WO2017116153A1 - Method for preparing multicomponent ferrite metal oxide catalyst - Google Patents

Method for preparing multicomponent ferrite metal oxide catalyst Download PDF

Info

Publication number
WO2017116153A1
WO2017116153A1 PCT/KR2016/015446 KR2016015446W WO2017116153A1 WO 2017116153 A1 WO2017116153 A1 WO 2017116153A1 KR 2016015446 W KR2016015446 W KR 2016015446W WO 2017116153 A1 WO2017116153 A1 WO 2017116153A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide catalyst
catalyst
ferrite metal
butadiene
Prior art date
Application number
PCT/KR2016/015446
Other languages
French (fr)
Korean (ko)
Inventor
윤용희
박지원
김재우
김윤정
노경호
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Publication of WO2017116153A1 publication Critical patent/WO2017116153A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Definitions

  • the present invention relates to a method for producing a multicomponent ferrite metal oxide catalyst.
  • 1,3-butadiene the main raw material of tires, which is growing in demand every year due to the growth of the automotive market, is usually produced by naphtha cracking of saturated hydrocarbons based on naphtha. Pyrolysis of naphtha results in a mixture of methane, ethane, ethylene, acetylene, propane, propylene, butane, butene, 1,3-butadiene and C5 or higher hydrocarbons.
  • the production of 1,3-butadiene through the pyrolysis as described above accounts for most of the total 1,3-butadiene supply, but other olefins, which are by-products as described above, are also synthesized and the energy cost required for the pyrolysis process is increased. It is very inefficient as a method for producing 1,3-butadiene.
  • Another method for preparing 1,3-butadiene is to directly dehydrogenate n -butene.
  • the yield of 1,3-butadiene is higher than that of naphtha pyrolysis, but because of the endothermic reaction, a large amount of energy is required to maintain a high temperature reaction temperature, and a carbon coke is formed on the surface of the catalyst to decrease the activity of the catalyst. There is a problem in that a large amount of energy is required for catalyst regeneration.
  • n -butene reacts with oxygen to be converted into 1,3-butadiene and water, of which the water produced is stable and thermodynamically advantageous and can lower the reaction temperature.
  • oxidative dehydrogenation is thermodynamically stable and has good selectivity to olefins at low temperatures.
  • radicals generated at the beginning of the reaction are important reaction intermediates, desorb from the surface of the catalyst during the reaction, move to the gas part, and participate in the homogeneous catalytic reaction.
  • the oxidative dehydrogenation method for producing 1,3-butadiene by reacting n -butene and oxygen is accompanied by side reactions such as partial oxidation and complete oxidation because oxygen is used as a reactant, thus suppressing such side reactions.
  • Developing catalysts with high selectivity and yield of 3-butadiene is a key technology.
  • the ferrite metal oxide catalyst has a spinel crystal structure, and the yield of 1,3-butadiene varies greatly in the oxidative dehydrogenation of n -butene according to the type of divalent cation.
  • zinc, manganese and magnesium ferrite are known to have superior selectivity of 1,3-butadiene over other types of metal ferrites.
  • the ferrite metal oxide catalyst is subjected to oxidative dehydrogenation of n -butene using a ferrite metal oxide catalyst having a spinel structure prepared by physical mixing and coprecipitation.
  • the coprecipitation method is typically used in the production of a metal oxide catalyst or can not be manufactured through a multi-step, which is uneconomical, and wastewater is generated during filtration and washing after the catalyst is manufactured. There is this.
  • Korean Patent No. 10-1340621 can be prepared by a simple process using spray pyrolysis, ferrite metal oxide capable of synthesizing high yield 1,3-butadiene with excellent selectivity.
  • a method for preparing a catalyst has been proposed.
  • the present invention is to solve the above problems of the prior art, the object of the present invention is the purity, activity of the ferrite metal oxide catalyst used in the case of producing 1,3-butadiene by oxidative dehydrogenation of n -butene And to provide a method for producing a multi-component ferrite metal oxide catalyst that can improve the stability.
  • one aspect of the present invention comprises the steps of (a) dissolving the nitrate precursor of each of magnesium, aluminum, iron, and divalent cation metal in a polar solvent to prepare a precursor solution; (b) pyrolysing the precursor solution with a carrier gas into the reactor to form a catalyst powder; It provides a method for producing a multi-component ferrite metal oxide catalyst represented by the following formula (1); and (c) after transporting the catalyst powder to the reservoir, and calcining in the reservoir.
  • x and y are real numbers satisfying 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 2, respectively, and M is a divalent cation metal element.
  • the molar ratio of magnesium, aluminum, iron, and divalent cation metal in the step (a) is 0.1 to 1: 0.1 to 2: 0.1 to 2: 0.1 to 1, respectively You can mix.
  • the divalent cation metal in step (a) may be one or more selected from the group consisting of zinc, manganese, nickel, cobalt, and copper.
  • the polar solvent in step (a) may be distilled water.
  • the carrier gas in the step (b) may be air.
  • the pressure of the air in the step (b) may be 2 to 4 atm.
  • the thermal decomposition temperature in step (b) may be 500 °C to 900 °C.
  • the calcination temperature in step (c) may be 500 °C to 600 °C.
  • the calcination in step (c) may be performed for 1 hour to 4 hours.
  • a certain amount of magnesium may be replaced with zinc to improve catalyst activity and yield in the production of 1,3-butadiene, and a certain amount of iron may be replaced with aluminum to replace the catalyst. It can improve the activity.
  • the preparation of the ferrite metal oxide catalyst by further performing the step of calcining the prepared catalyst powder for a certain temperature and time to improve the activity and stability of the catalyst powder, and to reduce the residual moisture and nitrate in the prepared catalyst Purity of the catalyst can be improved.
  • FIG. 1 is a diagram illustrating a method for preparing a multicomponent ferrite metal oxide catalyst according to one embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a method for preparing a multicomponent ferrite metal oxide catalyst according to one embodiment of the present invention.
  • one aspect of the present invention comprises the steps of (a) dissolving the nitrate precursor of each of magnesium, aluminum, iron, and divalent cation metal in a polar solvent to prepare a precursor solution; (b) pyrolysing the precursor solution with a carrier gas into the reactor to form a catalyst powder; It provides a method for producing a multi-component ferrite metal oxide catalyst represented by the following formula (1); and (c) after transporting the catalyst powder to the reservoir, and calcining in the reservoir.
  • x and y are real numbers satisfying 0 ⁇ x ⁇ 1 and 0 ⁇ y ⁇ 2, respectively, and M is a divalent cation metal element.
  • the temperature of the solution is 10 °C to 80 °C, preferably 15 °C to 60 °C, more preferably 25 °C to 40 °C I can keep it.
  • the molar ratios of magnesium, aluminum, iron, and divalent cation metal are respectively 0.1 to 1: 0.1 to 2: 0.1 to 2: 0.1 to 1, preferably 0.2 to 0.8: 0.2-1.8: 0.2-1.8: It can mix so that it may be 0.1-0.8.
  • the surface area of the ferrite metal oxide catalyst produced is 60 m 2 / g to 100 m 2 / g, preferably 90 m 2 / g to 100 m 2 / g, the weight loss may be 20% by weight or less, preferably 4% to 12% by weight.
  • the contact area of n -butene and the catalyst may be reduced to decrease the selectivity of 1,3-butadiene,
  • the contact time may be increased to increase byproduct production.
  • the stability of the catalyst is lowered to produce 1,3-butadiene by oxidative dehydrogenation of n -butene, the activity of the catalyst may be lowered.
  • step (a) one or more selected from the group consisting of sulfate precursor, chloride precursor, and carbonate precursor may be used in place of each nitrate precursor, but is not limited thereto.
  • the polar solvent may be distilled water, but is not limited thereto.
  • the polar solvent is distilled water, it is possible to minimize the impurities in the precursor solution to improve the purity of the ferrite metal oxide catalyst as a final product.
  • the divalent cation metal may be one or more selected from the group consisting of zinc, manganese, nickel, cobalt, and copper, preferably zinc, but is not limited thereto.
  • the ferrite metal oxide catalyst prepared by adding the divalent cation metal nitrate precursor is a certain amount of magnesium is replaced by a divalent cation metal such as zinc, so that the activity of the catalyst and 1,3-butadiene compared to the case where magnesium is applied alone The yield can be improved.
  • the activity of the catalyst may be reduced due to the collapse of the spinel structure.
  • the ferrite metal oxide catalyst prepared by adding the aluminum nitrate precursor in step (a) can be replaced by a certain amount of iron aluminum, thereby stabilizing the spinel structure can improve the activity of the catalyst.
  • the carrier gas may be air, preferably the pressure of the air may be 2 to 4 atm, more preferably 3 atm. If the pressure of the air is less than 2 atm, the physical properties of the catalyst to be produced may be lower than the standard value required for the production of 1,3-butadiene, and the performance of the catalyst may be lowered. In addition to this, the performance of the catalyst may be degraded due to the formation of high melt or the deformation of the crystal structure.
  • the pyrolysis temperature may be 500 ° C to 900 ° C, preferably 700 ° C to 800 ° C, and more preferably 750 ° C.
  • the pyrolysis temperature is less than 500 ° C., catalyst crystals suitable for the standard required for the preparation of 1,3-butadiene may not be obtained, and when it is above 900 ° C., the catalyst may melt to form a high melt or change in the crystal structure of the catalyst. . Therefore, by performing pyrolysis in the above range, it is possible to produce a ferrite metal oxide catalyst prepared by uniformly dispersing an active metal consisting of magnesium, aluminum, iron, and divalent cation metal.
  • step (c) it is possible to improve the purity of the catalyst through the process of purifying the ferrite metal oxide catalyst. Accordingly, selectivity and purity of 1,3-butadiene prepared using the catalyst may be improved.
  • step (b) refers to a "heat treatment process that heats the solid to cause pyrolysis or phase transition or remove volatile components," which is obtained after completion of step (b). It can be understood as a concept including the purification process for removing the residual moisture and nitrate contained in the prepared catalyst powder to obtain a ferrite metal oxide catalyst with improved purity, and the process of activating the catalyst powder in a storage tank to improve the stability of the catalyst. .
  • the calcination temperature may be 500 ° C. to 600 ° C., preferably 530 ° C. to 570 ° C., and more preferably 550 ° C.
  • the calcination temperature is less than 500 °C, it is difficult to expect improved catalyst purity and improved selectivity of 1,3-butadiene compared to the case performed only to the step (b), if the calcination temperature is higher than 600 °C 1 Is improved but the yield can be drastically reduced.
  • the calcination may be performed for 1 hour to 4 hours, preferably 1 hour to 3 hours. If the calcination is carried out in less than 1 hour it is difficult to expect improved purity of the catalyst and improved selectivity of 1,3-butadiene compared to the case performed only to the step (b), and if more than 4 hours the selection of 1,3-butadiene The degree is improved but the conversion rate can be drastically lowered.
  • the selectivity of 1,3-butadiene may be 80% to 90%, indicating improved selectivity compared to the conventional manufacturing method.
  • the ferrite metal oxide catalyst may have a high durability, life and reaction activity without the support of the catalyst on the powder itself. Therefore, the catalyst itself can be used without a separate support.
  • the ferrite metal oxide catalyst may further include one support selected from the group consisting of alumina, silica, or silica-alumina, but is not limited thereto.
  • the reactants further contain a mixture of air and steam in addition to n -butene.
  • N -butene may be used in a C4 mixture having a content of 50 to 75% by weight.
  • the C4 mixture may include 0.5 to 25% by weight of n -butane and include 0.5 to 10% by weight of impurities except n -butene and n -butane.
  • the injection amount of n -butene and air may be controlled by a mass flow controller, and the injection amount of steam may be controlled by a fine flow pump.
  • Injection amount of the reaction product is n - space velocity of 150 h -1, based on the butene to 700h -1 (GHSV, Gas Hourly Space Velocity) in, preferably 175 h -1 to 600 h -1 be injected into a space velocity of It is possible to inject, more preferably at a space velocity of 200 h -1 to 500 h -1 . If the space velocity is less than 150 h ⁇ 1, the amount of the product per unit time may be low, and thus there may be a problem in profitability. If the space velocity exceeds 700 h ⁇ 1 , the time for n -butene to react with the catalyst is short, increasing the amount of unreacted product The yield of 1,3-butadiene can be lowered.
  • GHSV Gas Hourly Space Velocity
  • the oxidative dehydrogenation may be performed under a temperature range of 300 ° C to 500 ° C, preferably 330 ° C to 470 ° C, more preferably 350 ° C to 450 ° C. If the reaction temperature is less than 350 °C may be a problem that the reaction temperature is so low that the catalyst is not activated so that the partial oxidation reaction does not occur well, if it is above 500 °C decomposition products or complete oxidation of C1 ⁇ C3 may occur have.
  • Iron nitrate (Fe (NO 3 ) 3 ⁇ 6H 2 O), 6.297 kg), zinc nitrate (Zn (NO 3 ) 2 ⁇ 6H 2 O, 2.379 kg) magnesium nitrate (Mg (NO 3 ) 2 ⁇ 6H 2 O, 0.513 kg) and aluminum nitrate (Al (NO 3 ) 3 .9H 2 O, 0.75 kg) were dissolved in distilled water and contained magnesium, aluminum, iron, and zinc in a molar ratio of 0.2: 0.2: 1.8: 0.8, respectively, with stirring.
  • Mixed solution was prepared.
  • Catalyst powder was prepared by pyrolyzing the prepared mixed solution by spraying the air (3 atm) into the reactor at 750 ° C. using a carrier gas at 3 L per hour. The catalyst powder thus prepared was transferred to a storage tank, and then calcined under conditions of 500 ° C. and 3 hours to prepare a ferrite metal oxide catalyst.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that the calcination temperature was set to 600 ° C.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that the calcination time was set to 1 hour.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, but the calcination step was omitted.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
  • Iron nitrate (Fe (NO 3 ) 3 ⁇ 6H 2 O), 20.5 kg) and magnesium nitrate (Mg (NO 3 ) 2 ⁇ 6H 2 O, 6.5 kg) were dissolved in distilled water, and magnesium and iron A ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that a mixed solution containing a molar ratio was prepared.
  • the nitrogen adsorption amount was measured using a volumetric nitrogen adsorption apparatus (Quantachrome, ASiQ AGC / TCD), and then BET The surface area was calculated using the formula, and the results are shown in Table 1 below.
  • thermogravimetric analyzer PerkinElmer, Pyris 6 TGA
  • the ferrite metal oxide catalyst prepared by further including a calcination step had a surface area of 90 to 100. It has been shown that ferrite metal oxide catalysts having a value of m 2 / g but without the calcination step have a surface area of less than 60 m 2 / g. Through this, the ferrite metal oxide catalyst prepared by further comprising the calcination step is analyzed to exhibit improved catalytic activity.
  • the ferrite metal oxide catalyst prepared by further comprising a calcination step has a weight loss value of 4 to 12% by weight, but the ferrite metal oxide catalyst prepared without the calcination step has a weight loss of more than 20% by weight. Appeared to be. Through this, in the case of the ferrite metal oxide catalyst prepared by further comprising a calcination step, it was confirmed that the stability of the catalyst is improved.
  • the calcination temperature is higher than 600 ° C or lower than 500 ° C. It can be seen that the surface area of the catalyst decreases and the weight loss increases, thereby degrading the catalyst activity and the stability of the catalyst.
  • a ferrite metal oxide catalyst by further comprising a calcination step, with reference to Examples 1, 4, 5 and Comparative Examples 4, 5 set the calcination time differently, the calcination time is less than 1 hour or 4 hours If exceeded, the surface area of the catalyst was reduced and the weight loss was increased, thereby degrading the catalyst activity and the stability of the catalyst.
  • the calcination temperature is set to 500 °C to 600 °C, the calcination time from 1 hour to 4 hours, ferrite metal prepared to include all magnesium, aluminum, iron, and zinc as the active ingredient It is analyzed that oxide catalysts exhibit improved catalytic activity and stability.
  • Equation 1 n -butene conversion
  • the ferrite metal oxide catalyst prepared by further comprising a calcination step was 1,3-butadiene.
  • the selectivity has a value of 91% or more
  • the ferrite metal oxide catalyst prepared without the calcination step has been shown to have a 1,3-butadiene selectivity of less than 88%.
  • a ferrite metal oxide catalyst by further comprising a calcination step, referring to Examples 1 to 3 and Comparative Examples 2 and 3, wherein the calcination temperature is set differently, the calcination step is less than 500 ° C. 1,3-butadiene selectivity was not improved compared to the ferrite metal oxide catalyst (Comparative Example 1) prepared without. When the calcination temperature is higher than 600 °C, the 1,3-butadiene selectivity is improved but n -butene It was found that the conversion and 1,3-butadiene yield dropped sharply.
  • a ferrite metal oxide catalyst by further comprising a calcination step, referring to Examples 1, 4, 5 and Comparative Examples 4, 5, the calcination time is set differently, the calcination step is less than 1 hour
  • the 1,3-butadiene selectivity did not appear to be improved compared to the ferrite metal oxide catalyst prepared without the (Comparative Example 1), and the 1,3-butadiene selectivity is improved when the calcination time exceeds 4 hours. It was found that the n -butene conversion was drastically lowered.
  • the calcination temperature is set to 500 °C to 600 °C, the calcination time from 1 hour to 4 hours, ferrite metal prepared to include all magnesium, aluminum, iron, and zinc as the active ingredient It can be seen that the oxide catalyst can improve the 1,3-butadiene selectivity and yield while maintaining the n -butene conversion.

