチ単位の数を示す。上記図1で説明したように、セルラ通信用のサーチ単位は、1通信端末あたり、22個存在する。また、従来は2種類のサイズのDCIが存在するため、セルラ通信用のブラインド検出の回数は、上記のように、1通信端末あたり、1サブフレーム内で、最大で44回となる。これに対し、例えば、各通信端末毎に用意された従来のSS0~SS3に倣って、D2D通信用の新たなフォーマットのDCIのためにSS6~SS9を用意すると、D2D通信用のブラインド検出の回数は、1通信端末あたり、1サブフレーム内で、最大で、6+6+2+2=16回となる。よって、セルラ通信及びD2D通信の双方を行うことが可能な通信端末では、1サブフレーム内で、最大で44回+16回=60回のブラインド検出が行われることになる。つまり、ブラインド検出にかかる処理量が、従来よりも約36%増加することになる。ブラインド検出の回数の増加は通信端末の消費電力の増大につながるため、できるだけブラインド検出の回数を減少させることが好ましい。
 開示の技術は、上記に鑑みてなされたものであって、D2D通信を行う際の通信端末の消費電力の増大を抑えることを目的とする。
 開示の態様では、通信システムは、基地局と、第一通信端末と、前記基地局と通信可能な一方で、前記基地局を介さずに前記第一通信端末と直接通信可能な第二通信端末と、を有する。前記基地局は、第一領域と、第二領域と、第三領域とを含む制御情報を用いて、無線リソースの割当結果を前記第二通信端末へ通知する基地局である。また、前記基地局は、前記基地局と前記第二通信端末との間の通信に割り当てた第一無線リソースの第一割当結果を前記第一領域を用いて前記第二通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを第一の特定の組合せとする。また、前記基地局は、前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第二無線リソースの第二割当結果を前記第一領域を用いて前記第二通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを、前記第一の特定の組合せと異なる第二の特定の組合せとする。前記第二通信端末は、前記制御情報を検出する。また、前記第二通信端末は、検出した前記制御情報において前記第二領域の値と前記第三領域の値との組合せが前記第一の特定の組合せであると判断したときは、前記第一領域に示された前記第一割当結果に従って前記基地局と通信する。また、前記第二通信端末は、検出した前記制御情報において前記第二領域の値と前記第三領域の値との組合せが前記第二の特定の組合せであると判断したときは、前記第一領域に示された前記第二割当結果に従って前記第一通信端末と直接通信する。
 また、開示の態様では、通信システムは、基地局と、第一通信端末と、前記基地局と通信可能な一方で、前記基地局を介さずに前記第一通信端末と直接通信可能な第二通信端末と、を有する。前記基地局は、前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第一無線リソースの第一割当結果を前記第二通信端末へ通知する第一の制御情報と、前記基地局と前記第二通信端末との間の通信に割り当てた第二無線リソースの第二割当結果を前記第二通信端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す所定の情報とを一体として前記第二通信端末へ送信する。前記第二通信端末は、前記第一の制御情報を検出し、前記第一の制御情報と一体となっている前記所定の情報に基づいて、前記第二の制御情報に対する検出を前記配置期間において行うか否かを判断する。
 開示の態様によれば、D2D通信を行う際の通信端末の消費電力の増大を抑えることができる。
図1は、従来のサーチスペースの説明に供する図である。 図2は、課題の説明に供する図である。 図3は、実施例1の通信システムの構成の一例を示す図である。 図4は、実施例1の基地局の構成の一例を示す機能ブロック図である。 図5は、フォーマット0のDCIのフォーマット例を示す図である。 図6は、実施例1の通信端末の構成の一例を示す機能ブロック図である。 図7は、実施例1の基地局及び通信端末の動作の説明に供する図である。 図8は、実施例1の通信端末の処理の説明に供するフローチャートである。 図9は、実施例2の基地局の構成の一例を示す機能ブロック図である。 図10は、実施例2のD2D通信用DCIのフォーマット例を示す図である。 図11は、実施例2の通信端末の構成の一例を示す機能ブロック図である。 図12は、実施例2の基地局及び通信端末の動作の説明に供する図である。 図13は、実施例2の基地局の処理の説明に供するフローチャートである。 図14は、実施例2の通信端末の処理の説明に供するフローチャートである。 図15は、基地局のハードウェア構成例を示す図である。 図16は、通信端末のハードウェア構成例を示す図である。
 以下に、本願の開示する通信システム、基地局及び通信端末の実施例を図面に基づいて詳細に説明する。なお、この実施例により本願の開示する通信システム、基地局及び通信端末が限定されるものではない。また、各実施例において同一の機能を有する構成、及び、同一の処理を行うステップには同一の符号を付し、重複する説明を省略する。
 [実施例1]
 <通信システムの構成>
 図3は、実施例1の通信システムの構成の一例を示す図である。図3において、通信システム1は、図示しないネットワークに接続された基地局BS1と、通信端末UE1と、通信端末UE2とを有する。通信端末UE1は、基地局BS1と通信することが可能である。また、通信端末UE1は、基地局BS1を介さずに、通信端末UE2と直接通信すること、つまり、通信端末UE2とD2D通信を行うことが可能である。つまり、通信端末UE1は、セルラ通信及びD2D通信の双方を行うことが可能な通信端末である。基地局BS1は、セルC1を形成する。通信端末UE1は、セルラ通信の実行及びD2D通信の実行にあたって、基地局BS1からDCIを受信する。
 <基地局の構成>
 図4は、実施例1の基地局の構成の一例を示す機能ブロック図である。図4に示す基地局10は、図3に示す基地局BS1に相当する。図4において、基地局10は、DCI形成部11と、PDCCH信号生成部102,105と、マッピング部107と、無線送信部108と、送信アンテナ109とを有する。DCI形成部11は、D2D通信用DCI形成部101と、セルラ通信用DCI形成部104とを有する。また、基地局10は、受信アンテナ111と、無線受信部112と、ユーザデータ取得部113とを有する。
 D2D通信用DCI形成部101には、通信端末UE1と通信端末UE2との間のD2D通信に割り当てた無線リソースの割当結果(以下では「D2D通信用RA(Resource Allocation)結果」と呼ぶことがある)が入力される。D2D通信用DCI形成部101は、特定のフォーマットに従って、D2D通信用RA結果を示すD2D通信用DCIを形成し、形成したD2D通信用DCIをPDCCH信号生成部102へ出力する。
 セルラ通信用DCI形成部104には、基地局10と通信端末UE1との間のセルラ通信に割り当てた無線リソースの割当結果(以下では「セルラ通信用RA結果」と呼ぶことがある)が入力される。セルラ通信用DCI形成部104は、特定のフォーマットに従って、セルラ通信用RA結果を示すセルラ通信用DCIを形成し、形成したセルラ通信用DCIをPDCCH信号生成部105へ出力する。
 ここで、D2D通信用DCI形成部101によって形成されるD2D通信用DCIと、セルラ通信用DCI形成部104によって形成されるセルラ通信用DCIとは、同一の特定のフォーマットを採る。例えば、D2D通信用DCI及びセルラ通信用DCIの双方とも、従来のフォーマット0を採る。
 図5は、フォーマット0のDCIのフォーマット例を示す図である。図5に示すように、フォーマット0のDCIは、NDI(New Data Indicator)フィールドと、RA(Resource Allocation)フィールドと、MCS(Modulation and Coding Scheme)フィールドと、その他のフィールドとを有する。RAフィールドには、無線リソースの割当結果(以下では「RA結果」と呼ぶことがある)が示される。通信端末は、基地局から割り当てられた無線リソースが新規データ送信用か、データ再送用かを、NDIフィールドに示される値によって知ることができる。MCSフィールドには、通信端末UE1から送信されるデータ信号のMCSレベルが示され、MCSレベルは、例えば、0~31のうちの何れかの値を採る。0~31のそれぞれの値が具体的にどのような符号化率及び変調方式(QPSK,16QAM,64QAM等)を示すかは、例えば、3GPPの仕様が記載されるドキュメント中において規定される。D2D通信用DCI及びセルラ通信用DCIは、例えば、図5に示すフォーマット0を採る。ただし、D2D通信用DCIと、セルラ通信用DCIとでは、NDIフィールドの値(以下では「NDI値」と呼ぶことがある)と、MCSフィールドの値(以下では「MCS値」と呼ぶことがある)との組合せが互いに異なる。D2D通信用DCIの詳細と、セルラ通信用DCIの詳細については、後述する。
 PDCCH信号生成部102は、D2D通信用DCIに対し符号化処理及び変調処理を施してD2D通信用のPDCCH信号を生成し、生成したPDCCH信号をマッピング部107へ出力する。
 PDCCH信号生成部105は、セルラ通信用DCIに対し符号化処理及び変調処理を施してセルラ通信用のPDCCH信号を生成し、生成したPDCCH信号をマッピング部107へ出力する。
 ここで、PDCCH信号生成部102,105は、通信端末UE1宛てのDCIに対しては、通信端末UE1のIDを示すビット列でマスキングしたCRCビットをDCIに付加した後、DCIを符号化する。また、PDCCH信号生成部102,105は、通信端末UE1への下りリンクの伝搬路品質が低下するほど、より低い符号化率でDCIを符号化する。PDCCH信号生成部102,105は、通信端末UE1以外の他の通信端末宛てのDCIに対しても、同様の符号化処理を行う。
