WO2017117794A1 - 通过主同步信号进行指示的方法、基站、终端设备及系统 - Google Patents

通过主同步信号进行指示的方法、基站、终端设备及系统 Download PDF

Info

Publication number
WO2017117794A1
WO2017117794A1 PCT/CN2016/070445 CN2016070445W WO2017117794A1 WO 2017117794 A1 WO2017117794 A1 WO 2017117794A1 CN 2016070445 W CN2016070445 W CN 2016070445W WO 2017117794 A1 WO2017117794 A1 WO 2017117794A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
synchronization signal
subframe
pss
radio frame
Prior art date
Application number
PCT/CN2016/070445
Other languages
English (en)
French (fr)
Inventor
汲桐
吴毅凌
陈哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/070445 priority Critical patent/WO2017117794A1/zh
Publication of WO2017117794A1 publication Critical patent/WO2017117794A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a base station, a terminal device, and a system for indicating by a primary synchronization signal.
  • the communication duplex mode is divided into Frequency Division Duplex (FDD) and Time Division Duplex (TDD).
  • FDD duplex mode refers to the system receiving and transmitting on two separate symmetric frequency channels, and separating the receiving and transmitting channels by guaranteeing the frequency band.
  • TDD duplex mode refers to different time slots on the same frequency channel.
  • the system performs reception and transmission, and separates the receiving and transmitting channels by guaranteeing time. Due to the diversity of application scenarios, local regulations, and spectrum division, the M2M communication system needs to support both the FDD duplex mode and the TDD duplex mode. Therefore, the base station should notify the terminal device of the specific duplex mode.
  • the TDD duplex mode and the FDD duplex mode are based on the relative positions of the Primary Synchronization Signal (PSS) and the Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the PSS is located in the last Orthogonal Frequency Division Multiple (OFDM) symbol of the first and eleventh time slots of the radio frame
  • the SSS is located in an OFDM symbol in front of the PSS.
  • the PSS is located in the 3rd and 13th time slots of the radio frame, and the SSS is earlier than the PSS three symbols.
  • the terminal device first detects the PSS, completes the basic time-frequency synchronization, and then detects the SSS.
  • the duplex mode of the system is the TDD duplex mode. If the SSS is located in front of the PSS, the system is judged. The duplex mode is the FDD duplex mode.
  • the above method of indicating the specific duplex mode by the relative positions of the PSS and the SSS is not applicable to the M2M communication system, because in the M2M communication system, the PSS and the SSS may occupy one subframe, so there are not too many resources. Can be used by PSS and SSS, can not rely on the relative position of PSS and SSS to indicate the specific duplex mode, the same reason, can not rely on the relative position of PSS and SSS Set to indicate the deployment scenario and so on.
  • the embodiments of the present invention provide a method, a base station, a terminal device, and a system for indicating by using a primary synchronization signal, which can indicate a working mode by using a position of a plurality of sub-synchronization signals in a PSS in a radio frame, thereby indicating that the network is instructed by the PSS.
  • the purpose of the pattern is not limited to a base station, a terminal device, and a system for indicating by using a primary synchronization signal, which can indicate a working mode by using a position of a plurality of sub-synchronization signals in a PSS in a radio frame, thereby indicating that the network is instructed by the PSS.
  • the first aspect of the present invention provides a method for indicating by using a primary synchronization signal PSS, including:
  • the base station determines the working mode of the network
  • the base station generates a primary synchronization signal PSS according to the determined working mode, where the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions;
  • the base station sends the PSS to a terminal device.
  • the sub-synchronization signal may occupy one subframe separately in the radio frame, or may occupy one symbol in one subframe, and the sub-synchronization signal may be a ZC sequence with a root index of 1, -1, and the working mode includes a duplex mode and / or deployment scenarios.
  • a first embodiment of the first aspect of the invention comprises:
  • the base station determines that the working mode of the network includes:
  • the base station determines that the working mode of the network is a duplex mode
  • the base station generates a primary synchronization signal PSS according to the determined working mode, where the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station Generating, by the base station, a PSS according to the determined duplex mode, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, and the subframe position of the first sub-synchronization signal and the FDD dual in the TDD duplex mode
  • the subframes carrying the first sub-synchronization signal are in different positions, and/or the subframe position carrying the second sub-synchronization signal in the TDD duplex mode and the second in the FDD duplex mode
  • the sub-frame position of the sub-synchronization signal is different.
  • the second embodiment of the first aspect of the invention comprises:
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is subframe 0 in the radio frame, and the subframe position in the TDD duplex mode that carries the second sub-synchronization signal is a radio frame.
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the subframe position that carries the second sub-synchronization signal in the TDD duplex mode is a radio frame. Subframe 0 within.
  • the third embodiment of the first aspect of the invention comprises:
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is different from the subframe position that carries the first sub-synchronization signal in the FDD duplex mode, and includes:
  • the subframe position of the first sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame, and the subframe position in the FDD duplex mode that carries the first sub-synchronization signal is a radio frame.
  • the sub-frame 5 in the TDD duplex mode, the subframe position carrying the first sub-synchronization signal is the subframe 5 in the radio frame, and the first sub-synchronization is carried in the FDD duplex mode.
  • the subframe position of the signal is subframe 0 in the radio frame; and/or,
  • the subframe position that carries the second sub-synchronization signal in the TDD duplex mode is different from the subframe position that carries the second sub-synchronization signal in the FDD duplex mode, and includes:
  • the subframe position of the second sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame
  • the subframe position of the second sub-synchronization signal in the FDD duplex mode is the radio frame.
  • the subframe 0 is within, and the transmission period of the PSS is the length of at least two of the radio frames.
  • a fourth embodiment of the first aspect of the invention comprises:
  • the base station determines that the working mode of the network includes:
  • the base station determines that the working mode of the network is a deployment scenario
  • the base station generates a primary synchronization signal PSS according to the determined working mode, where the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station generates a primary synchronization signal PSS according to the determined deployment scenario, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, where the subframe position and the second subframe carrying the first sub-synchronization signal are in the first deployment scenario.
  • the subframes carrying the first sub-synchronization signal are different in the deployment scenario, and/or the subframe position that carries the second sub-synchronization signal in the first deployment scenario and the second sub-synchronization in the second deployment scenario
  • the sub-frame positions of the signals are different.
  • the fifth embodiment of the first aspect of the invention comprises:
  • the position of the subframe that carries the first sub-synchronization signal in the first deployment scenario is different from the location of the subframe that carries the first sub-synchronization signal in the second deployment scenario, including:
  • the subframe position of the first sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame
  • the subframe position in the second deployment scenario that carries the first sub-synchronization signal is the subframe in the radio frame.
  • the subframe position of the first sub-synchronization signal is the subframe 5 in the radio frame
  • the subframe position of the second sub-synchronization signal in the second deployment scenario is the radio frame. Subframe 0; and/or,
  • the subframe position of the second sub-synchronization signal in the first deployment scenario is different from the sub-frame location of the second sub-synchronization signal in the second deployment scenario, including:
  • the subframe position that carries the second sub-synchronization signal in the first deployment scenario is the subframe 5 in the radio frame
  • the subframe position that carries the second sub-synchronization signal in the second deployment scenario is the subframe in the radio frame. 0; or, in the first deployment scenario, the subframe position that carries the second sub-synchronization signal is the subframe 0 in the radio frame, and the subframe position that carries the second sub-synchronization signal in the second deployment scenario is the radio frame.
  • Subframe 5 within.
  • a sixth embodiment of the first aspect of the invention comprises:
  • the determining, by the base station, the working mode of the network includes:
  • the base station determines that the working mode of the network is a duplex mode and a deployment scenario
  • the base station generates a primary synchronization signal PSS according to the determined working mode, where the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station generates a primary synchronization signal PSS according to the determined duplex mode and the deployment scenario, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal.
  • the first The sub-frame position of the sub-synchronization signal is the first target sub-frame in the radio frame
  • the sub-frame position of the second sub-synchronization signal is the second target sub-frame in the radio frame, in the FDD duplex mode and the second deployment scenario.
  • the sub-frame position of the first sub-synchronization signal is a second target sub-frame in the radio frame
  • the sub-frame position of the second sub-synchronization signal is a first target sub-frame in the radio frame
  • the first At least one of the target subframe and the second target subframe is a subframe that is non-subframe 0 and non-subframe 5.
  • the second aspect of the present invention provides a method for indicating by using a primary synchronization signal PSS, including:
  • the terminal device receives the primary synchronization signal PSS sent by the base station, where the PSS is a PSS generated according to the determined working mode after the base station determines the working mode of the network, and the PSS includes multiple sub- a synchronization signal, wherein different operating modes correspond to sub-synchronization signals at different positions;
  • the terminal device detects a position of multiple sub-synchronization signals in the PSS in a radio frame
  • the terminal device determines an operating mode according to the location.
  • the first embodiment of the second aspect of the invention comprises:
  • the mode of operation includes a duplex mode and/or a deployment scenario.
  • the third aspect of the present invention provides a base station, including:
  • a processing module configured to determine a working mode of the network; generating a primary synchronization signal PSS according to the determined working mode, where the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions;
  • a sending module configured to send the PSS to the terminal device.
  • the first embodiment of the third aspect of the invention comprises:
  • the processing module is configured to determine that a working mode of the network is a duplex mode, and generate a PSS according to the determined duplex mode, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, and the carrier is in a TDD duplex mode.
  • the subframe position of the first sub-synchronization signal is different from the subframe position in which the first sub-synchronization signal is carried in the FDD duplex mode, and/or the sub-carrier that carries the second sub-synchronization signal in the TDD duplex mode
  • the frame position is different from the subframe position in which the second sub-synchronization signal is carried in the FDD duplex mode.
  • the second embodiment of the third aspect of the present invention comprises:
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is subframe 0 in the radio frame, and the subframe position in the TDD duplex mode that carries the second sub-synchronization signal is a radio frame.
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the subframe position that carries the second sub-synchronization signal in the TDD duplex mode is a radio frame. Subframe 0 within.
  • the third embodiment of the third aspect of the invention comprises:
  • the subframe position of the first sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame, and the subframe position in the FDD duplex mode that carries the first sub-synchronization signal is a radio frame.
  • the sub-frame 5 in the TDD duplex mode, the subframe position carrying the first sub-synchronization signal is the subframe 5 in the radio frame, and the first sub-synchronization is carried in the FDD duplex mode.
  • the subframe position of the signal is subframe 0 in the radio frame; and/or,
  • the subframe position of the second sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the subframe position of the second sub-synchronization signal in the FDD duplex mode is the radio frame.
  • a subframe 0, and a transmission period of the PSS is a length of at least two of the radio frames; or, a subframe position of the second sub-synchronization signal in the TDD duplex mode is a radio frame
  • the subframe position of the second sub-synchronization signal in the FDD duplex mode is the subframe 5 in the radio frame
  • the transmission period of the PSS is the length of at least two radio frames.
  • a fourth embodiment of the third aspect of the invention comprises:
  • the processing module is configured to determine a working mode of the network as a deployment scenario, and generate a primary synchronization signal PSS according to the determined deployment scenario, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, and the bearer in the first deployment scenario
  • the subframe position of the first sub-synchronization signal is different from the subframe position of the first sub-synchronization signal in the second deployment scenario, and/or the subframe position of the second sub-synchronization signal in the first deployment scenario.
  • the subframe position that carries the second sub-synchronization signal is different from the second deployment scenario.
  • the fifth embodiment of the third aspect of the present invention includes:
  • the subframe position of the first sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame
  • the subframe position in the second deployment scenario that carries the first sub-synchronization signal is the subframe in the radio frame.
  • the subframe position of the first sub-synchronization signal is the subframe 5 in the radio frame
  • the subframe position of the second sub-synchronization signal in the second deployment scenario is the radio frame. Subframe 0; and/or,
  • the subframe position that carries the second sub-synchronization signal in the first deployment scenario is the subframe 5 in the radio frame
  • the subframe position that carries the second sub-synchronization signal in the second deployment scenario is the subframe in the radio frame. 0; or, in the first deployment scenario, the subframe position that carries the second sub-synchronization signal is the subframe 0 in the radio frame, and the subframe position that carries the second sub-synchronization signal in the second deployment scenario is the radio frame.
  • Subframe 5 within.
  • a sixth embodiment of the third aspect of the invention comprises:
  • the processing module is configured to determine that a working mode of the network is a duplex mode and a deployment scenario;
  • the fixed duplex mode and the deployment scenario generate a primary synchronization signal PSS, the PSS including a first sub-synchronization signal and a second sub-synchronization signal, in the FDD duplex mode and the first deployment scenario, the first sub-synchronization signal
  • the sub-frame position is a first target sub-frame in the radio frame
  • the sub-frame position of the second sub-synchronization signal is a second target sub-frame in the radio frame, in the FDD duplex mode and the second deployment scenario
  • the subframe position of the first sub-synchronization signal is a second target subframe in the radio frame
  • the subframe position of the second sub-synchronization signal is a first target subframe in the radio frame
  • the first target subframe and At least one subframe in the second target subframe is a subframe that is non-subframe 0 and non-subframe 5.
  • the fourth aspect of the present invention provides a terminal device, including:
  • a receiving module configured to receive a primary synchronization signal PSS sent by the base station, where the PSS is a PSS generated according to the determined working mode after the PSS determines an operating mode of the network, where the PSS includes multiple sub-synchronization signals, where Different working modes correspond to sub-synchronization signals of different positions;
  • a processing module configured to detect a position of the plurality of sub-synchronization signals in the PSS in the radio frame; and determine an operation mode according to the location.
  • the first embodiment of the fourth aspect of the invention comprises:
  • the mode of operation includes a duplex mode and/or a deployment scenario.
  • the fifth aspect of the present invention provides a system, including:
  • the base station is configured to determine an operating mode of the network, and generate a primary synchronization signal PSS according to the determined working mode, where the PSS includes multiple sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different locations; and send to the terminal device The PSS;
  • the terminal device is configured to receive a primary synchronization signal PSS sent by the base station, where the PSS is a PSS generated according to the determined working mode after the base station determines an operating mode of the network, where the PSS includes multiple sub-synchronization signals.
  • different working modes correspond to sub-synchronization signals of different positions; detecting a position of the plurality of sub-synchronization signals in the PSS in the radio frame; determining an operation mode according to the position.
  • the first embodiment of the fifth aspect of the invention comprises:
  • the mode of operation includes a duplex mode and/or a deployment scenario.
  • the working mode is represented by the position of multiple sub-synchronization signals in the PSS in the radio frame, and the working mode may be a duplex mode or a deployment scenario, and the prior art is avoided.
  • the method of indicating the duplex mode and/or the deployment scenario by the relative positions of the PSS and the SSS is not applicable to the problem of the M2M communication system, and thus it can be seen that the present invention uses the position of the plurality of sub-synchronization signals in the PSS in the radio frame. Indicates the working mode and achieves the purpose of indicating the working mode of the network through the PSS.
  • FIG. 1 is a schematic diagram of an embodiment of a method for indicating by a primary synchronization signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an embodiment of a position of a first sub-synchronization signal and a second sub-synchronization signal in a radio frame according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of another embodiment of a position of a first sub-synchronization signal and a second sub-synchronization signal in one radio frame according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of another embodiment of a position of a first sub-synchronization signal and a second sub-synchronization signal in one radio frame according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of another embodiment of a method for indicating by using a primary synchronization signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of an embodiment of a base station according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an embodiment of a terminal device according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another embodiment of a terminal device according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an embodiment of a system according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an embodiment of a server according to an embodiment of the present invention.
  • the embodiment of the present invention provides a method, a base station, a terminal device, and a system for indicating by using a primary synchronization signal PSS, which can indicate a working mode by using a position of multiple sub-synchronization signals in a PSS in a radio frame, and reach a network indicated by the PSS.
  • PSS primary synchronization signal
  • the LTE system is taken as an example in the foregoing background, the person skilled in the art should know that the present invention is not only applicable to the LTE system, but also applicable to other wireless communication systems, such as the Global System for Global System (Global System for Mobile System). Mobile Communication, GSM), Universal Mobile Telecommunications System (UMTS), Code Division Multiple Access (CDMA) system, and new network systems.
  • GSM Global System for Global System
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the wireless terminal can communicate with one or more core networks via a Radio Access Network (RAN), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • RAN can be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal.
  • RAN Radio Access Network
  • it may be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with a wireless access network.
  • a wireless terminal may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, or an access point.
  • Remote Terminal Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • the base station may be configured to convert the received air frame and the IP packet into a router between the wireless terminal and the rest of the access network, where the rest of the access network may include the Internet. Protocol (IP) network.
  • IP Internet. Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station (eNB or e-NodeB, evolutional Node B) in LTE. This application is not limited.
  • an embodiment of a method for indicating by a primary synchronization signal in an embodiment of the present invention includes:
  • the base station determines a working mode of the network.
  • the working mode includes a duplex mode and/or a deployment scenario
  • the deployment scenario may be one or more of a deployment mode, a system frame number, and a cell identifier (Identity, ID), and the deployment mode includes an independent deployment manner.
  • Non-independent deployment method The M2M communication system spectrum can be deployed in various ways, for example, it can be deployed in the existing communication system band, such as LTE, Global System for Mobile communications (GSM), etc., or can be deployed to the existing communication system band.
  • GSM Global System for Mobile communications
  • protection band protection bands like LTE and GSM can also be deployed independently to a unique spectrum. Different deployment methods will have different scenarios and requirements, and thus different designs will be made in order to make the terminal devices compatible.
  • the deployment mode requires a certain way to notify the terminal device of the specific deployment mode after the terminal device accesses the network.
  • the base station generates a primary synchronization signal PSS according to the determined working mode, where the PSS includes multiple sub-synchronization signals, where different working modes correspond to sub-synchronization signals of different positions;
  • the sub-synchronization signal may occupy one subframe separately in the radio frame, or may occupy one symbol in one subframe.
  • the base station sends the PSS to the terminal device.
  • the base station after the base station generates the PSS, the base station sends the PSS to the terminal device.
  • the terminal device can determine the working mode according to the position of the multiple sub-synchronization signals in the PSS in the radio frame.
  • the working mode is represented by the position of the multiple sub-synchronization signals in the PSS in the radio frame, and the working mode may be a duplex mode or a deployment scenario, which avoids the relative PSS and SSS in the prior art.
  • the method of indicating the duplex mode and/or the deployment scenario is not applicable to the problem of the M2M communication system, and thus it can be seen that the present invention achieves the working mode by indicating the position of the plurality of sub-synchronization signals in the PSS in the radio frame.
  • the PSS indicates the purpose of the network's working mode.
  • the determining, by the base station, the working mode of the network that: the base station determines that the working mode of the network is a duplex mode;
  • the base station generates a primary synchronization signal PSS according to the determined working mode, and the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station generates a PSS according to the determined duplex mode, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, and the subframe position carrying the first sub-synchronization signal in the TDD duplex mode and the bearer in the FDD duplex mode
  • the sub-frame position of a sub-synchronization signal is different, and/or the sub-frame position carrying the second sub-synchronization signal in the TDD duplex mode is different from the sub-frame position carrying the second sub-synchronization signal in the FDD duplex mode.
  • first sub-synchronization signal and the second sub-synchronization signal may be a Zadoff-Chu sequence with a root index of 1, -1, respectively, or a ZC sequence;
  • L represents the length of the ZC sequence.
  • the distance between the subframe position carrying the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the TDD duplex mode is equal to the duplex in the FDD duplex.
  • the distance between the subframe position of the first sub-synchronization signal and the subframe position of the second sub-synchronization signal is carried in the mode, it is necessary to satisfy the subframe position and the number of the first sub-synchronization signal in the TDD duplex mode.
  • the order of the subframe positions of the two sub-synchronization signals is different from the order of the subframe positions carrying the first sub-synchronization signal and the sub-frame position of the second sub-synchronization signal in the FDD duplex mode, and the transmission period of the PSS is at least two The length of the radio frame, for example, if in TDD duplex mode, the subframe position carrying the first sub-synchronization signal is subframe 0, and the subframe position carrying the second sub-synchronization signal is subframe 5, in FDD dual In the working mode, the subframe position carrying the first sub-synchronization signal is subframe 1, and the subframe position carrying the second sub-synchronization signal is subframe 6. In this case, the terminal device cannot distinguish between the dual frames.
  • the correct mode is that in the FDD duplex mode, the subframe position carrying the first sub-synchronization signal is subframe 6, the subframe position carrying the second sub-synchronization signal is subframe 1, and the transmission period of the PSS is simultaneously The length of at least two radio frames.
  • the subframe position that carries the first sub-synchronization signal is subframe 0 in the radio frame
  • the subframe position that carries the second sub-synchronization signal in the TDD duplex mode is a sub-frame in the radio frame.
  • Frame 5; or, the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame
  • the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the sub-frame in the radio frame.
  • the subframe position of the first sub-synchronization signal and the third sub-synchronization signal in the TDD duplex mode may be: In the subframe 0 of the radio frame, the subframe position of the second sub-synchronization signal and the fourth sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame; or the first sub-synchronization is carried in the FDD duplex mode.
  • the subframe position of the signal and the third sub-synchronization signal is subframe 5 in the radio frame
  • the subframe position of the second sub-synchronization signal and the fourth sub-synchronization signal in the FDD duplex mode is subframe 0 in the radio frame.
  • the distribution scheme of the foregoing sub-synchronization signal is only one of the embodiments, and the present invention is not limited to the above-described distribution scheme.
  • the plurality of sub-synchronization signals located in the same subframe within the radio frame means that the plurality of sub-synchronization signals are located on different symbols within one subframe.
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is different from the subframe position that carries the first sub-synchronization signal in the FDD duplex mode, including:
  • the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame, and the subframe position carrying the first sub-synchronization signal in the FDD duplex mode is the subframe 5 in the radio frame; or
  • the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the subframe position carrying the first sub-synchronization signal in the FDD duplex mode is the subframe 0 in the radio frame; and / or
  • the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is different from the subframe position carrying the second sub-synchronization signal in the FDD duplex mode, including:
  • the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame
  • the subframe position carrying the second sub-synchronization signal in the FDD duplex mode is the subframe 0 in the radio frame