Abstract

An embodiment of the present invention provides a method for preparing a multicomponent ferrite metal oxide catalyst, the method comprising: (a) a step for preparing a precursor solution by dissolving nitrate precursors of each of magnesium, aluminum, iron, and a divalent metal cation in a polar solvent; (b) a step for forming a catalyst powder by thermally decomposing the precursor solution while spraying the precursor solution into a reactor using a carrier gas; and (c) a step for calcining the catalyst powder in a storage tank after transporting the catalyst powder to the storage tank.

Description

다성분계 페라이트 금속 산화물 촉매의 제조방법Process for preparing multicomponent ferrite metal oxide catalyst
본 발명은 다성분계 페라이트 금속 산화물 촉매의 제조방법에 관한 것이다.The present invention relates to a method for producing a multicomponent ferrite metal oxide catalyst.
매년 자동차 시장의 성장으로 인해 수요가 급증하고 있는 타이어의 주원료인 1,3-부타디엔은 보통 나프타를 원료로 한 포화 탄화수소의 열분해(Naphtha cracking)에 의해 제조된다. 나프타를 열분해 하면 메탄, 에탄, 에틸렌, 아세틸렌, 프로판, 프로필렌, 부탄, 부텐, 1,3-부타디엔, C5 이상의 고급 탄화수소의 혼합물이 얻어진다. 상기와 같은 열분해를 통해 1,3-부타디엔을 제조하는 것은 전체 1,3-부타디엔 공급량의 대부분을 차지하고 있으나, 상기와 같은 부산물인 다른 올레핀류도 합성되고, 열분해 공정에 필요한 에너지 비용의 상승 등에 의해 1,3-부타디엔 제조방법으로서는 매우 비효율적이다.1,3-butadiene, the main raw material of tires, which is growing in demand every year due to the growth of the automotive market, is usually produced by naphtha cracking of saturated hydrocarbons based on naphtha. Pyrolysis of naphtha results in a mixture of methane, ethane, ethylene, acetylene, propane, propylene, butane, butene, 1,3-butadiene and C5 or higher hydrocarbons. The production of 1,3-butadiene through the pyrolysis as described above accounts for most of the total 1,3-butadiene supply, but other olefins, which are by-products as described above, are also synthesized and the energy cost required for the pyrolysis process is increased. It is very inefficient as a method for producing 1,3-butadiene.
1,3-부타디엔을 제조하는 또 다른 방법으로는, n-부텐을 직접 탈수소화하는 방법이 있다. 이 방법은 나프타 열분해보다 1,3-부타디엔의 수율은 높으나, 흡열반응이기 때문에 고온의 반응온도를 유지시키기 위해 많은 에너지가 소요되며, 촉매 표면에 탄소 침적물(coke)이 형성되어 촉매의 활성을 떨어뜨리기 때문에 촉매 재생을 위해 많은 에너지가 필요하다는 문제점이 있다.Another method for preparing 1,3-butadiene is to directly dehydrogenate n -butene. In this method, the yield of 1,3-butadiene is higher than that of naphtha pyrolysis, but because of the endothermic reaction, a large amount of energy is required to maintain a high temperature reaction temperature, and a carbon coke is formed on the surface of the catalyst to decrease the activity of the catalyst. There is a problem in that a large amount of energy is required for catalyst regeneration.
이러한 문제점을 극복한 것이 n-부텐과 산소를 직접 반응시켜 1,3-부타디엔을 제조하는 산화적 탈수소화(Oxidative dehydrogenation) 방법이다. 산화적 탈수소화 방법은 스팀 존재 하에 수행되는데, 첨가된 스팀은 열 수송체로 작용하며 촉매 상에서 유기 침적물의 기화를 촉진하기 때문에 촉매의 탄화를 억제하여 활성 저하를 방지한다.Overcoming this problem is an oxidative dehydrogenation method for producing 1,3-butadiene by directly reacting n -butene with oxygen. The oxidative dehydrogenation process is carried out in the presence of steam, in which the added steam acts as a heat transporter and promotes vaporization of organic deposits on the catalyst, thus inhibiting carbonization of the catalyst to prevent activity deterioration.
또한, n-부텐은 산소와 반응하여 1,3-부타디엔과 물로 전환되고, 이들 중 생성된 물은 안정하여 열역학적으로 유리할 뿐만 아니라 반응 온도를 낮출 수 있다. 즉, 산화적 탈수소화는 열역학적으로 안정하고 낮은 온도에서 올레핀에 대한 선택도가 우수하다.In addition, n -butene reacts with oxygen to be converted into 1,3-butadiene and water, of which the water produced is stable and thermodynamically advantageous and can lower the reaction temperature. In other words, oxidative dehydrogenation is thermodynamically stable and has good selectivity to olefins at low temperatures.
일반적으로 산화적 탈수소화 반응에서는 반응 초기에 생성된 라디칼이 중요한 반응 중간체로서 반응 중에 촉매 표면에서 탈착되어 기체 부분으로 이동하여 균일계 촉매 반응에 참여하게 된다.In general, in the oxidative dehydrogenation reaction, radicals generated at the beginning of the reaction are important reaction intermediates, desorb from the surface of the catalyst during the reaction, move to the gas part, and participate in the homogeneous catalytic reaction.
그러나, n-부텐과 산소가 반응하여 1,3-부타디엔을 제조하는 산화적 탈수소화 방법은 반응물로 산소를 사용하기 때문에 부분 산화, 완전 산화와 같은 부반응이 동반되므로, 이러한 부반응을 억제하여 1,3-부타디엔의 선택도 및 수율이 높은 촉매를 개발하는 것이 핵심 기술이다.However, the oxidative dehydrogenation method for producing 1,3-butadiene by reacting n -butene and oxygen is accompanied by side reactions such as partial oxidation and complete oxidation because oxygen is used as a reactant, thus suppressing such side reactions. Developing catalysts with high selectivity and yield of 3-butadiene is a key technology.
개발된 촉매 중 페라이트 금속 산화물 촉매는 스피넬 결정구조를 가지는데, 2가 양이온의 종류에 따라 n-부텐의 산화적 탈수소화 반응에서 1,3-부타디엔의 수율이 크게 달라진다. 특히, 아연, 망간, 마그네슘 페라이트는 다른 종류의 금속 페라이트에 비해 1,3-부타디엔의 선택도가 우수한 것으로 알려져 있다.Among the developed catalysts, the ferrite metal oxide catalyst has a spinel crystal structure, and the yield of 1,3-butadiene varies greatly in the oxidative dehydrogenation of n -butene according to the type of divalent cation. In particular, zinc, manganese and magnesium ferrite are known to have superior selectivity of 1,3-butadiene over other types of metal ferrites.
n-부텐의 산화적 탈수소화 반응을 수행하는 데 있어서, 페라이트 금속 산화물 촉매는 물리적 혼합 및 공침 방법에 의해 제조된 스피넬 구조를 가지는 페라이트 금속 산화물 촉매를 이용하여 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 것으로서, 공침 방법은 대표적으로 금속 산화물 촉매 제조 시 많이 사용되는 방법이나 다단계를 거쳐 제조될 수 밖에 없어 비경제적이며, 촉매 제조 후 여과 및 세척 과정에서 폐수가 발생하는 문제점이 있다. In carrying out the oxidative dehydrogenation of n -butene, the ferrite metal oxide catalyst is subjected to oxidative dehydrogenation of n -butene using a ferrite metal oxide catalyst having a spinel structure prepared by physical mixing and coprecipitation. As 1,3-butadiene is produced, the coprecipitation method is typically used in the production of a metal oxide catalyst or can not be manufactured through a multi-step, which is uneconomical, and wastewater is generated during filtration and washing after the catalyst is manufactured. There is this.
이러한 문제점을 개선하기 위해, 한국등록특허 제10-1340621호에서는 분무 열분해를 이용하여 간단한 공정으로 제조가 가능하고, 선택도가 우수하여 고수율의 1,3-부타디엔을 합성할 수 있는 페라이트 금속 산화물 촉매의 제조방법을 제안하였다.In order to improve this problem, Korean Patent No. 10-1340621 can be prepared by a simple process using spray pyrolysis, ferrite metal oxide capable of synthesizing high yield 1,3-butadiene with excellent selectivity. A method for preparing a catalyst has been proposed.
다만, 이러한 방법에 따라 페라이트 금속 산화물 촉매를 제조하는 과정에서 고온 처리가 단시간에 이루어져 촉매의 안정성이 낮고, 제조된 촉매 내에 다량의 수분과 질산염 등의 부산물이 존재하여 촉매의 순도가 저하되며, 상기 촉매를 이용하여 제조되는 1,3-부타디엔의 선택도가 낮은 문제점이 있다.However, according to this method, a high temperature treatment is performed in a short time in the process of producing a ferrite metal oxide catalyst, and thus the stability of the catalyst is low, and a large amount of by-products such as moisture and nitrate are present in the prepared catalyst, thereby decreasing the purity of the catalyst. There is a problem that the selectivity of 1,3-butadiene prepared using a catalyst is low.
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 경우에 사용되는 페라이트 금속 산화물 촉매의 순도, 활성 및 안정성을 향상시킬 수 있는 다성분계 페라이트 금속 산화물 촉매의 제조방법을 제공하는 것이다.The present invention is to solve the above problems of the prior art, the object of the present invention is the purity, activity of the ferrite metal oxide catalyst used in the case of producing 1,3-butadiene by oxidative dehydrogenation of n -butene And to provide a method for producing a multi-component ferrite metal oxide catalyst that can improve the stability.
상기와 같은 목적을 달성하기 위해, 본 발명의 일 측면은 (a) 마그네슘, 알루미늄, 철, 및 2가 양이온 금속 각각의 질산염 전구체를 극성 용매에 용해시켜 전구체 용액을 제조하는 단계; (b) 상기 전구체 용액을 운반 가스를 이용하여 반응기 내부로 분무하면서 열분해시켜 촉매 분말을 형성하는 단계; 및 (c) 상기 촉매 분말을 저장조로 운송시킨 후, 상기 저장조에서 하소시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 다성분계 페라이트 금속 산화물 촉매의 제조방법을 제공한다.In order to achieve the above object, one aspect of the present invention comprises the steps of (a) dissolving the nitrate precursor of each of magnesium, aluminum, iron, and divalent cation metal in a polar solvent to prepare a precursor solution; (b) pyrolysing the precursor solution with a carrier gas into the reactor to form a catalyst powder; It provides a method for producing a multi-component ferrite metal oxide catalyst represented by the following formula (1); and (c) after transporting the catalyst powder to the reservoir, and calcining in the reservoir.
