WO2017116103A1 - Polyimide substrate and display substrate module comprising same - Google Patents

Polyimide substrate and display substrate module comprising same Download PDF

Info

Publication number
WO2017116103A1
WO2017116103A1 PCT/KR2016/015280 KR2016015280W WO2017116103A1 WO 2017116103 A1 WO2017116103 A1 WO 2017116103A1 KR 2016015280 W KR2016015280 W KR 2016015280W WO 2017116103 A1 WO2017116103 A1 WO 2017116103A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide substrate
formula
compound
polyimide
group
Prior art date
Application number
PCT/KR2016/015280
Other languages
French (fr)
Korean (ko)
Inventor
우학용
정학기
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2017116103A1 publication Critical patent/WO2017116103A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a polyimide substrate and a display substrate module including the same, and more particularly, to a polyimide substrate useful as a cover substrate of a flexible electronic device having excellent bending characteristics and impact resistance, and a display substrate module including the same. .
  • flexible electronic devices such as flexible OLED, light weight display, flexible encapsulant, color EPD, plastic LCD, TSP, OPV, etc. have.
  • a flexible display that can bend or bend is possible, and a new type of flexible cover substrate is required to replace the existing glass cover substrate to protect the lower element.
  • a substrate needs to maintain high hardness, low moisture permeability, chemical resistance, and light transmittance in order to protect components included in the display device.
  • various high hardness plastic substrates are considered as candidates, and among them, transparent polyimide films capable of high hardness and thinness are considered as major candidates.
  • transparent plastic substrate has a lower surface hardness than glass, there is a limit in securing wear resistance.
  • high hardness coating that is, hard coating technology, for improving the surface hardness of the polymer film has become an important issue.
  • Korean Patent Laid-Open Publication No. 2010-0041992 provides a high hardness hard coat film composition comprising an ultraviolet curable polyurethane acrylate oligomer, and WO2013-187699.
  • cured material are proposed.
  • the film to be reviewed as a flexible electronic device cover substrate material has a method of directly forming an acrylic or epoxy-based organic cured film on the surface of the transparent film in order to improve the hardness, but has a hard coating layer having a large difference in strength from that of the plastic substrate.
  • the coating layer is not flexible and the surface is cracked when the bending property or impact resistance is evaluated.
  • the optical properties and moisture barrier properties are improved while maintaining the warpage characteristics and surface hardness compared to the substrate in which the hard coating layer is directly formed on the polyimide film through the present invention, and the optical primer layer is oriented in a predetermined direction, thereby requiring a polarizing plate layer. It is intended to provide a polyimide substrate that is free.
  • the first preferred embodiment of the present invention for solving the above problems is a polyimide layer; And a silazane-siloxane resin compound comprising a repeating unit represented by the following Chemical Formula 1-1 and a repeating unit represented by the following Chemical Formula 1-2 on at least one surface of the polyimide layer, and a repeating unit represented by the following Chemical Formula 2 It is to provide a polyimide substrate comprising an optical primer layer containing a norbornene resin compound.
  • R 1 is a urethane group
  • R 2 is a cyanate group
  • R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group
  • m and n is an integer from 1 to 10.
  • the silazane-siloxane resin is characterized in that the weight average molecular weight of 500 to 500,000 g / mol.
  • the norbornene resin compound is characterized in that the weight average molecular weight of 500 to 150,000g / mol.
  • the silazane-siloxane resin to the norbornene resin compound may be included in a weight ratio of 1: 0.1 to 1.0.
  • the optical primer layer is characterized in that it contains an acrylic compound.
  • the acrylic compound may be included in an amount of 10 to 200 parts by weight based on 100 parts by weight of the norbornene resin compound.
  • the acryl-based compound may be a trifunctional acrylate monomer, dipentaerytritol triacrylate (PETA), a bifunctional acrylate monomer hexanediol diacrylate (HDDA) and a 6 functional acrylate monomer. It is characterized in that at least one selected from the group consisting of DIPENTAERYTHRITOL HEXAACRYLATE (DPEHA).
  • PETA dipentaerytritol triacrylate
  • HDDA bifunctional acrylate monomer hexanediol diacrylate
  • DPEHA DIPENTAERYTHRITOL HEXAACRYLATE
  • the optical primer layer is characterized in that the thickness of 0.1 to 3 ⁇ m.
  • the optical primer layer may include a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2, and a norbornene resin including a repeating unit represented by Formula 2
  • a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2
  • a norbornene resin including a repeating unit represented by Formula 2
  • the polyimide substrate is characterized in that the yellowness of 2.5 or less, based on the KONICA MINOLTA company CM-3700D measurement, the light transmittance at 550nm is 85 to 93%.
  • the polyimide substrate may further include a hard coating layer.
  • the hard coating layer is formed from a siloxane resin comprising a mixture or a chemical reactant of the alkoxy silane represented by the following formula (3) and the alkoxy metal represented by the following formula (4).
  • R 1 is a linear, branched, alicyclic, aromatic organic compound including epoxy, acryl, and isocyanate
  • R 2 and R 3 are linear, including a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8
  • n is an integer from 1 to 3.
  • M is a metal element including a transition metal
  • m is an integer of 1-10.
  • the hard coating layer is characterized in that the thickness of 10 to 50 ⁇ m.
  • the polyimide substrate is characterized in that JIS K56000 reference surface hardness is 5H to 9H.
  • the polyimide substrate is characterized in that the ASTM E96BW measurement moisture permeability of 0.001 to 10g / m 2 * day.
  • another preferred embodiment of the present invention is to provide a display substrate module comprising a transparent adhesive layer, a black mattress layer and the above-described polyimide substrate.
  • the present invention it is possible to provide a transparent polyimide substrate having excellent bending characteristics and impact resistance, and having solvent resistance, optical characteristics, moisture barrier properties, and scratch resistance.
  • the transparent polyimide substrate according to the present invention can be usefully used as a cover substrate of a flexible electronic device, thereby providing a flexible display substrate module having excellent bending characteristics and impact resistance.
  • the optical primer layer included in the polyimide substrate according to the present invention has an optical functional group, and by adding UV polarization irradiation in the manufacturing process of the optical primer layer, the surface of the coated optical primer layer can be oriented in a predetermined direction.
  • the refractive index and the light transmittance have polarization, and thus, when applied to the display element, it is possible to provide an improvement in visibility.
  • FIG. 1 is a cross-sectional view illustrating a structure of a display substrate module including a polyimide substrate according to an embodiment of the present invention.
  • a polyimide layer comprising an optical primer layer containing a norbornene resin compound.
  • R 1 is a urethane group
  • R 2 is a cyanate group
  • R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group
  • m and n is an integer from 1 to 10.
  • the polyimide layer is made of a polyimide film, wherein the polyimide film can be obtained by polymerizing diamine and acid dianhydride and then imidizing.
  • the polyimide layer of the present invention can be applied without limitation as long as it is a colorless and transparent polyamide film having a unique heat resistance of the polyimide-based resin and does not have a yellow color, and is based on a UV spectrophotometer based on a film thickness of 10 to 100 ⁇ m. It is a polyimide film with an average transmittance of at least 85%, a yellowness of 5 or less, and an average coefficient of linear expansion (CTE) measured at 50 to 250 ° C. according to TMA-Method of 50.0 ppm / ° C. or less according to TMA-Method. It is more preferable.
  • CTE coefficient of linear expansion
  • the transmittance is preferably higher than 85%, it may have a transmittance of 89%, 90%, 91%.
  • the yellowness is preferably lower than 5, and may have yellowness of 2.0, 1.9, or 1.5.
  • the average linear expansion coefficient (CTE) is preferably lower than 50.0 ppm / ° C., and may have an average linear expansion coefficient (CTE) of 2.0 ppm / ° C. or less.
  • the above-described physical properties such as transmittance, yellowness, average linear expansion coefficient (CTE), etc. are measured when the thickness of the film is in the range of 10 to 100 ⁇ m, for example, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m,. It can be measured as a film having a thickness of 100 ⁇ m, etc., when measuring the film in each of the thickness can satisfy all of the physical properties range.
  • the thickness range of the film corresponds to the measuring method for measuring the physical properties, and unless otherwise specified, does not mean limiting the thickness of the film.
  • the average transmittance is less than 85%, or if the yellowness is greater than 5, there is a problem that the transparency is not applicable to a display or an optical element, and the average linear expansion coefficient is If the (CTE) exceeds 50.0 ppm / ° C, the difference in thermal expansion coefficient with the plastic substrate becomes large, and there is a possibility that a short circuit occurs when the device is overheated or has a high temperature.
  • the silazane-siloxane resin compound includes a repeating unit represented by the following Formula 1-1 and a repeating unit represented by the following Formula 1-2, and the weight average molecular weight measured by GPC (gel permeation chromatography) It is preferred that it is 500 to 500,000 g / mol.
  • R 1 is a urethane group
  • R 2 is a cyanate group
  • R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group
  • m and n is an integer from 1 to 10.
  • the weight average molecular weight of the silazane-siloxane compound is less than 500 g / mol, the effect of improving solvent resistance, heat resistance, and water barrier property is insignificant, and when it exceeds 50,000 g / mol, the hydrophobic property is improved to bond with other compounds. You may lack sex. Since the silazane-siloxane compound has a high density structure, it serves to improve the chemical resistance of the substrate, and shows a low refractive index compared to the substrate, thereby improving the optical properties of the polyimide film due to reinforcement interference with the substrate layer. It can improve more.
  • the silazane-siloxane compound to the norbornene resin compound is preferably included in a weight ratio of 1: 0.1 to 1.0 in that the object and effect of the present invention can be obtained.
  • the norbornene resin compound is a compound having a cinnamate group.
  • the norbornene resin compound crosslinks in one direction without a heat source to have an orientation of the film, and has a low temperature process.
  • the norbornene resin compound may be introduced by mixing with a primer to obtain an orientation (polarization) effect.
  • the norbornene resin compound preferably has a weight average molecular weight of 500 to 150,000 g / mol.
  • the optical primer layer according to the present invention may further include an acrylic compound.
  • the acrylic compound may be included in an amount of 10 to 200 parts by weight, preferably 50 to 100 parts by weight, and more preferably 60 to 100 parts by weight, based on 100 parts by weight of the norbornene resin compound. It is preferable in that it can obtain, and improves the adhesive force between the optical primer layer and the hard coating layer, and also improves the bending crack required in the flexible substrate.
  • the acryl-based compound may be a trifunctional acrylate monomer, dipentaerytritol triacrylate (PETA), a bifunctional acrylate monomer hexanediol diacrylate (HDDA) and a 6 functional acrylate monomer. At least one selected from the group consisting of DIPENTAERYTHRITOL HEXAACRYLATE (DPEHA).
  • PETA dipentaerytritol triacrylate
  • HDDA bifunctional acrylate monomer hexanediol diacrylate
  • DPEHA DIPENTAERYTHRITOL HEXAACRYLATE
  • the silazane-siloxane resin is applied by dissolving in an organic solvent, wherein the applicable organic solvent is isopropyl alcohol (IPA), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA) , N-Butanol, Pentanol, methyl ethyl ketone (MEK), Acetone, Methyl alchol, Ethyl alchol, but is not limited to these.
  • the suitable organic solvent amount of this compound is 0.5 to 90% of the total weight of the primer resin, and if it is less than 0.5%, it may not be uniformly formed during application, which may cause thickness deviation on the surface of the substrate. It is difficult to apply to a substrate.
  • the optical primer layer including the silazane-siloxane resin compound preferably has a thickness of 0.1 ⁇ m or more in order to secure solvent resistance and optical properties and improve moisture blocking properties, and the optical properties of the polyimide cover substrate. In order to prevent a fall and the generation of curl, it is preferable to make thickness into 3 micrometers or less.