  • the PSS The transmission period is the length of at least two radio frames; or, the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame, and the second sub-synchronization signal is carried in the FDD duplex mode.
  • the subframe position of the number is subframe 5 in the radio frame
  • the transmission period of the PSS is the length of at least two radio frames.
  • the reason why the transmission period of the PSS is the length of at least two radio frames is: if the transmission period of the PSS is the length of one radio frame, in the TDD duplex mode and the FDD duplex mode, the first sub-synchronization signal There is no context relationship with the second sub-synchronization signal, and the terminal device is always separated by 5 ms, and the terminal device cannot detect the specific duplex mode.
  • PSS1 in FIG. 2 represents a first sub-synchronization signal
  • PSS2 represents a second sub-synchronization signal, assuming that the transmission period of the PSS is two.
  • the length of the radio frame when the duplex mode is the TDD duplex mode, the subframe position carrying the first sub-synchronization signal is on the subframe 0 in the radio frame, and the subframe position carrying the second sub-synchronization signal is the radio frame.
  • the subframe position carrying the first sub-synchronization signal is on the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal is wireless.
  • the terminal device In subframe 0 of the frame, if the terminal device detects that the first sub-synchronization signal is 5 ms before the second sub-synchronization signal or the first sub-synchronization signal is 15 ms behind the second sub-synchronization signal, it determines that the working mode is In the TDD duplex mode, if it is detected that the first sub-synchronization signal is 5 ms behind the second sub-synchronization signal or the first sub-synchronization signal is at the first 15 ms of the second sub-synchronization signal, it is determined that the operation mode is the FDD duplex mode.
  • the above-mentioned instruction TDD duplex mode or FDD duplex mode adopts a method in which the position order of the first sub-synchronization signal and the second sub-synchronization signal in one radio frame is in some embodiments of the present invention.
  • the method may also be adopted by the position distance of the first sub-synchronization signal and the second sub-synchronization signal in a radio frame.
  • PSS1 in FIG. 3 represents the first sub-synchronization signal
  • PSS2 represents a second sub-synchronization signal
  • the duplex mode is the TDD duplex mode
  • the subframe position carrying the first sub-synchronization signal is on the subframe 0 in the radio frame
  • the subframe position carrying the second sub-synchronization signal is wireless.
  • the terminal device detects that the first sub-synchronization signal and the second sub-synchronization signal are separated by 5 ms, it determines that the working mode is the TDD duplex mode, and if the first sub-synchronization signal and the second sub-detection are detected Synchronization signal is 1m apart s, then determine the working mode is FDD duplex mode.
  • the indication information may also indicate a deployment scenario. Therefore, in some embodiments of the present invention, the determining, by the base station, the working mode of the network includes: determining, by the base station, the working of the network.
  • the mode is a deployment scenario;
  • the base station generates a primary synchronization signal PSS according to the determined working mode, and the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station generates a primary synchronization signal PSS according to the determined deployment scenario, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal, and the subframe position of the first sub-synchronization signal and the second deployment scenario are carried in the first deployment scenario.
  • the sub-frame position of the sub-synchronization signal is different, and/or the sub-frame position carrying the second sub-synchronization signal in the first deployment scenario is different from the sub-frame position carrying the second sub-synchronization signal in the second deployment scenario.
  • the distance between the subframe position carrying the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the first deployment scenario is equal to the bearer in the second deployment scenario.
  • the subframe position and the second sub-synchronization carrying the first sub-synchronization signal in the first deployment scenario need to be satisfied.
  • the order of the subframe positions of the signals is different from the subframe position of the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the second deployment scenario, and the transmission period of the PSS is at least two radio frames. length.
  • the subframe position that carries the first sub-synchronization signal in the first deployment scenario is different from the subframe location that carries the first sub-synchronization signal in the second deployment scenario, including:
  • the subframe position that carries the first sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame, and the subframe position in the second deployment scenario that carries the first sub-synchronization signal is the subframe 5 in the radio frame; or
  • the subframe position carrying the first sub-synchronization signal in a deployment scenario is the subframe 5 in the radio frame, and the subframe position in the second deployment scenario carrying the second sub-synchronization signal is the subframe 0 in the radio frame; and/or ,
  • the subframe position of the second sub-synchronization signal in the first deployment scenario is different from the sub-frame location of the second sub-synchronization signal in the second deployment scenario, including:
  • the subframe position of the second sub-synchronization signal in the first deployment scenario is the subframe 5 in the radio frame, and the subframe position in the second deployment scenario that carries the second sub-synchronization signal is the subframe 0 in the radio frame; or
  • the subframe position that carries the second sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame, and the subframe position in the second deployment scenario that carries the second sub-synchronization signal is the subframe 5 in the radio frame.
  • the child carrying the first sub-synchronization signal The frame position is the subframe 0 in the radio frame, and the subframe position of the second sub-synchronization signal is the subframe 5 in the radio frame.
  • the sub-synchronization signal is carried.
  • the frame position is on the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal is on the subframe 0 in the radio frame, and the terminal device detects that the first sub-synchronization signal is located in front of the second sub-synchronization signal for 5 ms.
  • the first sub-synchronization signal is located 15 ms after the second sub-synchronization signal (assuming that the transmission period of the PSS is the length of the two radio frames), and the working mode is determined to be the first deployment scenario, when the deployment scenario is the first deployment scenario.
  • the subframe position carrying the first sub-synchronization signal is on the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal is on the subframe 0 in the radio frame, when the deployment scenario is the second deployment scenario.
  • the subframe position carrying the first sub-synchronization signal is on the subframe 0 in the radio frame, and the subframe position carrying the second sub-synchronization signal is on the subframe 5 in the radio frame, and the terminal device detects the first sub-synchronization.
  • the signal is located in the second sub-synchronization letter 5ms or behind the first synchronous signal in the second sub-sub-15ms sync signal at the front, it is determined that the operating mode is a second deployment scenario.
  • the determining, by the base station, the working mode of the network includes: determining, by the base station, that the working mode of the network is a duplex mode and a deployment scenario;
  • the base station generates a primary synchronization signal PSS according to the determined working mode, and the PSS includes a plurality of sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions, including:
  • the base station generates a primary synchronization signal PSS according to the determined duplex mode and the deployment scenario, where the PSS includes a first sub-synchronization signal and a second sub-synchronization signal.
  • the sub-synchronization signal is sub-
  • the frame position is the first target subframe in the radio frame
  • the subframe position of the second sub-synchronization signal is the second target subframe in the radio frame
  • the first sub-synchronization signal is in the FDD duplex mode and the second deployment scenario.
  • the subframe position is a second target subframe in the radio frame
  • the subframe position of the second sub-sync signal is a first target subframe in the radio frame, and the first target subframe and the second target subframe are present.
  • At least one subframe is a subframe of non-subframe 0 and non-subframe 5.
  • PSS1 in FIG. 4 represents the first sub-synchronization signal
  • PSS2 represents the second sub-synchronization signal
  • the subframe position of the synchronization signal is the subframe 4 in the radio frame
  • the subframe position of the second sub-synchronization signal is the subframe 5 in the radio frame.
  • the subframe position of the synchronization signal is on the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal is on the subframe 4 in the radio frame; in the TDD duplex mode, when the deployment scenario is the first deployment Scenes
  • the subframe position of the first sub-synchronization signal is the subframe 0 in the radio frame, and the subframe position of the second sub-synchronization signal is the subframe 5 in the radio frame, and the deployment scenario is the second deployment scenario.
  • the subframe position carrying the first sub-signal is on the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal is on the subframe 0 in the radio frame, and the terminal device detects the first sub-frame.
  • the synchronization signal is at the first 5 ms of the second sub-synchronization signal or the first sub-synchronization signal is 15 ms behind the second sub-synchronization signal (assuming that the transmission period of the PSS is the length of two radio frames), then it is determined that the operation mode is TDD dual
  • the first deployment scenario if the terminal device detects that the first sub-synchronization signal is 5 ms behind the second sub-synchronization signal or the first sub-synchronization signal is 15 ms before the second sub-synchronization signal, determining that the working mode is In the TDD duplex mode and the second deployment scenario, if the terminal device detects that the first sub-synchronization signal is at or before 19 ms in front of the second sub-synchronization signal, determining that the working mode is the FDD duplex mode and the first deployment scenario, Terminal equipment Detected synchronization signal to the first sub 1ms behind or at the front of the second sub-19ms sync signal, the operation mode is determined as the FDD duplex mode and a second deployment scenario.
  • the present invention may also be indicated by the SSS, such as indicating a specific duplex mode and/or a deployment scenario, and taking the duplex mode as an example: the SSS is a pair of ZC sequences, which may be through different root indices of the ZC sequence. Differentiate between TDD duplex mode and FDD duplex mode.
  • a pair of ZC sequences of SSS are SSS1 and SSS2, respectively obtain all root indices of SSS1 and SSS2, and form a set of root index pairs.
  • SSS1 has 100 root indices, SSS2.
  • another embodiment of the method for indicating by the primary synchronization signal PSS in the embodiment of the present invention includes:
  • the terminal device receives the primary synchronization signal PSS sent by the base station, where the PSS is a PSS generated according to the determined working mode after the base station determines the working mode of the network, where the PSS includes multiple sub-synchronization signals, where different working modes correspond to Sub-synchronization signals at different locations;
  • the terminal device when the terminal device starts to synchronize, the location of the PSS in the radio frame is detected by blind detection, and the PSS sent by the base station is received.
  • the terminal device detects a location of multiple sub-synchronization signals in the PSS in a radio frame.
  • the terminal device after receiving the PSS sent by the base station, the terminal device detects multiple PSSs. The position of the sub-synchronization signal within the radio frame.
  • the terminal device determines an operating mode according to the location.
  • the terminal device determines the working mode according to the position of the plurality of sub-synchronization signals in the detected PSS in the radio frame.
  • the working mode includes a duplex mode and/or a deployment scenario.
  • the terminal device has been correspondingly determined according to the location determining operation mode, which is not described in this embodiment.
  • the terminal device can determine the working mode according to the position of the plurality of sub-synchronization signals in the radio frame, and the technical solution of the present invention is improved.
  • an embodiment of a base station in an embodiment of the present invention includes:
  • the processing module 301 is configured to determine an operating mode of the network, and generate a primary synchronization signal PSS according to the determined working mode, where the PSS includes multiple sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions;
  • the sending module 302 is configured to send the PSS to the terminal device.
  • the working mode is represented by the position of the multiple sub-synchronization signals in the PSS in the radio frame, and the working mode may be a duplex mode or a deployment scenario, which avoids the relative PSS and SSS in the prior art.
  • the method of indicating the duplex mode and/or the deployment scenario is not applicable to the problem of the M2M communication system, and thus it can be seen that the present invention achieves the working mode by indicating the position of the plurality of sub-synchronization signals in the PSS in the radio frame.
  • the PSS indicates the purpose of the network's working mode.
  • the processing module 301 is configured to determine that a working mode of the network is a duplex mode, and generate a PSS according to the determined duplex mode, where the PSS includes a first sub-synchronization signal and a second sub- The synchronization signal, the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is different from the subframe position carrying the first sub-synchronization signal in the FDD duplex mode, and/or the second is carried in the TDD duplex mode The subframe position of the sub-synchronization signal is different from the subframe position at which the second sub-synchronization signal is carried in the FDD duplex mode.
  • the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is subframe 0 in the radio frame, and the second sub-synchronization signal is carried in the TDD duplex mode.
