WO2017116326A1 - Dispositif de dilution et de dispersion d'échappement de véhicule structurellement amélioré - Google Patents

Dispositif de dilution et de dispersion d'échappement de véhicule structurellement amélioré Download PDF

Info

Publication number
WO2017116326A1
WO2017116326A1 PCT/TR2015/050291 TR2015050291W WO2017116326A1 WO 2017116326 A1 WO2017116326 A1 WO 2017116326A1 TR 2015050291 W TR2015050291 W TR 2015050291W WO 2017116326 A1 WO2017116326 A1 WO 2017116326A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
outlet
dispersion device
plane
lobe
Prior art date
Application number
PCT/TR2015/050291
Other languages
English (en)
Inventor
Anil Can AGAR
Serdar OZENC
Altan OZGUR
Original Assignee
Ford Otomotiv Sanayi A. Ş.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Otomotiv Sanayi A. Ş. filed Critical Ford Otomotiv Sanayi A. Ş.
Priority to RU2018127641A priority Critical patent/RU2707339C1/ru
Priority to BR112018013466A priority patent/BR112018013466A2/pt
Priority to CN201580085630.6A priority patent/CN108474283A/zh
Priority to DE112015007250.0T priority patent/DE112015007250T5/de
Publication of WO2017116326A1 publication Critical patent/WO2017116326A1/fr
Priority to IL260324A priority patent/IL260324A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • F01N13/082Other arrangements or adaptations of exhaust conduits of tailpipe, e.g. with means for mixing air with exhaust for exhaust cooling, dilution or evacuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/10Tubes having non-circular cross section