  • the optical primer layer may be formed on one side of the polyimide film, but may also be formed on both sides, and the polyimide substrate including the optical primer layer according to the present invention is based on CM-3700D measurement, yellowness of 2.5
  • the optical transmittance at preferably 2.0 or less and 350 to 700 nm can exhibit excellent optical properties of 85 to 93%, preferably 91 to 93%.
  • the optical primer layer may include a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2, and a norbornene resin including a repeating unit represented by Formula 2
  • a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2
  • a norbornene resin including a repeating unit represented by Formula 2
  • the optical primer layer may be coated with the optical primer resin solution on a substrate and then dried to form a film.
  • the coating method may include spray coating, bar coating, and spin. Various methods such as coating and dip coating may be selected and coated, and the coating method and the drying method may be applied without being limited thereto as long as they are generally applied.
  • the optical primer layer is advantageously heat treated at a temperature of 200 to 300 ° C. to have an intramolecular network structure, which makes the film property more rigid, thereby making it excellent in chemical resistance and heat resistance.
  • the UV polarization irradiation step after the heat treatment process may be further performed, it is possible to orient the surface of the optical primer layer in a predetermined direction by the UV polarization irradiation process.
  • the polyimide substrate further comprises a hard coating layer, thereby securing chemical resistance and impact resistance, and can exhibit a surface hardness of JIS K56000 measurement standards 5H to 10H.
  • the hard coating layer is formed on the optical primer layer, so that the optical coating such as transmittance and yellowness is maintained while the hard coating is laminated directly on the polyimide film, while the ASTM E96BW measurement moisture permeability is 0.001 to 10 g. / m 2 * day, preferably from 0.001 to 3.1 g / m 2 * day.
  • the polyimide substrate of the present invention exhibits low moisture permeability in the above range, which may be advantageous for protecting TFT and OLED devices from external humid environments.
  • the hard coating layer may be formed from a siloxane resin containing a mixture or a chemical reactant of the alkoxy silane represented by the following formula (3) and the alkoxy metal represented by the following formula (4).
  • R 1 is a linear, branched, alicyclic, aromatic organic compound including epoxy, acryl, and isocyanate
  • R 2 and R 3 are linear, including a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8
  • n is an integer from 1 to 3.
  • M is a metal element including a transition metal
  • m is an integer of 1-10.
  • the siloxane resin may be prepared from a polymerization reaction of the alkoxy silane of Formula 3 alone, or may be prepared as a siloxane resin in which a chemical bond of a metal element exists by introducing an alkoxy metal of Formula 3 during the polymerization reaction. have.
  • the formation reaction of the siloxane resin may proceed at room temperature, but may be stirred for 1 hour to 120 hours at 50 °C to 120 °C to promote the reaction.
  • an acid catalyst such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodide sulfate, base such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and the like
  • Catalysts and ion exchange resins such as Amberite may be used, and these catalysts may be used alone but may be used in combination.
  • the amount of the catalyst is not particularly limited, but may be added in an amount of 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin.
  • the siloxane resin synthesized by the condensation reaction may adjust the viscosity and the curing rate by the monomers added during the reaction, thereby providing an optimum resin composition suitable for the purpose.
  • the siloxane resin obtained through the reaction as described above can secure the intermolecular space during crosslinking, thereby preventing the curl phenomenon caused by curing shrinkage, and enables high surface hardness by crosslinking and metal elements.
  • the hard coating resin composition may further include an initiator for polymerization of the siloxane resin, for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole. Can be used.
  • an initiator for polymerization of the siloxane resin for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole.
  • the addition amount of the initiator is not particularly limited, but may be added from about 0.01 to 10 parts by weight based on about 100 parts by weight of the siloxane resin.
  • the hard coating resin composition of the present invention may further add an organic solvent to control the viscosity of the siloxane resin to facilitate the processability and at the same time adjust the thickness of the coating film.
  • the addition amount of the organic solvent is not particularly limited, but examples of the organic solvent that can be used include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone, or cellosolves such as methyl cellosolve and butyl cellosolve, Or ethers such as ethyl ether and dioxane, alcohols such as isobutyl alcohol, isopropyl alcohol, butanol and methanol, or halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene, or normal hexane, benzene and toluene It may include one or more selected from a solvent consisting of hydrocarbons and the like.
  • the siloxane resin may further include an antioxidant to suppress the oxidation reaction resulting from the polymerization reaction, and may further include a leveling agent or a coating aid, but is not necessarily limited thereto. no.
  • the resin composition for hard coating of the present invention may be prepared into a hardened coating cured product by photopolymerization and thermal polymerization after molding such as coating, casting, and molding.
  • photopolymerization it is possible to obtain a uniform surface over the light article pre-heat treatment, which can be carried out at a temperature below about 300 °C than 40 °C, if the irradiation light amount performed under the conditions of 50mJ / cm 2 or more 20000mJ / cm 2 or less It may be, but is not limited thereto.
  • the thermal polymerization may be performed at a temperature of about 40 ° C. or more and about 300 ° C. or less, but is not limited thereto.
  • the hard coating layer formed as described above preferably has a dry thickness of 10 ⁇ m or more for ensuring excellent surface hardness, impact resistance, and chemical resistance, and is preferably formed to be less than 50 ⁇ m to prevent warpage and excessive stiffness. .
  • the present invention can provide a display substrate module including a transparent adhesive layer , a black mattress, and a polyimide substrate having the aforementioned characteristics.
  • the display substrate module of the present invention is, for example, the optical primer layer 20, the polyimide layer 10, the optical primer layer 20 and the hard coating layer 30 sequentially as shown in FIG. It may be prepared by forming a transparent adhesive layer 40 and the black mattress 50 in the direction of the lower optical primer layer on the laminated polyimide substrate.
  • amorphous silica particles having OH groups bound to the surface were added to N, N-dimethylacetamide (DMAc) at a dispersion concentration of 0.1%, and subjected to sonication until the solvent became transparent.
  • 100 g of the obtained polyimide of the solid powder was taken and dissolved in 670 g of N, N-dimethylacetaamide (DMAc) to obtain a 13 wt% solution.
  • the solution thus obtained was applied to a stainless plate, cast at 340 ⁇ m, dried for 30 minutes with hot air at 130 ° C., and the film was peeled off from the stainless plate to be fixed to the frame with a pin.
  • the film on which the film was fixed was placed in a vacuum oven and slowly heated for 2 hours from 100 ° C to 300 ° C, and then slowly cooled to separate from the frame to obtain a polyimide film. After the final heat treatment was performed for 30 minutes at 300 °C again.
  • the polyimide film thus prepared had a thickness of 80 ⁇ m, an average light transmittance of 87%, a yellowness of 4.5, and an average linear expansion coefficient (CTE) measured at 50 to 250 ° C. according to TMA-Method. .
  • KBM-303 (Shinetsu Co., Ltd.), Titanium isopropoxide (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed in a ratio of 227.96 mL: 1.94 mL: 21.61 mL in a 500 mL flask, and 0.2 g of sodium hydroxide was added as a catalyst. Stir at rt for 24 h.
  • siloxane resin having a number average molecular weight of 7245, a weight average bacterium molecular weight of 20146, and a polydispersity index (PDI, M w / M n ) of 2.78 (the molecular weight using GPC). Measure).
  • IRGACURE 250 BASF, Inc. was added as a photoinitiator 3 parts by weight based on 100 parts by weight of the resin to finally obtain a composition for hard coating.
  • a silazane-siloxane resin compound having a weight average molecular weight of 2,000 g / mol (DCT) and a norbornene resin compound having a cinnamate group having a weight average molecular weight of 150,000 g / mol are added at a weight ratio of 1: 0.6, and an acrylic compound ( Hi CNP model name HIK-2000) was added to cyclohexanone in an amount of 60 parts by weight based on 100 parts by weight of the norbornene resin compound having the cinnamate group, and then dissolved to prepare an optical primer resin solution.
  • the prepared optical primer resin solution was applied to one surface of the colorless and transparent polyimide film prepared through the preparation example, and then dried at a temperature of 80 ° C. to form a film having a thickness of 0.1 ⁇ m. Thereafter, the mixture was left to stand at room temperature for about 5 minutes and then heat-treated at a temperature of about 250 ° C., followed by irradiation with UV linearly polarized ultraviolet rays (300 mW / cm 2) to orientate the photo alignment layer.
  • the polarization direction of the linearly polarized ultraviolet light was controlled by a method of irradiating UV polarization by placing a lattice-type pattern mask on the path of the film so as to form an angle of 60 ° or more with the boundary line of the film.
  • an optical primer layer having a thickness of 0.1 ⁇ m was formed to prepare a polyimide substrate.
  • a polyimide substrate having an optical primer layer was prepared in the same manner as in Example 1, except that the siloxane resin of Preparation Example 2 was coated with 40 ⁇ m on the back of the optical primer layer, and then exposed to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds. By further forming a hard coating layer.
  • the polyimide film produced in Preparation Example 1 was prepared as it was as Comparative Example 1.
  • the optical primer layer was omitted, and only the hard coating layer was formed in the same manner as in Example 2 to prepare a polyimide substrate.
  • Average light transmittance (%) The optical transmittance at 350-700 nm was measured using the spectrophotometer (CM-3700D, KONICA MINOLTA) by the standard specification ASTM E313.
  • Yellowness was measured by using a spectrophotometer (CM-3700D, KONICA MINOLTA) as a standard standard standard ASTM E313.
  • Moisture Permeability (g / m 2 * day): The moisture permeability (WVTR) was measured using a moisture permeability tester (MOCON / US / Aquatran-model-1) using the standard standard standard ASTM E69BW.
  • Pencil hardness 50mm at a speed of 180mm / min with a load of 1kg (in the direction of the coating layer, if a coating layer is formed) using an electric pencil hardness tester with Mitsubishi evaluation pencil (UNI) according to the standard specification ASTM D3363 After drawing five times, the pencil hardness without any scratches on the surface was measured.
  • Adhesiveness Measured by Taping after Cross Cut with standard specification (ASTM D3359).
  • Contrast After displaying white and black images on an image display device using PR-705 (Photo Research) in a room temperature dark room, the front direction of the screen (polar angle 0 ') and the tilt direction (azimuth angle 45 to 60 ') Yrkatdmf of the XYZ display system was measured, the contrast ratio “YW / YB” in the oblique direction was calculated from the Y value (YW) of the white image and the Y value (YB) of the black image. The better the polarization efficiency of the films prepared above, the higher the contrast ratio.
  • the TMA (TA Instrument, Inc., Q400) was used to measure the linear thermal expansion coefficient at 50 to 250 ° C. twice according to the TMA-Method.
  • the size of the specimen was 4 mm ⁇ 24 mm, the load was 0.02 N, and the temperature increase rate was 10 ° C./min.
  • Example 1 91 2.0 > 50 2H 5B OK 587.6 29.4
  • Example 2 91 2.0 3.1 9H 5B OK 589.7 29.9
  • Comparative Example 1 89 4.5 > 50 2H 5B OK 476 26.2
  • Comparative Example 2 88 4.4 17.0 9H 5B OK 413.0 14.6
  • the polyimide substrate according to the present invention realizes excellent optical properties as well as surface hardness, chemical resistance, and bending characteristics and high coat last, and is suitable as a display substrate module for flexible and display electronic devices. Low was found to be beneficial to protect the TFT and OLED devices from the external humid environment.
  • the present invention is applicable to a polyimide substrate and a display substrate module including the same.

Abstract

The present invention relates to a polyimide substrate comprising a polyimide layer and an optical primer layer below the polyimide layer, and a display substrate module comprising the same, wherein the optical primer layer comprises a silazane-siloxane resin compound, a norbonene resin compound and an acrylic compound.

