WO2017117856A1 - 扫描天线 - Google Patents

扫描天线 Download PDF

Info

Publication number
WO2017117856A1
WO2017117856A1 PCT/CN2016/074724 CN2016074724W WO2017117856A1 WO 2017117856 A1 WO2017117856 A1 WO 2017117856A1 CN 2016074724 W CN2016074724 W CN 2016074724W WO 2017117856 A1 WO2017117856 A1 WO 2017117856A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
pcb
antenna
strips
line
Prior art date
Application number
PCT/CN2016/074724
Other languages
English (en)
French (fr)
Inventor
郁小民
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017117856A1 publication Critical patent/WO2017117856A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome

Definitions

  • the present invention relates to the field of communications, and in particular to a scanning antenna.
  • the beam scanning antenna in the related art adopts a phased array technology to realize beam scanning of the entire antenna by controlling changes in relative phases of respective radiation sources in the array antenna.
  • phased array technology requires a relatively complicated electronic control circuit and a large number of phase shifting devices, the cost is high.
  • the phased array antenna is often inconvenient due to its large size.
  • the embodiment of the invention provides a scanning antenna to solve at least the problem of high cost and large volume caused by beam scanning by using the phased array technology.
  • a scanning antenna includes a radome and an antenna probe
  • the radome includes: a first PCB; wherein a reverse side of the first PCB is printed with metal, and a feeding point connection; a front surface of the first PCB is printed with a plurality of metal strips arranged in parallel; wherein the metal strip is divided into a left metal strip and a right metal strip by a gap in the middle, the left metal strip and the right a varactor diode is connected in series between the metal strips, all of the left metal strips of the plurality of metal strips are connected in series by the first metal line, and all of the right metal strips of the plurality of metal strips are connected in series by the second metal line, the first The metal line and the second metal line are arranged as an external DC control voltage source.
  • the left metal strip is divided into a left left metal strip and a left and right metal strip by a first slit
  • the right metal strip is divided into a right left metal strip and a right right metal strip by the second slit, wherein the plurality of All of the left and right metal strips of the metal strip are connected in series by the first metal wire, and all of the right and left metal strips of the plurality of metal strips are connected in series by the second metal wire.
  • the radome further includes: a metal trough body and a second PCB, wherein the first PCB is disposed at a bottom of the metal trough body, and the second PCB is disposed at the metal trough body near the notch Position, the metal trough body, the first PCB and the second PCB enclose a closed cavity; the antenna probe penetrates a sidewall of the metal trough body into the closed cavity; The front surface of the second PCB is printed with a plurality of metal strips arranged in parallel; the reverse side of the second PCB is not printed with metal.
  • the length of the antenna probe extending into the closed cavity is 1/4 wavelength.
  • the distance between the antenna probe and the bottom of the metal trough is 1/4 wavelength; the width and height of the metal trough are both 1/2 wavelength, and the length of the metal trough 5 wavelengths; the second PCB is disposed at a position where the metal channel is close to the slot by 1/4 wavelength; and the sum of the widths of the plurality of metal strips printed on the front surface of the second PCB is 1/10 wavelengths.
  • the position where the antenna probe penetrates the sidewall is disposed at a position on the sidewall that is 1/4 wavelength away from one end of the metal slot.
  • the position where the antenna probe penetrates the sidewall is disposed at a position on the sidewall that is 5/2 wavelengths away from one end of the metal slot.
  • the first metal line is cut from the center into a third metal line and a fourth metal line
  • the second metal line is cut from the center into a fifth metal line and a sixth metal line
  • the third a metal line and the fifth metal line are on one side of the antenna probe
  • the fourth metal line and the sixth metal line are on another side of the antenna probe
  • the third metal line and The fifth metal line is disposed to control a varactor diode on one side of the antenna probe
  • the fourth metal line and the sixth metal line are disposed to control a varactor diode on the other side of the antenna probe.
  • the embodiment of the present invention adopts a scanning antenna composed of an antenna probe and a radome.
  • the radome includes: a first PCB; wherein the reverse side of the first PCB is printed with metal and connected to the feeding place; the front side of the first PCB Printing a plurality of metal strips arranged side by side; wherein the metal strip is divided into a left metal strip and a right metal strip by a gap in the middle, a varactor diode is connected in series between the left metal strip and the right metal strip, and all of the plurality of metal strips are left
  • the metal strips are connected in series through the first metal wires, and all of the right metal strips of the plurality of metal strips are connected in series through the second metal wires, and the first metal wires and the second metal wires are disposed as an external DC control voltage source.
  • the invention solves the problems of high cost and large volume caused by phased array technology to realize beam scanning, reduces the cost of the antenna, and reduces the volume of the antenna.
  • FIG. 1 is a schematic structural diagram of a scanning antenna according to an embodiment of the present invention.
  • FIG 2 is an alternative schematic view of the front side of the first PCB 12 in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic structural view 1 of an optional structure of a radome 10 according to an embodiment of the present invention.