Definitions

  • the present invention relates to an exhaust outlet system with exhaust gas dilution and dispersion components suitable for evacuation of exhaust gas stream from a combustion engine.
  • an exhaust system guides exhaust gases formed due to the controlled combustion inside the engine of a vehicle.
  • Diesel engines differ from spark- ignition gasoline engines due to the ignition of the fuel by the high temperature in compressed state.
  • hazardous chemical components are present in a diesel exhaust such as nitrogen oxides (NO x ), carbon monoxide, and hydrocarbons.
  • the main function of the exhaust system is to reduce the CO, (NO x ) and hydrocarbons, to decrease the noise level to a desired acceptable level. Therefore, it is of utmost importance to ensure appropriate operation of the exhaust system so as to fulfill the above-mentioned functions.
  • exhaust aftertreatment systems which include components such as diesel particulate filters (DPF), diesel oxidation catalysts (DOC) and selective catalytic reduction (SCR) component so as to diminish the toxicity effect of the exhaust gas.
  • DPF diesel particulate filters
  • DOC diesel oxidation catalysts
  • SCR selective catalytic reduction
  • Diesel oxidation catalysts is responsible for converting the CO, hydrocarbons and the organic residues in the diesel oil, which are in the gaseous state, to carbon dioxide and water.
  • Diesel particulate filter is a mechanical element holding the diesel particles and reducing emission.
  • Selective catalytic reduction transforms the (NOJ emissions into nitrogen and water vapor via using the urea in the system.
  • the exhaust outlet pipe structurally forms an outer part of the exhaust system, where the exhaust gases are released to the outer environment after their emissions are reduced.
  • the temperature of the released exhaust gas is extremely important in the respect that it must be harmless for the outer environment and it should not cause a fire due to the high temperature of the released gases. It is to be noted that animals and human beings can be affected by the released gases. There is also a risk needed to be considered for the vehicle components surrounding the exhaust system, these parts in the proximity of the exhaust outlet may burn or melt at high temperatures.
  • the exhaust outlet pipe is alone responsible for the transmission of the noise generated inside the engine.
  • its physical structure is decisive overcoming transmission of the noise and effecting noise reduction emitted to the outer environment.
  • a prior art publication in the technical field of the present invention may be referred to as DEI 02008048218 Al, which discloses an exhaust silencer with a channel having individual outlets, where the channel is formed from separately formed individual channels. One end of the individual channel forms the individual outlets and another end of the individual channels exhibits a cross- sectional shape.
  • the individual channels form a circular connection to an outlet of an exhaust silencer.
  • the individual channels are connected with each other at front sides at the circular connection of the exhaust silencer by welding in a material-fit and form-fit manner, where the outlet is formed in the form of a rounded square.
  • the present invention provides an exhaust gas outlet system with exhaust gas dilution and dispersion components suitable for evacuation of exhaust gas stream from a combustion engine.
  • the present invention is devised under the recognition that improving the exhaust outlet structure remains a need to ensure an effective and reliable exhaust dilution and dispersing device.
  • the exhaust dilution and dispersing device of the invention effectively eliminates the fire risk originating from burning of various pieces such as sticks, straw etc. on the ground or road surface while at the same time effectively protecting parts of the vehicle surrounding the exhaust dilution and dispersing device.
  • the velocity of the exhaust gases leaving the tailpipe may have a strong effect to raise dust to the extent that the sight of a driver in a vehicle behind may be curtailed.
  • the present invention provides a structurally improved exhaust dilution and dispersing device generating an effective cooling effect through supplying atmospheric cool air in the environment by mixing it with the hot exhaust gas stream.
  • a structurally improved tailpipe having a specifically structured closed volume in flow communication with a particularly configured outlet area ensures a much expedient and uniform cooling for the outlet gas in a short distance.
  • the present invention provides a system by which low temperature air from the environment is effectively received into the closed volume of the exhaust dilution and dispersing device in flow communication with the outlet area and is effectively mixed with the hot exhaust gas inside the outlet pipe.
  • Primary object of the present invention is to provide a structurally improved exhaust dilution and dispersing device generating an effective cooling effect through supplying atmospheric cool air in the outer environment by mixing it with the hot exhaust gas stream of the exhaust system.
  • FIG. 1 demonstrates a general perspective view of an exhaust diluting and dispersing device in unmounted condition according to the present invention.
  • Fig. 2 demonstrates a general perspective view of the exhaust diluting and dispersing device in mounted condition according to the present invention.
  • Fig. 3 demonstrates a general perspective view of an alternative connection element between an inner pipe and an outlet enclosure according to an alternative embodiment of the present invention.
  • Fig. 4 demonstrates another perspective view of the exhaust diluting and dispersing device with an upstream pipe according to the present invention.
  • Fig. 5 demonstrates a horizontal cross-sectional view of the asymmetrical outlet plane lobes of the outlet enclosure according to the present invention.
  • Fig. 6 demonstrates different gas streams within the asymmetrical lobes of the outlet enclosure and the upstream pipe according to the present invention.
  • Fig. 7 demonstrates tangential pressure distribution regions formed on the inner surface of the outlet enclosure's first lobe according to the present invention.
  • Fig. 8 demonstrates another horizontal cross-sectional view of the asymmetrical outlet plane lobes of the outlet enclosure with respective radiuses according to the present invention.
  • Fig. 9 demonstrates a cross-sectional view taken along the longitudinal axis of the inner pipe in parallel with the outlet plane of the exhaust diluting and dispersing device, by which the eccentricity of the first lobe with respect to the longitudinal axis of the inner pipe is shown according to the present invention.