[화학식 1][Formula 1]
MgxM(1-x)AlyFe(2-y)O4 Mg x M (1-x) Al y Fe (2-y) O 4
상기 화학식 1에서, x 및 y는 각각 0<x<1, 및 0<y<2를 만족하는 실수이고, M은 2가 양이온 금속 원소이다.In Formula 1, x and y are real numbers satisfying 0 <x <1 and 0 <y <2, respectively, and M is a divalent cation metal element.
일 실시예에 있어서, 상기 (a) 단계에서 상기 각각의 질산염 전구체를 마그네슘, 알루미늄, 철, 및 2가 양이온 금속의 몰 비가 각각 0.1~1 : 0.1~2 : 0.1~2 : 0.1~1이 되도록 혼합할 수 있다.In one embodiment, the molar ratio of magnesium, aluminum, iron, and divalent cation metal in the step (a) is 0.1 to 1: 0.1 to 2: 0.1 to 2: 0.1 to 1, respectively You can mix.
일 실시예에 있어서, 상기 (a) 단계에서 상기 2가 양이온 금속이 아연, 망간, 니켈, 코발트, 및 구리로 이루어진 군으로부터 선택되는 하나 이상일 수 있다.In one embodiment, the divalent cation metal in step (a) may be one or more selected from the group consisting of zinc, manganese, nickel, cobalt, and copper.
일 실시예에 있어서, 상기 (a) 단계에서 상기 극성 용매가 증류수일 수 있다.In one embodiment, the polar solvent in step (a) may be distilled water.
일 실시예에 있어서, 상기 (b) 단계에서 상기 운반 가스가 공기일 수 있다.In one embodiment, the carrier gas in the step (b) may be air.
일 실시예에 있어서, 상기 (b) 단계에서 상기 공기의 압력이 2기압 내지 4기압일 수 있다.In one embodiment, the pressure of the air in the step (b) may be 2 to 4 atm.
일 실시예에 있어서, 상기 (b) 단계에서 상기 열분해 온도가 500℃ 내지 900℃일 수 있다.In one embodiment, the thermal decomposition temperature in step (b) may be 500 ℃ to 900 ℃.
일 실시예에 있어서, 상기 (c) 단계에서 상기 하소 온도가 500℃ 내지 600℃일 수 있다.In one embodiment, the calcination temperature in step (c) may be 500 ℃ to 600 ℃.
일 실시예에 있어서, 상기 (c) 단계에서 상기 하소가 1시간 내지 4시간 동안 수행될 수 있다.In one embodiment, the calcination in step (c) may be performed for 1 hour to 4 hours.
본 발명의 일 측면에 따르면, 촉매 제조 시, 일정 량의 마그네슘을 아연 등으로 대체하여 촉매 활성 및 1,3-부타디엔 제조 시 수율을 향상시킬 수 있고, 일정 량의 철을 알루미늄으로 대체하여 촉매의 활성을 향상시킬 수 있다.According to an aspect of the present invention, when preparing a catalyst, a certain amount of magnesium may be replaced with zinc to improve catalyst activity and yield in the production of 1,3-butadiene, and a certain amount of iron may be replaced with aluminum to replace the catalyst. It can improve the activity.
또한, 페라이트 금속 산화물 촉매를 제조함에 있어서, 제조된 촉매 분말을 일정 온도 및 시간 동안 하소시키는 단계를 추가로 수행함으로써 촉매 분말의 활성과 안정성을 향상시키고, 제조된 촉매 내 잔류 수분 및 질산염을 감소시켜 촉매의 순도를 향상시킬 수 있다.In addition, in the preparation of the ferrite metal oxide catalyst, by further performing the step of calcining the prepared catalyst powder for a certain temperature and time to improve the activity and stability of the catalyst powder, and to reduce the residual moisture and nitrate in the prepared catalyst Purity of the catalyst can be improved.
또한, 하소 단계를 추가로 거쳐 제조된 촉매를 n-부텐의 산화적 탈수소화 반응에 이용하는 경우, 선택도가 향상된 고순도의 1,3-부타디엔을 제조할 수 있다.In addition, when the catalyst prepared after the calcination step is used for the oxidative dehydrogenation of n -butene, high purity 1,3-butadiene having improved selectivity can be prepared.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.It is to be understood that the effects of the present invention are not limited to the above effects, and include all effects deduced from the configuration of the invention described in the detailed description or claims of the present invention.
도 1은 본 발명의 일 실시예에 따른 다성분계 페라이트 금속 산화물 촉매의 제조방법을 도식화한 것이다.1 is a diagram illustrating a method for preparing a multicomponent ferrite metal oxide catalyst according to one embodiment of the present invention.
이하에서는 첨부한 도면을 참고하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, without excluding the other components unless otherwise stated.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 다성분계 페라이트 금속 산화물 촉매의 제조방법을 도식화한 것이다.1 is a diagram illustrating a method for preparing a multicomponent ferrite metal oxide catalyst according to one embodiment of the present invention.
도 1을 참고하면, 본 발명의 일 측면은 (a) 마그네슘, 알루미늄, 철, 및 2가 양이온 금속 각각의 질산염 전구체를 극성 용매에 용해시켜 전구체 용액을 제조하는 단계; (b) 상기 전구체 용액을 운반 가스를 이용하여 반응기 내부로 분무하면서 열분해시켜 촉매 분말을 형성하는 단계; 및 (c) 상기 촉매 분말을 저장조로 운송시킨 후, 상기 저장조에서 하소시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 다성분계 페라이트 금속 산화물 촉매의 제조방법을 제공한다.Referring to Figure 1, one aspect of the present invention comprises the steps of (a) dissolving the nitrate precursor of each of magnesium, aluminum, iron, and divalent cation metal in a polar solvent to prepare a precursor solution; (b) pyrolysing the precursor solution with a carrier gas into the reactor to form a catalyst powder; It provides a method for producing a multi-component ferrite metal oxide catalyst represented by the following formula (1); and (c) after transporting the catalyst powder to the reservoir, and calcining in the reservoir.
[화학식 1][Formula 1]
MgxM(1-x)AlyFe(2-y)O4 Mg x M (1-x) Al y Fe (2-y) O 4
상기 화학식 1에서, x 및 y는 각각 0<x<1, 및 0<y<2를 만족하는 실수이고, M은 2가 양이온 금속 원소이다.In Formula 1, x and y are real numbers satisfying 0 <x <1 and 0 <y <2, respectively, and M is a divalent cation metal element.
상기 (a) 단계에서 상기 전구체 용액을 제조함에 있어서, 각 전구체의 용해도를 높이기 위해 용액의 온도를 10℃ 내지 80℃, 바람직하게는 15℃ 내지 60℃, 더욱 바람직하게는 25℃ 내지 40℃로 유지할 수 있다.In preparing the precursor solution in the step (a), in order to increase the solubility of each precursor, the temperature of the solution is 10 ℃ to 80 ℃, preferably 15 ℃ to 60 ℃, more preferably 25 ℃ to 40 ℃ I can keep it.
상기 (a) 단계에서 상기 각각의 질산염 전구체를 마그네슘, 알루미늄, 철, 및 2가 양이온 금속의 몰 비가 각각 0.1~1 : 0.1~2 : 0.1~2 : 0.1~1, 바람직하게는 0.2~0.8 : 0.2~1.8 : 0.2~1.8 : 0.1~0.8이 되도록 혼합할 수 있다. 마그네슘, 알루미늄, 철, 및 2가 양이온 금속의 몰 비가 상기 범위에 포함되는 경우, 제조되는 페라이트 금속 산화물 촉매의 표면적이 60㎡/g 내지 100㎡/g, 바람직하게는 90㎡/g 내지 100㎡/g일 수 있고, 무게감량이 20중량% 이하, 바람직하게는 4중량% 내지 12중량%일 수 있다.In the step (a), the molar ratios of magnesium, aluminum, iron, and divalent cation metal are respectively 0.1 to 1: 0.1 to 2: 0.1 to 2: 0.1 to 1, preferably 0.2 to 0.8: 0.2-1.8: 0.2-1.8: It can mix so that it may be 0.1-0.8. When the molar ratio of magnesium, aluminum, iron, and divalent cationic metal is included in the above range, the surface area of the ferrite metal oxide catalyst produced is 60 m 2 / g to 100 m 2 / g, preferably 90 m 2 / g to 100 m 2 / g, the weight loss may be 20% by weight or less, preferably 4% to 12% by weight.
상기 표면적이 60㎡/g 미만이면 1,3-부타디엔을 제조함에 있어서, n-부텐과 촉매의 접촉 면적이 감소하여 1,3-부타디엔의 선택도가 저하될 수 있고, 100㎡/g 초과이면 접촉 시간이 증가하여 부산물 생성량이 증가할 수 있다.When the surface area is less than 60 m 2 / g, in preparing 1,3-butadiene, the contact area of n -butene and the catalyst may be reduced to decrease the selectivity of 1,3-butadiene, The contact time may be increased to increase byproduct production.
또한, 상기 무게감량이 20중량% 초과인 경우, 촉매의 안정성이 저하되어 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조함에 있어서, 촉매의 활성이 저하될 수 있다.In addition, when the weight loss is more than 20% by weight, the stability of the catalyst is lowered to produce 1,3-butadiene by oxidative dehydrogenation of n -butene, the activity of the catalyst may be lowered.
한편, 상기 (a) 단계에서 각각의 질산염 전구체를 대체하여 황산염 전구체, 염화물 전구체, 및 카보네이트 전구체로 이루어진 군으로부터 선택되는 하나 이상이 사용될 수 있으나, 이에 한정되는 것은 아니다.Meanwhile, in step (a), one or more selected from the group consisting of sulfate precursor, chloride precursor, and carbonate precursor may be used in place of each nitrate precursor, but is not limited thereto.
상기 (a) 단계에서 상기 극성 용매가 증류수일 수 있으나, 이에 한정되는 것은 아니다. 상기 극성 용매가 증류수인 경우, 전구체 용액 내 불순물을 최소화하여 최종 생성물인 페라이트 금속 산화물 촉매의 순도를 향상시킬 수 있다.In the step (a), the polar solvent may be distilled water, but is not limited thereto. When the polar solvent is distilled water, it is possible to minimize the impurities in the precursor solution to improve the purity of the ferrite metal oxide catalyst as a final product.
또한, 상기 2가 양이온 금속이 아연, 망간, 니켈, 코발트, 및 구리로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 아연일 수 있으나, 이에 한정되는 것은 아니다.In addition, the divalent cation metal may be one or more selected from the group consisting of zinc, manganese, nickel, cobalt, and copper, preferably zinc, but is not limited thereto.
상기 2가 양이온 금속 질산염 전구체가 첨가되어 제조된 페라이트 금속 산화물 촉매는 일정 량의 마그네슘이 아연과 같은 2가 양이온 금속으로 대체됨으로써, 마그네슘이 단독으로 적용된 경우에 비해 촉매의 활성과 1,3-부타디엔의 수율을 향상시킬 수 있다.The ferrite metal oxide catalyst prepared by adding the divalent cation metal nitrate precursor is a certain amount of magnesium is replaced by a divalent cation metal such as zinc, so that the activity of the catalyst and 1,3-butadiene compared to the case where magnesium is applied alone The yield can be improved.
