KR101340621B1 - Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same - Google Patents

Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same Download PDF

Info

Publication number
KR101340621B1
KR101340621B1 KR1020130054627A KR20130054627A KR101340621B1 KR 101340621 B1 KR101340621 B1 KR 101340621B1 KR 1020130054627 A KR1020130054627 A KR 1020130054627A KR 20130054627 A KR20130054627 A KR 20130054627A KR 101340621 B1 KR101340621 B1 KR 101340621B1
Authority
KR
South Korea
Prior art keywords
metal oxide
butadiene
catalyst
iron
butene
Prior art date
Application number
KR1020130054627A
Other languages
Korean (ko)
Inventor
박지원
노경호
김재우
윤용희
노혜령
김윤정
Original Assignee
금호석유화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금호석유화학 주식회사 filed Critical 금호석유화학 주식회사
Priority to KR1020130054627A priority Critical patent/KR101340621B1/en
Application granted granted Critical
Publication of KR101340621B1 publication Critical patent/KR101340621B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • B01J35/613
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/12Alkadienes
    • C07C11/16Alkadienes with four carbon atoms
    • C07C11/1671, 3-Butadiene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • C07C2/82Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling
    • C07C2/84Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen oxidative coupling catalytic

Abstract

The present invention relates to a method for producing ferrite metal oxide catalysts using a spray-pyrolysis process and catalysts and, more specifically, to a method for producing 1,3-butadiene is metal oxide catalyst which is prepared from a metal oxide precursor by a spray-pyrolysis process of metal, containing iron as a main catalyst and magnesium, manganese, or zinc as a cocatalyst; and a method for preparing 1,3-butadiene through oxidative dehydrogenation of n-butadiene using the same. [Reference numerals] (AA) Spray pyrolysis method;(BB,HH) Zinc (or magnesium, manganese) precursor;(CC,II) Iron precursor;(DD,JJ) Zinc (or magnesium, manganese)-iron mixed solution;(EE) Spray pyrolysis;(FF) Zinc-Iron ferrite metal oxide catalyst;(KK) Coprecipitation agent (4N sodium hydroxide, pH adjustment);(LL) Coprecipitation solution (mixing);(MM) Hydrothermal reaction and aging;(NN) Filtering and washing;(OO) Drying (120 °C, 4 hours);(PP) Drying (120 °C, 24 hours);(QQ) Plasticizing (650 °C, 4 hours);(RR) Zinc-iron ferrite metal oxide catalyst

Description

분무 열분해 방법을 이용한 페라이트 금속산화물 촉매와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법{Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-Butadiene using the same}Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method etc. and preparing method of 1,3-Butadiene using the same }

본 발명은 분무 열분해 방법을 이용한 페라이트 금속산화물 촉매의 제조방법과 그 촉매에 관한 것으로서, 더욱 상세하게는 철을 주촉매로, 마그네슘, 망간 또는 아연을 보조촉매로 포함하는 금속산화물 전구체에서 분무 열분해 방법으로 제조한 금속산화물 촉매와 이를 사용하여 n-부텐의 산화적 탈수소화 반응을 통해 1,3-부타디엔을 제조하는 방법에 관한 것이다.
The present invention relates to a method for preparing a ferrite metal oxide catalyst using a spray pyrolysis method, and more particularly, to a spray pyrolysis method in a metal oxide precursor including iron as a main catalyst and magnesium, manganese or zinc as a cocatalyst. And a method for producing 1,3-butadiene through an oxidative dehydrogenation of n -butene using the metal oxide catalyst prepared by the present invention.

매년 자동차 시장의 성장으로 인해 수요가 크게 증가하고 있는 타이어의 주원료인 1,3-부타디엔은 보통 나프타를 원료로 하여, 포화 탄화수소의 열분해 방법(Naphtha cracking)에 의해 제조한다. 나프타를 열분해 하면 메탄, 에탄, 에틸렌, 아세틸렌, 프로판, 프로필렌, 부탄, 부텐, 1,3-부탄디엔, C5 이상의 고급 탄화수소의 혼합물이 얻어진다. 상기와 같은 열분해 방법을 통해 1,3-부타디엔을 생산하는 것은 전체 1,3-부타디엔 공급양의 대부분을 담당하고 있으나, 위와 같은 부산물인 다른 올레핀류도 합성되고, 열분해 공정에 필요한 에너지 비용의 상승 등에 의해 1,3-부타디엔 제조방법으로는 매우 비효율적이다.1,3-butadiene, the main raw material of tires, which is growing in demand due to the growth of the automobile market every year, is usually produced by naphtha cracking of saturated hydrocarbons. Pyrolysis of naphtha results in a mixture of methane, ethane, ethylene, acetylene, propane, propylene, butane, butene, 1,3-butanediene and higher hydrocarbons of C 5 or higher. The production of 1,3-butadiene through the above pyrolysis method is responsible for most of the total 1,3-butadiene supply, but other olefins, which are by-products as described above, are also synthesized and the energy cost required for the pyrolysis process is increased. The method of producing 1,3-butadiene is very inefficient.

또 다른 제조방법으로는, n-부텐을 직접 탈수소화하는 방법이 있다. 이 방법은 나프타 열분해 방법보다 1,3-부타디엔의 수율은 높으나, 흡열반응이기 때문에 고온의 반응온도를 유지시키기 위해 많은 에너지가 소요되며, 또한 촉매표면에 탄소침적물(coke)이 형성되어 촉매의 활성을 떨어뜨리기 때문에 촉매 재생을 위해 많은 에너지가 필요하다는 단점이 있다. Another manufacturing method is a method of directly dehydrogenating n -butene. In this method, the yield of 1,3-butadiene is higher than that of naphtha pyrolysis, but because of the endothermic reaction, a large amount of energy is required to maintain a high temperature reaction temperature, and carbon deposits are formed on the surface of the catalyst to activate the catalyst. Its disadvantage is that it requires a lot of energy for catalyst regeneration.

이러한 단점을 극복한 것이 n-부텐과 산소를 직접 반응시켜 1,3-부타디엔을 제조하는 산화적 탈수소화(Oxidative dehydrogenation) 방법이다. 산화적 탈수소화 방법은 스팀 존재 하에 수행하는데, 첨가된 스팀은 열 수송체로 작용하며 촉매 상에서 유기 침적물의 기화를 촉진하기 때문에 촉매의 탄화를 억제하여 활성저하를 막아준다. 또한 n-부텐은 산소와 반응하여 1,3-부타디엔과 물로 전환되고, 이들 중 생성된 물은 안정하여 열역학적으로 유리할 뿐만 아니라 반응온도를 낮출 수 있다. 즉, 산화적 탈수소화는 열역학적으로 안정하고 낮은 온도에서 올레핀에 대한 선택도가 우수하다. 일반적으로 산화적 탈수소화 반응에서는 반응초기에 생성된 라디칼이 중요한 반응중간체로서 반응 중에 촉매 표면에서 탈착되어 기체 부분으로 이동하여 균일계 촉매 반응에 참여하게 된다. 그러나 n-부텐과 산소가 반응하여 1,3-부타디엔을 제조하는 산화적 탈수소화 방법은 반응물로 산소를 사용하기 때문에 부분 산화, 완전 산화와 같은 부반응이 동반되므로, 이러한 부반응을 억제하여 1,3-부타디엔의 선택도 및 수율이 높은 촉매를 개발하는 것이 핵심기술이다. n-부텐에서 1,3-부타디엔을 산화적 탈수소화 방법으로 제조하는데 적합한 촉매는 비스무스-몰리브덴 계 산화물 [A.P.V. Soares, L.K. Kimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal. A: Gem., 253권, 191쪽(2003년); P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., 13권, 75쪽(1969년)(β-Bi2Mo2O9, γ-Bi2MoO6); J.C, Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, J. Mol. Catal. A: Chem., 259권, 166쪽(2006년)(α-Bi2Mo3O12, β-Bi2Mo2O9, γ-Bi2MoO6)]과 페라이트 촉매 [H.H. Kung, B. Kundalkar, M.C. Kung, W.H. Cheng, J. Phys. Chem., 84권, 382쪽(1980년); J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bolhimi, Appl. Catal. A: Gen., 234권, 137쪽(2002년); H. Lee, J.C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Commun., 9권, 1137쪽(2008년); H. Lee, J.C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Lett., 122권, 281쪽(2008년); 대한민국등록특허 제10-0847206호; 대한민국등록특허 제10-0888143호; 미국특허공개 제2012-0059208호] 또는 철을 추가로 포함하는 비스무스-몰리브덴 다중 금속산화물 촉매를 기초로 한다[미국 특허 제4,423,281호; 미국 특허 제4,336,409호; 미국 특허 제3,110,746호].Overcoming this drawback is the oxidative dehydrogenation method of producing 1,3-butadiene by directly reacting n -butene with oxygen. The oxidative dehydrogenation process is carried out in the presence of steam. The added steam acts as a heat transporter and promotes vaporization of organic deposits on the catalyst, thus inhibiting carbonization of the catalyst to prevent deactivation. In addition, n -butene reacts with oxygen to convert 1,3-butadiene and water, and the water produced therein is stable and thermodynamically advantageous, and can lower the reaction temperature. In other words, oxidative dehydrogenation is thermodynamically stable and has good selectivity to olefins at low temperatures. In general, in the oxidative dehydrogenation reaction, radicals generated at the beginning of the reaction are important reaction intermediates, desorb from the surface of the catalyst during the reaction, move to the gas part, and participate in the homogeneous catalytic reaction. However, the oxidative dehydrogenation method in which n -butene and oxygen react to produce 1,3-butadiene is accompanied by side reactions such as partial oxidation and complete oxidation because oxygen is used as a reactant, and thus, these side reactions are suppressed to prevent 1,3 Developing catalysts with high selectivity and yield of butadiene is a key technology. Suitable catalysts for the preparation of 1,3-butadiene in n -butene by the oxidative dehydrogenation method are bismuth-molybdenum based oxides [APV Soares, LK Kimitrov, MCA Oliveira, L. Hilaire, MF Portela, RK Grasselli, Appl. Catal. A: Gem., Vol. 253, 191 (2003); P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., Vol. 13, p. 75 (1969) ( β- Bi 2 Mo 2 O 9 , γ- Bi 2 MoO 6 ); JC, Jung, H. Kim, AS Choi, Y.-M. Chung, TJ Kim, SJ Lee, S.-H. Oh, IK Song, J. Mol. Catal. A: Chem., Vol. 259, p. 166 (2006) ( α- Bi 2 Mo 3 O 12 , β- Bi 2 Mo 2 O 9 , γ- Bi 2 MoO 6 ) and ferrite catalyst [HH Kung, B. Kundalkar, MC Kung, WH Cheng, J. Phys. Chem., 84, 382 (1980); JA Toledo-Antonio, N. Nava, M. Martinez, X. Bolhimi, Appl. Catal. A: Gen., vol. 234, p. 137 (2002); H. Lee, JC Jung, H. Kim, Y.-M. Chung, TJ Kim, SJ Lee, S.-H. Oh, YS Kim, IK Song, Catal. Commun., Vol. 9, p. 1137 (2008); H. Lee, JC Jung, H. Kim, Y.-M. Chung, TJ Kim, SJ Lee, S.-H. Oh, YS Kim, IK Song, Catal. Lett., Vol. 122, p. 281 (2008); Korean Patent No. 10-0847206; Korean Patent No. 10-0888143; US Patent Publication No. 2012-0059208 or based on bismuth-molybdenum multiple metal oxide catalyst further comprising iron (US Pat. No. 4,423,281; US Patent No. 4,336,409; US Patent No. 3,110,746.