  • FIG. 4 is a second schematic structural view of a radome 10 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an H-plane radiation gain of an antenna in accordance with an alternative embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a scanning antenna according to an embodiment of the present invention. As shown in FIG. 1, the scanning antenna includes a radome 10 and an antenna probe 20 extending into the radome 10.
  • the radome 10 includes: a first PCB 12; the reverse sides of the first PCB 12 are all printed with metal and connected to the feed point; the front surface of the first PCB 12 is printed with a plurality of metal strips 120 arranged side by side; 120 is divided into a left metal strip 122 and a right metal strip 123 by a gap 121 in the middle, and a varactor diode 124 is connected in series between the left metal strip 122 and the right metal strip 123, and all the left metal strips 122 of the plurality of metal strips 120 pass through the first
  • the metal lines 125 are connected in series, and all of the right metal strips 123 of the plurality of metal strips 120 are connected in series by the second metal lines 126, and the first metal lines 125 and the second metal lines 126 are disposed as external DC control voltage sources.
  • the transmission line equivalent principle when the bias voltage applied to the varactor diode 124 changes, the capacitance of the varactor diode 124 changes.
  • the equivalent impedance of the high-impedance surface of the front surface of the first PCB 12 changes, and the reflection phase of the electromagnetic wave also changes. Therefore, the electromagnetic wave reflection phase incident on the front surface of the first PCB 12 can be controlled by controlling the bias voltage applied to the varactor diode 124, so that the front surface of the first PCB 12 forms a high-impedance surface with a controllable phase of reflection. It can be seen that through the above structure, a fast scanning of the radiation direction of the antenna can be achieved.
  • the structure of the scanning antenna is simple, and the voltage control circuit is relatively simple, which solves the problem of high cost and large volume caused by the beam scanning by the phased array technology, reduces the cost of the antenna, and reduces the cost.
  • the volume of the antenna is relatively simple, which solves the problem of high cost and large volume caused by the beam scanning by the phased array technology, reduces the cost of the antenna, and reduces the cost.
  • the antenna scanning range is limited by the capacitance variation interval of the varactor diode 124; with the above structure, the scanning of the antenna radiation direction at a lower frequency can be realized; but at a high frequency (for example, a frequency of 12.5 GHz) Under the circumstance, since the capacitance of the varactor diode 124 cannot be further improved, the antenna cannot achieve fast scanning at high frequencies. In order to solve this problem, in the embodiment of the present invention, the above metal strip 120 is further improved.
  • FIG. 2 is an alternative schematic view of the front side of the first PCB 12 according to an embodiment of the present invention.
  • the left metal strip 122 is divided into a left left metal strip 1222 and left and right metal strips 1223 by the first slit 1221
  • the right metal is
  • the strip 123 is divided into a right left metal strip 1232 and a right right metal strip 1233 by the second slit 1231, wherein all the left and right metal strips 1223 of the plurality of metal strips 120 are connected in series through the first metal line 125, and all right and left metal of the plurality of metal strips 120 Strips 1232 are connected in series by a second metal line 126.
  • the first slit 1221 and the second slit 1231 are equivalent to a capacitance at a high frequency. It can be seen that by increasing the first slit 1221 and the second slit 1231, the equivalent impedance of the front surface of the first PCB 12 at a high frequency is increased; so that the scanning antenna can also operate at a high frequency.
  • FIG. 3 is a schematic diagram of an optional structure of a radome 10 according to an embodiment of the present invention.
  • the radome 10 further includes: a metal trough body 14 and a second PCB 16, wherein the first PCB 12 is disposed at the bottom of the metal trough 14 , and the second PCB 16 is disposed at a position of the metal trough 14 adjacent to the slot.
  • the metal trough 14 , the first PCB 12 and the second PCB 16 enclose the closed cavity; the antenna probe 20 is worn
  • the side wall of the through-metal tank 14 extends into the closed cavity; the front surface of the second PCB 16 is printed with a plurality of metal strips 160 arranged side by side; the reverse side of the second PCB 16 is not printed with metal.
  • the length of the antenna probe 20 that projects into the enclosed cavity is 1/4 wavelength.
  • the distance between the antenna probe 20 and the bottom of the metal trough 14 is 1/4 wavelength; the width and height of the metal trough 14 are both 1/2 wavelength, and the length of the metal trough 14 is 5 wavelengths.
  • the second PCB 16 is disposed at a position of the metal bath 14 near the slot by 1/4 wavelength; the sum of the interval widths between the plurality of metal strips 160 printed on the front surface of the second PCB 16 is 1/10 wavelengths.
  • the position of the antenna probe 20 penetrating the side wall is disposed at a position on the side wall that is 1/4 wavelength away from one end of the metal channel body 14.
  • the position of the antenna probe 20 penetrating the side wall is disposed at a position on the side wall that is 5/2 wavelengths away from one end of the metal channel body 14.
  • the first metal line 125 is cut from the center into a third metal line 1251 and a fourth metal line 1252.
  • the second metal line 126 is cut from the center into a fifth metal line 1261 and a sixth metal line 1262, wherein the third metal line 1251 and the fifth metal line 1261 are on one side of the antenna probe 20, and the fourth metal 1252 line and the The six metal wires 1262 are on the other side of the antenna probe 20; the third metal wires 1251 and the fifth metal wires 1261 are disposed to control the varactor diodes 1241 on one side of the antenna probe 20; the fourth metal wires 1252 and the sixth metal wires 1262 is provided to control the varactor diode 1242 on the other side of the antenna probe 20.