한편, 페라이트 금속 산화물 촉매에 3가 양이온 금속으로 철만 존재하는 경우, 스피넬 구조의 붕괴로 촉매의 활성이 저하될 수 있다. 반면, 상기 (a) 단계에서 알루미늄 질산염 전구체를 첨가하여 제조된 페라이트 금속 산화물 촉매는 일정 량의 철이 알루미늄으로 대체될 수 있고, 이에 따라 스피넬 구조가 안정화되어 촉매의 활성을 향상시킬 수 있다.On the other hand, when only iron as the trivalent cation metal is present in the ferrite metal oxide catalyst, the activity of the catalyst may be reduced due to the collapse of the spinel structure. On the other hand, the ferrite metal oxide catalyst prepared by adding the aluminum nitrate precursor in step (a) can be replaced by a certain amount of iron aluminum, thereby stabilizing the spinel structure can improve the activity of the catalyst.
상기 (b) 단계에서 상기 운반 가스가 공기일 수 있고, 바람직하게는 상기 공기의 압력이 2기압 내지 4기압일 수 있으며, 더욱 바람직하게는 3기압일 수 있다. 상기 공기의 압력이 2기압 미만이면 제조되는 촉매의 물성이 1,3-부타디엔의 제조를 위해 요구되는 기준치에 미달하여 촉매 성능이 저하될 수 있고, 4기압 초과이면 과다한 비용이 요구되어 경제적 손실을 초래할 뿐만 아니라 고융체 형성이나 결정 구조의 변형으로 인해 촉매 성능이 저하될 수 있다.In the step (b), the carrier gas may be air, preferably the pressure of the air may be 2 to 4 atm, more preferably 3 atm. If the pressure of the air is less than 2 atm, the physical properties of the catalyst to be produced may be lower than the standard value required for the production of 1,3-butadiene, and the performance of the catalyst may be lowered. In addition to this, the performance of the catalyst may be degraded due to the formation of high melt or the deformation of the crystal structure.
또한, 상기 (b) 단계에서 상기 열분해 온도가 500℃ 내지 900℃, 바람직하게는 700℃ 내지 800℃, 더 바람직하게는 750℃일 수 있다. 상기 열분해 온도가 500℃ 미만이면 1,3-부타디엔의 제조를 위해 요구되는 기준치에 적합한 촉매 결정을 수득할 수 없고, 900℃ 초과이면 촉매가 녹아 고융체가 형성되거나 촉매의 결정 구조가 변할 수 있다. 따라서, 상기 범위에서 열분해를 수행시켜 마그네슘, 알루미늄, 철, 및 2가 양이온 금속으로 이루어진 활성 금속이 균일하게 분산되어 제조되는 페라이트 금속 산화물 촉매를 제조할 수 있다.In addition, in the step (b), the pyrolysis temperature may be 500 ° C to 900 ° C, preferably 700 ° C to 800 ° C, and more preferably 750 ° C. When the pyrolysis temperature is less than 500 ° C., catalyst crystals suitable for the standard required for the preparation of 1,3-butadiene may not be obtained, and when it is above 900 ° C., the catalyst may melt to form a high melt or change in the crystal structure of the catalyst. . Therefore, by performing pyrolysis in the above range, it is possible to produce a ferrite metal oxide catalyst prepared by uniformly dispersing an active metal consisting of magnesium, aluminum, iron, and divalent cation metal.
상기 (c) 단계를 수행함으로써, 페라이트 금속 산화물 촉매를 정제하는 과정을 거쳐 촉매의 순도를 향상시킬 수 있다. 이에 따라, 상기 촉매를 이용하여 제조되는 1,3-부타디엔의 선택도 및 순도가 향상될 수 있다.By performing the step (c), it is possible to improve the purity of the catalyst through the process of purifying the ferrite metal oxide catalyst. Accordingly, selectivity and purity of 1,3-butadiene prepared using the catalyst may be improved.
본 명세서에서 사용된 용어 “하소(calcination)”란, “고체를 가열하여 열분해 또는 상전이를 일으키거나 휘발 성분을 제거하는 열처리 과정”을 의미하는 것으로, 본 명세서에서는 상기 (b) 단계가 완료된 후 수득된 촉매 분말에 포함된 잔류 수분 및 질산염을 제거시켜 순도가 향상된 페라이트 금속 산화물 촉매를 수득하기 위한 정제 과정 및 저장조에서 촉매 분말을 활성화시켜 촉매의 안정성을 향상시키는 과정을 포함하는 개념으로 이해될 수 있다.As used herein, the term "calcination" refers to a "heat treatment process that heats the solid to cause pyrolysis or phase transition or remove volatile components," which is obtained after completion of step (b). It can be understood as a concept including the purification process for removing the residual moisture and nitrate contained in the prepared catalyst powder to obtain a ferrite metal oxide catalyst with improved purity, and the process of activating the catalyst powder in a storage tank to improve the stability of the catalyst. .
상기 (c) 단계에서 상기 하소 온도가 500℃ 내지 600℃일 수 있고, 바람직하게는 530℃ 내지 570℃일 수 있으며, 더욱 바람직하게는 550℃일 수 있다. 상기 하소 온도가 500℃ 미만이면 상기 (b) 단계까지만 수행된 경우에 비해 촉매의 순도 향상 및 1,3-부타디엔의 선택도 향상을 기대하기 어렵고, 600℃ 초과이면 1,3-부타디엔의 선택도는 향상되나 수율이 급격하게 저하될 수 있다.In step (c), the calcination temperature may be 500 ° C. to 600 ° C., preferably 530 ° C. to 570 ° C., and more preferably 550 ° C. When the calcination temperature is less than 500 ℃, it is difficult to expect improved catalyst purity and improved selectivity of 1,3-butadiene compared to the case performed only to the step (b), if the calcination temperature is higher than 600 ℃ 1 Is improved but the yield can be drastically reduced.
또한, 상기 (c) 단계에서 상기 하소가 1시간 내지 4시간 동안 수행될 수 있으며, 바람직하게는 1시간 내지 3시간 동안 수행될 수 있다. 상기 하소가 1시간 미만으로 수행되면 상기 (b) 단계까지만 수행된 경우에 비해 촉매의 순도 향상 및 1,3-부타디엔의 선택도 향상을 기대하기 어렵고, 4시간 초과이면 1,3-부타디엔의 선택도는 향상되나 전환율이 급격하게 저하될 수 있다.In addition, in step (c), the calcination may be performed for 1 hour to 4 hours, preferably 1 hour to 3 hours. If the calcination is carried out in less than 1 hour it is difficult to expect improved purity of the catalyst and improved selectivity of 1,3-butadiene compared to the case performed only to the step (b), and if more than 4 hours the selection of 1,3-butadiene The degree is improved but the conversion rate can be drastically lowered.
상기 방법에 따라 제조된 페라이트 금속 산화물 촉매는 n-부텐으로부터 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 경우에 사용되는 촉매로서, n-부텐의 전환율이 70% 내지 90%이고, 1,3-부타디엔의 선택도가 80% 내지 90%로 기존의 제조방법에 비해 향상된 선택도를 나타낼 수 있다.And 70% to 90% conversion of butene-ferrite metal oxide catalyst prepared according to the method n - as the catalyst used in the case of producing 1,3-butadiene through oxidative dehydrogenation reaction from butene, n The selectivity of 1,3-butadiene may be 80% to 90%, indicating improved selectivity compared to the conventional manufacturing method.
또한, 상기 페라이트 금속 산화물 촉매는 그 분말 상의 촉매 자체가 지지체가 없으면서도 높은 내구성과 수명 및 반응 활성을 가질 수 있다. 따라서, 별도의 지지체 없이 촉매 자체만으로 사용될 수 있다.In addition, the ferrite metal oxide catalyst may have a high durability, life and reaction activity without the support of the catalyst on the powder itself. Therefore, the catalyst itself can be used without a separate support.
필요에 따라, 상기 페라이트 금속 산화물 촉매가 알루미나, 실리카 또는 실리카-알루미나로 이루어진 군으로부터 선택되는 하나의 지지체를 더 포함할 수 있으나, 이에 한정되는 것은 아니다.If necessary, the ferrite metal oxide catalyst may further include one support selected from the group consisting of alumina, silica, or silica-alumina, but is not limited thereto.
본 발명에 따라 제조되는 페라이트 금속 산화물 촉매를 사용하는 1,3-부타디엔의 제조를 위한 n-부텐의 산화적 탈수소화 반응에서, 반응물은 n-부텐 외에 공기 및 스팀(Steam)의 혼합 기체를 더 포함하고 있으며, n-부텐은 함량이 50 내지 75 중량%인 C4 혼합물을 사용할 수 있다. 상기 C4 혼합물은 0.5 내지 25 중량%의 n-부탄을 포함하고, n-부텐과 n-부탄을 제외한 0.5 내지 10 중량%의 불순물을 포함하는 것이 사용될 수 있다.In the oxidative dehydrogenation of n -butene for the production of 1,3-butadiene using a ferrite metal oxide catalyst prepared according to the invention, the reactants further contain a mixture of air and steam in addition to n -butene. N -butene may be used in a C4 mixture having a content of 50 to 75% by weight. The C4 mixture may include 0.5 to 25% by weight of n -butane and include 0.5 to 10% by weight of impurities except n -butene and n -butane.
반응물의 혼합 비율은 바람직하게는 n-부텐 : 공기 : 스팀 = 4 내지 12 부피% : 15 내지 25 부피% : 45 내지 80 부피%일 수 있으며, 더욱 바람직하게는 5 내지 9 부피% : 16 내지 30 부피% : 60 내지 78 부피%일 수 있다. 반응물의 혼합 비율이 상기 범위를 벗어나면 반응 활성이 감소하거나 부산물이 증가할 수 있다.The mixing ratio of the reactants may preferably be n -butene: air: steam = 4-12 vol%: 15-25 vol%: 45-80 vol%, more preferably 5-9 vol%: 16-30 Volume%: may be 60 to 78 volume%. If the mixing ratio of the reactants is out of the above range, the reaction activity may decrease or the by-products may increase.
상기 n-부텐과 공기의 주입량은 질량 유속 조절기(mass flow controller)로 조절할 수 있으며, 상기 스팀의 주입량은 미세 유량 펌프로 주입 속도를 조절할 수 있다.The injection amount of n -butene and air may be controlled by a mass flow controller, and the injection amount of steam may be controlled by a fine flow pump.
상기 반응물의 주입량은 n-부텐을 기준으로 150 h-1 내지 700h-1의 공간 속도(GHSV, Gas Hourly Space Velocity)로, 바람직하게는 175 h-1 내지 600 h-1의 공간 속도로 주입할 수 있으며, 더욱 바람직하게는 200 h-1 내지 500 h-1의 공간 속도로 주입할 수 있다. 상기 공간 속도가 150 h-1 미만이면 단위 시간 당 생성물의 양이 적어 채산성에 문제가 있을 수 있으며, 700 h- 1를 초과하면 n-부텐이 촉매와 반응할 수 있는 시간이 짧아 미 반응물의 증가로 1,3-부타디엔의 수율이 저하될 수 있다.Injection amount of the reaction product is n - space velocity of 150 h -1, based on the butene to 700h -1 (GHSV, Gas Hourly Space Velocity) in, preferably 175 h -1 to 600 h -1 be injected into a space velocity of It is possible to inject, more preferably at a space velocity of 200 h -1 to 500 h -1 . If the space velocity is less than 150 h −1, the amount of the product per unit time may be low, and thus there may be a problem in profitability. If the space velocity exceeds 700 h 1 , the time for n -butene to react with the catalyst is short, increasing the amount of unreacted product The yield of 1,3-butadiene can be lowered.