이들 촉매 중 페라이트 촉매는 스피넬 결정구조를 가지는데, 2가 양이온의 종류에 따라 n-부텐의 산화적 탈수소화 반응에서 1,3-부타디엔의 수율이 크게 달라진다. 특히 아연, 망간, 마그네슘 페라이트는 다른 종류의 금속 페라이트에 비해 1,3-부타디엔의 선택도가 높은 것으로 보고되고 있다[미국특허 제3,334,152호; 미국특허 제3,284,536호; 미국특허 제3,303,234호; 미국특허 제3,849,545호; 미국특허 4,658,074호; 미국특허 제3,937,748호; 대한민국등록특허 제10-0888143호]. Among these catalysts, the ferrite catalyst has a spinel crystal structure, and the yield of 1,3-butadiene varies greatly in the oxidative dehydrogenation of n -butene depending on the type of divalent cation. In particular, zinc, manganese and magnesium ferrite have been reported to have higher selectivity of 1,3-butadiene than other types of metal ferrites (US Pat. No. 3,334,152; US Patent No. 3,284,536; US Patent No. 3,303,234; US Patent No. 3,849,545; US Patent 4,658,074; US Patent No. 3,937,748; Republic of Korea Patent No. 10-0888143].

n-부텐의 산화적 탈수소화 반응을 수행하는 데 있어서, 상기 특허들의 페라이트 촉매들은 모두 물리적 혼합 및 공침 방법에 의해 제조된 스피넬 구조를 가지는 페라이트 촉매를 이용하여 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 것으로서, 공침 방법은 대표적으로 금속산화물 촉매 제조시 많이 사용되는 방법이나, 1) 활성 금속의 전구체를 용해시키는 단계, 2) 활성 금속 전구체가 용해된 용액에 알칼리성의 공침 용액을 가하는 단계, 3) 공침 후 숙성단계, 공침한 용액을 여과 및 세척하는 단계, 4) 얻어진 고체를 건조하는 단계, 5) 건조된 고체 촉매를 소성하여 활성화 시키는 단계 등과 같은 여러 단계의 과정을 거치며, 촉매 제조 후 여과 및 세척과정에서 폐수가 발생하는 문제점이 있다.
In carrying out the oxidative dehydrogenation of n -butene, all of the ferrite catalysts of the above patents are subjected to oxidative dehydrogenation of n -butene using a ferrite catalyst having a spinel structure prepared by a physical mixing and coprecipitation method. As the preparation of 1,3-butadiene, the coprecipitation method is typically used in the preparation of a metal oxide catalyst, but 1) dissolving the precursor of the active metal, 2) alkaline coprecipitation in a solution in which the active metal precursor is dissolved Several steps such as adding a solution, 3) aging after coprecipitation, filtration and washing of the coprecipitated solution, 4) drying the obtained solid, and 5) calcining and activating the dried solid catalyst. There is a problem that wastewater is generated during the filtration and washing process after preparing the catalyst.

1. 대한민국등록특허 제10-0847206호1. Republic of Korea Patent No. 10-0847206 2. 대한민국등록특허 제10-0888143호2. Republic of Korea Patent No. 10-0888143 3. 미국특허공개 제2012-0059208호3. United States Patent Publication No. 2012-0059208 4. 미국특허 제4,423,281호4. U.S. Patent 4,423,281 5. 미국특허 제4,336,409호5. US Patent No. 4,336,409 6. 미국특허 제3,110,746호6. US Patent No. 3,110,746 7. 미국특허 제3,334,152호7. U.S. Patent No. 3,334,152 8. 미국특허 제3,284,536호8. US Patent No. 3,284,536 9. 미국특허 제3,303,234호9. US Patent No. 3,303,234 10. 미국특허 제3,849,545호10. US Patent No. 3,849,545 11. 미국특허 4,658,074호11.U.S. Patent 4,658,074 12. 미국특허 제3,937,748호12. US Patent No. 3,937,748

1. A.P.V. Soares, L.K. Kimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal. A: Gem., 253권, 191쪽(2003년), 1.A.P.V. Soares, L.K. Kimitrov, M.C.A. Oliveira, L. Hilaire, M.F. Portela, R.K. Grasselli, Appl. Catal. A: Gem., Vol. 253, p. 191 (2003), 2. P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., 13권, 75쪽(1969년)(β-Bi2Mo2O9, γ-Bi2MoO6)2.P. Boutry, R. Montarnal, J. Wrzyszcz, J. Catal., Vol. 13, p. 75 (1969) (β-Bi2Mo2O9, γ-Bi2MoO6) 3. J.C, Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, J. Mol. Catal. A: Chem., 259권, 166쪽(2006년)(α-Bi2Mo3O12, β-Bi2Mo2O9, γ-Bi2MoO6)3. J.C, Jung, H. Kim, A.S. Choi, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, I.K. Song, J. Mol. Catal. A: Chem., Vol. 259, p. 166 (2006) (α-Bi2Mo3O12, β-Bi2Mo2O9, γ-Bi2MoO6) 4. H.H. Kung, B. Kundalkar, M.C. Kung, W.H. Cheng, J. Phys. Chem., 84권, 382쪽(1980년), J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bolhimi, Appl. Catal. A: Gen., 234권, 137쪽(2002년)4. H.H. Kung, B. Kundalkar, M.C. Kung, W.H. Cheng, J. Phys. Chem., 84, 382 (1980), J.A. Toledo-Antonio, N. Nava, M. Martinez, X. Bolhimi, Appl. Catal. A: Gen., vol. 234, p. 137 (2002) 5. H. Lee, J.C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Commun., 9권, 1137쪽(2008년)5. H. Lee, J.C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Commun., Vol. 9, p. 1137 (2008) 6, H. Lee, J.C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Lett., 122권, 281쪽(2008년)6, H. Lee, J. C. Jung, H. Kim, Y.-M. Chung, T.J. Kim, S.J. Lee, S.-H. Oh, Y.S. Kim, I.K. Song, Catal. Lett., Vol. 122, p. 281 (2008)

이에 본 발명자들은 n-부텐 산화적 탈수소화 반응용 촉매 조성물로서 공침 용액을 사용하지 않고, 촉매 조성물인 금속 전구체를 물에 완전히 용해시킨 수용액을 사용함으로써 균일한 조성을 가지는 촉매를 제조할 수 있다는 사실을 알게 되었고, 이렇게 분무 열분해만으로 종래에 비해 경제적이고 편리한 단순하게 페라이트 촉매를 개발하여, 이를 n-부텐의 산화적 탈수소화 반응에 적용시켜 1,3-부타디엔의 생산을 극대화할 수 있음을 확인하였다.Accordingly, the present inventors have found that a catalyst having a uniform composition can be prepared by using an aqueous solution in which a metal precursor, which is a catalyst composition, is completely dissolved in water, without using a coprecipitation solution as a catalyst composition for n -butene oxidative dehydrogenation reaction. It was found that, by spray pyrolysis alone, the ferrite catalyst was simply developed economically and conveniently compared to the conventional method, and applied to the oxidative dehydrogenation of n -butene to maximize the production of 1,3-butadiene.

즉, 상기 종래기술의 문제점을 극복하기 위해, 여러 단계의 촉매 제조 공정을 거치치 않고도 n-부텐의 산화적 탈수소화 반응에서 활성이 높은 페라이트 촉매를 개발하고자 노력한 결과, 활성 금속 전구체를 물에 용해시키고, 공침 단계 없이 분무 열분해 방법을 사용하면 기존의 방법에 비해 간단하게 1,3-부타디엔 제조용 페라이트 촉매를 제조할 수 있음을 발명하였고, 이러한 촉매는 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있음을 알게 되어 본 발명을 완성하게 되었다.That is, in order to overcome the problems of the prior art, an effort was made to develop a ferrite catalyst having high activity in the oxidative dehydrogenation of n -butene without going through several stages of the catalyst preparation process, and the active metal precursor was dissolved in water. When the spray pyrolysis method is used without the coprecipitation step, it is possible to prepare a ferrite catalyst for preparing 1,3-butadiene, which is simpler than the conventional method. It was found that butadiene can be prepared to complete the present invention.

따라서 본 발명은 n-부텐의 산화적 탈수소화 반응에서 1,3-부타디엔의 선택도와 수율이 높은 페라이트 촉매를 제공하는데 목적이 있다.Accordingly, an object of the present invention is to provide a ferrite catalyst having high selectivity and yield of 1,3-butadiene in oxidative dehydrogenation of n -butene.

또한, 본 발명은 분무 열분해 방법을 사용하여 간단한 공정으로 1,3-부타디엔의 선택도와 수율이 높은 페라이트 촉매를 제조할 수 있는 방법을 제공하는데 그 목적이 있다.Another object of the present invention is to provide a method for producing a ferrite catalyst having high selectivity and yield of 1,3-butadiene by a simple process using spray pyrolysis.

또한, 본 발명은 상기 촉매를 이용하여 1,3-부타디엔의 선택도와 수율이 높은 1,3-부타디엔의 제조방법을 제공하는데 그 목적이 있다.
Another object of the present invention is to provide a method for producing 1,3-butadiene having high selectivity and yield of 1,3-butadiene using the catalyst.

상기와 같은 과제 해결을 위해, 본 발명은 마그네슘, 아연 및 망간 중에서 선택된 하나 이상의 2가 금속과 철의 몰비가 1 : 1.8 내지 2.2가 되도록 상기 2가 금속의 전구체 및 철의 전구체를 증류수에 용해시켜 혼합용액을 제조하는 제 1단계; 상기 제1 단계의 혼합용액을 가스 분무방식으로 1 ~ 7기압의 공기를 사용하여 고온의 반응기 내부로 분무하면서 600 ~ 1200 ℃의 온도에서 고온 열분해시켜 촉매 분말을 형성하는 제2 단계;를 포함하는 것을 특징으로 하는 페라이트 금속산화물 촉매의 제조방법을 제공한다.In order to solve the above problems, the present invention is to dissolve the precursor of the divalent metal and the precursor of iron in distilled water so that the molar ratio of at least one divalent metal and iron selected from magnesium, zinc and manganese is 1: 1.8 to 2.2. A first step of preparing a mixed solution; A second step of forming a catalyst powder by thermally pyrolyzing at a temperature of 600 to 1200 ° C. while spraying the mixed solution of the first step into a high temperature reactor using air of 1 to 7 atm by a gas spray method; It provides a method for producing a ferrite metal oxide catalyst, characterized in that.