 マッピング部107は、上記の図1に示すサーチスペースSS0~SS3のうちの何れか1つのサーチスペースのサーチ単位にD2D通信用のPDCCH信号をマッピングして無線送信部108へ出力する。また、マッピング部107は、上記の図1に示すサーチスペースSS0~SS5のうちの何れか1つのサーチスペースのサーチ単位にセルラ通信用のPDCCH信号をマッピングして無線送信部108へ出力する。ただし、D2D通信用のPDCCH信号と、セルラ通信用のPDCCH信号とは、互いに異なるサーチ単位にマッピングされる。
 無線送信部108は、ベースバンドのPDCCH信号に対してディジタルアナログ変換、アップコンバート等を行って無線信号を得て、無線信号を送信アンテナ109を介して通信端末UE1へ送信する。この無線信号の送信により、D2D通信用DCI及びセルラ通信用DCIが通信端末UE1へ通知される。
 一方で、無線受信部112は、受信アンテナ111を介して通信端末UE1から受信した無線信号に対して、ダウンコンバート、アナログディジタル変換等を行ってベースバンド信号を得てユーザデータ取得部113へ出力する。
 ユーザデータ取得部113は、上り回線(UpLink:UL)信号に対する通信端末UE1でのマッピング結果に従ってベースバンド信号からデータ信号を抽出し、抽出したデータ信号に対して復調処理及び復号処理を施してユーザデータを取得する。UL信号に対する通信端末UE1でのマッピングはセルラ通信用DCIに従って行われるため、ユーザデータ取得部113は、UL信号のマッピング結果を、DCI形成部11に入力されるセルラ通信用RA結果によって知ることができる。
 <通信端末の構成>
 図6は、実施例1の通信端末の構成の一例を示す機能ブロック図である。図6に示す通信端末20は、図3に示す通信端末UE1に相当する。図6において、通信端末20は、受信アンテナ201と、セパレータ202と、無線受信部203,206と、復調部204,207と、復号部205,208と、ブラインド検出部209と、通信制御部21とを有する。通信制御部21は、種別判断部211と、D2D通信制御部212と、セルラ通信制御部213とを有する。また、通信端末20は、D2D通信部22と、セルラ通信部23と、無線送信部225と、送信アンテナ226とを有する。D2D通信部22は、D2D信号形成部215と、符号化部216と、変調部217と、マッピング部218とを有する。セルラ通信部23は、UL信号形成部221と、符号化部222と、変調部223と、マッピング部224とを有する。
 セパレータ202は、受信アンテナ201を介して受信された無線信号を、通信端末UE2からの無線信号と、基地局BS1からの無線信号とに分離して、通信端末UE2からの無線信号を無線受信部203へ出力し、基地局BS1からの無線信号を無線受信部206へ出力する。
 無線受信部203は、通信端末UE2からの無線信号に対して、ダウンコンバート、アナログディジタル変換等を行ってベースバンド信号を得て復調部204へ出力する。
 復調部204は、無線受信部203から入力されるベースバンド信号に対して復調処理を行って、復調処理後の信号を復号部205へ出力する。
 復号部205は、復調部204から入力される信号に対して復号処理を行う。復号部205での復号処理により、通信端末UE2から送信されたデータが得られる。
 無線受信部206は、基地局BS1からの無線信号に対して、ダウンコンバート、アナログディジタル変換等を行ってベースバンドのPDCCH信号を得て復調部207へ出力する。
 復調部207は、無線受信部206から入力されるPDCCH信号に対して復調処理を行って、復調処理後のPDCCH信号を復号部208へ出力する。
 復号部208は、復調部207から入力されるPDCCH信号に対して復号処理を行う。復号部208での復号処理により、基地局BS1から送信された複数のDCIが得られる。これらの複数のDCIは、通信端末20宛てのものと、通信端末20以外の他の通信端末宛てのものとを含む。また、各DCIには、各通信端末のIDを示すビット列でマスキングされたCRCビットが付加されている。復号部208は、復号後のビット列、つまり、CRCビットが付加されたDCIをブラインド検出部209へ出力する。
 ブラインド検出部209は、上記の図1に示すサーチスペースSS0~SS5の各々において、各サーチ単位毎にブラインド検出を行って、通信端末20宛てのDCIを検出し、検出したDCIを種別判断部211へ出力する。
 種別判断部211は、ブラインド検出によって検出されたDCIの種別を判断する。DCIの種別は、D2D通信用DCIまたはセルラ通信用DCIである。種別判断部211は、検出されたDCIにおけるNDI値とMCS値との組合せに基づいて、検出されたDCIが、D2D通信用DCIまたはセルラ通信用DCIの何れであるかを判断する。種別判断部211は、検出されたDCIがD2D通信用DCIであると判断したときは、ブラインド検出部209から入力されたDCIをD2D通信制御部212へ出力する。一方で、種別判断部211は、検出されたDCIがセルラ通信用DCIであると判断したときは、ブラインド検出部209から入力されたDCIをセルラ通信制御部213へ出力する。つまり、D2D通信制御部212にはD2D通信用DCIが入力され、セルラ通信制御部213にはセルラ通信用DCIが入力される。種別判断部211での判断処理の詳細は後述する。
 D2D通信制御部212は、D2D通信用DCIのRAフィールドに示されたRA結果をマッピング部218へ通知する。また、D2D通信制御部212は、種別判断部211からDCIを入力されると、D2D信号形成部215に対して、信号形成指示を出す。
 D2D信号形成部215は、D2D通信制御部212から信号形成指示を受けると、通信端末UE2宛てのユーザデータをD2D通信の所定の信号フォーマットに変換してD2D信号を形成し、形成したD2D信号を符号化部216へ出力する。
 符号化部216はD2D信号を符号化し、符号化後のD2D信号を変調部217へ出力する。
 変調部217は、符号化後のD2D信号を変調し、変調後のD2D信号をマッピング部218へ出力する。
 マッピング部218は、D2D通信制御部212から通知されたRA結果が示す無線通信リソースにD2D信号をマッピングして無線送信部225へ出力する。
 セルラ通信制御部213は、セルラ通信用DCIのRAフィールドに示されたRA結果をマッピング部224へ通知する。また、セルラ通信制御部213は、種別判断部211からDCIを入力されると、UL信号形成部221に対して、信号形成指示を出す。
 UL信号形成部221は、セルラ通信制御部213から信号形成指示を受けると、基地局BS1宛てのユーザデータをUL信号の所定の信号フォーマットに変換してUL信号を形成し、形成したUL信号を符号化部222へ出力する。
 符号化部222はUL信号を符号化し、符号化後のUL信号を変調部223へ出力する。
 変調部223は、符号化後のUL信号を変調し、変調後のUL信号をマッピング部224へ出力する。
 マッピング部224は、セルラ通信制御部213から通知されたRA結果が示す無線通信リソースにUL信号をマッピングして無線送信部225へ出力する。
 無線送信部225は、ベースバンドのD2D信号とベースバンドのUL信号とに対してディジタルアナログ変換、アップコンバート等を行って各無線信号を得て、各無線信号を送信アンテナ226を介して通信端末UE2と基地局BS1とへそれぞれ送信する。
 <基地局及び通信端末の動作>
 図7は、実施例1の基地局及び通信端末の動作の説明に供する図である。図7には、フォーマット0のDCI(DCI_f0)におけるNDI値とMCS値との組合せの一例を示す。
 すなわち、基地局10は、フォーマット0のDCIをセルラ通信用のDCIとして用いるときは、フォーマット0のDCIにおいて、NDI値とMCS値との組合せを以下の第一の特定の組合せにする。この第一の特定の組合せは、例えば、以下の組合せA及びBである。組合せAでは、NDI値が“0”(新規)であり、かつ、MCS値が0~28のうちの何れかの値である。組合せBでは、NDI値が“1”(再送)であり、かつ、MCS値が29~31のうちの何れかの値である。
 一方で、基地局10は、フォーマット0のDCIをD2D通信用のDCIとして用いるときは、フォーマット0のDCIにおいて、NDI値とMCS値との組合せを以下の第二の特定の組合せにする。この第二の特定の組合せは、例えば、以下の組合せC及びDである。組合せCでは、NDI値が“0”(新規)であり、かつ、MCS値が29~31のうちの何れかの値である。組合せDでは、NDI値が“1”(再送)であり、かつ、MCS値が0~28のうちの何れかの値である。この第二の特定の組合せは、現状のLTEにおいて規定されていない新たな組合せであり、第一の特定の組合せと異なる組合せである。つまり、第二の特定の組合せは、第一の特定の組合せ以外の組合せである。
 そこで、基地局10において、D2D通信用DCI形成部101は、第二の特定の組合せを持つDCIのRAフィールドにD2D通信用RA結果をセットしてD2D通信用DCIを形成する。一方で、セルラ通信用DCI形成部104は、第一の特定の組合せを持つDCIのRAフィールドにセルラ通信用RA結果をセットしてセルラ通信用DCIを形成する。
 これに対し、通信端末10において、種別判断部211は、ブラインド検出されたDCIがセルラ通信用DCIまたはD2D通信用DCIの何れであるかを、ブラインド検出されたDCIにおけるNDI値とMCS値との組合せに基づいて判断する。ブラインド検出されたDCIは、フォーマット0のDCIである。
 すなわち、種別判断部211は、ブラインド検出されたDCIにおいて、NDI値とMCS値との組合せが第一の特定の組合せであるときは、ブラインド検出されたDCIがセルラ通信用DCIであると判断する。
 一方で、種別判断部211は、ブラインド検出されたDCIにおいて、NDI値とMCS値との組合せが第二の特定の組合せであるときは、ブラインド検出されたDCIがD2D通信用DCIであると判断する。