Description

폴리이미드 기판 및 이를 포함하는 표시 기판 모듈Polyimide substrate and display substrate module comprising the same
본 발명은 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈에 관한 것으로서, 보다 구체적으로는 휨 특성 및 내충격성이 우수하여 플렉시블 전자기기의 커버기판으로서 유용한 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyimide substrate and a display substrate module including the same, and more particularly, to a polyimide substrate useful as a cover substrate of a flexible electronic device having excellent bending characteristics and impact resistance, and a display substrate module including the same. .
최근에는 차세대 디스플레이 중 하나로 휘거나 구부릴 수 있는 전자기기로서 플렉시블(Flexible) OLED를 비롯한 플렉시블 광전소자, 경량 디스플레이, 플렉시블 봉지재, Color EPD, Plastic LCD, TSP, OPV 등과 같은 플렉시블 전자기기가 주목을 받고 있다. 이러한 구부리거나 휠 수 있는 플렉시블 타입의 디스플레이가 가능하며 하부 소자를 보호하기 위해서는 기존의 유리 커버기판을 대신할 새로운 형태의 플렉시블 커버기판이 필요하다. 아울러 이러한 기판은 디스플레이 장치에 포함되는 부품을 보호하기 위하여 높은 경도, 낮은 투습성, 내화학성 및 광투과도를 유지할 필요가 있다. Recently, as an electronic device that can bend or bend as one of the next generation displays, flexible electronic devices such as flexible OLED, light weight display, flexible encapsulant, color EPD, plastic LCD, TSP, OPV, etc. have. Such a flexible display that can bend or bend is possible, and a new type of flexible cover substrate is required to replace the existing glass cover substrate to protect the lower element. In addition, such a substrate needs to maintain high hardness, low moisture permeability, chemical resistance, and light transmittance in order to protect components included in the display device.
이러한 플렉시블 디스플레이 커버기판 소재로서는 여러 가지 고경도의 플라스틱 기판들이 후보로서 검토되고 있으며, 그 중에서 얇은 두께에서 고경도 구현이 가능한 투명 폴리이미드 필름이 주요한 후보로서 검토되고 있다. 그러나 투명 플라스틱 기판은 유리에 비해 낮은 표면 경도를 가지고 있어 내마모성 확보에 한계가 존재한다. 이를 위해 고분자 필름의 표면 경도를 향상시키기 위한 고경도 코팅, 즉 하드 코팅 기술이 중요한 이슈가 되고 있다.As a flexible display cover substrate material, various high hardness plastic substrates are considered as candidates, and among them, transparent polyimide films capable of high hardness and thinness are considered as major candidates. However, since the transparent plastic substrate has a lower surface hardness than glass, there is a limit in securing wear resistance. For this purpose, high hardness coating, that is, hard coating technology, for improving the surface hardness of the polymer film has become an important issue.
플라스틱 기판의 표면 경도를 향상시키기 위한 목적으로, 대한민국 공개특허 2010-0041992호에는 자외선 경화성 폴리우레탄 아크릴레이트계 올리고머를 포함하는 고경도 하드코팅 필름 조성물을 제공하고 있고, 국제 공개특허공보 WO2013-187699호에는 지환식 에폭시기를 포함하는 고경도 실록산 수지 조성물과 그의 제조방법 및 상기 경화물을 포함하는 광학필름이 제안되어 있다.In order to improve the surface hardness of a plastic substrate, Korean Patent Laid-Open Publication No. 2010-0041992 provides a high hardness hard coat film composition comprising an ultraviolet curable polyurethane acrylate oligomer, and WO2013-187699. The high hardness siloxane resin composition containing an alicyclic epoxy group, its manufacturing method, and the optical film containing the said hardened | cured material are proposed.
이와 같이 플렉시블 전자기기 커버기판 소재로서 검토되는 필름은 경도를 향상하기 위하여 아크릴계 또는 에폭시계 유기경화막을 투명 필름의 표면에 직접적으로 형성하는 방법이 이용되었으나, 플라스틱 기판과의 강도 차이가 큰 하드 코팅층을 플라스틱 기판에 직접적으로 형성하는 경우, 플라스틱 기판의 가요성을 저해할 뿐만 아니라, 코팅층이 플렉시블 하지 못하여 휨 특성이나 내충격성 등을 평가하면 표면이 갈라지는 문제점이 있었다.As such, the film to be reviewed as a flexible electronic device cover substrate material has a method of directly forming an acrylic or epoxy-based organic cured film on the surface of the transparent film in order to improve the hardness, but has a hard coating layer having a large difference in strength from that of the plastic substrate. In the case of forming directly on the plastic substrate, not only the flexibility of the plastic substrate is impaired, but also the coating layer is not flexible and the surface is cracked when the bending property or impact resistance is evaluated.
이에 본 발명을 통해 하드코팅층을 폴리이미드 필름에 직접적으로 형성시킨 기판에 비해 휨 특성, 표면경도는 유지하면서도 광학특성 및 수분 차단성이 향상되고, 광학프라이머층이 일정 방향으로 배향되어 편광판층이 필요없는 폴리이미드 기판을 제공하고자 한다.Accordingly, the optical properties and moisture barrier properties are improved while maintaining the warpage characteristics and surface hardness compared to the substrate in which the hard coating layer is directly formed on the polyimide film through the present invention, and the optical primer layer is oriented in a predetermined direction, thereby requiring a polarizing plate layer. It is intended to provide a polyimide substrate that is free.
상기 과제를 해결하기 위한 본 발명의 바람직한 제 1 구현예는 폴리이미드 층; 및 상기 폴리이미드 층의 적어도 일면에 하기 화학식 1-1로 표시되는 반복단위 및 하기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 하기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판을 제공하는 것이다. The first preferred embodiment of the present invention for solving the above problems is a polyimide layer; And a silazane-siloxane resin compound comprising a repeating unit represented by the following Chemical Formula 1-1 and a repeating unit represented by the following Chemical Formula 1-2 on at least one surface of the polyimide layer, and a repeating unit represented by the following Chemical Formula 2 It is to provide a polyimide substrate comprising an optical primer layer containing a norbornene resin compound.
<화학식 1-1><Formula 1-1>
Figure PCTKR2016015280-appb-I000001
Figure PCTKR2016015280-appb-I000001
<화학식 1-2><Formula 1-2>
Figure PCTKR2016015280-appb-I000002
Figure PCTKR2016015280-appb-I000002
상기 화학식 1-1 및 1-2에서 R1은 우레탄기이고, R2는 시아네이트기이고, R3는 하이드록시기, 비닐기, 아크릴기, 에폭시기 및 아민기로 이루어진 군에서 선택된 것이며, m 및 n은 1 내지 10의 정수이다.In Formulas 1-1 and 1-2, R 1 is a urethane group, R 2 is a cyanate group, R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group, m and n is an integer from 1 to 10.
<화학식 2><Formula 2>
Figure PCTKR2016015280-appb-I000003
Figure PCTKR2016015280-appb-I000003
상기 실라잔-실록산수지 화합물은 중량평균분자량이 500 내지 500,000 g/mol인 것을 특징으로 한다. The silazane-siloxane resin is characterized in that the weight average molecular weight of 500 to 500,000 g / mol.
상기 노르보넨수지 화합물은 중량평균분자량이 500 내지 150,000g/mol인 것을 특징으로 한다. The norbornene resin compound is characterized in that the weight average molecular weight of 500 to 150,000g / mol.
상기 실라잔-실록산수지 화합물대 상기 노르보넨수지 화합물은 1:0.1 내지 1.0의 중량비로 포함되는 것을 특징으로 한다.The silazane-siloxane resin to the norbornene resin compound may be included in a weight ratio of 1: 0.1 to 1.0.
상기 광학프라이머층은 아크릴계 화합물을 포함하는 것을 특징으로 한다.The optical primer layer is characterized in that it contains an acrylic compound.
상기 아크릴계 화합물은 상기 노르보넨수지 화합물 100중량부에 대하여 10 내지 200중량부의 함량으로 포함되는 것을 특징으로 한다. The acrylic compound may be included in an amount of 10 to 200 parts by weight based on 100 parts by weight of the norbornene resin compound.
상기 아크릴계 화합물은 3관능성 아크릴레이트 단량체인 디펜타에리트리톨 헥사아크릴레이트(pentaerytritol triacrylate; PETA), 2관능성 아크릴레이트 단량체인 헥산디올디아크릴레이트(hexanediol diacrylate; HDDA) 및 6관능성 아크릴레이트 단량체인 디펜타에리스리톨헥사아크릴레이트(DIPENTAERYTHRITOL HEXAACRYLATE; DPEHA)로부터 이루어진 군에서 선택되는 일종 이상인 것을 특징으로 한다. The acryl-based compound may be a trifunctional acrylate monomer, dipentaerytritol triacrylate (PETA), a bifunctional acrylate monomer hexanediol diacrylate (HDDA) and a 6 functional acrylate monomer. It is characterized in that at least one selected from the group consisting of DIPENTAERYTHRITOL HEXAACRYLATE (DPEHA).
상기 광학프라이머층은 두께가 0.1 내지 3 ㎛인 것을 특징으로 한다. The optical primer layer is characterized in that the thickness of 0.1 to 3 ㎛.
상기 광학프라이머층은 상기 화학식 1-1로 표시되는 반복단위 및 상기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 상기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머 수지용액으로 막을 형성한 후, 200 내지 300℃의 온도로 열처리하는 공정을 포함하여 제조되는 것을 특징으로 한다.The optical primer layer may include a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2, and a norbornene resin including a repeating unit represented by Formula 2 Forming a film with an optical primer resin solution containing a compound, characterized in that it is produced, including the step of heat treatment at a temperature of 200 to 300 ℃.
상기 폴리이미드 기판은 KONICA MINOLTA社 CM-3700D측정 기준, 황색도가 2.5 이하이고, 550nm에서의 광투과도가 85 내지 93%인 것을 특징으로 한다. The polyimide substrate is characterized in that the yellowness of 2.5 or less, based on the KONICA MINOLTA company CM-3700D measurement, the light transmittance at 550nm is 85 to 93%.
상기 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함할 수 있다.The polyimide substrate may further include a hard coating layer.
상기 하드 코팅층은 하기 화학식 3으로 표시되는 알콕시 실란 및 하기 화학식 4로 표시되는 알콕시 금속의 혼합물 또는 화학반응물을 포함하는 실록산 수지로부터 형성된 것임을 특징으로 한다. The hard coating layer is formed from a siloxane resin comprising a mixture or a chemical reactant of the alkoxy silane represented by the following formula (3) and the alkoxy metal represented by the following formula (4).
<화학식 3><Formula 3>
Figure PCTKR2016015280-appb-I000004
Figure PCTKR2016015280-appb-I000004
<화학식 4><Formula 4>
Figure PCTKR2016015280-appb-I000005
Figure PCTKR2016015280-appb-I000005
상기 화학식 3 내지 4에서, R1은 에폭시, 아크릴, 아이소시아네이트를 포함하는 선형, 분지형, 지환식, 방향족의 유기화합물이고, R2 및 R3는 산소 또는 질소 등 헤테로 화합물을 포함하는 선형, 분지형, 지환형 C1 내지 C8의 알킬기이며, n은 1 내지 3의 정수이다. 또한, M은 전이금속을 포함한 금속원소이며, m은 1 내지 10의 정수이다.In Formulas 3 to 4, R 1 is a linear, branched, alicyclic, aromatic organic compound including epoxy, acryl, and isocyanate, and R 2 and R 3 are linear, including a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8, n is an integer from 1 to 3. In addition, M is a metal element including a transition metal, and m is an integer of 1-10.
상기 하드 코팅층은 두께가 10 내지 50㎛인 것을 특징으로 한다. The hard coating layer is characterized in that the thickness of 10 to 50㎛.
상기 폴리이미드 기판은 JIS K56000 측정 기준 표면경도가 5H 내지 9H인 것을 특징으로 한다.The polyimide substrate is characterized in that JIS K56000 reference surface hardness is 5H to 9H.