  • the subframe position is subframe 5 within the radio frame; or,
  • the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame
  • the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame.
  • the subframe position that carries the first sub-synchronization signal in the TDD duplex mode is subframe 0 in the radio frame, and the sub-carrier in the FDD duplex mode carries the first sub-synchronization signal.
  • the frame position is the subframe 5 in the radio frame; or the subframe position carrying the first sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the sub-frame carrying the first sub-synchronization signal in the FDD duplex mode
  • the frame position is subframe 0 in the radio frame; and/or
  • the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the subframe 5 in the radio frame, and the subframe position carrying the second sub-synchronization signal in the FDD duplex mode is the subframe 0 in the radio frame, and the PSS
  • the transmission period is the length of at least two radio frames; or, the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is the subframe 0 in the radio frame, and the second sub-synchronization signal is carried in the FDD duplex mode.
  • the subframe position is subframe 5 in the radio frame, and the transmission period of the PSS is the length of at least two radio frames.
  • the processing module 301 is configured to determine a working mode of the network as a deployment scenario, and generate a primary synchronization signal PSS according to the determined deployment scenario, where the PSS includes a first sub-synchronization signal and a second The sub-synchronization signal, the subframe position of the first sub-synchronization signal in the first deployment scenario is different from the sub-frame position of the second sub-synchronization signal in the second deployment scenario, and/or the second sub-synchronization is carried in the first deployment scenario.
  • the subframe position of the signal is different from the subframe position of the second deployment synchronization signal in the second deployment scenario.
  • the subframe position of the first sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame
  • the second sub-synchronization signal is carried in the second deployment scenario.
  • the sub-frame position is the sub-frame 5 in the radio frame; or the sub-frame position carrying the first sub-synchronization signal in the first deployment scenario is the sub-frame 5 in the radio frame, and the sub-frame carrying the second sub-synchronization signal in the second deployment scenario
  • the frame position is subframe 0 in the radio frame; and/or,
  • the subframe position of the second sub-synchronization signal in the first deployment scenario is the subframe 5 in the radio frame, and the subframe position in the second deployment scenario that carries the second sub-synchronization signal is the subframe 0 in the radio frame; or
  • the subframe position that carries the second sub-synchronization signal in the first deployment scenario is the subframe 0 in the radio frame, and the subframe position in the second deployment scenario that carries the second sub-synchronization signal is the subframe 5 in the radio frame.
  • the processing module 301 is configured to determine the work of the network.
  • the mode is a duplex mode and a deployment scenario; the primary synchronization signal PSS is generated according to the determined duplex mode and the deployment scenario, where the PSS includes the first sub-synchronization signal and the second sub-synchronization signal, in the FDD duplex mode and the first deployment scenario.
  • the subframe position of the first sub-synchronization signal is the first target subframe in the radio frame, and the subframe position of the second sub-synchronization signal is the second target subframe in the radio frame, in the FDD duplex mode and the second deployment.
  • the subframe position of the first sub-synchronization signal is the second target subframe in the radio frame
  • the subframe position of the second sub-synchronization signal is the first target subframe in the radio frame, the first target subframe, and the first subframe.
  • At least one subframe in the two target subframes is a subframe that is non-subframe 0 and non-subframe 5.
  • an embodiment of a terminal device in an embodiment of the present invention includes:
  • the receiving module 401 is configured to receive a primary synchronization signal PSS sent by the base station, where the PSS is a PSS generated according to the determined working mode after the base station determines the working mode of the network, where the PSS includes multiple sub-synchronization signals, where different operations are performed.
  • the mode corresponds to a sub-synchronization signal at different positions;
  • the processing module 402 is configured to detect a position of the plurality of sub-synchronization signals in the PSS within the radio frame; and determine an operation mode according to the location.
  • the processing module 402 can determine the working mode according to the position of the plurality of sub-synchronization signals in the radio frame, and completes the technical solution of the present invention.
  • the indication content of the indication information includes a duplex mode and/or a deployment scenario.
  • another embodiment of a base station in an embodiment of the present invention includes:
  • the processor 501 is configured to perform control: determining an operating mode of the network; and generating a primary synchronization signal PSS according to the determined working mode, where the PSS includes multiple sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions. Sending the PSS to the terminal device.
  • the working mode is represented by the position of the multiple sub-synchronization signals in the PSS in the radio frame, and the working mode may be a duplex mode or a deployment scenario, which avoids the relative PSS and SSS in the prior art.
  • the method of indicating the duplex mode and/or the deployment scenario is not applicable to the problem of the M2M communication system, and thus it can be seen that the present invention achieves the working mode by indicating the position of the plurality of sub-synchronization signals in the PSS in the radio frame.
  • the PSS indicates the purpose of the network's working mode.
  • the embodiment of the present invention further provides a specific implementation scheme for generating a PSS when the working mode of the network is the duplex mode, as follows:
  • the processor 501 is specifically configured to perform control: determining that the working mode of the network is a duplex mode; generating a PSS according to the determined duplex mode, the PSS including a first sub-synchronization signal and a second sub-synchronization signal, and a subframe position carrying the first sub-synchronization signal and a FDD duplex mode in the TDD duplex mode
  • the subframes carrying the first sub-synchronization signal are different in position, and/or the subframe position carrying the second sub-synchronization signal in the TDD duplex mode is different from the subframe position carrying the second sub-synchronization signal in the FDD duplex mode.
  • the distance between the subframe position carrying the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the TDD duplex mode is equal to the FDD.
  • the subframe position carrying the first sub-synchronization signal in the TDD duplex mode needs to be satisfied.
  • the order of the subframe positions of the second sub-synchronization signal is different from the order of the subframe position of the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the FDD duplex mode, and the transmission period of the PSS is at least The length of two radio frames, for example, if in the TDD duplex mode, the subframe position carrying the first sub-synchronization signal is subframe 0, and the subframe position carrying the second sub-synchronization signal is subframe 5, In the FDD duplex mode, the subframe position carrying the first sub-synchronization signal is subframe 1, and the subframe position carrying the second sub-synchronization signal is subframe 6. In this case, the terminal device cannot distinguish the duplex mode.
  • the right side In the FDD duplex mode the subframe position carrying the first sub-synchronization signal is subframe 6, the subframe position carrying the second sub-synchronization signal is subframe 1, and the transmission period of the PSS is at least two radio frames. length.
  • the embodiment of the present invention further provides a specific implementation scheme for generating a PSS when the working mode of the network is a scenario, as follows:
  • the processor 501 is specifically configured to control execution: determining that the working mode of the network is a deployment scenario; and generating according to the determined deployment scenario.
  • a primary synchronization signal PSS the PSS comprising a first sub-synchronization signal and a second sub-synchronization signal, the subframe position carrying the first sub-synchronization signal in the first deployment scenario and the sub-frame carrying the first sub-synchronization signal in the second deployment scenario
  • the location of the subframe that carries the second sub-synchronization signal is different from the location of the subframe that carries the second sub-synchronization signal in the second deployment scenario.
  • the distance between the subframe position carrying the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the first deployment scenario is equal to that in the second deployment scenario.
  • the first sub-synchronization is carried in the first deployment scenario under the condition that the distance between the subframe position of the first sub-synchronization signal and the sub-frame position of the second sub-synchronization signal is in the deployment scenario.
  • the order of the subframe position of the signal and the subframe position of the second sub-synchronization signal is different from the order of the subframe position carrying the first sub-synchronization signal and the subframe position of the second sub-synchronization signal in the second deployment scenario, and the PSS
  • the transmission period is the length of at least two radio frames.
  • the embodiment of the present invention further provides a specific implementation scheme for generating a PSS when the working mode of the network is a duplex mode and a scenario, as follows:
  • the processor 501 is specifically configured to perform control: determining that the working mode of the network is duplex mode and deployment. a scenario; generating a primary synchronization signal PSS according to the determined duplex mode and the deployment scenario, the PSS comprising a first sub-synchronization signal and a second sub-synchronization signal, in the FDD duplex mode and the first deployment scenario, the first sub-synchronization signal
  • the sub-frame position is the first target sub-frame in the radio frame
  • the sub-frame position of the second sub-synchronization signal is the second target sub-frame in the radio frame.
  • the first sub-synchronization The subframe position of the signal is a second target subframe in the radio frame
  • the subframe position of the second sub-synchronization signal is a first target subframe in the radio frame
  • at least the first target subframe and the second target subframe are present.
  • One subframe is a subframe of non-subframe 0 and non-subframe 5.
  • another embodiment of the terminal device in the embodiment of the present invention includes:
  • the processor 601 is configured to: perform: receiving, by the base station, a primary synchronization signal PSS, where the PSS is a PSS generated according to the determined working mode after the base station determines an operating mode of the network, where the PSS includes multiple sub-synchronization signals. Wherein the different working modes correspond to sub-synchronization signals of different positions; detecting the position of the plurality of sub-synchronization signals in the PSS within the radio frame; determining the working mode according to the position.
  • the processor 601 can determine the working mode according to the position of the plurality of sub-synchronization signals in the radio frame, and completes the technical solution of the present invention.
  • an embodiment of a system in an embodiment of the present invention includes:
  • the base station 701 is configured to determine an operating mode of the network, and generate a primary synchronization signal PSS according to the determined working mode, where the PSS includes multiple sub-synchronization signals, wherein different working modes correspond to sub-synchronization signals of different positions; and the PSS is sent to the terminal device 702. ;
  • the terminal device 702 is configured to receive a primary synchronization signal PSS sent by the base station 701, detect a location of multiple sub-synchronization signals in the PSS in the radio frame, and determine an operation mode according to the location.
  • the base station 701 passes the position of the plurality of sub-synchronization signals in the PSS in the radio frame.
  • the working mode can be the duplex mode or the deployment scenario, and the method for indicating the duplex mode and/or the deployment scenario by the relative positions of the PSS and the SSS in the prior art is not applicable to the M2M communication system.
  • the terminal device 702 determines the working mode according to the location. It can be seen that the present invention indicates the working mode by the position of the plurality of sub-synchronization signals in the PSS in the radio frame, so that the terminal device 702 determines the working mode according to the location and achieves the passing.
  • the PSS indicates the purpose of the network's working mode.
  • an embodiment of the server in the embodiment of the present invention includes:
  • FIG. 11 is a schematic structural diagram of a server according to an embodiment of the present invention.
  • the server 800 may have a large difference due to different configurations or performances, and may include one or more central processing units (CPUs) 801 (for example, One or more processors), one or more storage media 804 that store application 802 or data 803 (eg, one or one storage device in Shanghai).
  • the storage medium 804 can be short-term storage or persistent storage.
  • the program stored on storage medium 804 may include one or more modules (not shown), each of which may include a series of instruction operations in the switch.
  • central processor 801 can be configured to communicate with storage medium 804, executing a series of instruction operations in storage medium 804 on server 800.
  • Server 800 may also include one or more power sources 805, one or more wired or wireless network interfaces 806, one or more output interfaces 807, and/or one or more operating systems 808, such as Windows ServerTM, Mac OS. XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • operating systems 808, such as Windows ServerTM, Mac OS. XTM, UnixTM, LinuxTM, FreeBSDTM and more.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling or communication connection may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了通过主同步信号进行指示的方法、基站、终端设备及系统,能够通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。本发明实施例方法包括:基站确定网络的工作模式;所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;所述基站向终端设备发送所述PSS。