또한, 본 발명은 마그네슘, 아연 및 망간 중에서 선택된 하나 이상의 2가 금속과 철의 몰비가 1 : 1.8 내지 2.2가 되도록 상기 2가 금속의 전구체 및 철의 전구체의 혼합용액이 분무 열분해된 분말 상으로 구성되고, 표면적이 20~100 ㎡/g이고, 세공부피가 0.18~1㎤/g인 것을 특징으로 하는 페라이트 금속산화물 촉매를 제공한다.In addition, the present invention is composed of a powder of a spray pyrolysis of the mixed solution of the precursor of the divalent metal and the precursor of iron so that the molar ratio of at least one divalent metal and iron selected from magnesium, zinc and manganese is 1: 1.8 to 2.2. It provides a ferrite metal oxide catalyst having a surface area of 20 to 100 m 2 / g, pore volume of 0.18 to 1 cm 3 / g.

또한 본 발명은 상기와 같은 페라이트 금속산화물 촉매 존재하에 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 방법을 제공한다.
The present invention also provides a method for producing 1,3-butadiene by oxidative dehydrogenation of n -butene in the presence of the ferrite metal oxide catalyst as described above.

상기와 같은 본 발명의 페라이트 촉매의 제조방법은 분무 열분해 방법을 사용하여 제조하기 때문에 기존 공침 방법과 비교하여 비교적 간단한 합성경로로 제조가 가능하므로 제조 시간이 단축되며, 공침 용액을 사용하지 않아 경제적이고, 재현성 확보에 유리하다.As described above, the method for preparing the ferrite catalyst according to the present invention can be prepared using a spray pyrolysis method, so that the preparation of the ferrite catalyst can be made by a relatively simple synthetic route compared to the existing coprecipitation method, and thus the manufacturing time is shortened. It is advantageous to secure reproducibility.

또한 상기와 같은 본 발명에 따라 분무 열분해 방법을 사용하여 제조한 페라이트 금속산화물 촉매는 기존의 공침 방법을 사용하여 제조한 페라이트 금속산화물 촉매에 비해 1,3-부타디엔의 선택도가 우수하여 높은 수율의 1,3-부타디엔을 제조할 수 있어, 1,3-부타디엔의 대량 생산에 매우 유용하다.
In addition, the ferrite metal oxide catalyst prepared using the spray pyrolysis method according to the present invention as described above is superior in the selectivity of 1,3-butadiene compared to the ferrite metal oxide catalyst prepared using the conventional coprecipitation method of high yield. 1,3-butadiene can be produced and is very useful for mass production of 1,3-butadiene.

도 1은 본 발명에 따른 실시예 1 ~ 3 및 비교예 1 ~ 2에서 제조한 페라이트 금속산화물 촉매의 제조 공정도이다.
도 2는 본 발명의 실시예 1 ~ 3에서 제조한 페라이트 금속산화물 촉매의 X-선 회절패턴 결과와 주요 성분의 비교 결과이다.
도 3은 본 발명의 비교예 1 ~ 2에서 제조한 페라이트 금속산화물 촉매의 X-선 회절패턴 결과와 주요 성분의 비교 결과이다.
도 4는 본 발명에 따른 실시예 2, 4 ~ 5 에서 제조한 페라이트 금속산화물 촉매의 주사전자현미경 측정 결과이다.
도 5는 본 발명의 비교예 1 ~ 2에서 제조한 페라이트 금속산화물 촉매의 주사전자현미경 측정 결과이다.
1 is a manufacturing process chart of the ferrite metal oxide catalyst prepared in Examples 1 to 3 and Comparative Examples 1 to 2 according to the present invention.
2 is a comparison result of the X-ray diffraction pattern and the main components of the ferrite metal oxide catalyst prepared in Examples 1 to 3 of the present invention.
3 is a comparison result of the X-ray diffraction pattern and the main components of the ferrite metal oxide catalyst prepared in Comparative Examples 1 and 2 of the present invention.
4 is a scanning electron microscope measurement result of the ferrite metal oxide catalyst prepared in Examples 2, 4 to 5 according to the present invention.
5 is a scanning electron microscope measurement result of the ferrite metal oxide catalyst prepared in Comparative Examples 1 and 2 of the present invention.

이하 본 발명을 하나의 구현예로서 더욱 상세하게 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail as one embodiment.

본 발명은 마그네슘, 아연 및 망간 중에서 선택된 하나 이상의 2가 금속과 철의 전구체를 특정 몰비로 증류수에 용해시키고 이를 가스 분무방식으로 고온 열분해시켜 촉매 분말 형태로 페라이트 금속산화물 촉매를 제조하는 것을 특징으로 한다.The present invention is characterized in that a ferrite metal oxide catalyst is prepared in the form of a catalyst powder by dissolving one or more precursors of divalent metal and iron selected from magnesium, zinc and manganese in distilled water at a specific molar ratio and pyrolyzing them by gas spraying. .

본 발명의 촉매 제조공정 중에서 제1 단계에서는 마그네슘, 아연 및 망간 중에서 선택된 하나 이상의 2가 금속과 철의 몰비가 1 : 1.8 내지 2.2가 되도록 상기 2가 금속의 전구체 및 철의 전구체를 증류수에 용해시켜 혼합용액을 제조한다.In the first step of the catalyst manufacturing process of the present invention, the divalent metal precursor and the iron precursor are dissolved in distilled water such that the molar ratio of at least one divalent metal selected from magnesium, zinc and manganese and iron is 1: 1.8 to 2.2. Prepare a mixed solution.

본 발명에서 사용되는 상기 2가 금속의 전구체는 당 업계에서 사용하는 것을 사용할 수 있으며, 특별히 한정하지는 않으나 상기 철 전구체 및 2가 금속 전구체로는 질산염 전구체, 황산염 전구체, 염화물 전구체 및 카보네이트 전구체 중에서 선택된 1종 이상을 사용하는 것이 바람직하다. 더욱 바람직한 구체적인 예를 들면 상기 철 전구체로는 질산 철(Iron(III) nitrate), 상기 아연 전구체는 질산 아연(Zinc(II) nitrate), 마그네슘 전구체는 질산 마그네슘(Magnesium(II) nitrate), 그리고 망간 전구체는 질산 망간(Manganese(II) nitrate)을 사용하는 것이 바람직하다.The precursor of the divalent metal used in the present invention may be used in the art, and is not particularly limited, but the iron precursor and the divalent metal precursor are selected from nitrate precursor, sulfate precursor, chloride precursor and carbonate precursor. It is preferable to use species or more. More preferred specific examples of the iron precursor are iron nitrate (Iron (III) nitrate), the zinc precursor is zinc nitrate (Zinc (II) nitrate), the magnesium precursor is magnesium nitrate (Magnesium (II) nitrate), and manganese It is preferable to use manganese nitrate (Manganese (II) nitrate) as the precursor.

또한, 상기 제 1단계의 혼합용액을 제조할 때에 사용되는 각 전구체의 용해도를 높이기 위하여 용액의 온도를 10 ~ 80 ℃, 바람직하게는 15 ~ 60 ℃, 더욱 바람직하게는 25 ~ 40 ℃를 유지함으로써 전구체가 완전히 용해되도록 하는 것이 좋다.In addition, in order to increase the solubility of each precursor used in preparing the mixed solution of the first step, by maintaining the temperature of the solution 10 ~ 80 ℃, preferably 15 ~ 60 ℃, more preferably 25 ~ 40 ℃ It is desirable to allow the precursor to dissolve completely.

본 발명의 촉매 제조방법에서 제2 단계에서는 상기 제1 단계의 혼합용액을 가스 분무방식으로 1 ~ 7기압의 공기를 사용하여 고온의 반응기 내부로 분무하면서 600 ~ 1200 ℃의 온도에서 고온 열분해 시켜 촉매 분말을 형성한다.In the second step in the catalyst preparation method of the present invention, the mixed solution of the first step is thermally pyrolyzed at a temperature of 600 to 1200 ℃ while spraying into the high temperature reactor using a gas of 1 to 7 atm by air spraying catalyst Form a powder.

상기 제2 단계에서 제1 단계의 혼합용액을 분무 열분해 장치에 투입하여 가스 분무방식으로 촉매 분말을 제조하는 이른바 분무 열분해 방법으로 촉매 분말을 제조하는데, 이때 가스 분무방식에서는 공기의 압력을 1 ~ 7기압, 바람직하게는 1.5 ~ 5기압, 더욱 바람직하게는 2 ~ 4기압을 유지하고, 분무 열분해 장치의 내부 온도는 600 ~ 1200 ℃, 바람직하게는 650 ~ 1000 ℃, 더욱 바람직하게는 700 ~ 900 ℃를 유지함으로써 2가 금속과 철로 이루어지는 활성금속 성분이 균일하게 분산되어 이루어진 페라이트 촉매를 얻을 수 있다. 만일, 분무 열분해 장치의 내부 온도가 너무 낮으면 원하는 촉매 결정을 얻지 못하는 문제가 있을 수 있으며, 너무 높으면 촉매가 녹아 고융체를 형성하거나, 촉매의 결정구조가 변할 수 있으므로, 상기 범위 내의 온도를 유지하는 것이 바람직하다. 이때 압력은 온도와 상관 관계를 고려하여 유지하는 것이 좋은데, 압력이 너무 낮으면 바람직한 물성의 촉매 형성이 어렵고, 너무 높은 경우 공정이 어렵고 경제적으로도 불리하지만 고융체 형성이나 결정구조의 변형으로 인해 오히려 촉매 성능이 저하되는 결과를 초래할 수 있다.In the second step, the mixed solution of the first step is introduced into a spray pyrolysis apparatus to produce a catalyst powder by a spray spray pyrolysis method. The catalyst powder is prepared by a spray spray pyrolysis method. Atmospheric pressure, preferably 1.5 to 5 atm, more preferably 2 to 4 atm, and the internal temperature of the spray pyrolysis apparatus is 600 to 1200 ° C, preferably 650 to 1000 ° C, more preferably 700 to 900 ° C. The ferrite catalyst obtained by uniformly dispersing an active metal component composed of a divalent metal and iron can be obtained. If the internal temperature of the spray pyrolysis apparatus is too low, there may be a problem that the desired catalyst crystals cannot be obtained. If the temperature is too high, the catalyst may melt to form a high melt, or the crystal structure of the catalyst may change, thus maintaining a temperature within the above range. It is desirable to. At this time, it is better to maintain the pressure in consideration of the correlation with temperature. If the pressure is too low, it is difficult to form a catalyst of desirable physical properties, and if it is too high, the process is difficult and economically disadvantageous, but due to high melt formation or deformation of crystal structure. This can result in lower catalyst performance.