상기 폴리이미드 기판은 ASTM E96BW 측정기준 수분투과도가 0.001 내지 10g/m2*day인 것을 특징으로 한다.The polyimide substrate is characterized in that the ASTM E96BW measurement moisture permeability of 0.001 to 10g / m 2 * day.
또한, 본 발명의 바람직한 다른 일 구현예는 투명 접착층, 블랙메트리스 층 및 상술한 폴리이미드 기판을 포함하는 표시 기판 모듈을 제공하는 것이다.In addition, another preferred embodiment of the present invention is to provide a display substrate module comprising a transparent adhesive layer, a black mattress layer and the above-described polyimide substrate.
본 발명에 따르면 우수한 휨 특성 및 내충격성을 가지면서, 내용제성, 광학특성, 수분차단 특성 및 내스크래치성을 갖는 투명 폴리이미드 기판을 제공할 수 있다. 본 발명에 따른 투명 폴리이미드 기판은 플렉시블 전자기기의 커버기판으로 유용하게 사용할 수 있으며, 이에 따라 휨 특성 및 내 충격성이 우수한 플렉서블 표시 기판 모듈을 제공할 수 있다.According to the present invention, it is possible to provide a transparent polyimide substrate having excellent bending characteristics and impact resistance, and having solvent resistance, optical characteristics, moisture barrier properties, and scratch resistance. The transparent polyimide substrate according to the present invention can be usefully used as a cover substrate of a flexible electronic device, thereby providing a flexible display substrate module having excellent bending characteristics and impact resistance.
또한, 본 발명에 따른 폴리이미드 기판에 포함되는 광학프라이머층은 광기능성기를 가지며, 이는 광학프라이머층의 제조공정에서 UV 편광조사를 추가함으로써, 코팅된 광학프라이머층의 표면을 일정 방향으로 배향시킬 수 있어, 굴절률 및 광투과의 편광성을 가지게 되고, 따라서 이를 디스플레이 소자에 적용할 경우 시인성의 향상을 제공할 수 있다.In addition, the optical primer layer included in the polyimide substrate according to the present invention has an optical functional group, and by adding UV polarization irradiation in the manufacturing process of the optical primer layer, the surface of the coated optical primer layer can be oriented in a predetermined direction. Thus, the refractive index and the light transmittance have polarization, and thus, when applied to the display element, it is possible to provide an improvement in visibility.
도 1은 본 발명의 일 구현예에 따른 폴리이미드 기판을 포함하는 표시 기판 모듈의 구조를 나타낸 단면도이다.1 is a cross-sectional view illustrating a structure of a display substrate module including a polyimide substrate according to an embodiment of the present invention.
본 발명의 일 양태에 따르면 폴리이미드 층; 및 하기 폴리이미드 층의 적어도 일면에 하기 화학식 1-1로 표시되는 반복단위 및 하기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 하기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판을 제공할 수 있다.According to an aspect of the present invention, a polyimide layer; And a silazane-siloxane resin compound comprising a repeating unit represented by the following Formula 1-1 and a repeating unit represented by the following Formula 1-2 on at least one side of the polyimide layer, and a repeating unit represented by the following Formula 2 It is possible to provide a polyimide substrate comprising an optical primer layer containing a norbornene resin compound.
<화학식 1-1><Formula 1-1>
Figure PCTKR2016015280-appb-I000006
Figure PCTKR2016015280-appb-I000006
<화학식 1-2><Formula 1-2>
Figure PCTKR2016015280-appb-I000007
Figure PCTKR2016015280-appb-I000007
상기 화학식 1-1 및 1-2에서 R1은 우레탄기이고, R2는 시아네이트기이고, R3는 하이드록시기, 비닐기, 아크릴기, 에폭시기 및 아민기로 이루어진 군에서 선택된 것이며, m 및 n은 1 내지 10의 정수이다.In Formulas 1-1 and 1-2, R 1 is a urethane group, R 2 is a cyanate group, R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group, m and n is an integer from 1 to 10.
<화학식 2><Formula 2>
Figure PCTKR2016015280-appb-I000008
Figure PCTKR2016015280-appb-I000008
본 발명에서 상기 폴리이미드층은 폴리이미드 필름으로 이루어진 것으로서, 이때 폴리이미드 필름은 통상적으로 디아민과 산 이무수물을 중합한 다음 이미드화하여 얻을 수 있다. 본 발명의 폴리이미드 층으로는 폴리이미드계 수지가 갖는 고유한 내열성을 가지면서 황색을 띄지 않는 무색투명한 폴리미이드 필름이라면 제한 없이 적용 가능하고, 필름 두께 10 ~ 100㎛를 기준으로 UV분광광도계로 측정된 350 내지 700nm에서의 평균 투과도가 85% 이상이고, 황색도가 5 이하이며, TMA-Method에 따라 50 내지 250℃에서 측정한 평균 선팽창계수(CTE)가 50.0ppm/℃ 이하인 폴리이미드 필름인 것이 보다 바람직하다.In the present invention, the polyimide layer is made of a polyimide film, wherein the polyimide film can be obtained by polymerizing diamine and acid dianhydride and then imidizing. The polyimide layer of the present invention can be applied without limitation as long as it is a colorless and transparent polyamide film having a unique heat resistance of the polyimide-based resin and does not have a yellow color, and is based on a UV spectrophotometer based on a film thickness of 10 to 100 μm. It is a polyimide film with an average transmittance of at least 85%, a yellowness of 5 or less, and an average coefficient of linear expansion (CTE) measured at 50 to 250 ° C. according to TMA-Method of 50.0 ppm / ° C. or less according to TMA-Method. It is more preferable.
상기 투과도는 85% 이상으로 높을수록 바람직하고, 89%, 90%, 91%의 투과도를 가질 수 있다.The transmittance is preferably higher than 85%, it may have a transmittance of 89%, 90%, 91%.
상기 황색도는 5 이하로 낮을수록 바람직하고, 2.0, 1.9, 1.5의 황색도를 가질 수 있다. The yellowness is preferably lower than 5, and may have yellowness of 2.0, 1.9, or 1.5.
상기 평균 선팽창계수(CTE)는 50.0ppm/℃ 이하로 낮을수록 바람직하고, 2.0ppm/℃ 이하의 평균 선팽창계수(CTE)를 가질 수 있다. The average linear expansion coefficient (CTE) is preferably lower than 50.0 ppm / ° C., and may have an average linear expansion coefficient (CTE) of 2.0 ppm / ° C. or less.
상술한 투과도, 황색도, 평균 선팽창계수(CTE) 등의 물성은 이를 측정시 필름의 두께가 10~100㎛ 범위 내에 있는 필름, 예를 들어 11㎛, 12㎛, 13㎛,…100㎛ 등의 두께를 가지는 필름으로 측정될 수 있으며, 상기 두께 내에 있는 필름을 각각 측정 시 상기 물성 범위를 모두 만족할 수 있다. 이때, 상기 필름의 두께범위는 상기 물성을 측정하기 위한 측정방법에 해당하는 것이며, 특별한 언급이 없는 한 필름의 두께를 한정하는 의미는 아니다.The above-described physical properties such as transmittance, yellowness, average linear expansion coefficient (CTE), etc. are measured when the thickness of the film is in the range of 10 to 100 μm, for example, 11 μm, 12 μm, 13 μm,. It can be measured as a film having a thickness of 100㎛, etc., when measuring the film in each of the thickness can satisfy all of the physical properties range. At this time, the thickness range of the film corresponds to the measuring method for measuring the physical properties, and unless otherwise specified, does not mean limiting the thickness of the film.
만일, 폴리이미드 필름 두께가 10 내지 100㎛를 기준으로 평균 투과도가 85% 미만이거나, 황색도가 5를 초과하는 경우에는 투명도가 떨어져 디스플레이나 광학 소자 등에 적용할 수 없는 문제점이 있고, 평균 선팽창계수(CTE)가 50.0ppm/℃를 초과하는 경우에는 플라스틱 기판과의 열팽창계수 차이가 커져 소자가 과열되거나 고온인 경우 단락이 발생될 우려가 있다.If the polyimide film thickness is 10 to 100 µm, the average transmittance is less than 85%, or if the yellowness is greater than 5, there is a problem that the transparency is not applicable to a display or an optical element, and the average linear expansion coefficient is If the (CTE) exceeds 50.0 ppm / ° C, the difference in thermal expansion coefficient with the plastic substrate becomes large, and there is a possibility that a short circuit occurs when the device is overheated or has a high temperature.
본 발명에서 상기 실라잔-실록산수지 화합물은 하기 화학식 1-1로 표시되는 반복단위 및 하기 화학식 1-2로 표시되는 반복단위를 포함하는 것이며, GPC(gel permeation chromatography)로 측정한 중량평균분자량이 500 내지 500,000g/mol인 것이 바람직하다.In the present invention, the silazane-siloxane resin compound includes a repeating unit represented by the following Formula 1-1 and a repeating unit represented by the following Formula 1-2, and the weight average molecular weight measured by GPC (gel permeation chromatography) It is preferred that it is 500 to 500,000 g / mol.
<화학식 1-1><Formula 1-1>
Figure PCTKR2016015280-appb-I000009
Figure PCTKR2016015280-appb-I000009
<화학식 1-2><Formula 1-2>
Figure PCTKR2016015280-appb-I000010
Figure PCTKR2016015280-appb-I000010
상기 화학식 1-1 및 1-2에서 R1은 우레탄기이고, R2는 시아네이트기이고, R3는 하이드록시기, 비닐기, 아크릴기, 에폭시기 및 아민기로 이루어진 군에서 선택된 것이며, m 및 n은 1 내지 10의 정수이다.In Formulas 1-1 and 1-2, R 1 is a urethane group, R 2 is a cyanate group, R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group, m and n is an integer from 1 to 10.
상기 실라잔-실록산수지 화합물의 중량평균분자량이 500g/mol 미만인 경우, 내용제성, 내열성 및 수분 차단성 향상 효과가 미미하고, 50,000g/mol을 초과하는 경우에는 소수특성이 향상되어 다른 화합물과 접착성이 결여될 수 있다. 이러한, 실라잔-실록산수지 화합물은 고밀도의 구조를 갖고 있어 기판의 내화학성을 향상시키는 역할을 하며, 기재와 대비하여 낮은 굴절율을 보이므로 기재층과의 보강간섭으로 인하여 폴리이미드 필름의 광학 특성을 보다 향상시킬 수 있다.When the weight average molecular weight of the silazane-siloxane compound is less than 500 g / mol, the effect of improving solvent resistance, heat resistance, and water barrier property is insignificant, and when it exceeds 50,000 g / mol, the hydrophobic property is improved to bond with other compounds. You may lack sex. Since the silazane-siloxane compound has a high density structure, it serves to improve the chemical resistance of the substrate, and shows a low refractive index compared to the substrate, thereby improving the optical properties of the polyimide film due to reinforcement interference with the substrate layer. It can improve more.
상기 실라잔-실록산수지 화합물대 상기 노르보넨수지 화합물은 1:0.1 내지 1.0의 중량비로 포함되는 것이 본 발명의 목적 및 효과를 얻을 수 있다는 점에서 바람직하다. The silazane-siloxane compound to the norbornene resin compound is preferably included in a weight ratio of 1: 0.1 to 1.0 in that the object and effect of the present invention can be obtained.
상기 노르보넨수지 화합물은 신나메이트기를 갖는 화합물로서, UV를 조사하게 되면 열원 없이도 일방향으로 가교를 하여 막의 배향을 갖게하고, 또한 저온 공정이 가능한 장점을 가진다. The norbornene resin compound is a compound having a cinnamate group. When UV is irradiated, the norbornene resin compound crosslinks in one direction without a heat source to have an orientation of the film, and has a low temperature process.
본 발명에서는 상기 노르보넨수지 화합물을 프라이머(Primer)에 혼합하여 도입하여 배향(편광) 효과를 얻을 수 있는 것이다.In the present invention, the norbornene resin compound may be introduced by mixing with a primer to obtain an orientation (polarization) effect.