  • the array antenna structure has a large space, requires a complicated phase shifter and a feed network, and has a high cost.
  • the optional embodiment of the present invention provides a resonant cavity antenna for directional pattern electrical scanning.
  • the PCB 16 (corresponding to the second PCB 16) placed on the upper layer of the cavity serves as a partially reflective surface, and the PCB 16 is engraved with a metal strip 160 on one side and the copper on the other side is completely removed;
  • the PCB 12 (corresponding to the first PCB 12) placed under the cavity serves as a high-impedance surface with a controllable phase of reflection.
  • the PCB 12 is engraved with a metal strip 120 on one side, and a gap is left between the metal strips for soldering the varactor diode 124.
  • One side of the copper is retained as a ground;
  • a coaxial probe 20 (corresponding to the antenna probe 20) that protrudes into the cavity through the copper mold wall;
  • the radiation pattern of the antenna can be controlled by the feeding voltage, and the pattern can be quickly scanned.
  • the structure is simple and the control method is easy; and the scanning antenna is faster and more convenient than the mechanical rotation. .
  • 30 is the coaxial line of the feed source; 20 is the antenna probe extending into the cavity, the antenna probe length is a quarter wavelength, located in the middle of the upper and lower layers of the cavity The distance from one end of the antenna is a quarter of a wavelength; 16 is a partially reflective surface, the upper layer of the PCB 16 has a metal patch 160 (ie, a metal strip 160), the lower layer has no metal; and 12 is a high-impedance surface with a controllable phase of reflection, PCB 12 One side is engraved with a metal patch 120 (ie, metal strip 120), and the varactor diode 124 is soldered, the other side is entirely metal ground; 124 is a varactor diode; 125 and 126 are set as an external control voltage source, and the control voltage is changed. The capacitance of the varactor diode 124 also changes accordingly.
  • the overall length of the antenna is about five wavelengths, and the width and height of the cavity are about half a wavelength; above the cavity, that is, about a quarter of the height above the partially reflective surface 16. Therefore, the grooved copper mold has a groove length of five wavelengths, a width of half a wavelength, a depth of three quarters of a wavelength, and a thickness of two PCBs.
  • the upper layer of the PCB 16 is engraved with a uniform length of the metal patch 160, and the unit period length, that is, the sum of the gap width between the metal patch 160 and the metal patch 160 is one tenth of a wavelength, and the metal patch 160
  • the length is slightly smaller than the width of the cavity, and the copper of the lower layer of the PCB 16 is completely removed.
  • the upper layer of the PCB 12 is engraved with a metal patch 120, and a varactor diode 124 is engraved in the middle of the chip.
  • the metal patches 120 are connected to each other to bias the varactor diode 124.
  • the wires connecting the metal patches 120 are as fine as possible; the lower layers of the PCB 12 are all metal ground.
  • the electric field direction is that the electromagnetic wave in the longitudinal direction of the metal patch 12 is totally reflected on the PCB 12
  • the bias voltage applied to the varactor diode 124 changes, the capacitance of the varactor diode 124 occurs. Change, the equivalent impedance of the high-impedance surface will change, and the reflection phase of the electromagnetic wave will also change. Therefore, by controlling the bias voltage applied to the varactor 124, the phase of the electromagnetic wave incident on the surface of the PCB 12 can be controlled, so it is called a high-impedance surface with a controllable phase.
  • FIG. 5 is a schematic diagram of an H-plane radiation gain of an antenna according to an alternative embodiment of the present invention. As shown in FIG. 5, under different loading biases, the radiation direction of the antenna changes accordingly, and a fast scanning function of the radiation direction can be realized.
  • an omnidirectional scanning antenna is also provided.
  • the omnidirectional scanning antenna differs from the optional antenna structure described above in that the feed of the coaxial probe 20 is placed in the middle of the antenna and the network of varactors 124 across the feed is independently biased. Through this structure, the radiation scanning range of the antenna is increased, and the fast scanning function of the entire space can be realized.
  • the above-mentioned antenna provided by the embodiment of the present invention realizes a fast scanning function of the radiation direction of the antenna. Moreover, the antenna has a simple structure, a simple control method, and has strong practicability; the cost is relatively lower than that of the conventional phased array antenna.
  • the embodiment of the present invention adopts a scanning antenna composed of an antenna probe and a radome.
  • the radome includes: a first PCB; wherein the reverse side of the first PCB is printed with metal and connected to the feeding place; the front side of the first PCB Printing a plurality of metal strips arranged side by side; wherein the metal strip is divided into a left metal strip and a right metal strip by a gap in the middle, a varactor diode is connected in series between the left metal strip and the right metal strip, and all of the plurality of metal strips are left
  • the metal strips are connected in series through the first metal wires, and all of the right metal strips of the plurality of metal strips are connected in series through the second metal wires, and the first metal wires and the second metal wires are disposed as an external DC control voltage source.
  • the invention solves the problems of high cost and large volume caused by phased array technology to realize beam scanning, reduces the cost of the antenna, and reduces the volume of the antenna.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明提供了一种扫描天线。该扫描天线包括:天线罩和天线探针,其中,天线罩包括:第一PCB;第一PCB的反面全部印刷有金属,并与馈地点连接;第一PCB的正面印刷有并列排列的多个金属条;其中,金属条被中间的缝隙分为左金属条和右金属条,左金属条和右金属条之间串联有变容二极管,多个金属条的全部左金属条通过第一金属线串联,多个金属条的全部右金属条通过第二金属线串联,第一金属线和第二金属线设置为外接直流控制电压源。通过本发明,解决了采用相控阵列技术实现波束扫描导致的成本高、体积大的问题,降低了天线的成本,减小了天线的体积。