이와 같이, 마그네슘, 아연 및 망간 중에서 선택된 하나 이상의 2가 금속과 철의 몰비가 1 : 1.8 내지 2.2가 되도록 상기 2가 금속의 전구체 및 철의 전구체의 혼합용액이 분무 열분해된 분말 상으로 촉매가 제조되면, 그 촉매는 표면적이 20~100 ㎡/g이고, 세공부피가 0.18~1㎤/g의 범위를 가지는 페라이트 금속산화물 촉매로 제조된다. 이때 촉매의 표면적과 세공부피가 너무 적으면 n-부텐과 촉매의 접촉 면적이 적어져 전환율이 낮아지고, 너무 크면 접촉 시간이 많아져 부산물 생성량이 많아지는 문제가 있다.As such, the catalyst is prepared in a powder form in which the mixed solution of the precursor of the divalent metal and the precursor of iron is spray pyrolyzed so that the molar ratio of at least one divalent metal selected from magnesium, zinc and manganese and iron is 1: 1.8 to 2.2. The catalyst is then made of a ferrite metal oxide catalyst having a surface area of 20 to 100 m 2 / g and a pore volume in the range of 0.18 to 1 cm 3 / g. At this time, if the surface area and pore volume of the catalyst is too small, the contact area of n -butene and the catalyst is small, and the conversion rate is low. If the catalyst is too large, the contact time increases and the amount of by-products is increased.

상기와 같은 본 발명에 따른 페라이트 금속산화물 촉매는 n-부텐으로부터 1,3-부타디엔 제조용 촉매로서 n-부텐의 전환율이 75~90%, 좋기로는 84~90% 이고, 1,3-부타디엔의 선택도가 72~90%, 좋기로는 80~90%를 나타낸다.Ferrite metal oxide catalyst according to the present invention as described above is n - 1, 3-butadiene as a catalyst for butene from n - and the conversion of n-butene 75 to 90%, preferably 84 ~ 90%, of 1,3-butadiene Selectivity is 72 to 90%, preferably 80 to 90%.

본 발명의 상기 페라이트의 금속산화물 촉매는 그 분말상의 촉매 자체가 지지체가 없으면서도 높은 내구성과 장수명 및 높은 반응 활성을 갖는 것에 특징이 있다. 그러므로 지지체를 별도로 사용하지 않아도 사용가능하다. 본 발명에 의하면 본 발명의 분말상의 페라이트 금속산화물 촉매는 필요에 따라서는 지지체를 더 포함할 수도 있는데, 지지체를 포함하는 경우 지지체는 특별히 한정하지는 않으나, 알루미나, 실리카 또는 실리카-알루미나 중에서 선택된 1종을 사용하는 것이 바람직하다.The ferrite metal oxide catalyst of the present invention is characterized in that the powdery catalyst itself has high durability, long life and high reaction activity without a support. Therefore, it can be used without using a support separately. According to the present invention, the powdered ferrite metal oxide catalyst of the present invention may further include a support, if necessary. When the support is included, the support is not particularly limited, but one selected from alumina, silica, or silica-alumina may be used. It is preferable to use.

한편, 본 발명에 따라 제조된 상기와 같은 페라이트 금속산화물 촉매는 1,3- 부타디엔의 제조용 촉매로 사용되는데, 본 발명은 상기와 같은 페라이트 금속산화물 촉매 존재하에 n-부텐을 산화적 탈수소화 반응시켜 1,3-부타디엔을 제조하는 방법을 포함한다.Meanwhile, the ferrite metal oxide catalyst prepared according to the present invention is used as a catalyst for the preparation of 1,3-butadiene, and the present invention provides an oxidative dehydrogenation reaction of n -butene in the presence of the ferrite metal oxide catalyst as described above. It includes a method for producing 1,3-butadiene.

본 발명의 촉매를 사용하는 상기 1,3-부타디엔의 제조방법에서 사용되는 n-부텐의 산화적 탈수소화 반응에서 반응을 위한 반응물은 n-부텐 외에 공기 및 스팀(Steam)의 혼합기체를 더 포함하고 있으며, n-부텐은 함량이 50 ~ 75 중량%인 C4 혼합물을 사용하는 것이 좋다. 여기서 C4 혼합물은 0.5 ~ 25 중량%의 n-부탄을 포함하고, n-부텐과 n-부탄을 제외하고 0.5 ~ 10 중량%의 불순물을 포함하는 것이 사용될 수 있다. 반응물의 혼합비율은 n-부텐 : 공기 : 스팀 = 4 ~ 12 부피% : 15 ~ 45 부피% : 45 ~ 80 부피%가 좋으며, 더욱 바람직하게는 5 ~ 9 부피% : 16 ~ 30 부피% : 60 ~ 78 부피%의 부피비로 사용하는 것이 좋다. 상기 공기는 질소 79 부피% 및 산소 21 부피%를 포함하고 있는 일반적인 공기를 말하며, 반응물의 혼합비율이 상기 범위를 벗어나면 반응 활성이 감소하거나 부산물이 증가할 수 있다. 상기 n-부텐과 공기의 주입량은 질량유속조절기(mass flow controller)로 조절할 수 있으며, 스팀의 주입량은 미세유량 펌프로 주입속도를 조절할 수 있다.The reactants for the reaction in the oxidative dehydrogenation of n -butene used in the method for producing 1,3-butadiene using the catalyst of the present invention further include a mixture of air and steam in addition to n -butene. N -butene is preferably used in a C 4 mixture having a content of 50 to 75% by weight. Herein, the C 4 mixture may include 0.5 to 25% by weight of n -butane and include 0.5 to 10% by weight of impurities except n -butene and n -butane. The mixing ratio of the reactants is n -butene: air: steam = 4 to 12% by volume: 15 to 45% by volume: 45 to 80% by volume is more preferable, more preferably 5 to 9% by volume: 16 to 30% by volume: 60 It is recommended to use the volume ratio of ~ 78% by volume. The air refers to general air containing 79% by volume of nitrogen and 21% by volume of oxygen. When the mixing ratio of the reactants is outside the above range, the reaction activity may decrease or the by-products may increase. The injection amount of n -butene and air may be controlled by a mass flow controller, and the injection amount of steam may be controlled by a microflow pump.

상기 반응물의 주입량은 n-부텐을 기준으로 150 ~ 700 h-1의 공간속도(GHSV, Gas Hourly Space Velocity)로, 바람직하게는 175 ~ 600 h-1의 공간속도로 주입하는 것이 좋으며, 더욱 바람직하게는 200 ~ 500 h-1의 공간속도로 주입하는 것이 좋다. 상기 공간속도가 150 h-1 미만이면 단위시간당 생성물의 양이 적어 채산성에 문제가 있을 수 있으며, 700 h- 1를 초과하면 n-부텐이 촉매와 반응할 수 있는 시간이 짧아 미 반응물의 증가로 1,3-부타디엔의 수율이 낮아질 수 있다.The injection amount of the reactant may be injected at a space velocity of 150 to 700 h −1 based on n -butene (GHSV, Gas Hourly Space Velocity), preferably at a space velocity of 175 to 600 h −1 , and more preferably. Preferably it is injected at a space velocity of 200 ~ 500 h -1 . If the space velocity is less than 150 h -1, the amount of the product per unit time may be low, and there may be a problem in profitability. If the space velocity exceeds 700 h - 1 , the time for n -butene to react with the catalyst is short, resulting in an increase in unreacted product. The yield of 1,3-butadiene can be lowered.

그리고 상기 산화적 탈수소화 반응은 300 ~ 500 ℃ 온도 범위 하에서, 바람직하게는 330 ~ 470 ℃, 더욱 바람직하게는 350 ~ 450 ℃ 온도 범위 하에서, 수행하는 것이 좋은데, 반응온도가 350 ℃ 미만의 경우 반응 온도가 너무 낮아 촉매가 활성화 되지 않아 부분산화 반응이 잘 일어나지 않은 문제가 있을 수 있고, 500 ℃를 초과하는 온도에서 반응을 수행하면 C1 ~ C3의 분해생성물이나 완전산화가 일어나는 문제가 있을 수 있으므로 상기 범위의 온도를 유지하는 것이 좋다.And the oxidative dehydrogenation reaction is preferably performed under the temperature range of 300 ~ 500 ℃, preferably 330 ~ 470 ℃, more preferably 350 ~ 450 ℃ temperature range, when the reaction temperature is less than 350 ℃ If the temperature is too low to perform, and the catalyst may be that not active and not become a problem, the partial oxidation reaction well, reaction at temperatures in excess of 500 ℃ C 1 Maintaining the temperature in the above range may be a problem because decomposition products or complete oxidation of C 3 may occur.

본 발명의 분무 열분해 방식으로 제조한 페라이트 금속산화물 촉매는 기존의 1,3-부타디엔 제조용 페라이트 산화물 촉매에 보다 제조방법이 간단하여 재현성 확보에 유리하고, 반응활성 및 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있다.Ferrite metal oxide catalyst prepared by the spray pyrolysis method of the present invention has a simpler manufacturing method than the conventional ferrite oxide catalyst for producing 1,3-butadiene, which is advantageous for securing reproducibility, and has a high yield because of excellent reaction activity and selectivity. , 3-butadiene can be prepared.

상기 분무 열분해 방식으로 제조한 페라이트 금속산화물 촉매는 n-부텐의 산화적 탈수소화 반응물로는 n-부텐 외에 공기 및 스팀(Steam)의 혼합기체를 더 포함하고 있으며, n-부텐은 함량이 50 ~ 75 중량%인 C4 혼합물을 사용한다. C4 혼합물은 0.5 ~ 25 중량%의 n-부탄을 포함하고, n-부텐과 n-부탄을 제외하고 0.5 ~ 10 중량%의 불순물을 포함한다. 반응물의 혼합비율은 n-부텐: 공기: 스팀 = 4 ~ 12 부피%: 15 ~ 45 부피%: 45 ~ 80 부피%가 좋으며, 더욱 바람직하게는 5 ~ 9 부피%: 16 ~ 30 부피%: 60 ~ 78 부피%의 부피비로 사용하는 것이 좋다. 상기 공기는 질소 79 부피% 및 산소 21 부피%를 포함하고 있는 일반적인 공기를 말하며, 반응물의 혼합비율이 상기 범위를 벗어나면 반응 활성이 감소하거나 부산물이 증가할 수 있다. 상기 n-부텐과 공기의 주입량은 질량유속조절기(mass flow controller)로 조절할 수 있으며, 스팀의 주입량은 미세유량 펌프로 주입속도를 조절하였다.The ferrite metal oxide catalyst prepared by the spray pyrolysis method further includes a mixed gas of air and steam in addition to n -butene as an oxidative dehydrogenation reaction of n -butene, and n -butene has a content of 50 to 75 weight percent C 4 mixture is used. The C 4 mixture contains 0.5-25 wt% of n -butane and contains 0.5-10 wt% of impurities except n -butene and n -butane. The mixing ratio of the reactants is n -butene: air: steam = 4 to 12% by volume: 15 to 45% by volume: 45 to 80% by volume is preferred, more preferably 5 to 9% by volume: 16 to 30% by volume: 60 It is recommended to use the volume ratio of ~ 78% by volume. The air refers to general air containing 79% by volume of nitrogen and 21% by volume of oxygen. When the mixing ratio of the reactants is outside the above range, the reaction activity may decrease or the by-products may increase. The injection amount of n -butene and air can be controlled by a mass flow controller, and the injection amount of steam is controlled by a microflow pump.