Description

通过主同步信号进行指示的方法、基站、终端设备及系统 技术领域
本发明涉及通信技术领域,尤其涉及通过主同步信号进行指示的方法、基站、终端设备及系统。
背景技术
随着机器到机器(Machine to Machine,M2M)通信应用的飞速扩展,其市场需求和规模呈现爆发式增长。通信双工模式分为频分双工(Frequency Division Duplex,FDD)和时分双工(Time Division Duplex,TDD)。FDD双工模式指的是在分离的两个对称频率信道上,系统进行接收和传送,通过保证频段的方式来分离接收和传送信道,TDD双工模式指的是在同一频率信道的不同时隙上,系统进行接收和传送,通过保证时间的方式来分离接收和传送信道。由于应用场景、地方法规和频谱划分的多样性,M2M通信系统需要同时支持FDD双工模式和TDD双工模式,因此基站要通知终端设备具体的双工模式。
当前,在长期演进(Long Term Evolution,LTE)中,TDD双工模式和FDD双工模式是由主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)的相对位置来指示的,FDD双工模式中,PSS位于无线帧的第1和第11个时隙的最后一个正交频分复用(Orthogonal Frequency Division Multiple,OFDM)符号,SSS位于PSS前面的一个OFDM符号,TDD双工模式中,PSS位于无线帧的第3和第13个时隙,SSS早于PSS三个符号。终端设备首先检测PSS,完成基本的时频同步,然后检测SSS,如果SSS位于PSS前三个符号,则判断系统的双工模式是TDD双工模式,如果SSS位于PSS前一个符号,则判断系统的双工模式是FDD双工模式。
但是,上述通过PSS和SSS的相对位置来指示具体的双工模式的方法不适用于M2M通信系统,因为在M2M通信系统中,PSS和SSS可能都要占用一个子帧,所以没有过多的资源能够供PSS和SSS使用,无法依靠PSS和SSS的相对位置来指示具体的双工模式,同理,也无法依靠PSS和SSS的相对位 置来指示部署场景等。
发明内容
本发明实施例提供了通过主同步信号进行指示的方法、基站、终端设备及系统,能够通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
有鉴于此,本发明第一方面提供了一种通过主同步信号PSS进行指示的方法,包括:
基站确定网络的工作模式;
所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
所述基站向终端设备发送所述PSS。
其中,子同步信号在无线帧中可以单独占用一个子帧,也可以占用一个子帧中的一个符号,子同步信号可以为根指数为1、-1的ZC序列,工作模式包括双工模式和/或部署场景。
结合本发明第一方面,本发明第一方面的第一实施方式包括:
基站确定网络的工作模式包括:
基站确定网络的工作模式为双工模式;
所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
所述基站根据确定的双工模式生成PSS,所述PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同,和/或在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同。
结合本发明第一方面的第一实施方式,本发明第一方面的第二实施方式包括:
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5;或者,
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0。
结合本发明第一方面的第一实施方式,本发明第一方面的第三实施方式包括:
在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同,包括:
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0;和/或,
在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同,包括:
所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,且所述PSS的发送周期为至少两个所述无线帧的长度。
结合本发明第一方面,本发明第一方面的第四实施方式包括:
基站确定网络的工作模式包括:
基站确定网络的工作模式为部署场景;
所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
所述基站根据确定的部署场景生成主同步信号PSS,所述PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载所述第一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,和/或第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下承载所述第二子同步信号的子帧位置不同。
结合本发明第一方面的第四实施方式,本发明第一方面的第五实施方式包括:
第一部署场景下承载所述第一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,包括:
第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下承载所述第二子同步信号的子帧位置不同,包括:
第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;或,第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5。
结合本发明第一方面,本发明第一方面的第六实施方式包括:
所述基站确定网络的工作模式包括:
基站确定网络的工作模式为双工模式和部署场景;
所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
所述基站根据确定的双工模式和部署场景生成主同步信号PSS,所述PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,所述第一子同步信号的子帧位置为无线帧内的第一目标子帧,所述第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,所述第一子同步信号的子帧位置为无线帧内的第二目标子帧,所述第二子同步信号的子帧位置为无线帧内的第一目标子帧,所述第一目标子帧和所述第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
有鉴于此,本发明第二方面提供了一种通过主同步信号PSS进行指示的方法,包括:
终端设备接收基站发送的主同步信号PSS,其中,所述PSS为所述基站确定网络的工作模式后,根据确定的工作模式生成的PSS,所述PSS包含多个子 同步信号,其中,不同的工作模式对应不同位置的子同步信号;
所述终端设备检测所述PSS中的多个子同步信号在无线帧内的位置;
所述终端设备根据所述位置确定工作模式。
结合本发明第二方面,本发明第二方面的第一实施方式包括:
所述工作模式包括双工模式和/或部署场景。
有鉴于此,本发明第三方面提供了一种基站,包括:
处理模块,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
发送模块,用于向终端设备发送所述PSS。
结合本发明第三方面,本发明第三方面的第一实施方式包括:
所述处理模块,用于确定网络的工作模式为双工模式;根据确定的双工模式生成PSS,所述PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同,和/或在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同。
结合本发明第三方面的第一实施方式,本发明第三方面的第二实施方式包括:
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5;或者,
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0。
结合本发明第三方面的第一实施方式,本发明第三方面的第三实施方式包括:
所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧 内的子帧5;或者,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0;和/或,
所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,且所述PSS的发送周期为至少两个所述无线帧的长度;或者,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,且所述PSS的发送周期为至少两个所述无线帧的长度。
结合本发明第三方面,本发明第三方面的第四实施方式包括:
所述处理模块,用于确定网络的工作模式为部署场景;根据确定的部署场景生成主同步信号PSS,所述PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载所述第一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,和/或第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下承载所述第二子同步信号的子帧位置不同。
结合本发明第三方面的第四实施方式,本发明第三方面的第五实施方式包括:
第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;或,第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5。
结合本发明第三方面,本发明第三方面的第六实施方式包括:
所述处理模块,用于确定网络的工作模式为双工模式和部署场景;根据确 定的双工模式和部署场景生成主同步信号PSS,所述PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,所述第一子同步信号的子帧位置为无线帧内的第一目标子帧,所述第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,所述第一子同步信号的子帧位置为无线帧内的第二目标子帧,所述第二子同步信号的子帧位置为无线帧内的第一目标子帧,所述第一目标子帧和所述第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
有鉴于此,本发明第四方面提供了一种终端设备,包括:
接收模块,用于接收基站发送的主同步信号PSS,其中,所述PSS为所述基站确定网络的工作模式后,根据确定的工作模式生成的PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
处理模块,用于检测所述PSS中的多个子同步信号在无线帧内的位置;根据所述位置确定工作模式。
结合本发明第四方面,本发明第四方面的第一实施方式包括:
所述工作模式包括双工模式和/或部署场景。
有鉴于此,本发明第五方面提供了一种系统,包括:
基站和终端设备;
所述基站,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;向终端设备发送所述PSS;
所述终端设备,用于接收基站发送的主同步信号PSS,其中,所述PSS为所述基站确定网络的工作模式后,根据确定的工作模式生成的PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;检测所述PSS中的多个子同步信号在无线帧内的位置;根据所述位置确定工作模式。
结合本发明第五方面,本发明第五方面的第一实施方式包括:
所述工作模式包括双工模式和/或部署场景。
相较于现有技术:通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,工作模式可以为双工模式,也可以为部署场景,避免了现有技术 中通过PSS和SSS的相对位置来指示双工模式和/或部署场景的方法不适用于M2M通信系统的问题,由此可见,本发明通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例通过主同步信号进行指示的方法一个实施例示意图;
图2为本发明实施例第一子同步信号和第二子同步信号在一个无线帧内的位置一个实施例示意图;
图3为本发明实施例第一子同步信号和第二子同步信号在一个无线帧内的位置另一实施例示意图;
图4为本发明实施例第一子同步信号和第二子同步信号在一个无线帧内的位置另一实施例示意图;
图5为本发明实施例通过主同步信号进行指示的方法另一实施例示意图;
图6为本发明实施例基站的一个实施例示意图;
图7为本发明实施例终端设备的一个实施例示意图;
图8为本发明实施例基站的另一实施例示意图;
图9为本发明实施例终端设备的另一实施例示意图;
图10位本发明实施例系统的一个实施例示意图;
图11为本发明实施例服务器的一个实施例示意图。
具体实施方式
本发明实施例提供了通过主同步信号PSS进行指示的方法、基站、终端设备及系统,能够通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发 明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
虽然在前述背景技术部分以LTE系统为例进行了介绍,但本领域技术人员应当知晓,本发明不仅仅适用于LTE系统,也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications Systemc,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,以及新的网络系统等。下面以LTE系统为例进行具体实施例的介绍。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。无线终端可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(PCS,Personal Communication Service)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL,Wireless Local Loop)站、个人数字助理(PDA,Personal Digital Assistant)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用 户装备(User Equipment)。
本发明实施例所涉及基站,该基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。该基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),本申请并不限定。
下面结合具体实施例对本发明中通过主同步信号进行指示的方法进行说明:
请参阅图1,本发明实施例中通过主同步信号进行指示的方法一个实施例包括:
101、基站确定网络的工作模式;
本实施例中,工作模式包括双工模式和/或部署场景,部署场景可以为部署方式、系统帧号和小区标识(Identity,ID)中的一种或者几种,部署方式包括独立部署方式以及非独立部署方式。M2M通信系统频谱有多种部署方式,比如,可以部署到现有通信系统频带内,例如LTE、全球移动通信系统(Global System for Mobile communications,GSM)等,也可以部署到现有通信系统频带的保护带中,像LTE、GSM的保护带,也可以独立部署到一段独有的频谱中,不同的部署方式会有不同的场景和需求,从而会有不同的设计,为了使得终端设备能够兼容不同的部署方式,需要在终端设备接入网络后用一定的方式来通知终端设备具体的部署方式。
102、基站根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
本实施例中,子同步信号在无线帧中可以单独占用一个子帧,也可以占用一个子帧中的一个符号。
103、基站向终端设备发送该PSS。
本实施例中,在基站生成PSS后,基站向终端设备发送该PSS。
需要说明的是,终端设备在接收到该PSS后,能够根据PSS中的多个子同步信号在无线帧内的位置确定工作模式。
本实施例中,通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,工作模式可以为双工模式,也可以为部署场景,避免了现有技术中通过PSS和SSS的相对位置来指示双工模式和/或部署场景的方法不适用于M2M通信系统的问题,由此可见,本发明通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
可选的,在本发明的一些实施例中,基站确定网络的工作模式包括:基站确定网络的工作模式为双工模式;
基站根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
基站根据确定的双工模式生成PSS,该PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载第一子同步信号的子帧位置和在FDD双工模式下承载第一子同步信号的子帧位置不同,和/或在TDD双工模式下承载第二子同步信号的子帧位置和在FDD双工模式下承载第二子同步信号的子帧位置不同。
需要说明的是,第一子同步信号和第二子同步信号可以分别为根指数为1、-1的Zadoff-Chu序列,简称ZC序列;
第一子同步信号可以为zc(n)1=e-jπn(n+1+2q)/L,n=0,1,...,L-1,q∈Z;
第二子同步信号可以为zc(n)2=ejπn(n+1+2q)/L,n=0,1,...,L-1,q∈Z;
其中L表示ZC序列的长度。
需要说明的是,为了保证终端设备能够区分双工模式,在TDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离等于在FDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离的条件下,需要满足在TDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序与在FDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序不同,并且PSS的发送周期为至少两个无线帧的长度,举例来说,假如在TDD双工模式下,承载第一子同步信号的子帧位置为子帧0,承载第二子同步信号的子帧位置为子帧5,在FDD双工模式下,承载第一子同步信号的子帧位置为子帧1,承载第二子同步信号的子帧位置为子帧6,这种情况下终端设备是不能区分双 工模式的,正确的方式是在FDD双工模式下,承载第一子同步信号的子帧位置为子帧6,承载第二子同步信号的子帧位置为子帧1,同时PSS的发送周期为至少两个无线帧的长度。
进一步可选的,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧5;或者,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0。
需要说明的是,若PSS包含两个以上的子同步信号,比如PSS包含四个子同步信号,那么可以有:TDD双工模式下承载第一子同步信号和第三子同步信号的子帧位置为无线帧内的子帧0,TDD双工模式下承载第二子同步信号和第四子同步信号的子帧位置为无线帧内的子帧5;或者,FDD双工模式下承载第一子同步信号和第三子同步信号的子帧位置为无线帧内的子帧5,FDD双工模式下承载第二子同步信号和第四子同步信号的子帧位置为无线帧内的子帧0。需要说明的是,上述子同步信号的分布方案只是实施例的一种,本发明不限定于上述分布方案。另外,多个子同步信号位于无线帧内的同一个子帧上指的是多个子同步信号位于一个子帧内的不同符号上。
可选的,在TDD双工模式下承载第一子同步信号的子帧位置和在FDD双工模式下承载第一子同步信号的子帧位置不同,包括:
TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0,FDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5;或者,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5,FDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0;和/或
在TDD双工模式下承载第二子同步信号的子帧位置和在FDD双工模式下承载第二子同步信号的子帧位置不同,包括:
TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧5,FDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0,且PSS的发送周期为至少两个无线帧的长度;或者,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0,FDD双工模式下承载第二子同步信 号的子帧位置为无线帧内的子帧5,且PSS的发送周期为至少两个无线帧的长度。