 以上のようにして、実施例1では、互いに同一のフォーマット0のDCIを、NDI値とMCS値との組合せに応じて、セルラ通信用DCIと、D2D通信用DCIとに使い分けることができる。
 なお、D2D通信用DCIのMCS値は必ずしもMCSレベルを示さなくてもよい。例えば、D2D通信用のDCIにおいて、MCS値=29は、D2D通信に割り当てた無線リソースが1単位であることを示し、MCS値=30は、D2D通信に割り当てた無線リソースが連続または所定周期の複数単位であることを示してもよい。また例えば、D2D通信用のDCIにおいて、MCS値=31は、MCS値=30を用いて通知した無線リソースを解除することを示してもよい。
 <通信端末の処理>
 図8は、実施例1の通信端末の処理の説明に供するフローチャートである。このフローチャートは、ブラインド検出されたDCIが種別判断部211に入力されたときに開始される。
 種別判断部211は、ブラインド検出されたDCIにおいて、NDI値が“0”(新規)であるか否かを判断する(ステップS11)。
 NDI値が“0”(新規)であるときは(ステップS11:Yes)、種別判断部211は、ブラインド検出されたDCIにおいて、MCS値が0~28の何れかであるか否かを判断する(ステップS12)。
 一方で、NDI値が“0”(新規)でないとき、つまり、NDI値が“1”(再送)であるときは(ステップS11:No)、種別判断部211は、ブラインド検出されたDCIにおいて、MCS値が29~31の何れかであるか否かを判断する(ステップS15)。
 NDI値が“0”(新規)であり(ステップS11:Yes)、かつ、MCS値が0~28の何れかであるときは(ステップS12:Yes)、UL信号形成部221が、UL信号として、基地局BS1への新規データ信号を形成する(ステップS13)。
 NDI値が“1”(再送)であり(ステップS11:No)、かつ、MCS値が29~31の何れかであるときは(ステップS15:Yes)、UL信号形成部221が、UL信号として、基地局BS1への再送データ信号を形成する(ステップS16)。
 NDI値が“0”(新規)であり(ステップS11:Yes)、かつ、MCS値が0~28の何れかでないとき、つまり、29~31の何れかであるときは(ステップS12:No)、D2D信号形成部215が、通信端末UE2へのデータ信号を形成する(ステップS14)。
 また、NDI値が“1”(再送)であり(ステップS11:No)、かつ、MCS値が29~31の何れかでないとき、つまり、0~28の何れかであるときは(ステップS15:No)、D2D信号形成部215が、通信端末UE2へのデータ信号を形成する(ステップS14)。
 以上のように、実施例1では、通信システム1は、基地局BS1と、通信端末UE1と、通信端末UE2とを有する。通信端末UE1は、基地局BS1とセルラ通信が可能な一方で、基地局BS1を介さずに通信端末UE2とD2D通信が可能である。
 基地局BS1は、RAフィールドと、NDIフィールドと、MCSフィールドとを含むDCIを用いて、RA結果を通信端末UE1へ通知する。基地局BS1は、セルラ通信用RA結果をRAフィールドを用いて通信端末UE1へ通知するときは、NDI値とMCS値との組合せを第一の特定の組合せとする。また、基地局BS1は、D2D通信用RA結果をRAフィールドを用いて通信端末UE1へ通知するときは、NDI値とMCS値との組合せを、第一の特定の組合せと異なる第二の特定の組合せとする。
 これに対し、通信端末UE1は、基地局BS1からのDCIを検出する。通信端末UE1は、検出したDCIにおいてNDI値とMCS値との組合せが第一の特定の組合せであると判断したときは、RAフィールドに示されたRA結果に従って基地局BS1とセルラ通信する。また、通信端末UE1は、検出したDCIにおいてNDI値とMCS値との組合せが第二の特定の組合せであると判断したときは、RAフィールドに示されたRA結果に従って通信端末UE2とD2D通信する。
 また、基地局10は、RAフィールドと、NDIフィールドと、MCSフィールドとを含むDCIを用いて、RA結果を、基地局10と通信可能な一方で、通信端末UE2とD2D通信が可能な通信端末20へ通知する。基地局10は、セルラ通信用DCI形成部104と、D2D通信用DCI形成部101とを有する。セルラ通信用DCI形成部104は、セルラ通信用RA結果をRAフィールドを用いて通信端末20へ通知するときに、NDI値とMCS値との組合せを第一の特定の組合せとしたDCIを形成する。また、D2D通信用DCI形成部101は、D2D通信用RA結果をRAフィールドを用いて通信端末20へ通知するときに、NDI値とMCS値との組合せを、第一の特定の組合せと異なる第二の特定の組合せとしたDCIを形成する。
 また、通信端末20は、RAフィールドと、NDIフィールドと、MCSフィールドとを含むDCIを用いてRA結果を通知する基地局10とセルラ通信が可能な一方で、基地局10を介さずに通信端末UE2とD2D通信が可能である。通信端末20は、ブラインド検出部209と、種別判断部211と、セルラ通信部23と、D2D通信部22とを有する。ブラインド検出部209は、通信端末20宛てのDCIを検出する。種別判断部211は、検出されたDCIにおいてNDI値とMCS値との組合せを判断する。セルラ通信部23は、NDI値とMCS値との組合せが第一の特定の組合せであるときに、RAフィールドに示されたRA結果に従って基地局10とセルラ通信する。また、D2D通信部22は、NDI値とMCS値との組合せが、第一の特定の組合せと異なる第二の特定の組合せであるときに、RAフィールドに示されたRA結果に従って通信端末UE2とD2D通信する。
 こうすることで、D2D通信用の新たなフォーマットのDCIを導入することなく、既存のフォーマット(例えばフォーマット0)を採るDCIをD2D通信用DCIに流用して、D2D通信用RA結果を通信端末UE1(通信端末10)へ通知することができる。また、既存のフォーマットを採るDCIをD2D通信用DCIに流用すると、セルラ通信用DCIとD2D通信用DCIとの間で、フォーマットサイズを同一にすることができる。これにより、D2D通信用の新たなフォーマットのDCIのための新たなサーチスペースを用意しなくてもよくなるため、通信端末UE1での1サブフレームにおけるブラインド検出の最大回数は、従来と同一の回数(例えば、44回)に保たれる。つまり、実施例1によれば、ブランド検出の回数を従来から増加させることなく、D2D通信用RA結果を通信端末UE1へ通知することができるため、D2D通信を行う際の通信端末UE1の消費電力の増大を抑えることができる。また、第一の特定の組合せと第二の特定の組合せとは、互いに異なる組合せであるため、通信端末UE1は、検出したDCIが、セルラ通信用DCIまたはD2D通信用DCIの何れであるかを確実に判断することができる。
 また、実施例1によれば、第一の特定の組合せは、NDI値“0”(新規データ)とMCS値“0~28”との組合せ、または、NDI値‘1’(再送データ)と、MCS値“29~31”との組合せである。また、第二の特定の組合せは、NDI値“1”(再送データ)とMCS値“0~28”との組合せ、または、NDI値‘0’(新規データ)と、MCS値“29~31”との組合せである。
 こうすることで、NDI値とMCS値との複数種類の組合せのうち、既存の第一の特定の組合せには存在しない組合せを新たな第二の特定の組合せとすることができるため、第一の特定の組合せと異なる第二の特定の組合せを簡便に規定することができる。
 [実施例2]
 <通信システムの構成>
 実施例2の通信システムの構成は、実施例1と同一であるため、説明を省略する。
 <基地局の構成>
 図9は、実施例2の基地局の構成の一例を示す機能ブロック図である。図9に示す基地局30は、図3に示す基地局BS1に相当する。図9において、基地局30は、DCI形成部31と、PDCCH信号生成部102,105と、マッピング部305と、無線送信部108と、送信アンテナ109とを有する。DCI形成部31は、D2D通信用DCI形成部301と、セルラ通信用DCI形成部302とを有する。また、基地局30は、受信アンテナ111と、無線受信部112と、ユーザデータ取得部113とを有する。
 D2D通信用DCI形成部301には、D2D通信用RA結果が入力される。D2D通信用DCI形成部301は、D2D通信用RA結果が入力された場合、つまり、通信端末UE1へ送信するD2D通信用RA結果がある場合、順次送信されるサブフレーム0~9のうち次回送信されるサブフレーム#kに空きリソースがあるか否かを判断する。D2D通信用DCI形成部301は、この判断を、サブフレーム0~9に対して順次行う。そして、D2D通信用DCI形成部301は、空きリソースがあったサブフレーム#xをマッピング部305に通知するとともに、D2D通信用RA結果を示すD2D通信用DCIを形成し、形成したD2D通信用DCIをPDCCH信号生成部102へ出力する。
 セルラ通信用DCI形成部302には、セルラ通信用RA結果が入力される。セルラ通信用DCI形成部302は、セルラ通信用RA結果が入力された場合、つまり、通信端末UE1へ送信するセルラ通信用RA結果がある場合、順次送信されるサブフレーム0~9のうち次回送信されるサブフレーム#kに空きリソースがあるか否かを判断する。セルラ通信用DCI形成部302は、この判断を、サブフレーム0~9に対して順次行う。そして、セルラ通信用DCI形成部302は、空きリソースがあったサブフレーム#yをマッピング部305に通知するとともに、セルラ通信用RA結果を示すセルラ通信用DCIを形成し、形成したセルラ通信用DCIをPDCCH信号生成部105へ出力する。
 また、セルラ通信用DCI形成部302は、空きリソースがあったサブフレーム#yをD2D通信用DCI形成部301へ通知する。D2D通信用DCI形成部301は、サブフレーム#xとサブフレーム#yとが一致するか否か、つまり、D2D通信用DCIとセルラ通信用DCIとが同一サブフレームで送信されるか否かを判断する。そして、D2D通信用DCI形成部301は、この判断の結果に応じて、図10に示すフラグを形成してD2D通信用DCIに付加する。図10は、実施例2のD2D通信用DCIのフォーマット例を示す図である。