상기 반응물의 주입량은 n-부텐을 기준으로 150 ~ 700 h-1의 공간속도(GHSV, Gas Hourly Space Velocity)로, 바람직하게는 175 ~ 600 h-1의 공간속도로 주입하는 것이 좋으며, 더욱 바람직하게는 200 ~ 500 h-1의 공간속도로 주입하는 것이 좋다. 공간속도가 150 h-1 미만이면 단위시간당 생성물의 양이 적어 채산성에 문제가 있을 수 있으며, 700 h-1를 초과하면 n-부텐이 촉매와 반응할 수 있는 시간이 짧아 미 반응물의 증가로 1,3-부타디엔의 수율이 낮아질 수 있다.The injection amount of the reactant may be injected at a space velocity of 150 to 700 h −1 based on n -butene (GHSV, Gas Hourly Space Velocity), preferably at a space velocity of 175 to 600 h −1 , and more preferably. Preferably it is injected at a space velocity of 200 ~ 500 h -1 . If the space velocity is less than 150 h -1 , there may be a problem in profitability due to the small amount of product per unit time, and if it exceeds 700 h -1 , the time for n -butene to react with the catalyst is short, resulting in an increase in unreacted substances. The yield of, 3-butadiene may be lowered.

그리고 상기 산화적 탈수소화 반응은 300 ~ 500 ℃ 온도 범위 하에서, 바람직하게는 330 ~ 470 ℃, 더욱 바람직하게는 350 ~ 450 ℃ 온도 범위 하에서, 수행하는 것이 좋은데, 반응온도가 350 ℃ 미만의 경우 반응 온도가 너무 낮아 촉매가 활성화 되지 않아 부분산화 반응이 잘 일어나지 않은 문제가 있을 수 있고, 500 ℃를 초과하는 온도에서 반응을 수행하면 C1 ~ C3의 분해생성물이나 완전산화가 일어나는 문제가 있을 수 있으므로 상기 범위의 온도를 유지하는 것이 좋다.And the oxidative dehydrogenation reaction is preferably performed under the temperature range of 300 ~ 500 ℃, preferably 330 ~ 470 ℃, more preferably 350 ~ 450 ℃ temperature range, when the reaction temperature is less than 350 ℃ If the temperature is too low, there may be a problem that the partial oxidation reaction does not occur well because the catalyst is not activated, and when the reaction is performed at a temperature exceeding 500 ° C., decomposition products or complete oxidation of C 1 to C 3 may occur. Therefore, it is preferable to maintain the temperature in the above range.

본 발명의 분무 열분해 방식으로 제조한 페라이트 금속산화물 촉매는 기존의 1,3-부타디엔 제조용 페라이트 산화물 촉매에 보다 제조방법이 간단하여 재현성 확보에 유리하고, 반응활성 및 선택도가 우수하여 높은 수율로 1,3-부타디엔을 제조할 수 있다.Ferrite metal oxide catalyst prepared by the spray pyrolysis method of the present invention has a simpler manufacturing method than the conventional ferrite oxide catalyst for producing 1,3-butadiene, which is advantageous for securing reproducibility, and has a high yield because of excellent reaction activity and selectivity. , 3-butadiene can be prepared.

이하, 본 발명을 실시예에 의거 상세히 설명하겠는 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples.

실시예 1 : 아연-철 페라이트 금속산화물 촉매 제조Example 1 Preparation of Zinc-Iron Ferrite Metal Oxide Catalysts

도 1에 나타낸 공정도에 의거하여 분무 열분해법을 이용하여 아연-철 페라이트 금속산화물 촉매를 제조하였다. A zinc-iron ferrite metal oxide catalyst was prepared by spray pyrolysis based on the process diagram shown in FIG. 1.

질산 철(Fe(NO3)3·9H2O, SAMCHUN, 98%) 1017.1 g 그리고 질산 아연(Zn(NO3)2·6H2O, SAMCHUN, 98%) 384.2 g을 증류수 1,500 g에 넣어 상온에서 2시간 동안 잘 녹도록 충분히 교반시켜 아연/철이 1.0/2.0 몰비로 함유된 용액을 제조하였다. 이 후 제조된 혼합 용액을 시간당 0.75 L씩 공기를 운송가스로 하여 분무 열분해 장치의 반응기 내부로 분무하여 열분해시켰다. 이때 분무 열분해 조건은 공기 압력은 3 기압, 반응기 내부 온도는 750 ℃로 운전하여 아연-철 페라이트 금속산화물 촉매를 제조하였다.
1017.1 g of iron nitrate (Fe (NO 3 ) 3 · 9H 2 O, SAMCHUN, 98%) and 384.2 g of zinc nitrate (Zn (NO 3 ) 2 · 6H 2 O, SAMCHUN, 98%) were added to 1,500 g of distilled water. The solution was sufficiently stirred at 2 hours for 2 hours to prepare a solution containing zinc / iron at 1.0 / 2.0 molar ratio. Thereafter, the prepared mixed solution was pyrolyzed by spraying air into the reactor of the spray pyrolysis apparatus with air as a transport gas at 0.75 L per hour. At this time, the spray pyrolysis conditions were the zinc-iron ferrite metal oxide catalyst was prepared by operating the air pressure of 3 atm, reactor temperature of 750 ℃.

실시예 2 ~ 3 : 마그네슘-철, 망간-철 페라이트 금속산화물 촉매 제조Examples 2 to 3: Preparation of magnesium-iron, manganese-iron ferrite metal oxide catalyst

상기 실시예 1과 동일하게 실시하되, 2가 금속을 아연과 망간으로 변경하여 페라이트 금속산화물 촉매를 제조하였다. 혼합용액의 제조는 실시예 2의 경우 질산 철(Fe(NO3)3·9H2O, SAMCHUN, 98%) 1017.1 g 그리고 질산 마그네슘(Mg(NO3)2·6H2O, 98%, SAMCHUN) 324.4g을 증류수 1,500 g에 넣어 상온에서 2시간 동안 잘 녹도록 충분히 교반시켜 마그네슘/철이 1.0/2.0 몰비로 함유된 용액을 제조하였고, 실시예 3의 경우 질산 철(Fe(NO3)3·9H2O, SAMCHUN, 98%) 1017.1 g, 그리고 질산 망간(Mn(NO3)2·4H2O, 98%, SAMCHUN) 366.9g을 증류수 1,500 g에 넣어 상온에서 2시간 동안 잘 녹도록 충분히 교반시켜 망간/철이 1.0/2.0 몰비로 함유된 용액을 제조한 뒤, 실시예 1과 같은 방법으로 페라이트 금속산화물 촉매를 제조하였다. 이하 제조한 촉매의 특징을 다음 표 1에 나타내었다.
The ferrite metal oxide catalyst was prepared in the same manner as in Example 1 except that the divalent metal was changed to zinc and manganese. Preparation of the mixed solution was performed in Example 2, iron nitrate (Fe (NO 3 ) 3 · 9H 2 O, SAMCHUN, 98%) 1017.1 g and magnesium nitrate (Mg (NO 3 ) 2 · 6H 2 O, 98%, SAMCHUN ) 324.4 g was added to 1,500 g of distilled water, and the mixture was sufficiently stirred at room temperature for 2 hours to prepare a solution containing magnesium / iron in a molar ratio of 1.0 / 2.0. In Example 3, iron nitrate (Fe (NO 3 ) 3 · 1017.1 g of 9H 2 O, SAMCHUN, 98%) and 366.9 g of manganese nitrate (Mn (NO 3 ) 2 · 4H 2 O, 98%, SAMCHUN) were added to 1,500 g of distilled water and stirred well at room temperature for 2 hours. After preparing a solution containing manganese / iron in a molar ratio of 1.0 / 2.0, a ferrite metal oxide catalyst was prepared in the same manner as in Example 1. The characteristics of the prepared catalyst are shown in Table 1 below.

비교예 1 ~ 2 : 공침법을 이용한 아연-철, 마그네슘-철 페라이트 금속산화물 촉매 제조Comparative Examples 1 and 2: Preparation of zinc-iron and magnesium-iron ferrite metal oxide catalysts using coprecipitation method

도 1에 나타낸 공정도에 의거하여 공침법을 이용한 아연-철 페라이트 금속산화물 촉매를 제조하였다. A zinc-iron ferrite metal oxide catalyst was prepared using a coprecipitation method based on the process diagram shown in FIG. 1.

질산 철(Fe(NO3)3·9H2O, SAMCHUN, 98%) 205.98 g 그리고 질산 아연(Zn(NO3)2·6H2O, SAMCHUN, 98%) 75.98 g을 증류수 500 ml에 넣어 상온에서 잘 녹도록 충분히 교반시켜 아연/철이 1.0/2.0 몰비로 함유된 용액을 제조하였다. 이 후 상온에서 4N 수산화나트륨 수용액을 pH 9.0이 될 때가지 아연-철 혼합 수용액에 첨가하면서 교반하여 Zn(OH)2-Fe(OH)3의 공침용액을 제조하였다. 공침용액은 상온에서 3시간, 60 ℃에서 6시간, 90 ℃에서 12시간동안 수열반응시켰다. 공침된 금속산화물을 부흐너 깔때기와 감압여과기를 사용하여 여과 및 증류수로 충분히 세척한 후 120 ℃에서 24시간동안 건조하고, 소성로에서 650 ℃에서 4시간 동안 열처리하여 아연-철 페라이트 금속산화물 촉매를 제조하였다.205.98 g of iron nitrate (Fe (NO 3 ) 3 · 9H 2 O, SAMCHUN, 98%) and 75.98 g of zinc nitrate (Zn (NO 3 ) 2 · 6H 2 O, SAMCHUN, 98%) were added to 500 ml of distilled water. The solution was sufficiently stirred to melt well at to prepare a solution containing zinc / iron at 1.0 / 2.0 molar ratio. Thereafter, 4N sodium hydroxide aqueous solution was added to the zinc-iron mixed aqueous solution until the pH was 9.0, and stirred to prepare a coprecipitation solution of Zn (OH) 2 -Fe (OH) 3 . The coprecipitation solution was hydrothermally reacted at room temperature for 3 hours, at 60 ° C. for 6 hours, and at 90 ° C. for 12 hours. The co-precipitated metal oxide was sufficiently filtered with Buchner funnel and vacuum filter, dried with distilled water for 24 hours at 120 ° C., and heat-treated at 650 ° C. for 4 hours to prepare a zinc-iron ferrite metal oxide catalyst. It was.