Description

扫描天线 技术领域
本发明涉及通信领域,具体而言,涉及一种扫描天线。
背景技术
越来越多的智能设备需要方向图可控制的波束扫描天线来实现。相关技术中的波束扫描天线采用相控阵列技术,通过控制阵列天线中各个辐射源的相对相位的变化来实现天线整体的波束扫描。
但是,由于采用相控阵列技术需要采用比较复杂的电控电路和大量的移相器件,因此,成本较高。另外,在很多需要小尺寸天线体积的情况下,相控阵列天线因为尺寸较大,使用常常带来各种不便。
针对相关技术中采用相控阵列技术实现波束扫描导致的成本高、体积大的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种扫描天线,以至少解决采用相控阵列技术实现波束扫描导致的成本高、体积大的问题。
根据本发明实施例的一个方面,提供了一种扫描天线,包括天线罩、天线探针,所述天线罩包括:第一PCB;其中,所述第一PCB的反面全部印刷有金属,并与馈地点连接;所述第一PCB的正面印刷有并列排列的多个金属条;其中,所述金属条被中间的缝隙分为左金属条和右金属条,所述左金属条和所述右金属条之间串联有变容二极管,所述多个金属条的全部左金属条通过第一金属线串联,所述多个金属条的全部右金属条通过第二金属线串联,所述第一金属线和所述第二金属线设置为外接直流控制电压源。
可选地,所述左金属条被第一缝隙分为左左金属条和左右金属条,所述右金属条被第二缝隙分为右左金属条和右右金属条,其中,所述多个金属条的全部左右金属条通过所述第一金属线串联,所述多个金属条的全部右左金属条通过所述第二金属线串联。
可选地,所述天线罩还包括:金属槽体和第二PCB,其中,所述第一PCB设置在所述金属槽体底部,所述第二PCB设置在所述金属槽体靠近槽口的位置,所述金属槽体、所述第一PCB和所述第二PCB围成封闭腔体;所述天线探针穿透所述金属槽体的侧壁伸入所述封闭腔体中;所述第二PCB正面印刷有并列排列的多个金属条;所述第二PCB的反面未印刷金属。
可选地,所述天线探针伸入所述封闭腔体中的长度为1/4个波长。
可选地,所述天线探针距所述金属槽体的底部的距离为1/4个波长;所述金属槽体的宽度和高度均为1/2个波长,所述金属槽体的长度为5个波长;所述第二PCB设置在所述金属槽体靠近所述槽口1/4个波长的位置;所述第二PCB正面印刷的多个金属条之间的间隔宽度的总和为1/10个波长。
可选地,所述天线探针穿透所述侧壁的位置设置在:所述侧壁上距所述金属槽体的一端距离为1/4个波长的位置。
可选地,所述天线探针穿透所述侧壁的位置设置在:所述侧壁上距所述金属槽体的一端距离为5/2个波长的位置。
可选地,所述第一金属线从中心截断为第三金属线和第四金属线,所述第二金属线从中心截断为第五金属线和第六金属线,其中,所述第三金属线和所述第五金属线在所述天线探针的一侧,所述第四金属线和所述第六金属线在所述天线探针的另一侧;所述第三金属线和所述第五金属线设置为控制所述天线探针一侧的变容二极管;所述第四金属线和所述第六金属线设置为控制所述天线探针另一侧的变容二极管。
通过本发明实施例,采用由天线探针和天线罩构成的扫描天线,天线罩包括:第一PCB;其中,第一PCB的反面全部印刷有金属,并与馈地点连接;第一PCB的正面印刷有并列排列的多个金属条;其中,金属条被中间的缝隙分为左金属条和右金属条,左金属条和右金属条之间串联有变容二极管,多个金属条的全部左金属条通过第一金属线串联,多个金属条的全部右金属条通过第二金属线串联,第一金属线和第二金属线设置为外接直流控制电压源。解决了采用相控阵列技术实现波束扫描导致的成本高、体积大的问题,降低了天线的成本,减小了天线的体积。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的扫描天线的结构示意图;
图2是根据本发明实施例的第一PCB 12的正面的可选示意图;
图3是根据本发明实施例的天线罩10的可选结构示意图一;
图4是根据本发明实施例的天线罩10的可选结构示意图二;
图5是根据本发明可选实施例的天线H面辐射增益示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种扫描天线,图1是根据本发明实施例的扫描天线的结构示意图。如图1所示,该扫描天线包括:天线罩10和伸入天线罩10的天线探针20。