 D2D通信用DCI形成部301は、サブフレーム#xとサブフレーム#yとが一致しない場合は、D2D通信用DCIとセルラ通信用DCIとが異なるサブフレームで送信されると判断する。D2D通信用DCI形成部301は、D2D通信用DCIとセルラ通信用DCIとが異なるサブフレームで送信されると判断した場合、つまり、D2D通信用DCIが送信されるサブフレームでは、セルラ通信用DCIが送信されないと判断した場合、値が‘0’フラグを形成する。
 一方で、D2D通信用DCI形成部301は、サブフレーム#xとサブフレーム#yとが一致する場合は、D2D通信用DCIとセルラ通信用DCIとが同一サブフレームで送信されると判断する。D2D通信用DCI形成部301は、D2D通信用DCIとセルラ通信用DCIとが同一サブフレームで送信されると判断した場合、つまり、D2D通信用DCIが送信されるサブフレームにおいてセルラ通信用DCIも送信されると判断した場合、値が‘1’のフラグを形成する。
 ここで、サブフレームは、DCIが配置される一単位の期間に相当する。このため、D2D通信用DCIとセルラ通信用DCIとが同一サブフレームで送信されるか否かの判断結果に応じて形成されるフラグは、セルラ通信用DCIがD2D通信用DCIの配置期間に存在するか否かを示す所定の情報に相当する。
 マッピング部305は、D2D通信用DCI形成部301から通知されたサブフレーム#xにおいて、上記の図2に示すサーチスペースSS6~SS9のうちの何れか1つのサーチスペースのサーチ単位にD2D通信用のPDCCH信号をマッピングして無線送信部108へ出力する。また、マッピング305は、セルラ通信用DCI形成部302から通知されたサブフレーム#yにおいて、上記の図2に示すサーチスペースSS0~SS5のうちの何れか1つのサーチスペースのサーチ単位にセルラ通信用のPDCCH信号をマッピングして無線送信部108へ出力する。
 無線送信部108は、ベースバンドのPDCCH信号に対してディジタルアナログ変換、アップコンバート等を行って無線信号を得て、無線信号を送信アンテナ109を介して通信端末UE1へ送信する。この無線信号の送信により、D2D通信用DCI及びセルラ通信用DCIが通信端末UE1へ通知される。また、上記の図10に示すように、‘0’または‘1’の値を採るフラグはD2D通信用DCIに付加されているため、この無線信号の送信により、D2D通信用DCIとフラグとが一体として通信端末UE1へ通知される。
 <通信端末の構成>
 図11は、実施例2の通信端末の構成の一例を示す機能ブロック図である。図11に示す通信端末40は、図3に示す通信端末UE1に相当する。図11において、通信端末40は、受信アンテナ201と、セパレータ202と、無線受信部203,206と、復調部204,207と、復号部205,208と、バッファ401と、ブラインド検出部45とを有する。ブラインド検出部45は、D2D通信用ブラインド検出部402と、セルラ通信用ブラインド検出部403とを有する。また、通信端末40は、通信制御部46と、D2D通信部22と、セルラ通信部23と、無線送信部225と、送信アンテナ226とを有する。通信制御部46は、D2D通信制御部411と、セルラ通信制御部412とを有する。D2D通信部22は、D2D信号形成部215と、符号化部216と、変調部217と、マッピング部218とを有する。セルラ通信部23は、UL信号形成部221と、符号化部222と、変調部223と、マッピング部224とを有する。
 復号部208は、復調部207から入力されるPDCCH信号に対して復号処理を行う。復号部208での復号処理により、基地局BS1から送信された複数のDCIが得られる。これらの複数のDCIは、通信端末40宛てのものと、通信端末40以外の他の通信端末宛てのものとを含む。また、各DCIには、各通信端末のIDを示すビット列でマスキングされたCRCビットが付加されている。復号部208は、復号後のビット列、つまり、CRCビットが付加されたDCIをバッファ401に出力する。
 バッファ401は、復号部208から出力される複数のDCIを、サブフレーム0~9の各サブフレーム毎に一時的に蓄える。
 D2D通信用ブラインド検出部402は、バッファ401を参照し、サブフレーム0~9の各サブフレーム毎に、サーチスペースSS6~SS9(図2)の各々において、各サーチ単位毎にブラインド検出を行う。
 D2D通信用ブラインド検出部402は、ブラインド検出によって通信端末40宛てのD2D通信用DCIを検出したときは、検出したD2D通信用DCIに付加されているフラグを取得するとともに、検出したD2D通信用DCIをD2D通信制御部411へ出力する。また、このときは、D2D通信用ブラインド検出部402は、取得したフラグをセルラ通信用ブラインド検出部403へ出力するとともに、そのフラグが付加されていたD2D通信用DCIを検出したサブフレーム#aをそのフラグに対応づけてセルラ通信用ブラインド検出部403へ通知する。
 また、D2D通信用ブラインド検出部402は、ブラインド検出によって通信端末40宛てのD2D通信用DCIが検出されなかったときは、D2D通信用DCIが検出されなかったサブフレーム#bをセルラ通信用ブラインド検出部403へ通知する。D2D通信用DCIが検出されなかったときはフラグも取得されないため、サブフレーム#bにはフラグが対応づけられていない。
 セルラ通信用ブラインド検出部403は、D2D通信用ブラインド検出部402から入力されたフラグの値に基づいて、セルラ通信用DCIのブラインド検出をサブフレーム#aにおいて行うか否かを判断する。
 セルラ通信用ブラインド検出部403は、サブフレーム#aに対応づけられているフラグの値が“0”の場合は、セルラ通信用DCIのブラインド検出をサブフレーム#aにおいて行わないと判断する。よって、セルラ通信用ブラインド検出部403は、フラグの値が“0”の場合は、サブフレーム#aにおいて、セルラ通信用DCIのブラインド検出を行わない。
 一方で、セルラ通信用ブラインド検出部403は、サブフレーム#aに対応づけられているフラグの値が“1”の場合は、セルラ通信用DCIのブラインド検出をサブフレーム#aにおいて行うと判断する。そこで、セルラ通信用ブラインド検出部403は、フラグの値が“1”の場合は、バッファ401を参照し、サブフレーム#aにおいて、セルラ通信用DCIのブラインド検出を行う。そして、セルラ通信用ブラインド検出部403は、ブラインド検出によって通信端末40宛てのセルラ通信用DCIを検出し、検出したセルラ通信用DCIをセルラ通信制御部412へ出力する。
 また、セルラ通信用ブラインド検出部403は、フラグが対応づけられていないサブフレーム#bに対しては、バッファ401を参照し、サブフレーム#bにおいて、セルラ通信用DCIのブラインド検出を行う。そして、セルラ通信用ブラインド検出部403は、ブラインド検出によって通信端末40宛てのセルラ通信用DCIを検出したときは、検出したセルラ通信用DCIをセルラ通信制御部412へ出力する。
 D2D通信制御部411は、D2D通信用DCIのRAフィールドに示されたRA結果をマッピング部218へ通知する。また、D2D通信制御部411は、D2D通信用ブラインド検出部402からD2D通信用DCIを入力されると、D2D信号形成部215に対して、信号形成指示を出す。
 セルラ通信制御部412は、セルラ通信用DCIのRAフィールドに示されたRA結果をマッピング部224へ通知する。また、セルラ通信制御部412は、セルラ通信用ブラインド検出部403からセルラ通信用DCIを入力されると、UL信号形成部221に対して、信号形成指示を出す。
 <基地局及び通信端末の動作>
 図12は、実施例2の基地局及び通信端末の動作の説明に供する図である。
 例えば、サブフレーム#0において、基地局30は、D2D通信用DCIを送信する一方で、セルラ通信用DCIを送信しない場合は、D2D通信用DCIに付加されるフラグの値を“0”に設定する。よって、サブフレーム#0では、D2D通信用DCIが検出された通信端末40は、フラグの値が“0”であるため、サブフレーム#0内にはセルラ通信用DCIが存在しないと認識する。よって、サブフレーム#0では、通信端末40は、セルラ通信用DCIに対するブラインド検出を行わない。
 また例えば、サブフレーム#1では、基地局30は、セルラ通信用DCIを送信する一方で、D2D通信用DCIを送信しない。よって、サブフレーム#1では、通信端末40によってD2D通信用DCIが検出されないため、通信端末40は、セルラ通信用DCIに対するブラインド検出を行う。
 また例えば、サブフレーム#2において、基地局30は、D2D通信用DCI及びセルラ通信用DCIの双方を送信する場合は、D2D通信用DCIに付加されるフラグの値を“1”に設定する。よって、サブフレーム#2では、D2D通信用DCIが検出された通信端末40は、フラグの値が“1”であるため、サブフレーム#0内にはセルラ通信用DCIが存在すると認識する。よって、サブフレーム#0では、通信端末40は、セルラ通信用DCIに対するブラインド検出を行う。
 なお、フラグとD2D通信用DCIとを一体にするのにあたり、必ずしもフラグをD2D通信用DCIに付加することで一体化しなくてもよい。例えば、フラグを含むD2D通信用DCIを形成することにより、フラグとD2D通信用DCIとを一体にしてもよい。
 <基地局の処理>
 図13は、実施例2の基地局の処理の説明に供するフローチャートである。このフローチャートは、基地局30の電源がオンにされたときに開始される。
 まず、DCI形成部31は、kを初期値である“10”に設定する(ステップS101)。
 次いで、DCI形成部31は、“#k=mod(k,10)”なる式に従って、kを10で割ったときの余りを#kとして求める(ステップS102)。よって、kが10から1ずつ増加する場合、#kは0~9の値を採る。#kはサブフレーム番号に相当する。