마그네슘-철 금속산화물 촉매도 비교예 1과 동일한 방법으로 제조하되, 공침용액은 질산 철(Fe(NO3)3·9H2O, SAMCHUN, 98%) 205.98 g 그리고 질산 마그네슘(Mg(NO3)2·6H2O, SAMCHUN, 98%) 91.1 g을 증류수 500 ml에 넣어 상온에서 잘 녹도록 충분히 교반시켜 마그네슘/철이 1.0/2.0 몰비로 함유된 용액을 제조하였다. 이하 촉매의 특성은 다음 표 1에 나타내었다.
A magnesium-iron metal oxide catalyst was also prepared in the same manner as in Comparative Example 1, except that the coprecipitation solution was 205.98 g of iron nitrate (Fe (NO 3 ) 3 · 9H 2 O, SAMCHUN, 98%) and magnesium nitrate (Mg (NO 3 )). 2 · 6H 2 O, SAMCHUN, 98%) 91.1 g was added to 500 ml of distilled water, and the mixture was sufficiently stirred at room temperature to prepare a solution containing magnesium / iron in a molar ratio of 1.0 / 2.0. The characteristics of the catalyst are shown in Table 1 below.

구분division 몰비Mole ratio 비고Remarks ZnZn MgMg MnMn FeFe 실시예 1Example 1 1.01.0 -- -- 2.02.0 분무 열분해Spray pyrolysis 실시예 2Example 2 -- 1.01.0 -- 2.02.0 분무 열분해Spray pyrolysis 실시예 3Example 3 -- -- 1.01.0 2.02.0 분무 열분해Spray pyrolysis 비교예 1Comparative Example 1 1.01.0 -- -- 2.02.0 공침Copyspace 비교예 2Comparative Example 2 -- 1.01.0 -- 2.02.0 공침Copyspace

실시예 4 ~ 5 : 물 농도가 다른 마그네슘-철 페라이트 금속산화물 촉매 제조 Examples 4-5: Preparation of magnesium-iron ferrite metal oxide catalysts having different water concentrations

상기 실시예 2와 동일하게 실시하되, 물 농도를 조절하여 전구체의 농도가 다른 마그네슘-철 페라이트 금속산화물 촉매를 제조하였다. 조성비는 다음 표 2와 같다.In the same manner as in Example 2, but by adjusting the water concentration to prepare a magnesium-iron ferrite metal oxide catalyst having a different concentration of the precursor. The composition ratio is shown in Table 2 below.

구분division 전구체 농도(중량%)Precursor concentration (% by weight) 철전구체 양(g)Iron precursor amount (g) 마그네슘 양(g)Magnesium Amount (g) 물 양(g)Water quantity (g) 실시예 4Example 4 31.031.0 1017.11017.1 324.1324.1 3,0003,000 실시예 2Example 2 47.247.2 1017.11017.1 324.1324.1 1,5001,500 실시예 5Example 5 64.164.1 1017.11017.1 324.1324.1 750750

실시예 6 ~ 8 : 용액 투입속도가 다른 마그네슘-철 페라이트 금속산화물 촉매 제조Examples 6 to 8: Preparation of magnesium-iron ferrite metal oxide catalysts having different solution input rates

상기 실시예 2와 동일하게 실시하되, 촉매 혼합용액의 투입속도를 조절하여 마그네슘-철 페라이트 금속산화물 촉매를 제조하였다. 조성비와 촉매 혼합용액 투입속도는 다음 표 3과 같다.In the same manner as in Example 2, a magnesium-iron ferrite metal oxide catalyst was prepared by adjusting the feed rate of the catalyst mixture solution. Composition ratios and catalyst mixed solution input rates are shown in Table 3 below.

구분division 촉매 혼합용액 투입량(L/h)Catalyst Mixed Solution Input (L / h) 철전구체 양(g)Iron precursor amount (g) 마그네슘 양(g)Magnesium Amount (g) 물 양(g)Water quantity (g) 실시예 2Example 2 0.750.75 1017.11017.1 324.1324.1 1,5001,500 실시예 6Example 6 0.500.50 1017.11017.1 324.1324.1 1,5001,500 실시예 7Example 7 1.001.00 1017.11017.1 324.1324.1 1,5001,500

시험예 1 : 제조된 페라이트 금속산화물 촉매의 X-선 회절분석(XRD) 시험Test Example 1: X-ray diffraction analysis (XRD) test of the prepared ferrite metal oxide catalyst

제조된 촉매의 결정구조를 확인하기 위해 40 kV와 40 mA 조건에서 Ni-filter를 사용하는 X-선 회절 분석기(Siemens D-5005, Cukα = 1.5418 Å)로 분석하였으며, 분석결과는 도 2, 도 3과 같다. 도 2와 3에 나타낸 것처럼 제조방법에 관계없이 전이금속의 종류에 따라 페라이트 금속산화물 촉매의 결정구조는 조금씩 차이가 있었다. 실시예 1, 2, 비교예 1, 2의 아연-철, 마그네슘-철 페라이트 촉매에서는 대부분 스피넬구조였으며[MgFe2O4, JCPDS Card #73-1270, ZnFe2O4, JCPDS Card #65-3111], α-Fe2O3의 결정구조[JCPDS Card #33-0664]가 혼재되어 존재하였다. 실시예 3의 망간-철 페라이트 촉매는 FeMnO3 결정구조가 대부분이었고, 스피넬 구조와 α-Fe2O3의 결정구조가 일부 혼재되어 존재하였다.
In order to confirm the crystal structure of the prepared catalyst was analyzed by an X-ray diffractometer (Siemens D-5005, Cukα = 1.5418 Å) using Ni-filter at 40 kV and 40 mA conditions, the analysis results are shown in Figure 2, Same as 3. 2 and 3, the crystal structure of the ferrite metal oxide catalyst was slightly different depending on the type of transition metal regardless of the preparation method. The zinc-iron and magnesium-iron ferrite catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 were mostly spinel structures [MgFe 2 O 4 , JCPDS Card # 73-1270, ZnFe 2 O 4 , JCPDS Card # 65-3111 ], α -Fe 2 O 3 crystal structure [JCPDS Card # 33-0664] was present in the mixture it is. In the manganese-iron ferrite catalyst of Example 3, the FeMnO 3 crystal structure was mostly, and the spinel structure and the α- Fe 2 O 3 crystal structure were partially mixed.

시험예 2 : 제조된 페라이트 금속산화물 촉매의 특성분석(표면적)Test Example 2: Characterization of the Ferrite Metal Oxide Catalyst (Surface Area)

상기 실시예와 비교예에서 제조한 촉매의 표면적 및 세공부피는 부피식 질소흡착장치(Mirae SI, NanoPorisity-XQ)를 이용하여 측정한 뒤 BET 식을 이용하여 표면적과 세공 부피 등을 계산하여 다음 표 4에 나타내었다. The surface area and pore volume of the catalyst prepared in Examples and Comparative Examples were measured using a volumetric nitrogen adsorption apparatus (Mirae SI, NanoPorisity-XQ), and then the surface area and pore volume were calculated using the BET equation. 4 is shown.

구분division 표면적 (m2/g)Surface area (m 2 / g) 세공부피 (cm3/g)Pore volume (cm 3 / g) 실시예 1Example 1 3030 0.210.21 실시예 2Example 2 5454 0.510.51 실시예 3Example 3 5959 0.470.47 비교예 1Comparative Example 1 1111 0.090.09 비교예 2Comparative Example 2 2929 0.200.20

시험예 3 : 제조된 페라이트 금속산화물 촉매의 특성분석(형상)Test Example 3 Characterization of the Ferrite Metal Oxide Catalyst (Shape)

상기 실시예 및 비교예에서 제조한 촉매의 입자 크기 및 형상을 주사전자현미경(SEM, JEOL, JSM-7500F)을 이용하여 측정한 뒤 도 4, 5에 나타내었다. 분무 열분해 방법으로 제조한 실시예 1 ~ 3의 촉매들은 입자모양은 구형이였으며, 크기는 10 ~ 50 ㎛로 균일하였다.
Particle sizes and shapes of the catalysts prepared in Examples and Comparative Examples were measured using a scanning electron microscope (SEM, JEOL, JSM-7500F) and are shown in FIGS. 4 and 5. The catalysts of Examples 1 to 3 prepared by spray pyrolysis were spherical in shape and uniform in size to 10 to 50 μm.

실험예 1 : n-부텐 산화적 탈수소화 반응실험Experimental Example 1: n -butene oxidative dehydrogenation reaction experiment

상기 실시예 및 비교에에서 제조한 촉매를 Quartz 반응기에 공간속도(GHSV) 400 h-1이 되도록 충전하고, 공기를 흘려주면서 400 ℃에서 활성화시켰다. 400 ℃에서 질량유속조절기를 사용하여 n-부텐 : 공기 : 스팀의 혼합비가 10 부피% : 40 부피% : 50 부피%인 혼합기체를 사용하여, 산화적 탈수소화 반응을 수행하여 1,3-부타디엔을 제조하였다. 상기 반응물 중 스팀은 초기 미세 정량펌프를 사용하여 물로 공급되나 예열구간을 설정하여 상기 고정층 반응기에 주입되기 전에 스팀으로 기화시켜 다른 반응물과 함께 반응기에 주입되도록 반응 장치를 설계하였다.The catalyst prepared in Example and Comparative Example was charged to a quartz reactor at a space velocity (GHSV) of 400 h −1 , and activated at 400 ° C. while flowing air. 1,3-butadiene was subjected to oxidative dehydrogenation using a mixed gas having a mixing ratio of n -butene: air: steam at 400 ° C. at 10 vol%: 40 vol%: 50 vol% by using a mass flow controller. Was prepared. The reactor was designed to supply steam to the reactant using an initial micro metering pump, but to set a preheating section to vaporize the steam before being injected into the fixed bed reactor and to be injected into the reactor together with other reactants.

상기 촉매 활성 측정은 반응물이 촉매 층을 통과한지 10분 후부터 열전도도 검출기와 불꽃이온 검출기가 장착된 기체 크로마토그래프에 상기 산화적 탈수소화 반응에 의한 생성물을 각각 보내어 분석하였다. n-부텐의 전환율, 1,3-부타디엔 선택도, 1,3-부타디엔 수율은 다음 표 6에 나타내었다. n-부텐 전환율과 1,3-부타디엔 선택도 및 1,3-부타디엔 수율은 각각 하기의 수학식 1 ~ 3을 이용하여 계산하였다.
The catalytic activity was analyzed by sending the product of the oxidative dehydrogenation reaction to a gas chromatograph equipped with a thermal conductivity detector and a flame ion detector from 10 minutes after the reactant passed through the catalyst bed. The conversion of n -butene, 1,3-butadiene selectivity, and 1,3-butadiene yield are shown in Table 6 below. n -butene conversion, 1,3-butadiene selectivity, and 1,3-butadiene yield were calculated using Equations 1 to 3, respectively.