상기 노르보넨수지 화합물은 중량평균분자량이 500 내지 150,000g/mol인 것이 바람직하다. The norbornene resin compound preferably has a weight average molecular weight of 500 to 150,000 g / mol.
본 발명에 따른 광학프라이머층은 아크릴계 화합물을 더 포함할 수 있다. The optical primer layer according to the present invention may further include an acrylic compound.
상기 아크릴계 화합물은 상기 노르보넨수지 화합물 100중량부에 대하여 10 내지 200중량부, 바람직하게는 50 내지 100중량부, 보다 바람직하게는 60 내지 100중량부의 함량으로 포함되는 것이 본 발명의 목적 및 효과를 얻을 수 있고, 광학프라이머층과 하드 코팅층간의 접착력을 향상시키고 더불어 플렉서블(Flexible) 기판에서 요구되는 벤딩크렉(Bending Crack)을 개선 시킨다는 점에서 바람직하다.The acrylic compound may be included in an amount of 10 to 200 parts by weight, preferably 50 to 100 parts by weight, and more preferably 60 to 100 parts by weight, based on 100 parts by weight of the norbornene resin compound. It is preferable in that it can obtain, and improves the adhesive force between the optical primer layer and the hard coating layer, and also improves the bending crack required in the flexible substrate.
상기 아크릴계 화합물은 3관능성 아크릴레이트 단량체인 디펜타에리트리톨 헥사아크릴레이트(pentaerytritol triacrylate; PETA), 2관능성 아크릴레이트 단량체인 헥산디올디아크릴레이트(hexanediol diacrylate; HDDA) 및 6관능성 아크릴레이트 단량체인 디펜타에리스리톨헥사아크릴레이트(DIPENTAERYTHRITOL HEXAACRYLATE; DPEHA)로부터 이루어진 군에서 선택되는 일종 이상을 포함한다. The acryl-based compound may be a trifunctional acrylate monomer, dipentaerytritol triacrylate (PETA), a bifunctional acrylate monomer hexanediol diacrylate (HDDA) and a 6 functional acrylate monomer. At least one selected from the group consisting of DIPENTAERYTHRITOL HEXAACRYLATE (DPEHA).
상기 실라잔-실록산수지 화합물은 유기 용매에 녹여서 도포하며, 이때 적용 가능한 유기 용매는 이소프로필알콜(IPA), 프로필렌 글리콜 모노메틸 에테르(Propylene glycol monomethyl ether, PGME), Propylene Glycol Mnomethyl Ether Acetate(PGMEA), N-Butanol, Pentanol, 메틸에틸케톤(MEK), Acetone, Methyl alchol, Ethyl alchol 등이 있으나 반드이 이에 제한되는 것은 아니다. 이 화합물의 적절한 유기용매량은 프라이머 수지 총 중량 대비 0.5 내지 90%이며 0.5% 미만일 경우에는 도포시 균일하게 형성되지 않아 기재표면에 두께편차를 초래할 수 있고, 90%를 초과하는 경우 높은 점도로 인하여 기재에 도포하기 어렵다.The silazane-siloxane resin is applied by dissolving in an organic solvent, wherein the applicable organic solvent is isopropyl alcohol (IPA), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA) , N-Butanol, Pentanol, methyl ethyl ketone (MEK), Acetone, Methyl alchol, Ethyl alchol, but is not limited to these. The suitable organic solvent amount of this compound is 0.5 to 90% of the total weight of the primer resin, and if it is less than 0.5%, it may not be uniformly formed during application, which may cause thickness deviation on the surface of the substrate. It is difficult to apply to a substrate.
또한, 본 발명에서 상기 실라잔-실록산수지 화합물을 포함하는 광학프라이머층은 내용제성 및 광학특성을 확보하고 수분 차단특성을 향상시키기 위하여 두께가 0.1㎛ 이상인 것이 바람직하고, 폴리이미드 커버기판의 광학 특성저하 및 컬(curl) 발생을 방지하기 위하여 두께를 3㎛ 이하로 하는 것이 바람직하다. 상기 광학 프라이머층은 폴리이미드 필름의 일 측면에 형성될 수도 있으나, 양 측면에 모두 형성되는 것도 가능하며, 본 발명에 따른 광학 프라이머층을 포함한 폴리이미드 기판은 CM-3700D측정 기준, 황색도가 2.5 이하, 바람직하게는 2.0 이하 및 350 내지 700nm에서의 광투과도가 85 내지 93%, 바람직하게는 91 내지 93%의 우수한 광학특성을 나타낼 수 있게 된다. In addition, in the present invention, the optical primer layer including the silazane-siloxane resin compound preferably has a thickness of 0.1 μm or more in order to secure solvent resistance and optical properties and improve moisture blocking properties, and the optical properties of the polyimide cover substrate. In order to prevent a fall and the generation of curl, it is preferable to make thickness into 3 micrometers or less. The optical primer layer may be formed on one side of the polyimide film, but may also be formed on both sides, and the polyimide substrate including the optical primer layer according to the present invention is based on CM-3700D measurement, yellowness of 2.5 Hereinafter, the optical transmittance at preferably 2.0 or less and 350 to 700 nm can exhibit excellent optical properties of 85 to 93%, preferably 91 to 93%.
상기 광학프라이머층은 상기 화학식 1-1로 표시되는 반복단위 및 상기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 상기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머 수지용액으로 막을 형성한 후, 200 내지 300℃의 온도로 열처리하는 공정을 포함하여 제조될 수 있다. The optical primer layer may include a silazane-siloxane resin compound including a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2, and a norbornene resin including a repeating unit represented by Formula 2 After forming a film with an optical primer resin solution containing a compound, it may be prepared including a step of heat treatment at a temperature of 200 to 300 ℃.
본 발명에서 상기 광학프라이머층은 기재 상에 상기 광학프라이머 수지용액을 도포한 후, 건조시켜 막을 형성시킬 수 있는데, 상기 도포방법으로서, 스프레이(Spray) 코팅, 바(Bar) 코팅, 스핀(Spin) 코팅, 딥(Dip) 코팅 등의 다양한 방법 중 적절한 방법을 선택하여 코팅할 수 있으며, 코팅 방식 및 건조 방식은 통상 적용되는 것이라면 이에 제한되지 않고 적용 가능하다. In the present invention, the optical primer layer may be coated with the optical primer resin solution on a substrate and then dried to form a film. The coating method may include spray coating, bar coating, and spin. Various methods such as coating and dip coating may be selected and coated, and the coating method and the drying method may be applied without being limited thereto as long as they are generally applied.
상기 광학프라이머층은 200 내지 300℃ 온도로 열처리하는 것이 분자내 네트워크 구조를 갖기 유리하며, 보다 막 성질을 강직하게 만들어 주어 내화학성 및 내열성을 매우 우수하게 할 수 있다. The optical primer layer is advantageously heat treated at a temperature of 200 to 300 ° C. to have an intramolecular network structure, which makes the film property more rigid, thereby making it excellent in chemical resistance and heat resistance.
또한, 상기 열처리 공정 후 UV 편광조사 공정을 더 실시할 수 있으며, 상기 UV 편광조사 공정에 의하여 광학프라이머층의 표면을 일정 방향으로 배향시킬 수 있게 된다. In addition, the UV polarization irradiation step after the heat treatment process may be further performed, it is possible to orient the surface of the optical primer layer in a predetermined direction by the UV polarization irradiation process.
본 발명의 바람직한 양태에 따르면, 상기 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함함으로써, 내화학성 및 내 충격성을 확보하고, JIS K56000 측정 기준 5H 내지 10H의 표면경도를 나타낼 수 있다. 무엇보다도 상기 하드 코팅층은 광학프라이머층 상부에 형성됨으로써, 하드 코팅이 폴리이미드 필름에 직접적으로 적층될 경우와 비교하여 투과도 및 황색도 등의 광학특성은 유지하면서도 ASTM E96BW 측정기준 수분투과도가 0.001 내지 10g/m2*day, 바람직하게는 0.001 내지 3.1g/m2*day로 현저히 떨어질 수 있다. 특히, 본 발명의 폴리이미드 기판은 상기 범위의 낮은 수분투과도를 나타냄으로 외부의 습한 환경으로부터 TFT 및 OLED 소자를 보호하는 유리할 수 있다According to a preferred embodiment of the present invention, the polyimide substrate further comprises a hard coating layer, thereby securing chemical resistance and impact resistance, and can exhibit a surface hardness of JIS K56000 measurement standards 5H to 10H. Above all, the hard coating layer is formed on the optical primer layer, so that the optical coating such as transmittance and yellowness is maintained while the hard coating is laminated directly on the polyimide film, while the ASTM E96BW measurement moisture permeability is 0.001 to 10 g. / m 2 * day, preferably from 0.001 to 3.1 g / m 2 * day. In particular, the polyimide substrate of the present invention exhibits low moisture permeability in the above range, which may be advantageous for protecting TFT and OLED devices from external humid environments.
이때, 본 발명의 보다 바람직한 양태에 따르면, 상기 하드 코팅층은 하기 화학식 3으로 표시되는 알콕시 실란 및 하기 화학식 4로 표시되는 알콕시 금속의 혼합물 또는 화학반응물을 포함하는 실록산 수지로부터 형성된 것일 수 있다.At this time, according to a more preferred embodiment of the present invention, the hard coating layer may be formed from a siloxane resin containing a mixture or a chemical reactant of the alkoxy silane represented by the following formula (3) and the alkoxy metal represented by the following formula (4).
<화학식 3><Formula 3>
Figure PCTKR2016015280-appb-I000011
Figure PCTKR2016015280-appb-I000011
<화학식 4><Formula 4>
Figure PCTKR2016015280-appb-I000012
Figure PCTKR2016015280-appb-I000012
상기 화학식 3 내지 4에서, R1은 에폭시, 아크릴, 아이소시아네이트를 포함하는 선형, 분지형, 지환식, 방향족의 유기화합물이고, R2 및 R3는 산소 또는 질소 등 헤테로 화합물을 포함하는 선형, 분지형, 지환형 C1 내지 C8의 알킬기이며, n은 1 내지 3의 정수이다. 또한, M은 전이금속을 포함한 금속원소이며, m은 1 내지 10의 정수이다.In Formulas 3 to 4, R 1 is a linear, branched, alicyclic, aromatic organic compound including epoxy, acryl, and isocyanate, and R 2 and R 3 are linear, including a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8, n is an integer from 1 to 3. In addition, M is a metal element including a transition metal, and m is an integer of 1-10.
본 발명에서 상기 실록산 수지는 상기 화학식 3의 알콕시 실란 단독의 중합반응으로부터 제조될 수도 있고, 중합반응시 상기 화학식 3의 알콕시 금속을 투입함으로써 금속 원소의 화학결합이 존재하는 실록산 수지로도 제조할 수 있다. 이러한 실록산 수지의 형성 반응은 상온에서 진행될 수 있으나, 반응을 촉진하기 위해서 50℃ 내지 120℃에서 1시간에서 120시간 동안 교반할 수도 있다.In the present invention, the siloxane resin may be prepared from a polymerization reaction of the alkoxy silane of Formula 3 alone, or may be prepared as a siloxane resin in which a chemical bond of a metal element exists by introducing an alkoxy metal of Formula 3 during the polymerization reaction. have. The formation reaction of the siloxane resin may proceed at room temperature, but may be stirred for 1 hour to 120 hours at 50 ℃ to 120 ℃ to promote the reaction.