상기 산화적 탈수소화 반응은 300℃ 내지 500℃의 온도 범위 하에서, 바람직하게는 330℃ 내지 470℃, 더욱 바람직하게는 350℃ 내지 450℃의 온도 범위 하에서 수행될 수 있다. 상기 반응 온도가 350℃ 미만이면 반응 온도가 너무 낮아 촉매가 활성화되지 않아 부분 산화 반응이 잘 일어나지 않는 문제가 있을 수 있고, 500℃ 초과이면 C1~C3의 분해 생성물이나 완전 산화가 일어나는 문제가 있을 수 있다.The oxidative dehydrogenation may be performed under a temperature range of 300 ° C to 500 ° C, preferably 330 ° C to 470 ° C, more preferably 350 ° C to 450 ° C. If the reaction temperature is less than 350 ℃ may be a problem that the reaction temperature is so low that the catalyst is not activated so that the partial oxidation reaction does not occur well, if it is above 500 ℃ decomposition products or complete oxidation of C1 ~ C3 may occur have.
이하, 본 발명의 실시예에 관하여 상세히 설명하기로 한다.Hereinafter, embodiments of the present invention will be described in detail.
실시예 1Example 1
질산 철(Fe(NO3)3·6H2O), 6.297㎏), 질산 아연(Zn(NO3)2·6H2O, 2.379㎏) 질산 마그네슘(Mg(NO3)2·6H2O, 0.513㎏), 및 질산 알루미늄(Al(NO3)3·9H2O, 0.75㎏)을 증류수에 용해시키고 교반하면서 마그네슘, 알루미늄, 철, 및 아연이 각각 0.2 : 0.2 : 1.8 : 0.8의 몰 비로 함유된 혼합 용액을 제조하였다. 제조된 혼합 용액을 시간당 3L씩 공기(3기압)를 운반 가스로 하여 750℃의 반응기 내부로 분무하면서 열분해 시킴으로써 촉매 분말을 제조하였다. 제조된 촉매 분말을 저장조로 운송시킨 후, 500℃, 3시간의 조건 하에 하소시켜 페라이트 금속 산화물 촉매를 제조하였다.Iron nitrate (Fe (NO 3 ) 3 · 6H 2 O), 6.297 kg), zinc nitrate (Zn (NO 3 ) 2 · 6H 2 O, 2.379 kg) magnesium nitrate (Mg (NO 3 ) 2 · 6H 2 O, 0.513 kg) and aluminum nitrate (Al (NO 3 ) 3 .9H 2 O, 0.75 kg) were dissolved in distilled water and contained magnesium, aluminum, iron, and zinc in a molar ratio of 0.2: 0.2: 1.8: 0.8, respectively, with stirring. Mixed solution was prepared. Catalyst powder was prepared by pyrolyzing the prepared mixed solution by spraying the air (3 atm) into the reactor at 750 ° C. using a carrier gas at 3 L per hour. The catalyst powder thus prepared was transferred to a storage tank, and then calcined under conditions of 500 ° C. and 3 hours to prepare a ferrite metal oxide catalyst.
실시예 2Example 2
하소 온도를 550℃로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcination temperature was set to 550 ℃, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
실시예 3Example 3
하소 온도를 600℃로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.A ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that the calcination temperature was set to 600 ° C.
실시예 4Example 4
하소 시간을 2시간으로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcination time was set to 2 hours, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
실시예 5Example 5
하소 시간을 1시간으로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.A ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that the calcination time was set to 1 hour.
비교예 1Comparative Example 1
상기 실시예 1과 동일한 조건으로 페라이트 금속 산화물 촉매를 제조하되, 하소 단계를 생략하였다.A ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, but the calcination step was omitted.
비교예 2Comparative Example 2
하소 온도를 650℃로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcination temperature was set to 650 ℃, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
비교예 3Comparative Example 3
하소 온도를 450℃로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcination temperature was set to 450 ℃, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
비교예 4Comparative Example 4
하소 시간을 30분으로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcining time was set to 30 minutes, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
비교예 5Comparative Example 5
하소 시간을 5시간으로 설정한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Except that the calcination time was set to 5 hours, a ferrite metal oxide catalyst was prepared under the same conditions as in Example 1.
비교예 6Comparative Example 6
질산 철(Fe(NO3)3·6H2O), 20.5㎏)과 질산 마그네슘(Mg(NO3)2·6H2O, 6.5㎏)을 증류수에 용해시키고 교반하면서 마그네슘과 철이 2 : 1의 몰 비로 함유된 혼합 용액을 제조한 것을 제외하면, 상기 실시예 1과 동일한 조건 하에 페라이트 금속 산화물 촉매를 제조하였다.Iron nitrate (Fe (NO 3 ) 3 · 6H 2 O), 20.5 kg) and magnesium nitrate (Mg (NO 3 ) 2 · 6H 2 O, 6.5 kg) were dissolved in distilled water, and magnesium and iron A ferrite metal oxide catalyst was prepared under the same conditions as in Example 1, except that a mixed solution containing a molar ratio was prepared.
실험예 1 : 제조 조건에 따른 페라이트 금속 산화물 촉매의 물성 분석Experimental Example 1 Analysis of Physical Properties of Ferrite Metal Oxide Catalyst According to Manufacturing Conditions
상기 실시예 1~5 및 비교예 1~6에 따라 제조된 페라이트 금속 산화물 촉매의 표면적을 분석하기 위해 부피식 질소 흡착 장치(Quantachrome, ASiQ AGC/TCD)를 이용하여 질소 흡착량을 측정한 후 BET 식을 이용하여 표면적을 계산하고, 그 결과를 하기 표 1에 나타내었다.In order to analyze the surface area of the ferrite metal oxide catalyst prepared according to Examples 1 to 5 and Comparative Examples 1 to 6, the nitrogen adsorption amount was measured using a volumetric nitrogen adsorption apparatus (Quantachrome, ASiQ AGC / TCD), and then BET The surface area was calculated using the formula, and the results are shown in Table 1 below.
또한, 상기 실시예 1~5 및 비교예 1~6에 따라 제조된 페라이트 금속 산화물 촉매의 무게감량을 분석하기 위해 열 중량 분석 장치(PerkinElmer, Pyris 6 TGA)를 이용하여 공기 분위기 하에 상온에서 900℃까지 승온시키며 무게감량을 측정하였고, 그 결과를 하기 표 1에 나타내었다.In addition, in order to analyze the weight loss of the ferrite metal oxide catalyst prepared according to Examples 1 to 5 and Comparative Examples 1 to 6 using a thermogravimetric analyzer (PerkinElmer, Pyris 6 TGA) at 900 ℃ at room temperature under an air atmosphere The weight loss was measured while heating up, and the results are shown in Table 1 below.
표 1
구분 표면적(㎡/g) 무게감량(중량%)
실시예 1 96 6.7
실시예 2 93 4.4
실시예 3 94 4.1
실시예 4 92 11.2
실시예 5 93 10.9
비교예 1 52 24.7
비교예 2 72 15.1
비교예 3 69 16.3
비교예 4 66 13.8
비교예 5 71 15.2
비교예 6 92 9.0
Table 1
division Surface area (㎡ / g) Weight loss
Example 1 96 6.7
Example 2 93 4.4
Example 3 94 4.1
Example 4 92 11.2
Example 5 93 10.9
Comparative Example 1 52 24.7
Comparative Example 2 72 15.1
Comparative Example 3 69 16.3
Comparative Example 4 66 13.8
Comparative Example 5 71 15.2
Comparative Example 6 92 9.0
표 1에서 하소 단계의 포함 여부를 달리하여 페라이트 금속 산화물 촉매를 제조한 실시예 1~5 및 비교예 1을 참고하면, 하소 단계를 추가로 포함하여 제조되는 페라이트 금속 산화물 촉매는 표면적이 90~100㎡/g의 값을 가지나, 하소 단계를 포함하지 않고 제조되는 페라이트 금속 산화물 촉매는 표면적이 60㎡/g 미만의 값을 가지는 것으로 나타났다. 이를 통해, 하소 단계를 추가로 포함하여 제조된 페라이트 금속 산화물 촉매는 향상된 촉매 활성을 나타내는 것으로 분석된다.Referring to Examples 1 to 5 and Comparative Example 1 in which ferrite metal oxide catalysts were prepared by changing whether or not a calcination step was included in Table 1, the ferrite metal oxide catalyst prepared by further including a calcination step had a surface area of 90 to 100. It has been shown that ferrite metal oxide catalysts having a value of m 2 / g but without the calcination step have a surface area of less than 60 m 2 / g. Through this, the ferrite metal oxide catalyst prepared by further comprising the calcination step is analyzed to exhibit improved catalytic activity.
또한, 하소 단계를 추가로 포함하여 제조된 페라이트 금속 산화물 촉매는 무게감량이 4~12중량%의 값을 가지나, 하소 단계를 포함하지 않고 제조된 페라이트 금속 산화물 촉매는 무게감량이 20중량%를 초과하는 것으로 나타났다. 이를 통해, 하소 단계를 추가로 포함하여 제조된 페라이트 금속 산화물 촉매의 경우, 촉매의 안정성이 향상되었음을 확인하였다.In addition, the ferrite metal oxide catalyst prepared by further comprising a calcination step has a weight loss value of 4 to 12% by weight, but the ferrite metal oxide catalyst prepared without the calcination step has a weight loss of more than 20% by weight. Appeared to be. Through this, in the case of the ferrite metal oxide catalyst prepared by further comprising a calcination step, it was confirmed that the stability of the catalyst is improved.
나아가, 하소 단계를 추가로 포함하여 페라이트 금속 산화물 촉매를 제조하되, 하소 온도를 상이하게 설정한 실시예 1~3 및 비교예 2, 3을 참고하면, 하소 온도가 600℃ 초과이거나 500℃ 미만인 경우 촉매의 표면적이 감소하고 무게감량이 증가하여 촉매 활성 및 촉매의 안정성이 저하되었음을 알 수 있다.Furthermore, when the ferrite metal oxide catalyst is prepared by further including a calcination step, referring to Examples 1 to 3 and Comparative Examples 2 and 3, which are differently set, the calcination temperature is higher than 600 ° C or lower than 500 ° C. It can be seen that the surface area of the catalyst decreases and the weight loss increases, thereby degrading the catalyst activity and the stability of the catalyst.