  • Fig. 10 demonstrates another horizontal cross-sectional view of the asymmetrical exhaust diluting and dispersing device within which swirling motion of the gas streams occur according to the present invention.
  • Fig. 11 demonstrates motion of the gas streams discharging from different lobes of the outlet enclosure according to the present invention.
  • Fig. 12a and 12b respectively demonstrate cross-sectional and perspective side view of the exhaust diluting and dispersing device with the upstream pipe according to the present invention.
  • Fig. 13 demonstrates a cross-sectional side view of the exhaust diluting and dispersing device within which motion of the gas streams are shown according to the present invention.
  • Fig. 14 demonstrates another cross-sectional side view of the exhaust diluting and dispersing device within which motion of the gas streams are shown according to the present invention.
  • Fig. 15 demonstrates longitudinal configuration of a vehicle with an exhaust dilution and dispersion device having a first larger and a second smaller lobe according to the present invention.
  • the present invention relates to an exhaust dilution and dispersion device (11) for an internal combustion engine of a vehicle, said exhaust dilution and dispersion device (11) comprising an inner pipe (12) in the form of an exhaust passage component in flow communication with the combustion engine components leading to an outlet enclosure (IS) as will be described hereinafter.
  • the combustion exhaust is received and directed to the outlet enclosure (IS) through the inner pipe (12) generally in the form of a longitudinally extending tubular element.
  • the inner pipe (12) and the inlet of the outlet enclosure (IS) proximate the inner pipe (12) are adapted to be connected with at least one dilution gap (18) effecting air intake into the system.
  • the inner pipe (12) and said outlet enclosure (IS) communicate with each other by means of a connection element (13) joining the two components while creating air intake gaps substantially contributing to the temperature drop of the exhaust gas streams as will be explained in more detail hereinafter.
  • said inner pipe (12) and the inlet of said outlet enclosure (IS) are configured as cylindrical bodies cooperatively fitted to each other with a diametric ratio being specified as 0.9.
  • a semi-closed gas stream processing chamber is created in the manner that the closed volume increases surface area of metal-gas contact so that enhanced heal transfer is ensured. It is to be noted that gas discharge is appropriately delayed to allow the exhaust gas to interact with free stream air thanks to the structural performance of the outlet enclosure (IS), by which gas flow is directed to a singular outlet plane (14).
  • the outlet enclosure (IS) of the invention has a semi-closed structure leading to the outlet plane (14) that is oriented to extend parallel to the ground. In other words, the exhaust gases mixed with the atmospheric air is discharged in the manner to be directly facing the road surface the vehicle moves.
  • the closed volume of the outlet enclosure (IS) efficiently directs the exhaust gases to the outlet plane (14) of the outlet enclosure (IS) exit.
  • the outlet enclosure (15) has a first lobe (19) and a second lobe (20), each of the lobes respectively having a first lobe and second lobe openings (21, 22).
  • the exit opening formed by the first lobe and second lobe openings (21, 22) provides that the exhaust flow leaves the system directly facing the ground and in a sufficiently cooled state.
  • the closed structure of the outlet enclosure (15) is formed between the inlet and the outlet plane (14) thereof. Therefore the outlet enclosure (15) is adapted to extend along the longitudinal axis of the inner pipe (12) and the surface normal of the outlet plane (14) perpendicular to the longitudinal axis of the inner pipe (12). In other words, the outlet plane (14) is perpendicular to the plane of the inlet of the outlet enclosure (15).
  • the outlet enclosure (15) structurally expands in the direction of the outlet plane (14) while the first and second lobes (19, 20) are separated by an inwardly projecting and downwardly expanding deflection portion (24). As can be seen in Fig.
  • the outlet enclosure (15) as well as the deflection portion (24) is in the form of an arc- shaped extension.
  • the deflection portion (24) is structured to directly face and receive gas streams coming from the inlet pipe (12) through the upstream pipe (17) in the manner that, due to the asymmetry of the first and second lobes (19, 20) with respect to each other, separate vortices are created as demonstrated in Fig. 6.
  • the outlet enclosure (15) is structured to have tangential walls (23) which directly receive the upstream hot exhaust gas flow, which is tangentially guided to create vortices due to the asymmetric configuration of the first and second lobes (19, 20).
  • the upstream hot exhaust gas hits the tangential walls (23) of the first and second lobes (19, 20) in the manner that bulk flow of the gas is asymmetrically guided to create a higher pressure area along the tangential wall (23) of the first lobe (19) whose projected diameter is greater than that of the second lobe (20) (Fig. 5).
  • the surface pressure distribution graph of the tangential walls (23) of the first and second lobes (19, 20) is seen in Fig. 7. Accordingly, the momentum of the exhaust gas flow is utilized to enhance the mixing process by dividing the exhaust gas flow and creating asymmetrically separated vortex regions as defined by the tangential walls (23) of the first and second lobes (19, 20).
  • separated vortex regions provide the atmospheric air to be taken into the outlet enclosure (15) to be effectively mixed with the hot exhaust gas within the closed volume of the outlet enclosure (IS).
  • an enhanced vortex flow is generated, which in turn creates secondary vortices to entrain fresh air from outside the outlet enclosure (15).
  • the eccentricity of the first lobe (19) with respect to the longitudinal axis of the inner pipe (12) on the plane along the longitudinal axis of the same in parallel with the outlet plane (14) of the exhaust diluting and dispersing device (11) provides that the bulk flow of the gas is asymmetrically guided to create a higher pressure area along the tangential wall (23) of the first lobe (19).
  • the eccentricity of the first lobe (19) with respect to the longitudinal axis of the inner pipe (12) can be also defined in that the diameter of the inner pipe (12) on the plane along the longitudinal axis of the inner pipe (12) in parallel with the outlet plane (14) of the exhaust diluting and dispersing device (11) (from a section parallel to the ground) is determined to be equal to the diameter of the first lobe (19) on that plane (Fig. 9). Further, the eccentricity of the first lobe (19) with respect to the longitudinal axis of the inner pipe (12) is defined as 0.8 times the radius of the first lobe (19) on that plane (Fig. 9).