[수학식 1] : n-부텐 전환율Equation 1: n -butene conversion

Figure 112013042653525-pat00001
Figure 112013042653525-pat00001

[수학식 2] : 1,3-부타디엔 선택도Equation 2: 1,3-butadiene selectivity

Figure 112013042653525-pat00002
Figure 112013042653525-pat00002

[수학식 3] : 1,3-부타디엔 수율Equation 3: 1,3-butadiene yield

Figure 112013042653525-pat00003
Figure 112013042653525-pat00003

반응물로 사용한 C4 혼합물의 조성은 다음 표 5와 같다.The composition of the C 4 mixture used as a reactant is shown in Table 5 below.

조성Furtherance 중량 %weight % C1 ~ C3 C 1 C 3 0.40.4 iso-부탄 iso -butane 1.21.2 n-부탄 n -butane 23.323.3 1-부텐1-butene 40.940.9 trans-2-부텐 trans -2-butene 23.323.3 cis-2-부텐 cis -2-butene 10.910.9 합계Sum 100100

상기 실시예 1 ~ 2와 비교예 1 ~ 2의 페라이트 금속산화물 촉매의 n-부텐 산화적 탈수소화 반응 결과는 다음 표 6과 같다.The n -butene oxidative dehydrogenation reaction results of the ferrite metal oxide catalysts of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 6 below.

구분division 전환율
(%)
Conversion Rate
(%)
1,3-부타디엔 선택도
(%)
1,3-butadiene selectivity
(%)
1,3-부타디엔 수율
(%)
1,3-butadiene yield
(%)
실시예 1Example 1 85.585.5 75.475.4 64.564.5 실시예 2Example 2 84.784.7 77.977.9 65.965.9 비교예 1Comparative Example 1 70.370.3 77.777.7 54.854.8 비교예 2Comparative Example 2 78.078.0 70.370.3 55.555.5 [n-부텐 산화적 탈수소화 반응조건]
반응온도: 400 ℃
반응시간: 7 h
공간속도: 400 h-1
반응물 함량(부피%): n-부텐/공기/스팀 - 10/40/50
[ n -butene oxidative dehydrogenation reaction condition]
Reaction temperature: 400 ℃
Response time: 7 h
Space Speed: 400 h -1
Reactant content (% by volume): n -butene / air / steam-10/40/50

반응시간 7시간 경과 후 산화적 탈수소화 생성물은 1,3-부타디엔 외에도 완전 산화에 의해 생성된 이산화탄소와 분해 반응에 의한 C1 ~ C3의 부산물 등이 포함되어 있다. 상기 표 6에 나타낸 것처럼 본 발명의 분무 열분해 방법에 의해 제조한 실시예의 페라이트 금속산화물 촉매는 기존 공침법으로 제조한 촉매(비교예)에 비해 1,3-부타디엔의 선택도는 조금 낮지만 1,3-부타디엔 수율은 64.5%, 65.9%로 약 10%정도 높았다.
After 7 hours of reaction time, the oxidative dehydrogenation product contains not only 1,3-butadiene but also carbon dioxide produced by complete oxidation and by-products of C 1 to C 3 by decomposition reaction. As shown in Table 6, the ferrite metal oxide catalyst of the example prepared by the spray pyrolysis method of the present invention has a slightly lower selectivity of 1,3-butadiene than the catalyst prepared by the conventional co-precipitation method (comparative example). The yield of 3-butadiene was 64.5% and 65.9%, which was about 10% higher.

실험예 2 : n-부텐 산화적 탈수소화 반응(반응 조건 변화)Experimental Example 2 n -butene oxidative dehydrogenation reaction (reaction condition change)

상기 실시예 2에서 제조한 마그네슘-철 페라이트 금속산화물 촉매를 사용하고, 상기 실험예 1의 실험방법에 의해 실시하되, 최적 반응조건을 선정하기 위해 공간속도를 250 h-1, 반응온도를 370 ℃, 반응물의 조성을 n-부텐 : 공기 : 스팀의 혼합비가 8.6 부피% : 30.4 부피% : 61 부피%로 변경하여 실시한 반응결과를 다음표 7에 나타내었다.
Using the magnesium-iron ferrite metal oxide catalyst prepared in Example 2, and carried out by the experimental method of Experimental Example 1, in order to select the optimum reaction conditions, the space velocity is 250 h -1 , the reaction temperature is 370 ℃ , The composition of the reaction was changed to n -butene: air: steam mixing ratio of 8.6% by volume: 30.4% by volume: 61% by volume is shown in Table 7 below.

구분division 전환율(%)Conversion Rate (%) 1,3-부타디엔 선택도(%)Selectivity of 1,3-butadiene (%) 1,3-부타디엔 수율(%)1,3-butadiene yield (%) 실험예 2
(실시예 2)
Experimental Example 2
(Example 2)
86.086.0 81.681.6 70.270.2
실험예 1
(실시예 2)
Experimental Example 1
(Example 2)
84.784.7 77.877.8 65.965.9

실험예 3 : 실시예 4 ~ 5의 마그네슘-철 페라이트 금속산화물 촉매의 n-부텐 산화적 탈수소화 반응 결과Experimental Example 3 Results of n -butene Oxidative Dehydrogenation of Magnesium-Fe Ferrite Metal Oxide Catalysts of Examples 4 to 5

상기 실시예 4 ~ 5에서 제조한 마그네슘-철 페라이트 금속산화물 촉매를 사용하고, 상기 실험예 2의 실험방법에 의해 실시한 반응결과를 다음 표 8에 나타내었다.
Using the magnesium-iron ferrite metal oxide catalyst prepared in Examples 4 to 5, and the reaction results by the experimental method of Experimental Example 2 are shown in Table 8.

구분division 전구체 농도
(중량%)
Precursor concentration
(weight%)
전환율
(%)
Conversion Rate
(%)
1,3-부타디엔
선택도
(%)
1,3-butadiene
Selectivity
(%)
1,3-부타디엔
수율
(%)
1,3-butadiene
yield
(%)
실시예 4Example 4 31.031.0 85.385.3 85.785.7 73.173.1 실시예 2Example 2 47.247.2 86.086.0 81.681.6 70.270.2 실시예 5Example 5 64.164.1 88.988.9 82.282.2 73.173.1 [n-부텐 산화적 탈수소화 반응조건]
반응온도: 370 ℃
반응시간: 7 h
공간속도: 250 h-1
반응물 함량(부피%): n-부텐/공기/스팀 - 8.6/30.4/61.0
[ n -butene oxidative dehydrogenation reaction condition]
Reaction temperature: 370 ℃
Response time: 7 h
Space Speed: 250 h -1
Reactant content (% by volume): n -butene / air / steam-8.6 / 30.4 / 61.0

실험예 4 : 실시예 6 ~ 7의 마그네슘-철 페라이트 금속산화물 촉매의 n-부텐 산화적 탈수소화 반응 결과Experimental Example 4 Results of n -butene Oxidative Dehydrogenation of Magnesium-Fe Ferrite Metal Oxide Catalysts of Examples 6 to 7

상기 실시예 6 ~ 7에서 제조한 마그네슘-철 페라이트 금속산화물 촉매를 사용하고, 상기 실험예 2의 실험방법에 의해 실시한 반응결과를 다음 표 9에 나타내었다.
Using the magnesium-iron ferrite metal oxide catalyst prepared in Examples 6 to 7, the reaction results of the experimental method of Experimental Example 2 are shown in Table 9 below.

구분division 용액 투입속도
(L/h)
Solution input speed
(L / h)
전환율
(%)
Conversion Rate
(%)
1,3-부타디엔
선택도(%)
1,3-butadiene
Selectivity (%)
1,3-부타디엔
수율(%)
1,3-butadiene
yield(%)
실시예 6Example 6 0.500.50 88.488.4 82.182.1 72.672.6 실시예 2Example 2 0.750.75 86.086.0 81.681.6 70.270.2 실시예 7Example 7 1.01.0 87.287.2 81.681.6 71.271.2 [n-부텐 산화적 탈수소화 반응조건]
반응온도: 370 ℃
반응시간: 7 h
공간속도: 250 h-1
반응물 함량(부피%): n-부텐/공기/스팀 - 8.6/30.4/61.0
[ n -butene oxidative dehydrogenation reaction condition]
Reaction temperature: 370 ℃
Response time: 7 h
Space Speed: 250 h -1
Reactant content (% by volume): n -butene / air / steam-8.6 / 30.4 / 61.0

상기 실시예, 비교예, 시험예 및 실험예를 통하여, 본 발명의 분무 열분해 방법을 통해 제조한 페라이트 금속산화물 촉매는 기존 공침법으로 제조한 촉매에 비해 높은 1,3-부타디엔 선택도와 수율을 갖는 우수한 촉매임을 확인하였다. Through the above Examples, Comparative Examples, Test Examples and Experimental Examples, the ferrite metal oxide catalyst prepared by the spray pyrolysis method of the present invention has a higher 1,3-butadiene selectivity and yield than the catalyst prepared by the conventional coprecipitation method. It was confirmed to be an excellent catalyst.

또한, 본 발명의 분무 열분해 방법을 통해 제조한 금속산화물 촉매는 기존 공침방법에 비해 제조방법이 간단하고, 추가 처리 공정이 없어 경제적이며, 촉매 재현성 확보가 용이하여 안정적으로 1,3-부타디엔을 생산할 수 있는 단독 공정을 확보할 수 있을 것으로 기대된다.
In addition, the metal oxide catalyst prepared by the spray pyrolysis method of the present invention has a simpler manufacturing method than the existing coprecipitation method, is economical because there is no additional treatment process, and it is easy to secure catalyst reproducibility, thereby stably producing 1,3-butadiene. It is expected that a single process can be secured.

본 발명에 따라 제조된 페라이트 금속 산화물 촉매는 1,3-부타디엔 제조에 사용된다.Ferrite metal oxide catalysts prepared according to the invention are used for the preparation of 1,3-butadiene.