또한, 하소 단계를 추가로 포함하여 페라이트 금속 산화물 촉매를 제조하되, 하소 시간을 상이하게 설정한 실시예 1, 4, 5 및 비교예 4, 5를 참고하면, 하소 시간이 1시간 미만이거나 4시간 초과인 경우 촉매의 표면적이 감소하고 무게감량이 증가하여 촉매 활성 및 촉매의 안정성이 저하되었다.In addition, to prepare a ferrite metal oxide catalyst by further comprising a calcination step, with reference to Examples 1, 4, 5 and Comparative Examples 4, 5 set the calcination time differently, the calcination time is less than 1 hour or 4 hours If exceeded, the surface area of the catalyst was reduced and the weight loss was increased, thereby degrading the catalyst activity and the stability of the catalyst.
한편, 페라이트 금속 산화물 촉매의 활성 성분을 상이하게 조절한 실시예 1~5 및 비교예 6을 참고하면, 활성 성분으로 마그네슘 일부를 아연으로 대체하고, 철 일부를 알루미늄으로 대체한 경우, 촉매의 표면적이 증가하고 무게감량이 감소하여 촉매 활성 및 촉매의 안정성이 다소 향상되었음을 알 수 있다.Meanwhile, referring to Examples 1 to 5 and Comparative Example 6, in which the active ingredient of the ferrite metal oxide catalyst is differently controlled, the surface area of the catalyst when the magnesium is replaced with zinc and the iron is replaced with aluminum is used as the active ingredient. It can be seen that this increase and the weight loss decreased, the catalyst activity and the stability of the catalyst slightly improved.
따라서, 하소 단계를 추가로 포함하되, 하소 온도를 500℃ 내지 600℃, 하소 시간을 1시간 내지 4시간으로 설정하고, 활성 성분으로 마그네슘, 알루미늄, 철, 및 아연을 모두 포함하도록 제조된 페라이트 금속 산화물 촉매가 향상된 촉매 활성 및 안정성을 나타내는 것으로 분석된다.Thus, further comprising a calcination step, the calcination temperature is set to 500 ℃ to 600 ℃, the calcination time from 1 hour to 4 hours, ferrite metal prepared to include all magnesium, aluminum, iron, and zinc as the active ingredient It is analyzed that oxide catalysts exhibit improved catalytic activity and stability.
실험예 2 : 페라이트 금속 산화물 촉매의 제조 조건에 따른 1,3-부타디엔의 반응성 분석 Experimental Example 2 Analysis of Reactivity of 1,3-Butadiene According to Preparation Conditions of Ferrite Metal Oxide Catalyst
상기 실시예 1~5 및 비교예 1~6에 따라 제조된 페라이트 금속 산화물 촉매를 스테인리스 반응기에 공간 속도(GHSV, Gas Hourly Space Velocity) 400h-1이 되도록 충진하고, 공기를 주입하면서 370℃에서 활성화시켰다. 활성화된 촉매를 질량 유속 조절기를 사용하고, C4 혼합물(n-부텐) : 공기 : 스팀의 혼합비가 5.2 부피% : 17.2 부피% : 77.6 부피%인 혼합 기체를 사용하여, 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하였고, n-부텐 전환율, 1,3-부타디엔의 선택도, 및 1,3-부타디엔 수율을 각각 하기 수학식 1~3을 이용하여 계산하였고, 그 결과를 하기 표 2에 나타내었다.Activation in Examples 1 to 5 and Comparative Examples 1 to 6 370 ℃ while filling such that the prepared ferrite metal oxide catalyst in a stainless steel reactor, the space velocity (GHSV, Gas Hourly Space Velocity) 400h -1 and injecting air according to the I was. The activated catalyst was subjected to an oxidative dehydrogenation reaction using a mass flow rate controller and a mixed gas having a mixing ratio of C4 mixture ( n -butene): air: steam: 5.2% by volume: 17.2% by volume: 77.6% by volume. 1,3-butadiene was prepared, n -butene conversion, 1,3-butadiene selectivity, and 1,3-butadiene yield were calculated using the following Equations 1 to 3, and the results are shown in Table 2 below. Shown in
[수학식 1] : n-부텐 전환율Equation 1: n -butene conversion
Figure PCTKR2016015446-appb-I000001
Figure PCTKR2016015446-appb-I000001
[수학식 2] : 1,3-부타디엔 선택도Equation 2: 1,3-butadiene selectivity
Figure PCTKR2016015446-appb-I000002
Figure PCTKR2016015446-appb-I000002
[수학식 3] : 1,3-부타디엔 수율Equation 3: 1,3-butadiene yield
Figure PCTKR2016015446-appb-I000003
Figure PCTKR2016015446-appb-I000003
표 2
구분 n-부텐 전환율(%) 1,3-부타디엔 선택도(%) 1,3-부타디엔 수율(%)
실시예 1 79.8 92.1 73.5
실시예 2 79.3 92.3 73.2
실시예 3 79 92.4 73
실시예 4 77.5 91.7 71.1
실시예 5 77.1 91.4 70.5
비교예 1 75.3 87.4 65.8
비교예 2 67.2 91.1 61.2
비교예 3 77.5 84.5 65.5
비교예 4 76.5 89.7 68.6
비교예 5 72.5 95.3 69.1
비교예 6 79.7 85.9 68.5
TABLE 2
division n -butene conversion (%) 1,3-butadiene selectivity (%) 1,3-butadiene yield (%)
Example 1 79.8 92.1 73.5
Example 2 79.3 92.3 73.2
Example 3 79 92.4 73
Example 4 77.5 91.7 71.1
Example 5 77.1 91.4 70.5
Comparative Example 1 75.3 87.4 65.8
Comparative Example 2 67.2 91.1 61.2
Comparative Example 3 77.5 84.5 65.5
Comparative Example 4 76.5 89.7 68.6
Comparative Example 5 72.5 95.3 69.1
Comparative Example 6 79.7 85.9 68.5
표 2에서 하소 단계의 포함 여부를 달리하여 페라이트 금속 산화물 촉매를 제조한 실시예 1~5 및 비교예 1을 참고하면, 하소 단계를 추가로 포함하여 제조된 페라이트 금속 산화물 촉매는 1,3-부타디엔 선택도가 91% 이상의 값을 가지나, 하소 단계를 포함하지 않고 제조되는 페라이트 금속 산화물 촉매는 1,3-부타디엔 선택도가 88% 미만의 값을 가지는 것으로 나타났다. 이를 통해, 하소 단계를 추가로 포함하여 제조된 페라이트 금속 산화물 촉매의 경우, 촉매 활성이 증가하여 1,3-부타디엔 선택도가 향상됨을 알 수 있다.Referring to Examples 1 to 5 and Comparative Example 1 in which ferrite metal oxide catalysts were prepared by changing whether or not a calcination step was included in Table 2, the ferrite metal oxide catalyst prepared by further comprising a calcination step was 1,3-butadiene. Although the selectivity has a value of 91% or more, the ferrite metal oxide catalyst prepared without the calcination step has been shown to have a 1,3-butadiene selectivity of less than 88%. Through this, in the case of the ferrite metal oxide catalyst prepared by further comprising a calcination step, it can be seen that the catalytic activity is increased to improve the 1,3-butadiene selectivity.
나아가, 하소 단계를 추가로 포함하여 페라이트 금속 산화물 촉매를 제조하되, 하소 온도를 상이하게 설정한 실시예 1~3 및 비교예 2, 3을 참고하면, 하소 온도가 500℃ 미만인 경우 하소 단계를 포함하지 않고 제조된 페라이트 금속 산화물 촉매(비교예 1)에 비해 1,3-부타디엔 선택도가 향상되지 않은 것으로 나타났고, 하소 온도가 600℃ 초과이면 1,3-부타디엔 선택도는 향상되나 n-부텐 전환율 및 1,3-부타디엔 수율이 급격하게 저하된 것으로 나타났다.Furthermore, in order to prepare a ferrite metal oxide catalyst by further comprising a calcination step, referring to Examples 1 to 3 and Comparative Examples 2 and 3, wherein the calcination temperature is set differently, the calcination step is less than 500 ° C. 1,3-butadiene selectivity was not improved compared to the ferrite metal oxide catalyst (Comparative Example 1) prepared without. When the calcination temperature is higher than 600 ℃, the 1,3-butadiene selectivity is improved but n -butene It was found that the conversion and 1,3-butadiene yield dropped sharply.
또한, 하소 단계를 추가로 포함하여 페라이트 금속 산화물 촉매를 제조하되, 하소 시간을 상이하게 설정한 실시예 1, 4, 5 및 비교예 4, 5를 참고하면, 하소 시간이 1시간 미만인 경우 하소 단계를 포함하지 않고 제조된 페라이트 금속 산화물 촉매(비교예 1)에 비해 1,3-부타디엔 선택도가 향상되지 않는 것으로 나타났고, 하소 시간이 4시간 초과인 경우 1,3-부타디엔 선택도는 향상되나 n-부텐 전환율이 급격하게 저하되는 것으로 나타났다.In addition, to prepare a ferrite metal oxide catalyst by further comprising a calcination step, referring to Examples 1, 4, 5 and Comparative Examples 4, 5, the calcination time is set differently, the calcination step is less than 1 hour The 1,3-butadiene selectivity did not appear to be improved compared to the ferrite metal oxide catalyst prepared without the (Comparative Example 1), and the 1,3-butadiene selectivity is improved when the calcination time exceeds 4 hours. It was found that the n -butene conversion was drastically lowered.
한편, 페라이트 금속 산화물 촉매의 활성 성분을 상이하게 조절한 실시예 1~5 및 비교예 6을 참고하면, 활성 성분으로 마그네슘 일부를 아연으로 대체하고, 철 일부를 알루미늄으로 대체한 경우, 1,3-부타디엔의 수율이 향상되었음을 알 수 있고, 이는 산화적 탈수소화 반응이 진행되면서 부반응이 억제된 결과인 것으로 분석된다.Meanwhile, referring to Examples 1 to 5 and Comparative Example 6, in which the active ingredient of the ferrite metal oxide catalyst is differently controlled, when magnesium is replaced with zinc and iron is replaced with aluminum as active ingredient, 1,3 It can be seen that the yield of butadiene is improved, which is a result of suppression of side reactions as the oxidative dehydrogenation reaction proceeds.
따라서, 하소 단계를 추가로 포함하되, 하소 온도를 500℃ 내지 600℃, 하소 시간을 1시간 내지 4시간으로 설정하고, 활성 성분으로 마그네슘, 알루미늄, 철, 및 아연을 모두 포함하도록 제조된 페라이트 금속 산화물 촉매가 n-부텐 전환율을 유지하면서 1,3-부타디엔 선택도와 수율을 향상시킬 수 있음을 알 수 있다.Thus, further comprising a calcination step, the calcination temperature is set to 500 ℃ to 600 ℃, the calcination time from 1 hour to 4 hours, ferrite metal prepared to include all magnesium, aluminum, iron, and zinc as the active ingredient It can be seen that the oxide catalyst can improve the 1,3-butadiene selectivity and yield while maintaining the n -butene conversion.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the invention is indicated by the following claims, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the invention.