其中,天线罩10包括:第一PCB 12;第一PCB 12的反面全部印刷有金属,并与馈地点连接;第一PCB 12的正面印刷有并列排列的多个金属条120;其中,金属条120被中间的缝隙121分为左金属条122和右金属条123,左金属条122和右金属条123之间串联有变容二极管124,多个金属条120的全部左金属条122通过第一金属线125串联,多个金属条120的全部右金属条123通过第二金属线126串联,第一金属线125和第二金属线126设置为外接直流控制电压源。
通过上述结构,根据传输线等效原理,当加载在变容二极管124的偏压改变时,变容二极管124的电容会发生改变。第一PCB 12的正面的高阻抗表面的等效阻抗会变化,电磁波的反射相位也将随之变化。所以,通过控制加载在变容二极管124的偏压便可控制入射到第一PCB 12正面的电磁波反射相位,使得第一PCB 12正面形成了反射相位可控的高阻抗表面。可见,通过上述的结构,可以实现天线辐射方向的快速扫描。相对于相控阵列器件,该扫描天线的结构简单,电压控制电路也比较简单,解决了采用相控阵列技术实现波束扫描导致的成本高、体积大的问题,降低了天线的成本,减小了天线的体积。
可选地,天线扫描范围受到变容二极管124的电容变化区间的限制;采用上述的结构,可以实现在较低的频率上的天线辐射方向的扫描;但是在高频(例如12.5GHz的频率)下,由于变容二极管124的电容无法进一步提高,使得该天线无法在高频下实现快速扫描。为了解决这一问题,在本发明的实施例中,对上述的金属条120进行了进一步的改进。
图2是根据本发明实施例的第一PCB 12的正面的可选示意图,如图2所示,左金属条122被第一缝隙1221分为左左金属条1222和左右金属条1223,右金属条123被第二缝隙1231分为右左金属条1232和右右金属条1233,其中,多个金属条120的全部左右金属条1223通过第一金属线125串联,多个金属条120的全部右左金属条1232通过第二金属线126串联。
通过上述的结构,第一缝隙1221和第二缝隙1231在高频下等效于电容。可见,通过增加第一缝隙1221和第二缝隙1231,增大了高频下第一PCB 12正面的等效阻抗;使得扫描天线也可以在高频下工作。
图3是根据本发明实施例的天线罩10的可选结构示意图一,如图3所示,可选地,天线罩10还包括:金属槽体14和第二PCB 16,其中,第一PCB 12设置在金属槽体14底部,第二PCB 16设置在金属槽体14靠近槽口的位置,金属槽体14、第一PCB 12和第二PCB 16围成封闭腔体;天线探针20穿透金属槽体14的侧壁伸入封闭腔体中;第二PCB 16正面印刷有并列排列的多个金属条160;第二PCB 16的反面未印刷金属。
可选地,天线探针20伸入封闭腔体中的长度为1/4个波长。
可选地,天线探针20距金属槽体14的底部的距离为1/4个波长;金属槽体14的宽度和高度均为1/2个波长,金属槽体14的长度为5个波长;第二PCB 16设置在金属槽体14靠近槽口1/4个波长的位置;第二PCB 16正面印刷的多个金属条160之间的间隔宽度的总和为1/10个波长。
可选地,天线探针20穿透侧壁的位置设置在:侧壁上距金属槽体14的一端距离为1/4个波长的位置。
可选地,天线探针20穿透侧壁的位置设置在:侧壁上距金属槽体14的一端距离为5/2个波长的位置。
图4是根据本发明实施例的天线罩10的可选结构示意图二,如图4所示,可选地,第一金属线125从中心截断为第三金属线1251和第四金属线1252,第二金属线126从中心截断为第五金属线1261和第六金属线1262,其中,第三金属线1251和第五金属线1261在天线探针20的一侧,第四金属1252线和第六金属线1262在天线探针20的另一侧;第三金属线1251和第五金属线1261设置为控制天线探针20一侧的变容二极管1241;第四金属线1252和第六金属线1262设置为控制天线探针20另一侧的变容二极管1242。
为了使本发明实施例的描述更加清楚,下面结合可选实施例进行描述和说明。
针对阵列天线结构占用空间大,需要复杂的移相器和馈电网络,成本高的问题,本发明可选实施例提供了一种方向图电扫描的谐振腔天线。