 次いで、DCI形成部31は、通信端末40へ送信するD2D通信用RA結果があるか否かを判断する(ステップS103)。
 通信端末40へ送信するD2D通信用RA結果がある場合(ステップS103:Yes)、DCI形成部31は、サブフレーム#kに、D2D通信用DCIを送信可能な空きリソースがあるか否かを判断する(ステップS104)。
 サブフレーム#kに空きリソースがある場合(ステップS104:Yes)、DCI形成部31は、通信端末40へ送信するセルラ通信用RA結果があるか否かを判断する(ステップS105)。
 通信端末40へ送信するセルラ通信用RA結果がある場合(ステップS105:Yes)、DCI形成部31は、サブフレーム#kに、セルラ通信用DCIを送信可能な空きリソースがあるか否かを判断する(ステップS106)。
 サブフレーム#kに空きリソースがある場合(ステップS106:Yes)、DCI形成部31は、フラグを“1”に設定し(ステップS108)、無線送信部108は、セルラ通信用DCIをサブフレーム#kで送信する(ステップS109)。
 セルラ通信用RA結果がない場合(ステップS105:No)、または、セルラ通信用DCIを送信可能な空きリソースがサブフレーム#kにない場合(ステップS106:No)、DCI形成部31は、フラグを“0”に設定する(ステップS107)。
 次いで、無線送信部108は、D2D通信用DCIをサブフレーム#kで送信する(ステップS110)。その後、DCI形成部31は、kを1だけインクリメントし(ステップS111)、処理は、ステップS102に戻る。
 つまり、サブフレーム#kに、D2D通信用DCI及びセルラ通信用DCIの双方を送信可能な空きリソースがあるときに、セルラ通信用DCIと、値が“1”のフラグを持つD2D通信用DCIとが、同一のサブフレーム#kで送信される。
 また、サブフレーム#kに、D2D通信用DCIを送信可能な空きリソースがあるが、セルラ通信用DCIを送信可能な空きリソースがないときに、サブフレーム#kでは、値が“0”のフラグを持つD2D通信用DCIが送信され、セルラ通信用DCIは送信されない。
 D2D通信用RA結果がない場合(ステップS103:No)、または、D2D通信用DCIを送信可能な空きリソースがサブフレーム#kにない場合(ステップS104:No)、DCI形成部31は、通信端末40へ送信するセルラ通信用RA結果があるか否かを判断する(ステップS115)。
 通信端末40へ送信するセルラ通信用RA結果がある場合(ステップS115:Yes)、DCI形成部31は、サブフレーム#kに、セルラ通信用DCIを送信可能な空きリソースがあるか否かを判断する(ステップS116)。
 サブフレーム#kに空きリソースがある場合(ステップS116:Yes)、無線送信部108は、セルラ通信用DCIをサブフレーム#kで送信する(ステップS117)。その後、DCI形成部31は、kを1だけインクリメントし(ステップS118)、処理は、ステップS102に戻る。
 また、セルラ通信用RA結果がない場合(ステップS115:No)、または、セルラ通信用DCIを送信可能な空きリソースがサブフレーム#kにない場合(ステップS116:No)、DCI形成部31は、kを1だけインクリメントし(ステップS118)、処理は、ステップS102に戻る。
 <通信端末の処理>
 図14は、実施例2の通信端末の処理の説明に供するフローチャートである。このフローチャートは、通信端末40の電源がオンにされたときに開始される。
 まず、ブラインド検出部45は、kを初期値である“10”に設定する(ステップS201)。
 次いで、ブラインド検出部45は、“#k=mod(k,10)”なる式に従って、kを10で割ったときの余りを#kとして求める(ステップS202)。よって、kが10から1ずつ増加する場合、#kは0~9の値を採る。#kはサブフレーム番号に相当する。
 次いで、ブラインド検出部45は、サブフレーム#kにおいて、D2D通信用DCIに対するブラインド検出を行う(ステップS203)。
 ブラインド検出部45は、ブラインド検出により自端末宛てのD2D通信用DCIを検出した場合(ステップS204:Yes)、D2D通信用DCIのフラグの値が“1”か否かを判断する(ステップS205)。
 フラグの値が“1”の場合(ステップS205:Yes)、ブラインド検出部45は、サブフレーム#kにおいて、セルラ通信用DCIに対するブラインド検出を行って自端末宛てのセルラ通信用DCIを検出する(ステップS206)。そして、セルラ通信制御部412及びセルラ通信部23が、セルラ通信用の送信処理を行う(ステップS207)。
 フラグの値が“1”でない場合、つまり、フラグの値が“0”の場合(ステップS205:No)、ステップS206及びステップS207の処理は行われず、D2D通信制御部411及びD2D通信部22が、D2D通信用の送信処理を行う(ステップS208)。つまり、フラグの値が“0”の場合は、サブフレーム#kにおいて、セルラ通信用DCIに対するブラインド検出は行われない。
 D2D通信用の送信処理後、ブラインド検出部45は、kを1だけインクリメントし(ステップS209)、処理は、ステップS202に戻る。
 ステップS204において自端末宛てのD2D通信用DCIが検出されない場合(ステップS204:No)、ブラインド検出部45は、サブフレーム#kにおいて、セルラ通信用DCIに対するブラインド検出を行う(ステップS215)。
 次いで、ステップS215でのブラインド検出により自端末宛てのセルラ通信用DCIが検出された場合(ステップS216:Yes)、セルラ通信制御部412及びセルラ通信部23が、セルラ通信用の送信処理を行う(ステップS217)。
 セルラ通信用の送信処理後、ブラインド検出部45は、kを1だけインクリメントし(ステップS218)、処理は、ステップS202に戻る。
 また、ステップS216において自端末宛てのセルラ通信用DCIが検出されない場合(ステップS216:No)、ブラインド検出部45は、kを1だけインクリメントし(ステップS218)、処理は、ステップS202に戻る。
 以上のように、実施例2では、通信システム1は、基地局BS1と、通信端末UE1と、通信端末UE2とを有する。通信端末UE1は、基地局BS1とセルラ通信が可能な一方で、基地局BS1を介さずに通信端末UE2とD2D通信が可能である。
 基地局BS1は、D2D通信用RA結果を通知するD2D通信用DCIと、セルラ通信用RA結果を通知するセルラ通信用DCIがD2D通信用DCIの送信サブフレームに存在するか否かを示すフラグとを一体として通信端末UE1へ送信する。
 これに対し、通信端末UE1は、通信端末UE1へ通知されたD2D通信用DCIを検出する。そして、通信端末UE1は、D2D通信用DCIと一体となっているフラグに基づいて、セルラ通信用DCIに対する検出を、D2D通信用DCIの送信サブフレームにおいて行うか否かを判断する。
 また、基地局30は、RA結果を、基地局30と通信可能な一方で、通信端末UE2とD2D通信が可能な通信端末UE1へ通知する。基地局30は、DCI形成部31と、無線送信部108とを有する。DCI形成部31は、D2D通信用RA結果を通知するD2D通信用DCIと、セルラ通信用RA結果を通知するセルラ通信用DCIがD2D通信用DCIの送信サブフレームに存在するか否かを示すフラグとを形成する。無線送信部108は、D2D通信用DCIとフラグとを一体として通信端末UE1へ送信する。
 また、通信端末40は、RA結果を通知する基地局30と通信可能である一方で、基地局30を介さずに通信端末UE2とD2D通信が可能である。通信端末40は、D2D通信用ブラインド検出部402と、セルラ通信用ブラインド検出部403とを有する。D2D通信用ブラインド検出部402は、D2D通信用RA結果を通信端末40へ通知するD2D通信用DCIを検出する。セルラ通信用ブラインド検出部403は、セルラ通信用RA結果を通信端末40へ通知するセルラ通信用DCIがD2D通信用DCIの送信サブフレームに存在するか否かを示すフラグに基づいて、セルラ通信用DCIに対する検出を、D2D通信用DCIの送信サブフレームにおいて行うか否かを判断する。また、このフラグは、D2D通信用DCIと一体となっている。
 こうすることで、通信端末UE1(通信端末40)は、D2D通信用DCIと一体となっているフラグに基づいて、各サブフレームにセルラ通信用DCIが存在するか否かを、セルラ通信用DCIに対するブラインド検出前に判断することができる。よって、通信端末UE1は、セルラ通信用DCIが存在しないと判断したサブフレームでは、セルラ通信用DCIに対するブラインド検出を行わずに回避することができる。これにより、セルラ通信用DCIが存在しないサブフレームにおけるブラインド検出の最大回数を、セルラ通信用DCIが存在するサブフレームにおけるブラインド検出の最大回数よりも減少させることができる。例えば、D2D通信用の新たなフォーマットのDCIのための新たなサーチスペースを用意した場合に、1サブフレームにおけるすべてのサーチスペースを対象としてブラインド検出を行うと、1サブフレームにおけるブラインド検出の最大回数は上記のように60回となる。これに対し、セルラ通信用DCIが存在しないサブフレームでは、セルラ通信用DCIに対する44回の無駄なブラインド検出を回避できるため、ブラインド検出の最大回数は、D2D通信用DCIに対する上記の16回となる。よって、実施例2によれば、D2D通信を行うにあたりD2D通信用の新たなフォーマットのDCIのための新たなサーチスペースを用意した場合でも、D2D通信を行う際の通信端末UE1の消費電力の増大を抑えることができる。
 [実施例3]
 <基地局及び通信端末の構成>
 実施例3の基地局及び通信端末の構成は、実施例2と同一であるため、以下、図9,11を援用して基地局及び通信端末の処理について説明する。
 <基地局の処理>