需要说明的是,PSS的发送周期为至少两个无线帧的长度的原因是:若PSS的发送周期为一个无线帧的长度,在TDD双工模式和FDD双工模式下,第一子同步信号和第二子同步信号不存在前后关系,总是相距5ms,终端设备检测不出来具体的双工模式。为了便于理解本发明技术方案,下面通过一个具体实例进行说明,请参阅图2,其中图2中的PSS1表示第一子同步信号,PSS2表示第二子同步信号,假设PSS的发送周期为两个无线帧的长度,当该双工模式为TDD双工模式时,承载第一子同步信号的子帧位置为无线帧内的子帧0上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,当双工模式为FDD双工模式时,承载第一子同步信号的子帧位置为无线帧内的子帧5上,承载第二子同步信号的子帧位置为无线帧内的子帧0上,终端设备若检测出第一子同步信号在第二子同步信号的前面5ms处或者第一子同步信号在第二子同步信号的后面15ms处,则确定工作模式为TDD双工模式,若检测出第一子同步信号在第二子同步信号的后面5ms处或者第一子同步信号在第二子同步信号的前面15ms处,则确定工作模式为FDD双工模式。
需要说明的是,上述指示TDD双工模式或FDD双工模式采用的是方法是通过第一子同步信号和第二子同步信号在一个无线帧内的位置顺序,在本发明的一些实施例中,还可以采用的方法是通过第一子同步信号和第二子同步信号在一个无线帧内的位置距离,例如:请参阅图3,其中图3中的PSS1表示第一子同步信号,PSS2表示第二子同步信号,当该双工模式为TDD双工模式时,承载第一子同步信号的子帧位置为无线帧内的子帧0上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,当双工模式为FDD双工模式时,承载第一子同步信号的子帧位置为无线帧内的子帧4上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,终端设备若检测出第一子同步信号和第二子同步信号相距5ms,则确定工作模式为TDD双工模式,若检测出第一子同步信号和第二子同步信号相距1ms,则确定工作模式为FDD双工模式。
需要说明的是,在实际应用中,指示信息还可以指示部署场景,由此,在本发明的一些实施例中,基站确定网络的工作模式包括:基站确定网络的工作 模式为部署场景;
基站根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
基站根据确定的部署场景生成主同步信号PSS,该PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载第一子同步信号的子帧位置与第二部署场景下承载第一子同步信号的子帧位置不同,和/或第一部署场景下承载第二子同步信号的子帧位置与第二部署场景下承载第二子同步信号的子帧位置不同。
同理,为了保证终端设备能够区分部署场景,在第一部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离等于在第二部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离的条件下,需要满足在第一部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序与在第二部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序不同,并且PSS的发送周期为至少两个无线帧的长度。
进一步可选的,在本发明的一些实施例中,第一部署场景下承载第一子同步信号的子帧位置与第二部署场景下承载第一子同步信号的子帧位置不同,包括:
第一部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧5;或者第一部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
第一部署场景下承载第二子同步信号的子帧位置与第二部署场景下承载第二子同步信号的子帧位置不同,包括:
第一部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0;或,第一部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧5。
需要说明的是,当部署场景为第一部署场景时,承载第一子同步信号的子 帧位置为无线帧内的子帧0上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,当部署场景为第二部署场景时,承载第一子同步信号的子帧位置为无线帧内的子帧5上,承载第二子同步信号的子帧位置为无线帧内的子帧0上,终端设备若检测出第一子同步信号位于第二子同步信号前面5ms处或者第一子同步信号位于第二子同步信号后面15ms处(假设PSS的发送周期为两个无线帧的长度),则确定工作模式为第一部署场景,当部署场景为第一部署场景时,承载第一子同步信号的子帧位置为无线帧内的子帧5上,承载第二子同步信号的子帧位置为无线帧内的子帧0上,当部署场景为第二部署场景时,承载第一子同步信号的子帧位置为无线帧内的子帧0上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,终端设备若检测出第一子同步信号位于第二子同步信号后面5ms处或者第一子同步信号位于第二子同步信号前面15ms处,则确定工作模式为第二部署场景。
可选的,在本发明的一些实施例中,基站确定网络的工作模式包括:基站确定网络的工作模式为双工模式和部署场景;
基站根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
基站根据确定的双工模式和部署场景生成主同步信号PSS,该PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,第一子同步信号的子帧位置为无线帧内的第一目标子帧,第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,第一子同步信号的子帧位置为无线帧内的第二目标子帧,第二子同步信号的子帧位置为无线帧内的第一目标子帧,第一目标子帧和所述第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
例如:请参阅图4,其中图4中的PSS1表示第一子同步信号,PSS2表示第二子同步信号,假设在FDD双工模式下,当部署场景为第一部署场景时,承载第一子同步信号的子帧位置为无线帧内的子帧4上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,当部署场景为第二部署场景时,承载第一子同步信号的子帧位置为无线帧内的子帧5上,承载第二子同步信号的子帧位置为无线帧内的子帧4上;在TDD双工模式下,当部署场景为第一部署场景 时,承载第一子同步信号的子帧位置为无线帧内的子帧0上,承载第二子同步信号的子帧位置为无线帧内的子帧5上,当部署场景为第二部署场景时,承载第一子同信号的子帧位置为无线帧内的子帧5上,承载第二子同步信号的子帧位置为无线帧内的子帧0上,终端设备若检测到第一子同步信号在第二子同步信号的前面5ms处或第一子同步信号在第二子同步信号的后面15ms处(假设PSS的发送周期为两个无线帧的长度),则确定工作模式为TDD双工模式和第一部署场景,终端设备若检测到第一子同步信号在第二子同步信号的后面5ms处或第一子同步信号在第二子同步信号的前面15ms处,则确定工作模式为TDD双工模式和第二部署场景,终端设备若检测到第一子同步信号在第二子同步信号的前面1ms处或后面19ms处,则确定工作模式为FDD双工模式和第一部署场景,终端设备若检测到第一子同步信号在第二子同步信号的后面1ms处或前面19ms处,则确定工作模式为FDD双工模式和第二部署场景。
需要说明的是,本发明还可以通过SSS进行指示,比如指示具体的双工模式和/或部署场景,以双工模式为例:SSS为一对ZC序列,可以通过ZC序列的不同根指数来区分TDD双工模式和FDD双工模式,假设SSS的一对ZC序列为SSS1和SSS2,分别获取SSS1和SSS2的所有的根指数,组成根指数对的集合,比如SSS1有100个根指数,SSS2有100个根指数,则根指数对的集合中的根指数对有10000个,将10000个根指数对分成两部分,一部分给TDD双工模式使用,另一部分给FDD双工模式使用,终端设备通过检测SSS就能判断双工模式是TDD双工模式还是FDD双工模式。
请参阅图5,本发明实施例中通过主同步信号PSS进行指示的方法另一个实施例包括:
201、终端设备接收基站发送的主同步信号PSS,其中,该PSS为基站确定网络的工作模式后,根据确定的工作模式生成的PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
本实施例中,终端设备开始做同步时,通过盲检检测到PSS在无线帧中的位置,接收到基站发送的PSS。
202、终端设备检测该PSS中的多个子同步信号在无线帧内的位置;
本实施例中,终端设备在接收到基站发送的PSS后,检测该PSS中的多 个子同步信号在无线帧内的位置。
203、终端设备根据该位置确定工作模式。
本实施例中,终端设备根据检测到的PSS中的多个子同步信号在无线帧内的位置,确定工作模式。
可选的,在本发明的一些实施例中,工作模式包括双工模式和/或部署场景。
需要说明的是,在前述基站侧已经对终端设备根据该位置确定工作模式进行了相应的说明,本实施例不再赘述。
本实施例中,终端设备能够根据多个子同步信号在无线帧内的位置,确定工作模式,完善了本发明的技术方案。
请参阅图6,本发明实施例中基站的一个实施例包括:
处理模块301,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
发送模块302,用于向终端设备发送该PSS。
本实施例中,通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,工作模式可以为双工模式,也可以为部署场景,避免了现有技术中通过PSS和SSS的相对位置来指示双工模式和/或部署场景的方法不适用于M2M通信系统的问题,由此可见,本发明通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
可选的,在本发明的一些实施例中,处理模块301,用于确定网络的工作模式为双工模式;根据确定的双工模式生成PSS,该PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载第一子同步信号的子帧位置和在FDD双工模式下承载第一子同步信号的子帧位置不同,和/或在TDD双工模式下承载第二子同步信号的子帧位置和在FDD双工模式下承载第二子同步信号的子帧位置不同。
进一步可选的,在本发明的一些实施例中,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧5;或者,
TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0。
可选的,在本发明的一些实施例中,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0,FDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5;或者,TDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧5,FDD双工模式下承载第一子同步信号的子帧位置为无线帧内的子帧0;和/或
TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧5,FDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0,且PSS的发送周期为至少两个无线帧的长度;或者,TDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧0,FDD双工模式下承载第二子同步信号的子帧位置为无线帧内的子帧5,且PSS的发送周期为至少两个无线帧的长度。
可选的,在本发明的一些实施例中,处理模块301,用于确定网络的工作模式为部署场景;根据确定的部署场景生成主同步信号PSS,该PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载第一子同步信号的子帧位置与第二部署场景下承载第一子同步信号的子帧位置不同,和/或第一部署场景下承载第二子同步信号的子帧位置与第二部署场景下承载第二子同步信号的子帧位置不同。
进一步可选的,在本发明的一些实施例中,第一部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧5;或者第一部署场景下承载第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
第一部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0;或,第一部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载第二子同步信号的子帧位置为无线帧内的子帧5。
可选的,在本发明的一些实施例中,处理模块301,用于确定网络的工作 模式为双工模式和部署场景;根据确定的双工模式和部署场景生成主同步信号PSS,该PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,第一子同步信号的子帧位置为无线帧内的第一目标子帧,第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,第一子同步信号的子帧位置为无线帧内的第二目标子帧,第二子同步信号的子帧位置为无线帧内的第一目标子帧,第一目标子帧和第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
请参阅图7,本发明实施例中终端设备的一个实施例包括:
接收模块401,用于接收基站发送的主同步信号PSS,其中,该PSS为基站确定网络的工作模式后,根据确定的工作模式生成的PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
处理模块402,用于检测PSS中的多个子同步信号在无线帧内的位置;根据位置确定工作模式。
本实施例中,处理模块402能够根据多个子同步信号在无线帧内的位置,确定工作模式,完善了本发明的技术方案。
可选的,在本发明的一些实施例中,该指示信息的指示内容包括双工模式和/或部署场景。
请参阅图8,本发明实施例中基站的另一实施例包括:
处理器501以及发射器502;
其中,上述处理器501,用于控制执行:确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;向终端设备发送该PSS。
本实施例中,通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,工作模式可以为双工模式,也可以为部署场景,避免了现有技术中通过PSS和SSS的相对位置来指示双工模式和/或部署场景的方法不适用于M2M通信系统的问题,由此可见,本发明通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,达到了通过PSS指示网络的工作模式的目的。
本发明实施例还提供了网络的工作模式为双工模式时生成PSS的具体实现方案,如下:上述处理器501,具体用于控制执行:确定网络的工作模式为 双工模式;根据确定的双工模式生成PSS,该PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载第一子同步信号的子帧位置和在FDD双工模式下承载第一子同步信号的子帧位置不同,和/或在TDD双工模式下承载第二子同步信号的子帧位置和在FDD双工模式下承载第二子同步信号的子帧位置不同。
在本发明实施例中,为了保证终端设备能够区分双工模式,在TDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离等于在FDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离的条件下,需要满足在TDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序与在FDD双工模式下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序不同,并且PSS的发送周期为至少两个无线帧的长度,举例来说,假如在TDD双工模式下,承载第一子同步信号的子帧位置为子帧0,承载第二子同步信号的子帧位置为子帧5,在FDD双工模式下,承载第一子同步信号的子帧位置为子帧1,承载第二子同步信号的子帧位置为子帧6,这种情况下终端设备是不能区分双工模式的,正确的方式是在FDD双工模式下,承载第一子同步信号的子帧位置为子帧6,承载第二子同步信号的子帧位置为子帧1,同时PSS的发送周期为至少两个无线帧的长度。
本发明实施例还提供了网络的工作模式为部署场景时生成PSS的具体实现方案,如下:上述处理器501,具体用于控制执行:确定网络的工作模式为部署场景;根据确定的部署场景生成主同步信号PSS,该PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载第一子同步信号的子帧位置与第二部署场景下承载第一子同步信号的子帧位置不同,和/或第一部署场景下承载第二子同步信号的子帧位置与第二部署场景下承载第二子同步信号的子帧位置不同。
在本发明实施例中,为了保证终端设备能够区分部署场景,在第一部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离等于在第二部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置之间的距离的条件下,需要满足在第一部署场景下承载第一子同步 信号的子帧位置和第二子同步信号的子帧位置的顺序与在第二部署场景下承载第一子同步信号的子帧位置和第二子同步信号的子帧位置的顺序不同,并且PSS的发送周期为至少两个无线帧的长度。
本发明实施例还提供了网络的工作模式为双工模式和部署场景时生成PSS的具体实现方案,如下:上述处理器501,具体用于控制执行:确定网络的工作模式为双工模式和部署场景;根据确定的双工模式和部署场景生成主同步信号PSS,该PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,第一子同步信号的子帧位置为无线帧内的第一目标子帧,第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,第一子同步信号的子帧位置为无线帧内的第二目标子帧,第二子同步信号的子帧位置为无线帧内的第一目标子帧,第一目标子帧和第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
请参阅图9,本发明实施例中终端设备的另一实施例包括:
处理器601以及接收器602;
其中,上述处理器601,用于控制执行:接收基站发送的主同步信号PSS,其中,该PSS为基站确定网络的工作模式后,根据确定的工作模式生成的PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;检测PSS中的多个子同步信号在无线帧内的位置;根据位置确定工作模式。
本实施例中,处理器601能够根据多个子同步信号在无线帧内的位置,确定工作模式,完善了本发明的技术方案。
请参阅图10,本发明实施例中系统的一个实施例包括:
基站701和终端设备702;
基站701,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,该PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;向终端设备702发送PSS;
终端设备702,用于接收基站701发送的主同步信号PSS;检测PSS中的多个子同步信号在无线帧内的位置;根据位置确定工作模式。
本实施例中,基站701通过PSS中的多个子同步信号在无线帧中的位置 来表示工作模式,工作模式可以为双工模式,也可以为部署场景,避免了现有技术中通过PSS和SSS的相对位置来指示双工模式和/或部署场景的方法不适用于M2M通信系统的问题,终端设备702根据位置确定工作模式,由此可见,本发明通过PSS中的多个子同步信号在无线帧中的位置来表示工作模式,使得终端设备702根据位置确定工作模式,达到了通过PSS指示网络的工作模式的目的。
本发明实施例还提供一种服务器,请参阅图11,本发明实施例中服务器的一个实施例包括:
图11是本发明实施例提供的一种服务器结构示意图,该服务器800可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上中央处理器(central processing units,CPU)801(例如,一个或一个以上处理器),一个或一个以上存储应用程序802或数据803的存储介质804(例如一个或一个以上海量存储设备)。其中,存储介质804可以是短暂存储或持久存储。存储在存储介质804的程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对交换机中的一系列指令操作。更进一步地,中央处理器801可以设置为与存储介质804通信,在服务器800上执行存储介质804中的一系列指令操作。
服务器800还可以包括一个或一个以上电源805,一个或一个以上有线或无线网络接口806,一个或一个以上输输出接口807,和/或,一个或一个以上操作系统808,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM等等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直 接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (20)