또한, 상기 반응시 가수분해와 축합반응을 진행하기 위한 촉매로서, 염산, 아세트산, 불화수소, 질산, 황산 요오드산 등의 산 촉매, 암모니아, 수산화칼륨, 수산화나트륨, 수산화바륨, 이미다졸 등의 염기 촉매 및 Amberite 등 이온교환수지가 사용될 수 있으며, 이들 촉매는 단독으로 사용될 수도 있으나 이들을 조합하여 사용하는 것도 가능하다. 촉매의 양은 특별히 제한되지 않으나, 실록산 수지 100 중량부 기준 0.0001 내지 약 10 중량부를 첨가할 수 있다.In addition, as a catalyst for the hydrolysis and condensation reaction during the reaction, an acid catalyst such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid and iodide sulfate, base such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole and the like Catalysts and ion exchange resins such as Amberite may be used, and these catalysts may be used alone but may be used in combination. The amount of the catalyst is not particularly limited, but may be added in an amount of 0.0001 to about 10 parts by weight based on 100 parts by weight of the siloxane resin.
상기 가수분해와 축합반응이 진행되면, 부산물인 알코올이 생성되는데 이를 제거함으로써 역반응을 줄여 정반응을 보다 빠르게 진행할 수 있으며 이를 통한 반응속도 조절이 가능하다. 또한, 반응 종료 후 상기 부산물은 감압하며 열을 가함으로써 제거할 수 있다. When the hydrolysis and condensation reaction proceeds, by-product alcohol is generated, and by removing this, the reverse reaction can be reduced to allow the forward reaction to proceed more quickly, and the reaction rate can be controlled through the reaction. In addition, after the reaction, the by-products can be removed by applying heat under reduced pressure.
이와 같이 축합반응에 의해 합성된 상기 실록산 수지는 반응시 첨가되는 모노머들에 의해 점도와 경화 속도를 조절할 수 있으며, 이를 통해 용도에 맞는 최적의 수지 조성물을 제공할 수 있다. 또한, 상기와 같은 반응을 통해 얻어진 실록산 수지는 가교시 분자간 공간이 확보되므로 경화 수축에 의한 컬 현상을 방지할 수 있으며, 가교결합 및 금속 원소에 의한 높은 표면 경도 구현이 가능하게 된다. As described above, the siloxane resin synthesized by the condensation reaction may adjust the viscosity and the curing rate by the monomers added during the reaction, thereby providing an optimum resin composition suitable for the purpose. In addition, the siloxane resin obtained through the reaction as described above can secure the intermolecular space during crosslinking, thereby preventing the curl phenomenon caused by curing shrinkage, and enables high surface hardness by crosslinking and metal elements.
한편, 본 발명의 바람직한 양태에 따르면, 상기 하드 코팅용 수지 조성물은 상기 실록산 수지의 중합을 위해 개시제를 추가적으로 포함할 수 있으며, 예를 들어 유기금속염 등 광중합개시제와 아민, 이미다졸 등 열중합 개시제를 사용할 수 있다. 이때, 개시제의 첨가량은 특별히 제한되지 않으나, 실록산 수지 약 100중량부에 대해 약 0.01 내지 10 중량부를 첨가할 수 있다. Meanwhile, according to a preferred embodiment of the present invention, the hard coating resin composition may further include an initiator for polymerization of the siloxane resin, for example, a photopolymerization initiator such as an organometallic salt and a thermal polymerization initiator such as amine or imidazole. Can be used. At this time, the addition amount of the initiator is not particularly limited, but may be added from about 0.01 to 10 parts by weight based on about 100 parts by weight of the siloxane resin.
또한, 본 발명의 상기 하드 코팅용 수지 조성물은 상기 실록산 수지의 점도를 제어하여 가공성을 더욱 용이하게 함과 동시에 코팅막의 두께를 조절하기 위해 유기용매를 더 첨가할 수 있다. 유기용매의 첨가량은, 특별히 제한되지 않으나, 사용 가능한 유기용매로는, 아세톤, 메틸에틸케톤, 메틸부틸케톤, 사이클로헥사논 등 케톤류, 또는 메틸셀로솔브, 부틸셀로솔브 등의 셀로솔브류, 또는 에틸에테르, 디옥산 등의 에테르류, 이소부틸알코올, 이소프로필알코올, 부탄올, 메탄올 등 알코올류, 또는 디클로로메탄, 클로로포름, 트리클로로에틸렌 등의 할로겐화 탄화수소류, 또는 노르말 헥산, 벤젠, 톨루엔 등의 탄화수소류 등으로 이루어진 용매로부터 선택된 1종 이상을 포함할 수 있다.In addition, the hard coating resin composition of the present invention may further add an organic solvent to control the viscosity of the siloxane resin to facilitate the processability and at the same time adjust the thickness of the coating film. The addition amount of the organic solvent is not particularly limited, but examples of the organic solvent that can be used include ketones such as acetone, methyl ethyl ketone, methyl butyl ketone and cyclohexanone, or cellosolves such as methyl cellosolve and butyl cellosolve, Or ethers such as ethyl ether and dioxane, alcohols such as isobutyl alcohol, isopropyl alcohol, butanol and methanol, or halogenated hydrocarbons such as dichloromethane, chloroform and trichloroethylene, or normal hexane, benzene and toluene It may include one or more selected from a solvent consisting of hydrocarbons and the like.
본 발명의 일 구현예에 있어서, 상기 실록산 수지는 중합반응으로부터 기인하는 산화반응을 억제하기 위해 산화방지제를 추가적으로 포함할 수 있으며, 레벨링제 또는 코팅조제를 더 포함할 수도 있으나, 반드시 이에 제한되는 것은 아니다.In one embodiment of the present invention, the siloxane resin may further include an antioxidant to suppress the oxidation reaction resulting from the polymerization reaction, and may further include a leveling agent or a coating aid, but is not necessarily limited thereto. no.
본 발명의 상기 하드 코팅용 수지 조성물은 코팅, 캐스팅, 몰딩 등 성형 후 광중합, 열중합에 의해 고경도 코팅 경화물로 제조될 수 있다. 광중합의 경우 광조사전 열처리를 통해 균일한 표면을 얻을 수 있으며, 이는 40℃ 이상 약 300℃ 이하의 온도에서 수행될 수 있고, 조사 광량의 경우 50mJ/cm2 이상 20000mJ/cm2 이하의 조건에서 수행될 수 있으나, 이에 제한되지 않는다. 또한, 열중합의 경우 40℃ 이상 약 300℃ 이하의 온도에서 수행될 수 있으나, 이에 제한되지 않는다.The resin composition for hard coating of the present invention may be prepared into a hardened coating cured product by photopolymerization and thermal polymerization after molding such as coating, casting, and molding. For the photopolymerization it is possible to obtain a uniform surface over the light article pre-heat treatment, which can be carried out at a temperature below about 300 ℃ than 40 ℃, if the irradiation light amount performed under the conditions of 50mJ / cm 2 or more 20000mJ / cm 2 or less It may be, but is not limited thereto. In addition, the thermal polymerization may be performed at a temperature of about 40 ° C. or more and about 300 ° C. or less, but is not limited thereto.
본 발명에서 상기와 같이 형성된 하드 코팅층은 우수한 표면 경도, 내 충격성 및 내화학성 확보를 위해 건조 두께가 10㎛ 이상인 것이 바람직하며, 휨 발생 및 과도한 경직성을 방지하기 위해 50㎛ 미만으로 형성되는 것이 바람직하다.In the present invention, the hard coating layer formed as described above preferably has a dry thickness of 10 μm or more for ensuring excellent surface hardness, impact resistance, and chemical resistance, and is preferably formed to be less than 50 μm to prevent warpage and excessive stiffness. .
나아가 본 발명은 투명 접착층, 블랙 메트리스 및 전술한 특성의 폴리이미드 기판을 포함하는 표시기판 모듈을 제공할 수 있다. 이에 제한되는 것은 아니나, 본 발명의 표시기판 모듈은 일예로 하기 도 1과 같이 광학프라이머 층(20), 폴리이미드 층(10), 광학프라이머 층(20) 및 하드코팅 층(30)이 순차적으로 적층된 구조의 폴리이미드 기판에 하부 광학 프라이머 층 방향으로 투명 접착층(40) 및 블랙메트리스(50)를 형성하여 제조될 수 있다. Furthermore, the present invention can provide a display substrate module including a transparent adhesive layer , a black mattress, and a polyimide substrate having the aforementioned characteristics. Although not limited thereto, the display substrate module of the present invention is, for example, the optical primer layer 20, the polyimide layer 10, the optical primer layer 20 and the hard coating layer 30 sequentially as shown in FIG. It may be prepared by forming a transparent adhesive layer 40 and the black mattress 50 in the direction of the lower optical primer layer on the laminated polyimide substrate.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 이에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention more specifically, and the present invention is not limited thereto.
<제조예 1. 폴리이미드 필름 제조>Production Example 1. Manufacture of Polyimide Film
1-1: 폴리이미드 분말 제조1-1: Polyimide Powder Manufacturing
반응기로써 교반기, 질소주입장치, 적하깔때기, 온도조절기 및 냉각기를 부착한 1L 반응기에 질소를 통과시키면서 N,N-디메틸아세타아미드(DMAc) 832g을 채운 후, 반응기의 온도를 25℃로 맞춘 후 비스 트리플루오로메틸 벤지딘(TFDB)64.046g(0.2mol)을 용해하여 이 용액을 25℃로 유지하였다. 여기에 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드(6FDA) 31.09g(0.07mol)과 비페닐 테트라카르복실릭 디안하이드라이드(BPDA) 8.83g(0.03mol)을 투입 후 일정 시간 동안 교반하여 용해 및 반응 시켰다. 이 때 용액의 온도는 25℃로 유지하였다. 그리고 테레프탈로일 클로라이드(TPC) 20.302g(0.1mol)을 첨가하여 고형분의 농도는 13중량%인 폴리아믹산 용액을 얻었다.After filling 832 g of N, N-dimethylacetaamide (DMAc) while passing nitrogen through a 1L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler as a reactor, the temperature of the reactor was adjusted to 25 ° C. 6.6046 g (0.2 mol) of bis trifluoromethyl benzidine (TFDB) was dissolved to maintain this solution at 25 ° C. Here, 31.09 g (0.07 mol) of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA) and 8.83 g (0.03 mol) of biphenyl tetracarboxylic dianhydride (BPDA) ) Was added and stirred for a certain time to dissolve and react. At this time, the temperature of the solution was maintained at 25 ℃. And 20.302 g (0.1 mol) of terephthaloyl chloride (TPC) was added to obtain a polyamic acid solution having a solid content of 13% by weight.
상기 폴리아믹산 용액에 피리딘 25.6g, 아세틱 안하이드라이드 33.1g을 투입하여 30분 교반 후 다시 70℃에서 1시간 교반하여 상온으로 식히고, 이를 메탄올 20L로 침전시키고, 침전된 고형분을 여과하여 분쇄한 후 100℃에서 진공으로 6시간 건조하여 111g의 고형분 분말의 폴리이미드를 얻었다.25.6 g of pyridine and 33.1 g of acetic anhydride were added to the polyamic acid solution, followed by stirring for 30 minutes, and then stirred at 70 ° C. for 1 hour to cool to room temperature, which was precipitated with 20 L of methanol, and the precipitated solid was filtered and ground. After drying for 6 hours in a vacuum at 100 ℃ to obtain a polyimide of 111g of solid powder.
1-2: 폴리이미드 필름 제조1-2: polyimide film production
표면에 OH기가 결합된 비결정질 실리카 입자 0.03g (0.03wt%)를 N,N-디메틸아세타아미드(DMAc)에 분산농도 0.1%로 투입하고 용매가 투명해 질 때까지 초음파 처리를 한 후, 상기 수득된 고형분 분말의 폴리이미드를 100g 취하여 670g의 N,N-디메틸아세타아미드(DMAc)에 녹여서 13wt%의 용액을 었다. 이렇게 수득된 용액을 스테인레스판에 도포한 후 340㎛로 캐스팅하고 130℃의 열풍으로 30분 건조한 후 필름을 스테인레스판에서 박리하여 프레임에 핀으로 고정하였다.0.03 g (0.03 wt%) of amorphous silica particles having OH groups bound to the surface were added to N, N-dimethylacetamide (DMAc) at a dispersion concentration of 0.1%, and subjected to sonication until the solvent became transparent. 100 g of the obtained polyimide of the solid powder was taken and dissolved in 670 g of N, N-dimethylacetaamide (DMAc) to obtain a 13 wt% solution. The solution thus obtained was applied to a stainless plate, cast at 340 μm, dried for 30 minutes with hot air at 130 ° C., and the film was peeled off from the stainless plate to be fixed to the frame with a pin.