 上記のように、図9において、マッピング部305は、D2D通信用DCI形成部301から通知されたサブフレーム#xにおいて、上記の図2に示すサーチスペースSS6~SS9のうちの何れか1つのサーチスペースのサーチ単位にD2D通信用のPDCCH信号をマッピングして無線送信部108へ出力する。また、マッピング305は、セルラ通信用DCI形成部302から通知されたサブフレーム#yにおいて、上記の図2に示すサーチスペースSS0~SS5のうちの何れか1つのサーチスペースのサーチ単位にセルラ通信用のPDCCH信号をマッピングして無線送信部108へ出力する。
 ここで、上記のように、PDCCH信号生成部102,105は、通信端末UE1への下りリンクの伝搬路品質が低下するほど、より低い符号化率でDCIを符号化する。この際に、PDCCH信号生成部102,105は互いに、下りリンクの伝搬路品質を表す同一のパラメータ値に従ってDCIを符号化する。よって、符号化後のD2D通信用DCIのサイズと、符号化後のセルラ通信用DCIのサイズとは、同一になる。
 そこで、マッピング部305は、サブフレーム#xとサブフレーム#yとが同一の場合、つまり、D2D通信用DCIをマッピングするサブフレームにセルラ通信用DCIもマッピングする場合、双方のDCIを同一のアグリゲーションレベルの異なるサーチスペースにマッピングする。例えば、マッピング部305は、上記の図2において、D2D通信用DCIをSS9にマッピングしたときは、セルラ通信用DCIをSS3にマッピングする。SS9及びSS3のアグリゲーションレベルは共に“8”である。
 <通信端末の処理>
 図11において、通信端末40は、実施例2における処理に加えて、さらに以下の処理を行う。
 すなわち、D2D通信用ブラインド検出部402は、検出したD2D通信用DCIがマッピングされていたサーチスペースのアグリゲーションレベル(以下では「D2D通信アグリゲーションレベル」と呼ぶことがある)を以下の式(1)~(3)を用いて判断する。
 各サーチ単位の開始位置=L{Y・mod(NCCE,k/L)}+i …(1)
 Y=(A・Yk-1) mod D …(2)
 Y-1=nRNTI …(3)
 ただし、“各サーチ単位の開始位置”はCCEのインデックス番号で示され、“L”はアグリゲーションレベル1,2,4,8の何れかである。“NCCE,k”は、サブフレームkに含まれるDCI用のCCEの総数であり、“k”はサブフレーム番号0~9の何れかであり、“i”はアグリゲーションレベルLのサーチスペースに含まれるサーチ単位の数である。“A”及び“D”は互いに異なる整数値である。“nRNTI”は通信端末のID番号であり、Yの初期値Y-1として使用される。LTEにおいては、通信端末のID番号は、通信端末が基地局に接続してアクティブ状態(RRC Connected mode)になる過程において、基地局から通信端末に対して割り当てられる。通信端末がアイドル状態になった場合、または、通信端末が他の基地局へ接続した場合、この割り当てられたID番号は無効となる。なお、modの計算結果において、小数点以下は切り捨てられる。
 ここで、D2D通信用ブラインド検出部402は、ブラインド検出によって検出したD2D通信用DCIがマッピングされていたサーチ単位の開始位置を認識できる。よって、D2D通信用ブラインド検出部402は、その認識した開始位置から上記(1)~(3)に従って、D2D通信アグリゲーションレベルを判断することができる。そこで、D2D通信用ブラインド検出部402は、D2D通信アグリゲーションレベルをセルラ通信用ブラインド検出部403へ通知する。
 セルラ通信用ブラインド検出部403は、上記の図2におけるSS0~SS5のうち、D2D通信用ブラインド検出部402から通知されたD2D通信アグリゲーションレベルと同一のアグリゲーションレベルを有するサーチスペースに対してのみブラインド検出を行う。よって例えば、基地局30がD2D通信用DCIをSS9にマッピングし、セルラ通信用DCIをSS3にマッピングしたときは、セルラ通信用ブラインド検出部403は、セルラ通信用のサーチスペースにおいてSS3及びSS5に対してのみブラインド検出を行う。つまり、セルラ通信用ブラインド検出部403は、セルラ通信用のサーチスペースにおいてSS0~SS2,SS4に対してのブラインド検出を行わない。
 以上のように、実施例3では、基地局BS1(基地局30)は、D2D通信用DCIの送信サブフレームにセルラ通信用DCIをマッピングする場合は、各DCIを以下のようにマッピングする。すなわち、基地局BS1は、D2D通信用DCIの送信サブフレームに含まれる複数のサーチスペースのうち、D2D通信用DCIをマッピングした第一のサーチスペースのアグリゲーションレベルと同一のアグリゲーションレベルを有する第二のサーチスペースにセルラ通信用DCIマッピングする。
 こうすることで、通信端末UE1(通信端末40)においてセルラ通信用DCIのブラインド検出の対象となるサーチスペースの数を減少させることができる。よって、実施例3によれば、実施例2に比べ、D2D通信を行う際の通信端末UE1の消費電力の増大をさらに抑えることができる。
 [他の実施例]
 [1]上記実施例の基地局10,30は、次のようなハードウェア構成により実現することができる。図15は、基地局のハードウェア構成例を示す図である。図15に示すように、基地局10,30は、ハードウェアの構成要素として、プロセッサ10aと、メモリ10bと、無線通信モジュール10cと、ネットワークインタフェースモジュール10dとを有する。プロセッサ10aの一例として、CPU(Central Processing Unit),DSP(Digital Signal Processor),FPGA(Field Programmable Gate Array)等が挙げられる。また、基地局10,30は、プロセッサ10aと周辺回路とを含むLSI(Large Scale Integrated circuit)を有してもよい。メモリ10bの一例として、SDRAM等のRAM,ROM,フラッシュメモリ等が挙げられる。無線送信部108と、送信アンテナ109と、受信アンテナ111と、無線受信部112とは、無線通信モジュール10cにより実現される。DCI形成部11,31と、PDCCH信号生成部102,105と、マッピング部107,305と、ユーザデータ取得部113とは、プロセッサ10aにより実現される。
 [2]上記実施例の通信端末20,40は、次のようなハードウェア構成により実現することができる。図16は、通信端末のハードウェア構成例を示す図である。図16に示すように、通信端末20,40は、ハードウェアの構成要素として、プロセッサ20aと、メモリ20bと、無線通信モジュール20cとを有する。プロセッサ20aの一例として、CPU,DSP,FPGA等が挙げられる。また、通信端末20,40は、プロセッサ20aと周辺回路とを含むLSIを有してもよい。メモリ20bの一例として、SDRAM等のRAM,ROM,フラッシュメモリ等が挙げられる。受信アンテナ201と、セパレータ202と、無線受信部203,206と、無線送信部225と、送信アンテナ226とは、無線通信モジュール20cにより実現される。復調部204,207と、復号部205,208と、ブラインド検出部209,45と、通信制御部21,46と、D2D通信部22と、セルラ通信部23とは、プロセッサ20aにより実現される。バッファ401は、メモリ20bにより実現される。
 [3]通信端末は、無線端末、Mobile Station、または、ユーザ端末(UE:User Equipment)と呼ばれることもある。基地局は、無線基地局、Base Station、eNodeB、または、NodeBと呼ばれることもある。
1 通信システム
BS1,10,30 基地局
UE1,UE2,20,40 通信端末
11,31 DCI形成部
101,301 D2D通信用DCI形成部
104,302 セルラ通信用DCI形成部
107,305 マッピング部
209,45 ブラインド検出部
211 種別判断部
402 D2D通信用ブラインド検出部
403 セルラ通信用ブラインド検出部
212,411 D2D通信制御部
213,412 セルラ通信制御部

Claims (12)

  1.  基地局と、
     第一通信端末と、
     前記基地局と通信可能な一方で、前記基地局を介さずに前記第一通信端末と直接通信可能な第二通信端末と、を具備する通信システムであって、
     前記基地局は、
     第一領域と、第二領域と、第三領域とを含む制御情報を用いて、無線リソースの割当結果を前記第二通信端末へ通知する基地局であって、
     前記基地局と前記第二通信端末との間の通信に割り当てた第一無線リソースの第一割当結果を前記第一領域を用いて前記第二通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを第一の特定の組合せとし、
     前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第二無線リソースの第二割当結果を前記第一領域を用いて前記第二通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを、前記第一の特定の組合せと異なる第二の特定の組合せとし、
     前記第二通信端末は、
     前記制御情報を検出し、
     検出した前記制御情報において前記第二領域の値と前記第三領域の値との組合せが前記第一の特定の組合せであると判断したときは、前記第一領域に示された前記第一割当結果に従って前記基地局と通信し、
     検出した前記制御情報において前記第二領域の値と前記第三領域の値との組合せが前記第二の特定の組合せであると判断したときは、前記第一領域に示された前記第二割当結果に従って前記第一通信端末と直接通信する、
     通信システム。
  2.  前記第一の特定の組合せは、前記第二領域において新規データを示す値と、前記第三領域において特定の第一範囲にある値との組合せ、または、前記第二領域において再送データを示す値と、前記第三領域において前記特定の第一範囲と異なる第二範囲にある値との組合せであり、
     前記第二の特定の組合せは、前記第二領域において再送データを示す値と、前記第三領域において前記特定の第一範囲にある値との組合せ、または、前記第二領域において新規データを示す値と、前記第三領域において前記第二範囲にある値との組合せである、