  1. 一种通过主同步信号PSS进行指示的方法,其特征在于,所述方法包括:
    基站确定网络的工作模式;
    所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
    所述基站向终端设备发送所述PSS。
  2. 根据权利要求1所述的方法,其特征在于,
    基站确定网络的工作模式包括:
    基站确定网络的工作模式为双工模式;
    所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
    所述基站根据确定的双工模式生成PSS,所述PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同;和/或,在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同。
  3. 根据权利要求2所述的方法,其特征在于,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5;或者,
    所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0。
  4. 根据权利要求2所述的方法,其特征在于,在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同,包括:
    所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者,所述TDD双工模式下承载所述第一子同步信号的子帧位置 为无线帧内的子帧5,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0;和/或,
    在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同,包括:
    所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,且所述PSS的发送周期为至少两个所述无线帧的长度;或者,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,且所述PSS的发送周期为至少两个所述无线帧的长度。
  5. 根据权利要求1所述的方法,其特征在于,基站确定网络的工作模式包括:
    基站确定网络的工作模式为部署场景;
    所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
    所述基站根据确定的部署场景生成主同步信号PSS,所述PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载所述第一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,和/或第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下承载所述第二子同步信号的子帧位置不同。
  6. 根据权利要求5所述的方法,其特征在于,第一部署场景下承载所述第一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,包括:
    第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者,第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
    第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下 承载所述第二子同步信号的子帧位置不同,包括:
    第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;或者,第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5。
  7. 根据权利要求1所述的方法,其特征在于,所述基站确定网络的工作模式包括:
    基站确定网络的工作模式为双工模式和部署场景;
    所述基站根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号,包括:
    所述基站根据确定的双工模式和部署场景生成主同步信号PSS,所述PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,所述第一子同步信号的子帧位置为无线帧内的第一目标子帧,所述第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,所述第一子同步信号的子帧位置为无线帧内的第二目标子帧,所述第二子同步信号的子帧位置为无线帧内的第一目标子帧,所述第一目标子帧和所述第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
  8. 一种通过主同步信号PSS进行指示的方法,其特征在于,所述方法包括:
    终端设备接收基站发送的主同步信号PSS,其中,所述PSS为所述基站确定网络的工作模式后,根据确定的工作模式生成的PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
    所述终端设备检测所述PSS中的多个子同步信号在无线帧内的位置;
    所述终端设备根据所述位置确定工作模式。
  9. 根据权利要求8所述的方法,其特征在于,所述工作模式包括双工模式和/或部署场景。
  10. 一种基站,其特征在于,包括:
    处理模块,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置 的子同步信号;
    发送模块,用于向终端设备发送所述PSS。
  11. 根据权利要求10所述的基站,其特征在于,所述处理模块,用于确定网络的工作模式为双工模式;根据确定的双工模式生成PSS,所述PSS包含第一子同步信号和第二子同步信号,在TDD双工模式下承载所述第一子同步信号的子帧位置和在FDD双工模式下承载所述第一子同步信号的子帧位置不同,和/或,在TDD双工模式下承载所述第二子同步信号的子帧位置和在FDD双工模式下承载所述第二子同步信号的子帧位置不同。
  12. 根据权利要求11所述的基站,其特征在于,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5;或者,
    所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0。
  13. 根据权利要求11所述的基站,其特征在于,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者,所述TDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第一子同步信号的子帧位置为无线帧内的子帧0;和/或,
    所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,且所述PSS的发送周期为至少两个所述无线帧的长度;或者,所述TDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,所述FDD双工模式下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,且所述PSS的发送周期为至少两个所述无线帧的长度。
  14. 根据权利要求10所述的基站,其特征在于,所述处理模块,用于确定网络的工作模式为部署场景;根据确定的部署场景生成主同步信号PSS,所述PSS包含第一子同步信号和第二子同步信号,第一部署场景下承载所述第 一子同步信号的子帧位置与第二部署场景下承载所述第一子同步信号的子帧位置不同,和/或第一部署场景下承载所述第二子同步信号的子帧位置与第二部署场景下承载所述第二子同步信号的子帧位置不同。
  15. 根据权利要求14所述的基站,其特征在于,第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5;或者,第一部署场景下承载所述第一子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;和/或,
    第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0;或者,第一部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧0,第二部署场景下承载所述第二子同步信号的子帧位置为无线帧内的子帧5。
  16. 根据权利要求10所述的基站,其特征在于,所述处理模块,用于确定网络的工作模式为双工模式和部署场景;根据确定的双工模式和部署场景生成主同步信号PSS,所述PSS包括第一子同步信号和第二子同步信号,在FDD双工模式和第一部署场景下,所述第一子同步信号的子帧位置为无线帧内的第一目标子帧,所述第二子同步信号的子帧位置为无线帧内的第二目标子帧,在FDD双工模式和第二部署场景下,所述第一子同步信号的子帧位置为无线帧内的第二目标子帧,所述第二子同步信号的子帧位置为无线帧内的第一目标子帧,所述第一目标子帧和所述第二目标子帧中存在至少一个子帧为非子帧0和非子帧5的子帧。
  17. 一种终端设备,其特征在于,包括:
    接收模块,用于接收基站发送的主同步信号PSS,其中,所述PSS为所述基站确定网络的工作模式后,根据确定的工作模式生成的PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;
    处理模块,用于检测所述PSS中的多个子同步信号在无线帧内的位置;根据所述位置确定工作模式。
  18. 根据权利要求17所述的终端设备,其特征在于,所述工作模式包括双工模式和/或部署场景。
  19. 一种系统,其特征在于,包括:
    基站和终端设备;
    所述基站,用于确定网络的工作模式;根据确定的工作模式生成主同步信号PSS,所述PSS包含多个子同步信号,其中,不同的工作模式对应不同位置的子同步信号;向终端设备发送所述PSS;
    所述终端设备,用于接收基站发送的主同步信号PSS;检测所述PSS中的多个子同步信号在无线帧内的位置;根据所述位置确定工作模式。
  20. 根据权利要求19所述的系统,其特征在于,所述工作模式包括双工模式和/或部署场景。
PCT/CN2016/070445 2016-01-08 2016-01-08 通过主同步信号进行指示的方法、基站、终端设备及系统 WO2017117794A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070445 WO2017117794A1 (zh) 2016-01-08 2016-01-08 通过主同步信号进行指示的方法、基站、终端设备及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/070445 WO2017117794A1 (zh) 2016-01-08 2016-01-08 通过主同步信号进行指示的方法、基站、终端设备及系统