本发明可选实施例提供的天线包括:
开槽的金属铜模14(相当于金属槽体14);
置于腔体上层的PCB 16(相当于第二PCB 16)作为部分反射表面,PCB 16一面刻有金属条160,另一面的覆铜全部去除;
置于腔体下层的PCB 12(相当于第一PCB 12)作为反射相位可控的高阻抗表面,PCB 12一面刻有金属条120,金属条中间留有缝隙用于焊接变容二极管124,另一面覆铜全部保留作为地;
通过铜模壁伸进腔体的同轴探针20(相当于天线探针20);
两个直流馈电线(相当于上述的第一金属线125和第二金属线126);
两个铜模端头。
通过上述的天线,通过馈电电压控制天线的辐射方向图,可以实现方向图的快速扫描,相比于传统的相控阵列天线结构简单,控制方法容易;而相对于机械转动扫描天线更加快速方便。
下面对天线的一种可选结构进行描述。
参见图1、图2和图3,30为接馈源的同轴线;20为伸进腔体的天线探针,天线探针长度为四分之一波长,位于腔体上下层的正中间,距天线一端距离为四分之一波长;16为部分反射表面,PCB 16上层有金属贴片160(即金属条160),下层没有金属;12为反射相位可控的高阻抗表面,PCB 12一面刻有金属贴片120(即金属条120),并焊接变容二极管124,另一面全部为金属地;124为变容二极管;125和126设置为外接控制电压源,改变控制电压的大小,变容二极管124的电容也会随之相应改变。
天线整体长度为约五个波长,腔体的宽度和高度约为半个波长;腔体上方,即部分反射表面16上方有约四分之一高度的槽。所以,前述开槽铜模的槽长度为五个波长,宽为半个波长,深度为四分之三个波长加两块PCB的厚度。
参见图3,上层的PCB 16的上层刻有统一长度的金属贴片160,单元周期长度即金属贴片160和金属贴片160之间的间隙宽度总和为十分之一波长,金属贴片160长度略小于腔体宽度,PCB 16下层的覆铜全部去除。这样,当电磁波入射到该PCB 16上时一部分被反射回去,一部分会透过缝隙穿过去,所以称之为部分反射表面。
参见图1和图2,下层的PCB 12的上层刻有金属贴片120,贴片中间刻有变容二极管124,各个金属贴片120之间相互连接用以给变容二极管124加偏压,为减弱各个金属贴片120之间的耦合,连接金属贴片120的线(相当于上述的第一金属线125和第二金属线126)越细越好;PCB 12下层全部为金属地。
当电场方向为金属贴片12长度方向的电磁波入射到该PCB 12上时会全部反射,根据传输线等效原理,当加载在变容二极管124的偏压改变时,变容二极管124的电容会发生改变,高阻抗表面的等效阻抗会变化,电磁波的反射相位也将随之变化。所以,通过控制加载在变容二极管124的偏压便可控制入射到该PCB 12表面的电磁波反射相位,故称之为反射相位可控的高阻抗表面。
图5是根据本发明可选实施例的天线H面辐射增益示意图,如图5所示,在不同的加载偏压下,天线的辐射方向会随之变化,能够实现辐射方向快速扫描功能。
在本发明可选实施例中,还提供了一种全向扫描天线。参见图4,该全向扫描天线与上述可选的天线结构的不同之处在于:同轴探针20的馈源置于天线的中间,馈源两端的变容二极管124网络独立加偏压。通过该结构,增加了天线辐射扫描范围,可以实现全空间的快速扫描功能。
综上所述,通过本发明实施例提供的上述天线,实现了天线辐射方向的快速扫描功能。并且,该天线结构简单,控制方法容易,具有强大的实用性;相对于传统的相控阵天线成本大大降低。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,采用由天线探针和天线罩构成的扫描天线,天线罩包括:第一PCB;其中,第一PCB的反面全部印刷有金属,并与馈地点连接;第一PCB的正面印刷有并列排列的多个金属条;其中,金属条被中间的缝隙分为左金属条和右金属条,左金属条和右金属条之间串联有变容二极管,多个金属条的全部左金属条通过第一金属线串联,多个金属条的全部右金属条通过第二金属线串联,第一金属线和第二金属线设置为外接直流控制电压源。解决了采用相控阵列技术实现波束扫描导致的成本高、体积大的问题,降低了天线的成本,减小了天线的体积。