필름이 고정된 프레임을 진공오븐에 넣고 100℃부터 300℃까지 2시간 동안 천천히 가열한 후 서서히 냉각해 프레임으로부터 분리하여 폴리이미드 필름을 수득하였다. 이후 최종 열처리 공정으로서 다시 300℃에서 30분 동안 열처리하였다. 이때 제조된 폴리이미드 필름은 두께가 80㎛이고, 평균 광투과도가 87%이며, 황색도가 4.5이고, TMA-Method에 따라 50 내지 250℃에서 측정한 평균 선팽창계수(CTE)는 20ppm/℃ 였다.The film on which the film was fixed was placed in a vacuum oven and slowly heated for 2 hours from 100 ° C to 300 ° C, and then slowly cooled to separate from the frame to obtain a polyimide film. After the final heat treatment was performed for 30 minutes at 300 ℃ again. The polyimide film thus prepared had a thickness of 80 μm, an average light transmittance of 87%, a yellowness of 4.5, and an average linear expansion coefficient (CTE) measured at 50 to 250 ° C. according to TMA-Method. .
<제조예 2. 하드 코팅 조성물 제조>Preparation Example 2 Preparation of Hard Coating Composition
KBM-303 (Shinetsu社), Titanium isopropoxide (Sigma-Aldrich社), H2O를 227.96㎖:1.94㎖:21.61㎖의 비율로 혼합하여 500mL 플라스크에 넣은 후, 수산화나트륨 0.2g을 촉매로 첨가하여 60℃에서 24시간 동안 교반하였다. 이 후, 0.45um 테프론 필터를 사용해 여과하여 수평균분자량이 7245, 중량형균 분자량이 20146 및 다분산지수(PDI, Mw/Mn)가 2.78인 실록산 수지를 얻었다(상기 분자량은 GPC를 이용하여 측정). 여기에, 광개시제로 IRGACURE 250 (BASF社)를 상기 수지 100 중량부 대비 3 중량부 첨가하여 최종적으로 하드 코팅용 조성물을 얻었다.KBM-303 (Shinetsu Co., Ltd.), Titanium isopropoxide (Sigma-Aldrich Co., Ltd.) and H 2 O were mixed in a ratio of 227.96 mL: 1.94 mL: 21.61 mL in a 500 mL flask, and 0.2 g of sodium hydroxide was added as a catalyst. Stir at rt for 24 h. Thereafter, the resultant was filtered using a 0.45 um Teflon filter to obtain a siloxane resin having a number average molecular weight of 7245, a weight average bacterium molecular weight of 20146, and a polydispersity index (PDI, M w / M n ) of 2.78 (the molecular weight using GPC). Measure). Here, IRGACURE 250 (BASF, Inc.) was added as a photoinitiator 3 parts by weight based on 100 parts by weight of the resin to finally obtain a composition for hard coating.
실시예 1Example 1
중량평균분자량이 2,000g/mol인 실라잔-실록산수지 화합물(DCT社) 및 중량평균분자량이 150,000g/mol인 신나메이트기를 갖는 노르보넨수지 화합물을 1: 0.6의 중량비로 첨가하고, 아크릴계 화합물(하이CNP社의 모델명 HIK-2000) 를 상기 신나메이트기를 갖는 노르보넨수지 화합물 100중량부에 대하여 60중량부의 함량으로 사이클로헥사논에 첨가한 후, 용해하여 광학프라이머 수지용액을 제조하였다. A silazane-siloxane resin compound having a weight average molecular weight of 2,000 g / mol (DCT) and a norbornene resin compound having a cinnamate group having a weight average molecular weight of 150,000 g / mol are added at a weight ratio of 1: 0.6, and an acrylic compound ( Hi CNP model name HIK-2000) Was added to cyclohexanone in an amount of 60 parts by weight based on 100 parts by weight of the norbornene resin compound having the cinnamate group, and then dissolved to prepare an optical primer resin solution.
상기 제조된 광학프라이머 수지용액을 상기 제조예를 통해 제조한 무색투명 폴리이미드 필름의 일면에 와이어로 도포한 후, 80℃의 온도로 건조하여 두께가 0.1㎛인 막을 형성하였다. 그 후, 상온에서 약 5분간 방치한 후 약 250℃의 온도로 열처리한 후, UV 직선 편광된 자외선(300 mW/㎠)을 조사하여, 광배향막으로 배향시켰다. 이 때, 상기 직선 편광된 자외선의 편광 방향은, 필름의 경계선과 60° 이상의 각도를 이루도록 필름의 진행로 상에 격자 타입의 패턴 마스크를 위치하여 UV 편광을 조사하는 방법으로 제어하였다. The prepared optical primer resin solution was applied to one surface of the colorless and transparent polyimide film prepared through the preparation example, and then dried at a temperature of 80 ° C. to form a film having a thickness of 0.1 μm. Thereafter, the mixture was left to stand at room temperature for about 5 minutes and then heat-treated at a temperature of about 250 ° C., followed by irradiation with UV linearly polarized ultraviolet rays (300 mW / cm 2) to orientate the photo alignment layer. At this time, the polarization direction of the linearly polarized ultraviolet light was controlled by a method of irradiating UV polarization by placing a lattice-type pattern mask on the path of the film so as to form an angle of 60 ° or more with the boundary line of the film.
상기 배향처리한 후, 두께가 0.1㎛인 광학프라이머층을 형성하여 폴리이미드 기판을 제조하였다.After the alignment treatment, an optical primer layer having a thickness of 0.1 μm was formed to prepare a polyimide substrate.
실시예 2Example 2
상기 실시예 1과 같은 방법으로 광학 프라이머층을 형성한 폴리이미드 기판을 제조하되, 광학프라이머층 이면에 상기 제조예 2의 실록산 수지를 40㎛으로 코팅한 뒤, 315nm 파장의 자외선 램프에 30초간 노출하여 하드 코팅층을 추가로 형성하였다.A polyimide substrate having an optical primer layer was prepared in the same manner as in Example 1, except that the siloxane resin of Preparation Example 2 was coated with 40 μm on the back of the optical primer layer, and then exposed to an ultraviolet lamp having a wavelength of 315 nm for 30 seconds. By further forming a hard coating layer.
비교예 1Comparative Example 1
제조예 1에서 제조된 폴리이미드 필름을 그대로 준비하여 비교예 1로 하였다. The polyimide film produced in Preparation Example 1 was prepared as it was as Comparative Example 1.
비교예 2Comparative Example 2
상기 제조예 1의 폴리이미드 필름에 광학 프라이머 층은 생략하고 실시예 2와 동일한 방법으로 하드 코팅층만을 형성하여 폴리이미드 기판을 제조하였다.In the polyimide film of Preparation Example 1, the optical primer layer was omitted, and only the hard coating layer was formed in the same manner as in Example 2 to prepare a polyimide substrate.
<측정예>Measurement Example
하기와 같은 방법으로 물성을 측정하여 그 결과를 표 1 및 표 2에 나타내었다.The physical properties were measured by the following method, and the results are shown in Table 1 and Table 2.
(1) 평균 광투과도(%): 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여, 350~700nm에서의 광학투과도를 측정하였다.(1) Average light transmittance (%): The optical transmittance at 350-700 nm was measured using the spectrophotometer (CM-3700D, KONICA MINOLTA) by the standard specification ASTM E313.
(2) 황색도: 표준규격 ASTM E313으로 Spectrophotometer (CM-3700D, KONICA MINOLTA)를 이용하여 황색도를 측정하였다.(2) Yellowness: Yellowness was measured by using a spectrophotometer (CM-3700D, KONICA MINOLTA) as a standard standard ASTM E313.
(3) 수분투과도(g/m2*day): 표준규격 ASTM E69BW으로 수분투과도기(MOCON/US/Aquatran- model-1)를 이용하여 수분투과도(WVTR)를 측정하였다.(3) Moisture Permeability (g / m 2 * day): The moisture permeability (WVTR) was measured using a moisture permeability tester (MOCON / US / Aquatran-model-1) using the standard standard ASTM E69BW.
(4) 연필경도: 표준규격 ASTM D3363으로 미쯔비스 평가용 연필(UNI)로 전동식연필경도측정기를 이용하여 (코팅층이 형성된 경우엔, 코팅층이 형성된 방향으로) 1kg의 하중 180mm/min의 속도로 50mm를 5회 그은 후, 표면에 스크레치가 전혀 없는 연필경도를 측정하였다.(4) Pencil hardness: 50mm at a speed of 180mm / min with a load of 1kg (in the direction of the coating layer, if a coating layer is formed) using an electric pencil hardness tester with Mitsubishi evaluation pencil (UNI) according to the standard specification ASTM D3363 After drawing five times, the pencil hardness without any scratches on the surface was measured.
(5) 접착성(tape로 Cross Cut후 탈부착): 표준규격(ASTM D3359)으로 Cross Cut후 Taping하여 측정하였다.(5) Adhesiveness (Removability after Cross Cut with tape): Measured by Taping after Cross Cut with standard specification (ASTM D3359).
(6) 휨특성: 지름 2mm인 원형 도구에 가운데 두고 기판을 감았다 폈다 200,000회 반복하여 막의 갈라짐 유무를 육안 및 현미경으로 관찰하여 갈라지는 현상이 조금이라도 있으면 'Failed'로 표시하고, 갈라지는 현상이 없으면 'OK'로 표시하였다.(6) Bending characteristics: wound the substrate in the center of a circular tool with a diameter of 2mm and repeated 200,000 times by visually and observing the film for cracking. If any cracking occurs, mark it as 'Failed'. 'OK'.
(7) 콘트라스트: 상온 암실에서 PR-705(Photo Research사)를 이용하여, 백색미미지와 흑색이미지를 영상표시 장치에서 표시 한후, 스크린의 정면 방향 (극각 0’) 및 경사 방향(방위각 45~60’)에서 XYZ 표시 시스템의 Yrkatdmf 측정 하였다, 경사 방향에서의 콘트라스트비 “YW/YB”는 백색 이미지의 Y값(YW)과 흑색이미지의 Y값 (YB)으로부터 계산하였다. 상기에서 준비한 필름들의 편광 효율이 좋을수록 콘트라스비는 증가한다. (7) Contrast: After displaying white and black images on an image display device using PR-705 (Photo Research) in a room temperature dark room, the front direction of the screen (polar angle 0 ') and the tilt direction (azimuth angle 45 to 60 ') Yrkatdmf of the XYZ display system was measured, the contrast ratio “YW / YB” in the oblique direction was calculated from the Y value (YW) of the white image and the Y value (YB) of the black image. The better the polarization efficiency of the films prepared above, the higher the contrast ratio.
(8) 열팽창 계수(CTE) 측정(8) thermal expansion coefficient (CTE) measurement
TMA(TA Instrument사, Q400)을 이용하여 TMA- Method에 따라 2번에 걸쳐 50~250℃에서의 선형 열팽창 계수를 측정하였다. 시편의 크기는 4mm×24mm, 하중은 0.02N으로 승온 속도는 10℃/min으로 하였다.The TMA (TA Instrument, Inc., Q400) was used to measure the linear thermal expansion coefficient at 50 to 250 ° C. twice according to the TMA-Method. The size of the specimen was 4 mm × 24 mm, the load was 0.02 N, and the temperature increase rate was 10 ° C./min.