Publications (1)

Publication Number Publication Date
WO2017117794A1 true WO2017117794A1 (zh) 2017-07-13

Family

ID=59273174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070445 WO2017117794A1 (zh) 2016-01-08 2016-01-08 通过主同步信号进行指示的方法、基站、终端设备及系统

Country Status (1)

Country Link
WO (1) WO2017117794A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309497A (zh) * 2007-05-18 2008-11-19 大唐移动通信设备有限公司 移动通信系统中的信令发送方法及装置
CN103327570A (zh) * 2005-08-19 2013-09-25 索尼公司 蜂窝通信系统、基站和用户设备
US20150078216A1 (en) * 2012-05-11 2015-03-19 Nokia Corporation Set up and maintenance framework for flexible time division duplex operation in heterogeneous network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327570A (zh) * 2005-08-19 2013-09-25 索尼公司 蜂窝通信系统、基站和用户设备
CN101309497A (zh) * 2007-05-18 2008-11-19 大唐移动通信设备有限公司 移动通信系统中的信令发送方法及装置
US20150078216A1 (en) * 2012-05-11 2015-03-19 Nokia Corporation Set up and maintenance framework for flexible time division duplex operation in heterogeneous network

Similar Documents

Publication Publication Date Title
JP6702604B2 (ja) 情報通信方法、ユーザー機器、およびネットワークデバイス
US11259259B2 (en) Transmitter, receiver and methods for transmitting/ receiving synchronisation signals
EP3965338B1 (en) Information transmission method and apparatus, and computer readable storage medium
US8520659B2 (en) Absolute time recovery
WO2020038331A1 (zh) 确定上行资源的方法与装置
US10756802B2 (en) Communication method and terminal device
EP3065497A1 (en) Method and apparatus for transmitting d2d signals
WO2015010542A1 (zh) 同步信号的承载方法和用户设备
WO2018028490A1 (zh) 信息传输方法、终端及网络设备
EP3474508B1 (en) Method and device for signal detection
TW201804847A (zh) 信息傳輸方法和信息傳輸設備
EP3063880A1 (en) System and method for transmitting a synchronization signal
CN107734602B (zh) 同步处理方法、装置和设备
WO2018010505A1 (zh) 一种初始接入信号的传输方法和装置
CN107005922B (zh) 用于有效接入点发现的系统和方法
TWI791004B (zh) 傳輸系統信息的方法和裝置
TW201841488A (zh) 新無線電同步訊號叢發、訊號設計及系統訊框獲取
WO2018059152A1 (zh) 同步处理方法、装置和设备
US20150189614A1 (en) Time synchronization function rollover solution
WO2020001364A1 (zh) 一种同步的方法及终端设备
WO2016115695A1 (zh) 一种同步方法、装置及系统
KR20160083906A (ko) 오버 디 에어로 액세스 포인트들에 대한 글로벌 시간 기준을 동기화하기 위한 시스템들, 장치 및 방법들
WO2020143432A1 (zh) 一种同步广播信息发送、检测方法及装置
WO2017117794A1 (zh) 通过主同步信号进行指示的方法、基站、终端设备及系统
CN109417804B (zh) 一种初始接入方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882939

Country of ref document: EP

Kind code of ref document: A1