     請求項1に記載の通信システム。
  3.  第一領域と、第二領域と、第三領域とを含む制御情報を用いて、無線リソースの割当結果を、自局と通信可能な一方で、第一通信端末と直接通信可能な第二通信端末へ通知する基地局であって、
     自局と前記第二通信端末との間の通信に割り当てた第一無線リソースの第一割当結果を前記第一領域を用いて前記第二通信端末へ通知するときに、前記第二領域の値と前記第三領域の値との組合せを第一の特定の組合せとした前記制御情報を形成する第一形成部と、
     前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第二無線リソースの第二割当結果を前記第一領域を用いて前記第二通信端末へ通知するときに、前記第二領域の値と前記第三領域の値との組合せを、前記第一の特定の組合せと異なる第二の特定の組合せとした前記制御情報を形成する第二形成部と、
     を具備する基地局。
  4.  第一領域と、第二領域と、第三領域とを含む制御情報を用いて無線リソースの割当結果を通知する基地局と通信可能である一方で、前記基地局を介さずに他の通信端末と直接通信可能な通信端末であって、
     前記制御情報を検出する検出部と、
     検出された前記制御情報において前記第二領域の値と前記第三領域の値との組合せを判断する判断部と、
     前記組合せが第一の特定の組合せであるときに、前記第一領域に示された割当結果に従って前記基地局と通信する第一通信部と、
     前記組合せが前記第一の特定の組合せと異なる第二の特定の組合せであるときに、前記第一領域に示された前記割当結果に従って前記他の通信端末と直接通信する第二通信部と、
     を具備する通信端末。
  5.  第一領域と、第二領域と、第三領域とを含む制御情報を用いて、無線リソースの割当結果を、他の通信端末と直接通信可能な通信端末へ通知する基地局における制御情報形成方法であって、
     前記基地局と前記通信端末との間の通信に割り当てた第一無線リソースの第一割当結果を前記第一領域を用いて前記通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを第一の特定の組合せとした前記制御情報を形成する一方で、
     前記通信端末と他の通信端末との間の直接通信に割り当てた第二無線リソースの第二割当結果を前記第一領域を用いて前記通信端末へ通知するときは、前記第二領域の値と前記第三領域の値との組合せを、前記第一の特定の組合せと異なる第二の特定の組合せとした前記制御情報を形成する、
     制御情報形成方法。
  6.  第一領域と、第二領域と、第三領域とを含む制御情報を用いて無線リソースの割当結果を通知する基地局と通信可能である一方で、前記基地局を介さずに他の通信端末と直接通信可能な通信端末における制御情報判断方法であって、
     前記制御情報において前記第二領域の値と前記第三領域の値との組合せが第一の特定の組合せであるときは、前記第一領域に示された割当結果が、前記基地局と前記通信端末との間の通信に割り当てられた第一無線リソースの第一割当結果であると判断する一方で、
     前記制御情報において前記第二領域の値と前記第三領域の値との組合せが前記第一の特定の組合せと異なる第二の特定の組合せであるときは、前記第一領域に示された前記割当結果が、前記通信端末と前記他の通信端末との間の直接通信に割り当てられた第二無線リソースの第二割当結果であると判断する、
     制御情報判断方法。
  7.  基地局と、
     第一通信端末と、
     前記基地局と通信可能な一方で、前記基地局を介さずに前記第一通信端末と直接通信可能な第二通信端末と、を具備する通信システムであって、
     前記基地局は、
     前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第一無線リソースの第一割当結果を前記第二通信端末へ通知する第一の制御情報と、前記基地局と前記第二通信端末との間の通信に割り当てた第二無線リソースの第二割当結果を前記第二通信端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す所定の情報とを一体として前記第二通信端末へ送信し、
     前記第二通信端末は、
     前記第一の制御情報を検出し、
     前記第一の制御情報と一体となっている前記所定の情報に基づいて、前記第二の制御情報に対する検出を前記配置期間において行うか否かを判断する、
     通信システム。
  8.  前記基地局は、前記第一の制御情報の前記配置期間に前記第二の制御情報をマッピングする場合、前記配置期間に含まれる複数のサーチスペースのうち、前記第一の制御情報をマッピングした第一のサーチスペースのアグリゲーションレベルと同一のアグリゲーションレベルを有する第二のサーチスペースに前記第二の制御情報をマッピングする、
     請求項7に記載の通信システム。
  9.  無線リソースの割当結果を、自局と通信可能な一方で、第一通信端末と直接通信可能な第二通信端末へ通知する基地局であって、
     前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第一無線リソースの第一割当結果を前記第二通信端末へ通知する第一の制御情報と、自局と前記第二通信端末との間の通信に割り当てた第二無線リソースの第二割当結果を前記第二通信端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す所定の情報とを形成する形成部と、
     前記第一の制御情報と前記所定の情報とを一体として前記第二通信端末へ送信する送信部と、
     を具備する基地局。
  10.  無線リソースの割当結果を通知する基地局と通信可能である一方で、前記基地局を介さずに他の通信端末と直接通信可能な通信端末であって、
     前記他の通信端末と自端末との間の直接通信に割り当てられた第一無線リソースの第一割当結果を自端末へ通知する第一の制御情報を検出する第一検出部と、
     前記第一の制御情報と一体となっている所定の情報であって、前記基地局と自端末との間の通信に割り当てられた第二無線リソースの第二割当結果を自端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す前記所定の情報に基づいて、前記第二の制御情報に対する検出を前記配置期間において行うか否かを判断する第二検出部と、
     を具備する通信端末。
  11.  無線リソースの割当結果を、自局と通信可能な一方で、第一通信端末と直接通信可能な第二通信端末へ通知する基地局における制御情報通知方法であって、
     前記第二通信端末と前記第一通信端末との間の直接通信に割り当てた第一無線リソースの第一割当結果を前記第二通信端末へ通知する第一の制御情報と、前記基地局と前記第二通信端末との間の通信に割り当てた第二無線リソースの第二割当結果を前記第二通信端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す所定の情報とを形成し、
     前記第一の制御情報と前記所定の情報とを一体として前記第二通信端末へ送信する、
     制御情報通知方法。
  12.  無線リソースの割当結果を通知する基地局と通信可能である一方で、前記基地局を介さずに他の通信端末と直接通信可能な通信端末における制御情報検出方法であって、
     前記他の通信端末と自端末との間の直接通信に割り当てられた第一無線リソースの第一割当結果を自端末へ通知する第一の制御情報を検出し、
     前記第一の制御情報と一体となっている所定の情報であって、前記基地局と自端末との間の通信に割り当てられた第二無線リソースの第二割当結果を自端末へ通知する第二の制御情報が前記第一の制御情報の配置期間に存在するか否かを示す前記所定の情報に基づいて、前記第二の制御情報に対する検出を前記配置期間において行うか否かを判断する、
     制御情報検出方法。
PCT/JP2014/067282 2014-06-27 2014-06-27 通信システム、基地局及び通信端末 WO2015198490A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/067282 WO2015198490A1 (ja) 2014-06-27 2014-06-27 通信システム、基地局及び通信端末
JP2016528969A JP6256607B2 (ja) 2014-06-27 2014-06-27 通信システム、基地局及び通信端末
US15/357,544 US9648609B2 (en) 2014-06-27 2016-11-21 Communication system, base station, and communication terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/067282 WO2015198490A1 (ja) 2014-06-27 2014-06-27 通信システム、基地局及び通信端末

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/357,544 Continuation US9648609B2 (en) 2014-06-27 2016-11-21 Communication system, base station, and communication terminal

Publications (1)

Publication Number Publication Date
WO2015198490A1 true WO2015198490A1 (ja) 2015-12-30

Family

ID=54937609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067282 WO2015198490A1 (ja) 2014-06-27 2014-06-27 通信システム、基地局及び通信端末