  • the exhaust dilution and dispersion device (11) in accordance with the present invention is mounted to be situated along a longitudinal edge of the vehicle such that the first lobe (19) is configured to be near the longitudinally front side of the vehicle.
  • This is advantageous in that the exhaust gas transferred from the front of the vehicle to the exhaust dilution and dispersion device (11) via the upstream pipe (17) is largely discharged from a more frontal side compared to the second lobe (20) whereby the bulk flow of the exhaust gas being sufficiently cooled thanks to the cooling effect of the secondary vortices created by the first lobe's (19) structural configuration as well as thanks to the effect of the air taken through the dilution gaps (18), even has more time and space to further cool down as it passes along under the second lobe (20).
  • the structure of the outlet enclosure (15) widening as it closes to the ground provides a wider exit area as diameters of both lobes get larger towards their ends.
  • the first lobe opening (21) as well as the second lobe opening (22) has larger diameters compared to their initial upper parts. As vortex mechanisms are asymmetrical in terms of the gas stream volume, gas discharge from the second lobe opening (22) is less dense in volume compared to the first lobe opening's (21) performance.
  • Fig. 3 demonstrates an alternative connection element (13) between an inner pipe (12) and an outlet enclosure (15), such a connection element (13) having a plurality of peripherally distributed radially equally-spaced wings.
  • the air flowing through the dilution gaps (18) allows atmospheric air to be drawn into the system. It is worthy of note that this gas flow regulating mechanism does not involve a venturi geometry.
  • a welding line (16) can be preferentially created for structuring separate parts of the outlet enclosure (15).
  • the present invention proposes an exhaust dilution and dispersion device (11) for an internal combustion engine of a vehicle, said exhaust dilution and dispersion device (11) comprising an outlet enclosure (15) receiving and directing the combustion exhaust to an outlet plane (14).
  • said outlet enclosure (15) is in the form of a semi-closed gas stream processing chamber adapted to extend between the inlet plane (25) of an inlet portion thereof receiving the upstream hot exhaust gas flow and said outlet plane (14) extending perpendicular to said inlet portion.
  • said outlet enclosure (15) has a first lobe (19) and a second lobe (20), each of the lobes respectively having a first lobe and second lobe openings (21, 22).
  • said outlet enclosure structurally expands from the inlet thereof in the direction of the outlet plane (14) while the first and second lobes (19, 20) are separated by an inwardly projecting deflection portion (24) separating the two lobes.
  • said first lobe and second lobe openings (21, 22) forming the outlet plane (14) have different diameters.
  • the outlet plane (14) is oriented to extend parallel to the base of the vehicle.
  • said first and second lobes (19, 20) are asymmetrical relative to a central surface normal of the inlet plane (25) of the outlet enclosure (15).
  • said deflection portion (24) is structured to face and receive upstream hot exhaust gas flow in the manner that the exhaust gas flow is divided and asymmetrically separated vortices are created within the first and second lobes (19, 20).
  • said first and second lobes (19, 20) have tangential walls (23) the upstream hot exhaust gas hits in the manner that bulk flow of the gas is asymmetrically tangentially guided to create a higher pressure area along the tangential wall (23) of the first lobe (19).
  • projected diameter of the first lobe (19) on the plane the upstream hot exhaust gas hits tangential walls (23) of the first and second lobes (19, 20) is greater than the projected diameter of the second lobe (20).
  • the first lobe (19) is eccentric with respect to the central surface normal of the inlet plane (25) on the plane along the same in parallel with the outlet plane (14).
  • projected diameters of the first and second lobes (19, 20) of the outlet enclosure (15) uniformly widen in the direction of the outlet plane (14).
  • an inner pipe (12) in the form of an exhaust passage component in flow communication with an upstream pipe (17) connects the same to the outlet enclosure (15).
  • the longitudinal axis of the inner pipe (12) is perpendicular to that of the upstream pipe (17).
  • the inner pipe (12) and the inlet of the outlet enclosure (15) are connected with each other by a connection element (13) creating a plurality of peripherally distributed dilution gaps (18).
  • said dilution gaps (18) are created around the circular periphery of the inner pipe (12) and within the circular periphery of the inlet of the outlet enclosure (15).
  • said inner pipe (12) and the inlet of said outlet enclosure (15) are configured as cylindrical portions cooperatively fitted to each other with a diametric ratio of approximately 0.9.
  • the diameter of inlet of said outlet enclosure (15) is greater than the diameter of the inner pipe (12).
  • the outlet enclosure (15) and the deflection portion (24) extends in the form of an arc- shaped extension.
  • the deflection portion (24) expands in width in the direction of the outlet plane ( 14).
  • the first and second lobes (19, 20) have a substantially uniformly expanding structure in the direction of the outlet plane (14).
  • the ratio between diameters of the first and second lobes (19, 20) on the outlet plane (14) of the exhaust dilution and dispersion device (11) is in the range of 0.8 to 0.8S.
  • said first and second lobes (19, 20) are asymmetrical relative to the longitudinal axis of the inlet pipe (12).
  • said first lobe (19) is eccentric with respect to the longitudinal axis of the inlet pipe (12) on the plane along the same axis in parallel with the outlet plane (14).
  • the diameter of the inner pipe (12) on the plane along the longitudinal axis of the inner pipe (12) in parallel with the outlet plane (14) of the exhaust diluting and dispersing device (11) is equal to the diameter of the first lobe (19) on the same plane.
  • the eccentricity of the first lobe (19) with respect to the longitudinal axis of the inner pipe (12) ion the plane along the longitudinal axis of the inner pipe (12) in parallel with the outlet plane (14) of the exhaust diluting and dispersing device (11) is defined as 0.8 times the radius of the first lobe ( 19) on that plane.
  • the exhaust dilution and dispersion device (11) is mountable to be situated along a longitudinal edge of a vehicle such that the first lobe (19) thereof is configured to be near the longitudinally front side of the vehicle.