Claims (9)

  1. (a) 마그네슘, 알루미늄, 철, 및 2가 양이온 금속 각각의 질산염 전구체를 극성 용매에 용해시켜 전구체 용액을 제조하는 단계;(a) dissolving a nitrate precursor of each of magnesium, aluminum, iron, and divalent cation metal in a polar solvent to prepare a precursor solution;
    (b) 상기 전구체 용액을 운반 가스를 이용하여 반응기 내부로 분무하면서 열분해시켜 촉매 분말을 형성하는 단계; 및(b) pyrolysing the precursor solution with a carrier gas into the reactor to form a catalyst powder; And
    (c) 상기 촉매 분말을 저장조로 운송시킨 후, 상기 저장조에서 하소시키는 단계;를 포함하는, 하기 화학식 1로 표시되는 다성분계 페라이트 금속 산화물 촉매의 제조방법:(c) transporting the catalyst powder to a storage tank, and then calcining in the storage tank; a method of preparing a multi-component ferrite metal oxide catalyst represented by the following Chemical Formula 1;
    [화학식 1][Formula 1]
    MgxM(1-x)AlyFe(2-y)O4 Mg x M (1-x) Al y Fe (2-y) O 4
    상기 화학식 1에서,In Chemical Formula 1,
    x 및 y는 각각 0<x<1, 및 0<y<2를 만족하는 실수이고, M은 2가 양이온 금속 원소이다.x and y are real numbers satisfying 0 <x <1 and 0 <y <2, respectively, and M is a divalent cation metal element.
  2. 제1항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 각각의 질산염 전구체를 마그네슘, 알루미늄, 철, 및 2가 양이온 금속의 몰 비가 각각 0.1~1 : 0.1~2 : 0.1~2 : 0.1~1이 되도록 혼합하는 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.Mixing the nitrate precursor in the step (a) so that the molar ratio of magnesium, aluminum, iron, and divalent cation metal is 0.1 to 1: 0.1 to 2: 0.1 to 2: 0.1 to 1, respectively. Method for producing multicomponent ferrite metal oxide catalyst.
  3. 제2항에 있어서,The method of claim 2,
    상기 (a) 단계에서 상기 2가 양이온 금속이 아연, 망간, 니켈, 코발트, 및 구리로 이루어진 군으로부터 선택되는 하나 이상인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (a) is characterized in that the divalent cation metal is at least one selected from the group consisting of zinc, manganese, nickel, cobalt, and copper, multi-component ferrite metal oxide catalyst production method.
  4. 제1항에 있어서,The method of claim 1,
    상기 (a) 단계에서 상기 극성 용매가 증류수인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (a), the polar solvent is distilled water, characterized in that the manufacturing method of the multi-component ferrite metal oxide catalyst.
  5. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 운반 가스가 공기인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (b), the carrier gas is air, characterized in that the manufacturing method of the multi-component ferrite metal oxide catalyst.
  6. 제5항에 있어서,The method of claim 5,
    상기 (b) 단계에서 상기 공기의 압력이 2기압 내지 4기압인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (b), characterized in that the pressure of the air is 2 to 4 atm, multi-component ferrite metal oxide catalyst.
  7. 제1항에 있어서,The method of claim 1,
    상기 (b) 단계에서 상기 열분해 온도가 500℃ 내지 900℃인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (b), the pyrolysis temperature is 500 ℃ to 900 ℃, characterized in that the manufacturing method of the multi-component ferrite metal oxide catalyst.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 (c) 단계에서 상기 하소 온도가 500℃ 내지 600℃인 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (c), the calcination temperature is 500 ℃ to 600 ℃, characterized in that the manufacturing method of the multi-component ferrite metal oxide catalyst.
  9. 제8항에 있어서,The method of claim 8,
    상기 (c) 단계에서 상기 하소가 1시간 내지 4시간 동안 수행되는 것을 특징으로 하는, 다성분계 페라이트 금속 산화물 촉매의 제조방법.In the step (c), the calcination is carried out for 1 to 4 hours, characterized in that the method for producing a multi-component ferrite metal oxide catalyst.
PCT/KR2016/015446 2015-12-30 2016-12-29 Method for preparing multicomponent ferrite metal oxide catalyst WO2017116153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0189720 2015-12-30
KR1020150189720A KR101792072B1 (en) 2015-12-30 2015-12-30 Method for preparing multi-component ferrite metal oxide catalyst