Country Status (3)

Country Link
US (1) US9648609B2 (ja)
JP (1) JP6256607B2 (ja)
WO (1) WO2015198490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530944A (ja) * 2018-07-20 2021-11-11 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. チャネル検出指示方法、端末及びネットワーク装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107534950B (zh) * 2015-07-27 2020-09-04 华为技术有限公司 一种传输信息的方法和设备
US10855417B2 (en) 2016-02-03 2020-12-01 Qualcomm Incorporated Control channel signaling techniques in wireless systems with multiple possible transmission time intervals
US20170325207A1 (en) * 2016-05-06 2017-11-09 Qualcomm Incorporated Uplink Allocation Echoing
US10368351B1 (en) * 2018-06-23 2019-07-30 Charter Communications Operating, Llc Methods and apparatus for estimating citizens broadband radio service network coverage

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9185690B2 (en) * 2012-02-29 2015-11-10 Sharp Kabushiki Kaisha Allocating and determining resources for a device-to-device link
CN103582127B (zh) * 2012-07-18 2017-04-19 电信科学技术研究院 一种d2d资源获取方法、设备及系统
US9622279B2 (en) * 2012-08-22 2017-04-11 Telefonaktiebolaget L M Ericsson (Publ) Dynamic spectrum band selection for D2D communications
KR102045339B1 (ko) * 2013-04-26 2019-11-15 삼성전자 주식회사 기기 대 기기 무선 통신에서의 발견 신호 자원 지시 방법
US10187862B2 (en) * 2013-06-02 2019-01-22 Lg Electronics Inc. Method and apparatus for performing timing synchronization in wireless communication system
WO2014200307A1 (en) * 2013-06-13 2014-12-18 Samsung Electronics Co., Ltd. Method and apparatus for allocating resources for d2d communication
US9883542B2 (en) * 2013-07-30 2018-01-30 Lg Electronics Inc. Method and device for performing link adaptation in wireless communication system
WO2015083686A1 (ja) * 2013-12-02 2015-06-11 京セラ株式会社 通信制御方法、ユーザ端末及び基地局
JP2015126393A (ja) * 2013-12-26 2015-07-06 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信システムおよび無線通信方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NEC: "D2D and cellular resource multiplexing configuration", 3GPP TSG RAN WG1 MEETING #77 R1- 142173, 19 May 2014 (2014-05-19), XP050787770 *
SAMSUNG: "Mode 1 resource allocation for D2D broadcast communication", 3GPP TSG RAN WG1 MEETING #77 RL-142112, 19 May 2014 (2014-05-19), XP050787709 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530944A (ja) * 2018-07-20 2021-11-11 維沃移動通信有限公司Vivo Mobile Communication Co., Ltd. チャネル検出指示方法、端末及びネットワーク装置
US11910467B2 (en) 2018-07-20 2024-02-20 Vivo Mobile Communication Co., Ltd. Channel detection indication method, terminal, and network device

Also Published As

Publication number Publication date
US9648609B2 (en) 2017-05-09
JP6256607B2 (ja) 2018-01-10
JPWO2015198490A1 (ja) 2017-04-20
US20170070982A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN114466461B (zh) 数据传输的方法和设备
EP3370467B1 (en) Network components, computer program and methods for transmitting information messages on a downlink control channel of a wireless communication system
WO2018137577A1 (zh) 通信方法及装置
CN113711678B (zh) 网络节点、用户设备(ue)和用于由网络节点调度ue的相关方法
CN110431815B (zh) 终端及通信方法
CN111049626B (zh) 无线通信的方法和装置
US20190215901A1 (en) Data transmission method, device and system
US9648609B2 (en) Communication system, base station, and communication terminal
WO2017000248A1 (zh) 一种资源分配信息指示方法、基站及用户设备
US8902817B2 (en) Method, mobile station, base station and computer program product to control the activation of a wireless carrier
CN111034287B (zh) 资源配置方法、确定方法及其装置、通信系统
WO2021106837A1 (ja) 端末装置、基地局装置および通信方法
CN108352926B (zh) 通过控制信道向无线通信装置传送用户数据
US10225109B2 (en) Method and apparatus for transmitting and receiving information related to SRS transmission in FDR mode
US9521673B2 (en) Method and arrangement for resolving a temporary block flow
WO2020143908A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2018141091A1 (zh) 发送信息的方法、接收信息的方法和装置
US11375496B2 (en) Wireless communication device and wireless communication method
WO2019128949A1 (zh) 一种数据传输格式的传输方法和装置
WO2016017038A1 (ja) 通信システム、基地局及び通信端末
CN116458236A (zh) 重复传输数据信道的方法和设备
CN116326036A (zh) 针对能力降低的ue的网络数据调度和传输
CN116368887A (zh) 针对能力降低的ue的数据调度
CN111543113A (zh) 数据传输的方法和设备
WO2017107200A1 (zh) 通信方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14895577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016528969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14895577

Country of ref document: EP

Kind code of ref document: A1