Abstract

La présente invention concerne un système de sortie d'échappement doté de composantes de dilution et de dispersion de gaz d'échappement appropriés pour l'évacuation d'un flux de gaz d'échappement depuis un moteur à combustion. La présente invention concerne plus particulièrement un dispositif de dilution et de dispersion d'échappement (11) pour un moteur à combustion interne d'un véhicule, ledit dispositif de dilution et de dispersion d'échappement (11) comprenant une enceinte de sortie (15) recevant et dirigeant l'échappement de combustion jusqu'à un plan de sortie (14).
PCT/TR2015/050291 2015-12-30 2015-12-30 Dispositif de dilution et de dispersion d'échappement de véhicule structurellement amélioré WO2017116326A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2018127641A RU2707339C1 (ru) 2015-12-30 2015-12-30 Конструктивно усовершенствованное устройство для разбавления и рассеивания выхлопных газов транспортного средства
BR112018013466A BR112018013466A2 (pt) 2015-12-30 2015-12-30 dispositivo de diluição e dispersão de escape de veículo estruturalmente melhorado
CN201580085630.6A CN108474283A (zh) 2015-12-30 2015-12-30 结构改进的车辆排放稀释和分散装置
DE112015007250.0T DE112015007250T5 (de) 2015-12-30 2015-12-30 Strukturell verbesserte Fahrzeug-Abgasverdünnungs- und Dispergiervorrichtung
IL260324A IL260324A (en) 2015-12-30 2018-06-28 Structurally improved vehicle exhaust dilution and dispersion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR201517439 2015-12-30
TR2015/17439 2015-12-30

Publications (1)

Publication Number Publication Date
WO2017116326A1 true WO2017116326A1 (fr) 2017-07-06

Family

ID=59224947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2015/050291 WO2017116326A1 (fr) 2015-12-30 2015-12-30 Dispositif de dilution et de dispersion d'échappement de véhicule structurellement amélioré

Country Status (6)

Country Link
CN (1) CN108474283A (fr)
BR (1) BR112018013466A2 (fr)
DE (1) DE112015007250T5 (fr)
IL (1) IL260324A (fr)
RU (1) RU2707339C1 (fr)
WO (1) WO2017116326A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121419A1 (de) * 2018-09-03 2020-03-05 Volkswagen Aktiengesellschaft Wärmeabschirmanordnung für ein Kraftfahrzeug
WO2021086177A1 (fr) 2019-10-29 2021-05-06 Daf Trucks N.V. Tuyau d'échappement pour gaz d'échappement d'un moteur à combustion interne d'un véhicule