Claims (8)

  1. 一种扫描天线,包括天线罩、天线探针,所述天线罩包括:第一PCB;其中,
    所述第一PCB的反面全部印刷有金属,并与馈地点连接;所述第一PCB的正面印刷有并列排列的多个金属条;
    其中,所述金属条被中间的缝隙分为左金属条和右金属条,所述左金属条和所述右金属条之间串联有变容二极管,所述多个金属条的全部左金属条通过第一金属线串联,所述多个金属条的全部右金属条通过第二金属线串联,所述第一金属线和所述第二金属线设置为外接直流控制电压源。
  2. 根据权利要求1所述的扫描天线,其中,
    所述左金属条被第一缝隙分为左左金属条和左右金属条,所述右金属条被第二缝隙分为右左金属条和右右金属条,其中,所述多个金属条的全部左右金属条通过所述第一金属线串联,所述多个金属条的全部右左金属条通过所述第二金属线串联。
  3. 根据权利要求1所述的扫描天线,其中,所述天线罩还包括:金属槽体和第二PCB,其中,
    所述第一PCB设置在所述金属槽体底部,所述第二PCB设置在所述金属槽体靠近槽口的位置,所述金属槽体、所述第一PCB和所述第二PCB围成封闭腔体;
    所述天线探针穿透所述金属槽体的侧壁伸入所述封闭腔体中;
    所述第二PCB正面印刷有并列排列的多个金属条;所述第二PCB的反面未印刷金属。
  4. 根据权利要求3所述的扫描天线,其中,
    所述天线探针伸入所述封闭腔体中的长度为1/4个波长。
  5. 根据权利要求3所述的扫描天线,其中,
    所述天线探针距所述金属槽体的底部的距离为1/4个波长;
    所述金属槽体的宽度和高度均为1/2个波长,所述金属槽体的长度为5个波长;
    所述第二PCB设置在所述金属槽体靠近所述槽口1/4个波长的位置;
    所述第二PCB正面印刷的多个金属条之间的间隔宽度的总和为1/10个波长。
  6. 根据权利要求3所述的扫描天线,其中,
    所述天线探针穿透所述侧壁的位置设置在:所述侧壁上距所述金属槽体的一端距离为1/4个波长的位置。
  7. 根据权利要求3所述的扫描天线,其中,
    所述天线探针穿透所述侧壁的位置设置在:所述侧壁上距所述金属槽体的一端距离 为5/2个波长的位置。
  8. 根据权利要求7所述的扫描天线,其中,
    所述第一金属线从中心截断为第三金属线和第四金属线,所述第二金属线从中心截断为第五金属线和第六金属线,其中,所述第三金属线和所述第五金属线在所述天线探针的一侧,所述第四金属线和所述第六金属线在所述天线探针的另一侧;
    所述第三金属线和所述第五金属线设置为控制所述天线探针一侧的变容二极管;所述第四金属线和所述第六金属线设置为控制所述天线探针另一侧的变容二极管。
PCT/CN2016/074724 2016-01-05 2016-02-26 扫描天线 WO2017117856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610010111.X 2016-01-05
CN201610010111.XA CN106941213B (zh) 2016-01-05 2016-01-05 扫描天线

Publications (1)

Publication Number Publication Date
WO2017117856A1 true WO2017117856A1 (zh) 2017-07-13

Family

ID=59273133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074724 WO2017117856A1 (zh) 2016-01-05 2016-02-26 扫描天线

Country Status (2)