Publications (1)

Publication Number Publication Date
WO2017116153A1 true WO2017116153A1 (en) 2017-07-06

Family

ID=59225285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015446 WO2017116153A1 (en) 2015-12-30 2016-12-29 Method for preparing multicomponent ferrite metal oxide catalyst

Country Status (2)

Country Link
KR (1) KR101792072B1 (en)
WO (1) WO2017116153A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229398A (en) * 1995-02-24 1996-09-10 Nissan Motor Co Ltd Exhaust gas purifying catalyst and its production
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
KR101340621B1 (en) * 2013-05-14 2013-12-11 금호석유화학 주식회사 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same
KR20140002141A (en) * 2012-06-28 2014-01-08 인하대학교 산학협력단 Carbonhydrate reforming catalyst and the method of preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08229398A (en) * 1995-02-24 1996-09-10 Nissan Motor Co Ltd Exhaust gas purifying catalyst and its production
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
KR20140002141A (en) * 2012-06-28 2014-01-08 인하대학교 산학협력단 Carbonhydrate reforming catalyst and the method of preparation thereof
KR101340621B1 (en) * 2013-05-14 2013-12-11 금호석유화학 주식회사 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BALASAMY ET AL.: "Ethylbenzene dehydrogenation over FeOx/(Mg, Zn)(Al)0 catalysts derived from hydrotalcites: Role of MgO as basic sites", APPLIED CATALYSIS A: GENERAL, vol. 398, no. 1-2, 2011, pages 113 - 122 *

Also Published As

Publication number Publication date
KR101792072B1 (en) 2017-11-02
KR20170079302A (en) 2017-07-10

Similar Documents

Publication Publication Date Title
WO2016195162A1 (en) Method for preparing ferrite metal oxide catalyst
WO2014098448A1 (en) Mixed manganese ferrite honeycomb-type catalyst, preparation method therefor, and method for preparing 1,3-butadiene using same
WO2017213360A1 (en) Oxidative dehydrogenation reaction catalyst and preparation method therefor
WO2016017994A1 (en) Dehydrogenation catalyst, and preparation method therefor
KR20120109998A (en) Process for the oxidative coupling of methane
KR930003460B1 (en) Dehydrogenation of alkylaromatics
WO2014061917A1 (en) Regular mesoporous silica-based catalyst for preparing 1,3-butadiene from ethanol, and method for preparing 1,3-butadiene using same
WO2020091418A1 (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing olefin corresponding to paraffin from paraffin by using same
WO2019132392A1 (en) Method for manufacturing zinc ferrite catalyst and zinc ferrite catalyst manufactured thereby
WO2019039749A1 (en) Method for producing metal oxide catalyst supported on mesoporous hzsm-11 for direct dehydrogenation and aromatization reaction of methane and propane co-reactant, and method for producing btx using catalyst
WO2022098009A1 (en) Dehydrogenation catalyst for preparing olefin from alkane gas and method for producing same
WO2018182214A1 (en) Metal oxide catalyst, method for producing same, and method for producing alcohol using same
JP2018076235A (en) PRODUCTION METHOD OF ε-CAPROLACTAM
WO2017116153A1 (en) Method for preparing multicomponent ferrite metal oxide catalyst
WO2018139776A1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
KR20120077973A (en) Process for producing aromatics using transition metal phosphide catalyst
WO2018190642A2 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for oxidative dehydrogenation comprising same, and oxidative dehydrogenation method
WO2014182026A1 (en) Oxidation catalyst for preparing butadiene and method for preparing same
WO2021107541A1 (en) Dehydrogenation catalyst for preparing olefine from alkanes gas and method for preparing same
WO2013108979A1 (en) Method for preparing magnesia-zirconia composite carrier for catalyzing oxidative dehydration of normal-butane, method for preparing magnesium orthovanadate catalyst supported by magnesia-zirconia composite carrier prepared thereby, and method for preparing normal-butene and 1,3-butadiene using magnesium orthovanadate catalyst
WO2017164492A1 (en) Catalyst for oxidative dehydrogenation reaction, and preparation method therefor
WO2020106013A1 (en) Catalyst for oxidative dehydrogenation reaction, and method for producing same
WO2019245157A1 (en) Catalyst for preparing light olefin, preparation method therefor, and method for preparing light olefin by using same
WO2018190641A1 (en) Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
WO2017160071A1 (en) Method for preparing catalyst for oxidative dehydrogenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882105

Country of ref document: EP

Kind code of ref document: A1