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018191A1 (de) * 2007-04-18 2008-10-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Endrohrblendenanordnung und Heckverkleidung
DE102008048218A1 (de) 2008-09-20 2009-05-28 Daimler Ag Kanal zum formschlüssigen Übergang von einem kreisförmigen Auslass eines Schalldämpfers zu einem Mehrfachauslass
US20120145268A1 (en) * 2010-12-08 2012-06-14 Caterpillar Inc. Exhaust Ejector For An Internal Combustion Engine
WO2013095205A1 (fr) * 2011-12-22 2013-06-27 Volvo Lastvagnar Ab Appareil de refroidissement d'échappement
US20140158460A1 (en) * 2012-12-12 2014-06-12 Kia Motors Corporation Tail pipe for muffler of motor vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410520C3 (de) * 1974-03-05 1978-09-14 Andras Subotica Kovacs Oskolas (Jugoslawien) Vorrichtung zum Ableiten der Abgase von Brennkraftmaschinen
US7707828B2 (en) * 2005-12-19 2010-05-04 Leseman Davis, Llc Method and apparatus for manipulating and diluting internal combustion engine exhaust gases
CN204436553U (zh) * 2015-02-05 2015-07-01 北京福田戴姆勒汽车有限公司 排气管组件和具有其的汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018191A1 (de) * 2007-04-18 2008-10-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Endrohrblendenanordnung und Heckverkleidung
DE102008048218A1 (de) 2008-09-20 2009-05-28 Daimler Ag Kanal zum formschlüssigen Übergang von einem kreisförmigen Auslass eines Schalldämpfers zu einem Mehrfachauslass
US20120145268A1 (en) * 2010-12-08 2012-06-14 Caterpillar Inc. Exhaust Ejector For An Internal Combustion Engine
WO2013095205A1 (fr) * 2011-12-22 2013-06-27 Volvo Lastvagnar Ab Appareil de refroidissement d'échappement
US20140158460A1 (en) * 2012-12-12 2014-06-12 Kia Motors Corporation Tail pipe for muffler of motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018121419A1 (de) * 2018-09-03 2020-03-05 Volkswagen Aktiengesellschaft Wärmeabschirmanordnung für ein Kraftfahrzeug
DE102018121419B4 (de) 2018-09-03 2024-03-21 Volkswagen Aktiengesellschaft Wärmeabschirmanordnung für ein Kraftfahrzeug
WO2021086177A1 (fr) 2019-10-29 2021-05-06 Daf Trucks N.V. Tuyau d'échappement pour gaz d'échappement d'un moteur à combustion interne d'un véhicule
NL2024114B1 (en) * 2019-10-29 2021-07-19 Daf Trucks Nv An exhaust pipe for exhaust gas of an internal combustion engine of a vehicle

Also Published As

Publication number Publication date
DE112015007250T5 (de) 2018-10-18
CN108474283A (zh) 2018-08-31
RU2707339C1 (ru) 2019-11-26
IL260324A (en) 2018-08-30
BR112018013466A2 (pt) 2018-12-04

Similar Documents

Publication Publication Date Title
CN110017199B (zh) 排气后处理装置
US7762064B2 (en) Exhaust system for an engine
US9745883B2 (en) Inclined perforated plate at radial inlet
US20100107616A1 (en) Exhaust gas aspirator
CN103210194B (zh) 用于排气处理装置的入口装置
US11313266B2 (en) Compact mixer with flow diverter
US11193412B2 (en) Automotive exhaust aftertreatment system
CN111033006A (zh) 文丘里型喷射器锥体
US8850801B2 (en) Catalytic converter and muffler
EP3790649A1 (fr) Système de mélange d'échappement compact
US10920635B2 (en) Exhaust gas aftertreatment system with a reducing agent mixer having an injector tip protector
KR102003495B1 (ko) 내연기관에서 나오는 배기가스 내로 환원제를 도입하기 위한 시스템 및 도입 방법
KR20150049807A (ko) 선박의 엔진 배기관 구조
WO2017116326A1 (fr) Dispositif de dilution et de dispersion d'échappement de véhicule structurellement amélioré
WO2017084548A1 (fr) Système de post-traitement d'échappement pour moteur
KR101950601B1 (ko) 배기 가스 정화 장치의 믹싱 챔버 유닛
WO2020002990A2 (fr) Mélangeur de gros moteur pour système d'échappement
RU2721389C1 (ru) Устройство и система для распределения добавки в выхлоп
US10344646B2 (en) Exhaust gas burner assembly
EP3649332B1 (fr) Grille d'échappement structurellement améliorée de dispositif de dispersion et de dilution de gaz d'échappement de véhicule
WO2019140864A1 (fr) Appareil de post-traitement de gaz d'échappement de moteur
US20140174848A1 (en) Exhaust flow spark arrestor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 260324

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 112015007250

Country of ref document: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018013466

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112018013466

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180629

122 Ep: pct application non-entry in european phase

Ref document number: 15834733

Country of ref document: EP

Kind code of ref document: A1