Claims (8)

마그네슘과 철의 몰비가 1 ; 1.8 내지 2.2가 되도록 상기 마그네슘의 질산염 전구체 및 상기 철의 질산염 전구체를 증류수에 용해시켜 혼합용액을 제조하는 제 1단계와;
상기 제 1단계의 혼합용액을 가스 분무방식으로 2 ~ 4 기압의 공기를 사용하여 고온의 반응기 내부로 분무하면서 650~750℃의 온도에서 고온 열분해시켜 촉매 분말을 형성하는 제 2단계
를 포함하는 것을 특징으로 하는 페라이트 금속산화물 촉매의 제조방법.
The molar ratio of magnesium and iron is 1; A first step of dissolving the nitrate precursor of magnesium and the nitrate precursor of iron in distilled water so as to be 1.8 to 2.2;
A second step of forming a catalyst powder by thermally decomposing the mixed solution of the first step at a temperature of 650 to 750 ° C. while spraying the mixed solution of the first step into a high temperature reactor using air of 2 to 4 atm by a gas spray method
Method for producing a ferrite metal oxide catalyst comprising a.
삭제delete 청구항 1에 있어서, 상기 제1 단계에서 혼합용액을 제조할 때 용액의 온도를 15 ~ 60 ℃로 유지하는 것을 특징으로 하는 페라이트 금속산화물 촉매의 제조방법.
The method of claim 1, wherein the temperature of the solution is maintained at 15 to 60 ° C. when the mixed solution is prepared in the first step.
상기 청구항 1에 따라 제조되고, 마그네슘과 철의 몰비가 1 : 1.8 내지 2.2가 되도록 상기 마그네슘의 질산염 전구체 및 상기 철의 질산염 전구체의 혼합용액이 분무 열분해된 분말 상으로 구성되고, 표면적이 30~100 ㎡/g이고, 세공부피가 0.21~1㎤/g인 것을 특징으로 하는 페라이트 금속산화물 촉매.
Prepared according to claim 1, the mixed solution of the nitrate precursor of magnesium and the nitrate precursor of iron is composed of a spray pyrolysis powder phase so that the molar ratio of magnesium and iron is 1: 1.8 to 2.2, the surface area is 30 ~ 100 A ferrite metal oxide catalyst, characterized in that m 2 / g and pore volume is 0.21 to 1 cm 3 / g.
청구항 4에 따른 페라이트 금속산화물 촉매 존재하에 n-부텐을 산화적 탈수소화 반응시켜 제조하는 1,3-부타디엔의 제조방법.
A method for producing 1,3-butadiene prepared by oxidative dehydrogenation of n -butene in the presence of a ferrite metal oxide catalyst according to claim 4.
청구항 5에 있어서, 산화적 탈수소화 반응의 반응물은 n-부텐과 공기 및 스팀(Steam)을 포함하고 있으며, 반응물의 혼합비율은 n-부텐 : 공기 : 스팀 = 4 ~ 12 부피% : 15 ~ 45 부피% : 45 ~ 80 부피%인 것을 특징으로 하는 1,3-부타디엔의 제조방법.
The method of claim 5, wherein the reactant of the oxidative dehydrogenation reaction includes n -butene, air and steam, and the mixing ratio of the reactants is n -butene: air: steam = 4 to 12% by volume: 15 to 45 Volume%: 1,3-butadiene production method characterized in that 45 to 80% by volume.
청구항 6에 있어서, 산화적 탈수소화 반응에서 반응물은 n-부텐을 기준으로 150 ~ 700 h-1의 공간속도로 주입하는 것을 특징으로 하는 1,3-부타디엔의 제조방법.
The method for preparing 1,3-butadiene according to claim 6, wherein the reactant is injected at a space velocity of 150 to 700 h −1 based on n -butene in the oxidative dehydrogenation reaction.
청구항 6에 있어서, 산화적 탈수소화 반응은 300 ~ 500 ℃ 온도 범위에서 수행하는 것을 특징으로 하는 1,3-부타디엔의 제조방법.The method of claim 6, wherein the oxidative dehydrogenation reaction is performed at a temperature in a range of 300 to 500 ° C. 7.
KR1020130054627A 2013-05-14 2013-05-14 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same KR101340621B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130054627A KR101340621B1 (en) 2013-05-14 2013-05-14 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130054627A KR101340621B1 (en) 2013-05-14 2013-05-14 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same

Publications (1)

Publication Number Publication Date
KR101340621B1 true KR101340621B1 (en) 2013-12-11

Family

ID=49988106

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130054627A KR101340621B1 (en) 2013-05-14 2013-05-14 Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same

Country Status (1)

Country Link
KR (1) KR101340621B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016195162A1 (en) * 2015-06-05 2016-12-08 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
KR101751537B1 (en) * 2015-12-30 2017-06-27 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
WO2017116153A1 (en) * 2015-12-30 2017-07-06 금호석유화학 주식회사 Method for preparing multicomponent ferrite metal oxide catalyst
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst
KR20190098694A (en) * 2018-02-14 2019-08-22 주식회사 엘지화학 Method for filling catalyst and method for preparing butadiene using same
CN111229154A (en) * 2020-02-18 2020-06-05 辽宁大学 MgFe2O4/Fe2O3Composite and preparation method and application thereof
US11660584B2 (en) 2017-04-12 2023-05-30 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223363A (en) 2001-03-30 2005-08-18 Minebea Co Ltd Manufacturing method of ni-zn ferrite thin film
KR20090034139A (en) * 2007-10-02 2009-04-07 에스케이에너지 주식회사 Method of preparing zinc ferrite catalysts using buffer solution and method of preparing 1,3-butadiene using said catalysts
KR20100042935A (en) * 2008-10-17 2010-04-27 금호석유화학 주식회사 The complex oxide catalyst of bi/mo/fe for the oxidative dehydrogenation of 1-butane to 1,3-butadiene and process thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005223363A (en) 2001-03-30 2005-08-18 Minebea Co Ltd Manufacturing method of ni-zn ferrite thin film
KR20090034139A (en) * 2007-10-02 2009-04-07 에스케이에너지 주식회사 Method of preparing zinc ferrite catalysts using buffer solution and method of preparing 1,3-butadiene using said catalysts
KR20100042935A (en) * 2008-10-17 2010-04-27 금호석유화학 주식회사 The complex oxide catalyst of bi/mo/fe for the oxidative dehydrogenation of 1-butane to 1,3-butadiene and process thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Inorganic Materials, 2007, Vol.43, No.8, pp.853-859 *
Inorganic Materials, 2007, Vol.43, No.8, pp.853-859*

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112015006597T5 (en) 2015-06-05 2018-06-14 Korea Kumho Petrochemical Co. Ltd. PROCESS FOR PREPARING A FERRITE METAL OXIDE CATALYST
KR20160143272A (en) * 2015-06-05 2016-12-14 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
KR101701973B1 (en) * 2015-06-05 2017-02-03 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
CN107771101B (en) * 2015-06-05 2020-06-12 锦湖石油化学株式会社 Preparation method of ferrite metal oxide catalyst
WO2016195162A1 (en) * 2015-06-05 2016-12-08 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
JP2018517557A (en) * 2015-06-05 2018-07-05 コリア クンホ ペトロケミカル カンパニー リミテッドKorea Kumho Petrochemical Co.,Ltd. Method for producing ferrite metal oxide catalyst
CN107771101A (en) * 2015-06-05 2018-03-06 锦湖石油化学株式会社 The preparation method of ferrite material oxide catalyst
WO2017116153A1 (en) * 2015-12-30 2017-07-06 금호석유화학 주식회사 Method for preparing multicomponent ferrite metal oxide catalyst
KR101792072B1 (en) * 2015-12-30 2017-11-02 금호석유화학 주식회사 Method for preparing multi-component ferrite metal oxide catalyst
KR101751537B1 (en) * 2015-12-30 2017-06-27 금호석유화학 주식회사 Method for preparing ferrite metal oxide catalyst
JP2018525216A (en) * 2016-03-28 2018-09-06 エルジー・ケム・リミテッド Method for producing zinc ferrite catalyst
US10456775B2 (en) 2016-03-28 2019-10-29 Lg Chem, Ltd. Method of preparing zinc ferrite catalyst
US11660584B2 (en) 2017-04-12 2023-05-30 Lg Chem, Ltd. Catalyst for oxidative dehydrogenation, method of preparing catalyst, and method of performing oxidative dehydrogenation using catalyst
KR20190098694A (en) * 2018-02-14 2019-08-22 주식회사 엘지화학 Method for filling catalyst and method for preparing butadiene using same
WO2019160259A1 (en) * 2018-02-14 2019-08-22 주식회사 엘지화학 Catalyst loading method and method for preparation of butadiene by using same
KR102285557B1 (en) 2018-02-14 2021-08-04 주식회사 엘지화학 Method for filling catalyst and method for preparing butadiene using same
US11731093B2 (en) 2018-02-14 2023-08-22 Lg Chem, Ltd. Catalyst loading method and method for preparation of butadiene by using same
CN111229154A (en) * 2020-02-18 2020-06-05 辽宁大学 MgFe2O4/Fe2O3Composite and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR101340621B1 (en) Ferrite metal oxide catalysts using the spray-pyrolysis process, preparing method thereof and preparing method of 1,3-butadiene using the same
KR101239803B1 (en) Multi-component metal oxide catalysts containing a BiPO4, Preparing method thereof and Preparing method of 1,3-Butadiene using the same
KR101508776B1 (en) A method for Producing 1,3-Butadiene from n-Butene using Continuous-flow Dual-bed Reactor
KR101701973B1 (en) Method for preparing ferrite metal oxide catalyst
KR101340620B1 (en) Ferrite metal oxide catalysts prepared in the honeycomb, preparing method thereof and preparing method of 1,3-butadiene using the same
KR101086731B1 (en) THE COMPLEX OXIDE CATALYST OF Bi/Mo/Fe FOR THE OXIDATIVE DEHYDROGENATION OF 1-BUTENE TO 1,3-BUTADIENE AND PROCESS THEREOF
KR100932373B1 (en) Method for preparing multicomponent bismuth molybdate catalyst according to pH change and method for preparing 1,3-butadiene using the catalyst
KR20120031953A (en) Catalysts for oxidative coupling of hydrocarbons
EP3441139B1 (en) Catalyst for oxidative dehydrogenation reaction, method for producing same, and oxidative dehydrogenation method using same
KR100963079B1 (en) Multicomponent bismuth- molybdate catalyst, preparation method thereof and method of preparing 1,3-butadiene using said catalyst
KR20120009687A (en) Mixed Manganese Ferrite Coated Catalysts, Method of Preparing Thereof and Method of Preparing 1,3-Butadiene Using Thereof
US10661253B2 (en) Method of preparation of mixed metal oxide using glucose oxidation assisted precipitation
KR102223471B1 (en) Method for preparing zinc ferrite catalysts and zinc ferrite catalysts prepared thereof
KR20150141879A (en) Preparing method of multi-component complex metal oxide catalyst
KR101270679B1 (en) Bismuth-molybdenum-iron-phosphorus multi-component metal oxide catalyst, Preparing method thereof and Preparing method of 1,3-butadiene using the same
KR101716552B1 (en) Multi-component complex metal oxides catalyst, method for preparing the same, and method for preparing 1,3-butadiene using the same
KR101792574B1 (en) Catalyst for Producing Dimethyl Ether from Synthetic Gas and Preparation Method Thereof
KR101309259B1 (en) Single crystalline catalyst of gamma-bismuth molybdate and process for preparing 1,3-butadiene using the catalyst
KR20130046214A (en) Catalyst for production from butene mixture to butadiene and method of preparing the same
EP3753631A1 (en) Catalyst loading method and method for preparation of butadiene by using same
KR102296609B1 (en) Catalyst for manufacturing hydrocarbon and method for preparing thereof
KR101792072B1 (en) Method for preparing multi-component ferrite metal oxide catalyst
US11465138B2 (en) Method for producing metal complex catalyst, and metal complex catalyst produced by same
KR101751537B1 (en) Method for preparing ferrite metal oxide catalyst
KR101512483B1 (en) Bismuth-molybdenum-iron-nickel multi-component metal oxide catalyst, preparing method thereof and preparing method of 1,3-butadiene using the same

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171206

Year of fee payment: 5