Country Link
CN (1) CN106941213B (zh)
WO (1) WO2017117856A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410632A (zh) * 2021-06-17 2021-09-17 北京邮电大学 一种用于无线电监测与测向的天线装置及其控制方法
CN114512804A (zh) * 2022-01-18 2022-05-17 北京大学 基于复合左右手传输线的定频波束扫描天线及其实现方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109742520A (zh) * 2018-12-25 2019-05-10 北京航天飞腾装备技术有限责任公司 一种基于加载变容二极管的复合左右手微带漏波天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080284656A1 (en) * 2007-05-17 2008-11-20 Athanasios Petropoulos Radio frequency identification (rfid) antenna assemblies with folded patch-antenna structures
US20120105304A1 (en) * 2010-10-28 2012-05-03 Sony Corporation Antenna
CN202917635U (zh) * 2012-09-07 2013-05-01 中兴通讯股份有限公司 一种圆极化电扫相控漏波天线
CN103474775A (zh) * 2013-09-06 2013-12-25 中国科学院光电技术研究所 一种基于动态调控人工电磁结构材料的相控阵天线
CN104779442A (zh) * 2015-04-24 2015-07-15 电子科技大学 一种电控波束扫描反射阵天线及其波束扫描方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621423A (en) * 1983-08-29 1997-04-15 Radant Systems, Inc. Electromagnetic energy shield
FR2738398B1 (fr) * 1988-04-08 1997-11-28 Thomson Csf Radant Panneau dephaseur a diodes et son application a une lentille hyperfrequence et une antenne a balayage electronique
CN101378147A (zh) * 2008-10-07 2009-03-04 浙江大学 利用微波二极管构建的工字形电控波束扫描天线罩
CN102157792B (zh) * 2011-02-14 2014-03-26 中国科学院光电技术研究所 一种电控辐射方向图可重构天线
CN102882001B (zh) * 2012-09-25 2015-02-18 中国科学院光电技术研究所 一种利用人工结构材料实现天线波束宽度切换的天线罩

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080284656A1 (en) * 2007-05-17 2008-11-20 Athanasios Petropoulos Radio frequency identification (rfid) antenna assemblies with folded patch-antenna structures
US20120105304A1 (en) * 2010-10-28 2012-05-03 Sony Corporation Antenna
CN202917635U (zh) * 2012-09-07 2013-05-01 中兴通讯股份有限公司 一种圆极化电扫相控漏波天线
CN103474775A (zh) * 2013-09-06 2013-12-25 中国科学院光电技术研究所 一种基于动态调控人工电磁结构材料的相控阵天线
CN104779442A (zh) * 2015-04-24 2015-07-15 电子科技大学 一种电控波束扫描反射阵天线及其波束扫描方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113410632A (zh) * 2021-06-17 2021-09-17 北京邮电大学 一种用于无线电监测与测向的天线装置及其控制方法
CN114512804A (zh) * 2022-01-18 2022-05-17 北京大学 基于复合左右手传输线的定频波束扫描天线及其实现方法
CN114512804B (zh) * 2022-01-18 2022-12-30 北京大学 基于复合左右手传输线的定频波束扫描天线及其实现方法

Also Published As

Publication number Publication date
CN106941213B (zh) 2021-10-15
CN106941213A (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
Haraz et al. Dense dielectric patch array antenna with improved radiation characteristics using EBG ground structure and dielectric superstrate for future 5G cellular networks
US10582608B2 (en) Interconnection between printed circuit boards
JP5429215B2 (ja) 水平方向放射アンテナ
JP5712964B2 (ja) アンテナ装置
US20130300624A1 (en) Broadband end-fire multi-layer antenna
JP6195080B2 (ja) アンテナ装置
CN109346834A (zh) Sigw圆极化缝隙天线
US20060097926A1 (en) Patch antenna, array antenna, and mounting board having the same
US10862212B2 (en) Antenna device and wireless communication device
JP6452477B2 (ja) アンテナ及びそれを用いた通信装置
JP2011055466A (ja) アンテナおよびアンテナ装置
WO2017117856A1 (zh) 扫描天线
JP6340690B2 (ja) アンテナ装置
Phalak et al. Aperture coupled microstrip patch antenna array for high gain at millimeter waves
KR20170092731A (ko) 고효율 알에프 전송선로 구조 및 상기 구조를 이용한 이중 직교 편파를 갖는 송수신 배열 안테나 장치
JP5213039B2 (ja) 片面放射アンテナ
JP2018157500A (ja) 回路基板
JPWO2015049816A1 (ja) アンテナ装置
Jha et al. Waveguide integrated Microstrip patch antenna at THz frequency
KR101556019B1 (ko) 밀리미터파 대역용 인쇄회로기판 일체형 영차 공진 안테나
KR100706615B1 (ko) 다층 유전체기판을 이용한 마이크로스트립 패치 안테나 및이를 이용한 배열 안테나
JP6764775B2 (ja) 偏波共用アンテナ
KR101803196B1 (ko) 상유전체를 이용한 고이득 안테나 빔 조향 시스템
Lee et al. Miniature Slotted-Folded-Patch Antenna for OnMetal UHF Tag
JP4388415B2 (ja) アンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883001

Country of ref document: EP

Kind code of ref document: A1