필름을 제막하고 열처리를 통하여 필름 내에 잔류 응력이 남아 있을 수 있기 때문에 첫 번째 작동(Run)으로 잔류응력을 완전히 제거 후, 두 번째 값을 실측정치로 제시하였다. After the film was formed and residual stress could remain in the film through heat treatment, the first run was completely removed and the second value was presented as a real measurement.
구분division 투과도(%)Permeability (%) 황색도Yellow road 수분투과도(g/m2/day)Moisture permeability (g / m 2 / day) 연필경도Pencil hardness 접착성Adhesive 휨특성Flexural characteristics 정면 방향(극각 0’)에서의 콘트라스트비Contrast ratio in the front direction (polar angle 0 ') 경사 방향(극각 60/방위각 45’’)에서의 콘트라스트비Contrast ratio in the inclined direction (polar angle 60 / azimuth angle 45 '”)
실시예 1Example 1 9191 2.02.0 >50> 50 2H2H 5B5B OKOK 587.6587.6 29.429.4
실시예 2Example 2 9191 2.02.0 3.13.1 9H9H 5B5B OKOK 589.7589.7 29.929.9
비교예 1Comparative Example 1 8989 4.54.5 >50> 50 2H2H 5B5B OKOK 476476 26.226.2
비교예 2Comparative Example 2 8888 4.44.4 17.017.0 9H9H 5B5B OKOK 413.0413.0 14.614.6
상기 표 1의 결과를 통해 알 수 있는 바와 같이, 폴리이미드 필름 표면에 광학프라이머층이 형성된 실시예 1 내지 2의 경우, 표면에 어떤 처리도 하지 않은 비교예 1에 비해 광투과도 황색도 등이 향상되었음을 알 수 있었다. 또한, 하드 코팅 처리를 한 비교예 2의 경우 내화학성과 연필 경도는 우수한 것으로 나타났으나, 황색도와 투과도가 낮아 광학 특성이 좋지 못한 반면, 실시예 2와 같이 하드 코팅층 형성 전에 광학 프라이머 층을 형성한 경우 내화학성이 보완되고 무엇보다도 광학특성과 수분 투과도가 비교예 2에 비해 향상될 수 있음을 확인할 수 있었다. 더불어 광학프라이머층에 포함된 편광기능으로 정면에서의 콘트라스트 비가 베이스 필름 및 프라이머 필름에 비해 높아짐을 알 수 있다. 상기 콘트라스트 비가 높은 수록 화면(영상)의 선명도가 증가하여 시인성의 개선이 가능하다.As can be seen from the results of Table 1, in the case of Examples 1 to 2 in which the optical primer layer was formed on the surface of the polyimide film, light transmittance, yellowness, etc. were improved compared to Comparative Example 1, which did not have any treatment on the surface. It was found. In addition, in the case of Comparative Example 2 subjected to the hard coating treatment, the chemical resistance and the pencil hardness were excellent, but the optical properties were poor due to the low yellowness and the transmittance, whereas the optical primer layer was formed before the hard coating layer was formed as in Example 2. In one case, the chemical resistance was complemented, and above all, the optical properties and the moisture permeability were confirmed to be improved compared to Comparative Example 2. In addition, it can be seen that the contrast ratio in the front is higher than that of the base film and the primer film due to the polarization function included in the optical primer layer. The higher the contrast ratio, the higher the sharpness of the screen (image), thereby improving visibility.
이러한 결과를 통해, 본 발명에 따른 폴리이미드 기판은 광학적 특성은 물론 표면경도와 내화학성, 휨 특성이 우수 및 높은 코트라스트를 구현하여 플렉시블 및 디스플레이 전자기기의 표시기판모듈로 적합하며, 특히 수분 투과도가 낮아 외부의 습한 환경으로부터 TFT 및 OLED 소자를 보호하는데 유리할 것으로 파악되었다.Through these results, the polyimide substrate according to the present invention realizes excellent optical properties as well as surface hardness, chemical resistance, and bending characteristics and high coat last, and is suitable as a display substrate module for flexible and display electronic devices. Low was found to be beneficial to protect the TFT and OLED devices from the external humid environment.
본 발명은 폴리이미드 기판 및 이를 포함하는 표시 기판 모듈에 적용가능하다.The present invention is applicable to a polyimide substrate and a display substrate module including the same.

Claims (16)

  1. 폴리이미드 층; 및Polyimide layer; And
    상기 폴리이미드 층의 적어도 일면에 하기 화학식 1-1로 표시되는 반복단위 및 하기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 하기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머층을 포함하는 폴리이미드 기판.At least one surface of the polyimide layer comprises a repeating unit represented by the following formula (1-1) and a repeating unit represented by the following formula 1-2 and a silazane-siloxane compound and a repeating unit represented by the formula (2) A polyimide substrate comprising an optical primer layer containing a norbornene resin compound.
    <화학식 1-1><Formula 1-1>
    Figure PCTKR2016015280-appb-I000013
    Figure PCTKR2016015280-appb-I000013
    <화학식 1-2><Formula 1-2>
    Figure PCTKR2016015280-appb-I000014
    Figure PCTKR2016015280-appb-I000014
    상기 화학식 1-1 및 1-2에서 R1은 우레탄기이고, R2는 시아네이트기이고, R3는 하이드록시기, 비닐기, 아크릴기, 에폭시기 및 아민기로 이루어진 군에서 선택된 것이며, m 및 n은 1 내지 10의 정수이다.In Formulas 1-1 and 1-2, R 1 is a urethane group, R 2 is a cyanate group, R 3 is selected from the group consisting of a hydroxyl group, a vinyl group, an acryl group, an epoxy group and an amine group, m and n is an integer from 1 to 10.
    <화학식 2><Formula 2>
    Figure PCTKR2016015280-appb-I000015
    Figure PCTKR2016015280-appb-I000015
    상기 실라잔-실록산수지 화합물은 중량평균분자량이 500 내지 500,000 g/mol인 것을 특징으로 한다. The silazane-siloxane resin is characterized in that the weight average molecular weight of 500 to 500,000 g / mol.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 실라잔-실록산수지 화합물은 중량평균분자량이 500 내지 500,000 g/mol인 것을 특징으로 하는 폴리이미드 기판.The silazane-siloxane compound is a polyimide substrate, characterized in that the weight average molecular weight of 500 to 500,000 g / mol.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 노르보넨수지 화합물은 중량평균분자량이 500 내지 150,000g/mol인 것을 특징으로 하는 폴리이미드 기판.The norbornene resin compound is a polyimide substrate, characterized in that the weight average molecular weight of 500 to 150,000g / mol.
  4. 제 1 항에 있어서, 상기 실라잔-실록산수지 화합물대 상기 노르보넨수지 화합물은 1:0.1 내지 1.0의 중량비로 포함되는 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 1, wherein the silazane-siloxane resin to the norbornene resin compound is included in a weight ratio of 1: 0.1 to 1.0.
  5. 제 1 항에 있어서, 상기 광학프라이머층은 아크릴계 화합물을 포함하는 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 1, wherein the optical primer layer comprises an acrylic compound.
  6. 제 5 항에 있어서, 상기 아크릴계 화합물은 상기 노르보넨수지 화합물 100중량부에 대하여 10 내지 200중량부의 함량으로 포함되는 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate according to claim 5, wherein the acrylic compound is contained in an amount of 10 to 200 parts by weight based on 100 parts by weight of the norbornene resin compound.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 아크릴계 화합물은 3관능성 아크릴레이트 단량체인디펜타에리트리톨 헥사아크릴레이트(pentaerytritol triacrylate; PETA), 2관능성 아크릴레이트 단량체인 헥산디올디아크릴레이트(hexanediol diacrylate; HDDA) 및 6관능성 아크릴레이트 단량체인 디펜타에리스리톨헥사아크릴레이트(DIPENTAERYTHRITOL HEXAACRYLATE; DPEHA)로부터 이루어진 군에서 선택되는 일종 이상인 것을 특징으로 하는 폴리이미드 기판. The acryl-based compound is a trifunctional acrylate monomer dipentaerythritol hexaacrylate (pentaerytritol triacrylate (PETA)), a bifunctional acrylate monomer hexanediol diacrylate (hexanediol diacrylate (HDDA)) and a 6 functional acrylate monomer. A polyimide substrate, characterized in that it is at least one selected from the group consisting of dipentaerythritol hexaacrylate (DIPENTAERYTHRITOL HEXAACRYLATE; DPEHA).
  8. 제 1 항에 있어서, 상기 광학프라이머층은 두께가 0.1 내지 3 ㎛인 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 1, wherein the optical primer layer has a thickness of 0.1 to 3 μm.
  9. 제 1 항에 있어서, 상기 광학프라이머층은 상기 화학식 1-1로 표시되는 반복단위 및 상기 화학식 1-2로 표시되는 반복단위를 포함하는 실라잔-실록산수지 화합물 및 상기 화학식 2로 표시되는 반복단위를 포함하는 노르보넨수지 화합물을 포함하는 광학프라이머 수지용액으로 막을 형성한 후, 200 내지 300℃의 온도로 열처리하는 공정을 포함하여 제조되는 것을 특징으로 하는 폴리이미드 기판.The method of claim 1, wherein the optical primer layer is a silazane-siloxane resin compound comprising a repeating unit represented by Formula 1-1 and a repeating unit represented by Formula 1-2 and a repeating unit represented by Formula 2 Forming a film with an optical primer resin solution containing a norbornene resin compound comprising a, a polyimide substrate comprising a step of heat treatment at a temperature of 200 to 300 ℃.
  10. 제 1 항에 있어서, 상기 폴리이미드 기판은 KONICA MINOLTA社 CM-3700D측정 기준, 황색도가 2.5 이하이고, 550nm에서의 광투과도가 85 내지 93%인 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate according to claim 1, wherein the polyimide substrate has a yellowness of 2.5 or less, based on KONICA MINOLTA's CM-3700D measurement, and a light transmittance at 550 nm of 85 to 93%.
  11. 제 1 항에 있어서, 상기 폴리이미드 기판은 하드 코팅층을 추가적으로 더 포함하는 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 1, wherein the polyimide substrate further comprises a hard coating layer.
  12. 제 11 항에 있어서, 상기 하드 코팅층은 하기 화학식 3으로 표시되는 알콕시 실란 및 하기 화학식 4로 표시되는 알콕시 금속의 혼합물 또는 화학반응물을 포함하는 실록산 수지로부터 형성된 것임을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 11, wherein the hard coating layer is formed from a siloxane resin including a mixture or a chemical reactant of an alkoxy silane represented by Formula 3 and an alkoxy metal represented by Formula 4.
    <화학식 3><Formula 3>
    Figure PCTKR2016015280-appb-I000016
    Figure PCTKR2016015280-appb-I000016
    <화학식 4><Formula 4>
    Figure PCTKR2016015280-appb-I000017
    Figure PCTKR2016015280-appb-I000017
    상기 화학식 3 내지 4에서, R1은 에폭시, 아크릴, 아이소시아네이트를 포함하는 선형, 분지형, 지환식, 방향족의 유기화합물이고, R2 및 R3는 산소 또는 질소 등 헤테로 화합물을 포함하는 선형, 분지형, 지환형 C1 내지 C8의 알킬기이며, n은 1 내지 3의 정수이다. 또한, M은 전이금속을 포함한 금속원소이며, m은 1 내지 10의 정수이다.In Formulas 3 to 4, R 1 is a linear, branched, alicyclic, aromatic organic compound including epoxy, acryl, and isocyanate, and R 2 and R 3 are linear, including a hetero compound such as oxygen or nitrogen, branched, an alkyl group of alicyclic C 1 to C 8, n is an integer from 1 to 3. In addition, M is a metal element including a transition metal, and m is an integer of 1-10.
  13. 제 11 항에 있어서, 상기 하드 코팅층은 두께가 10 내지 50㎛인 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 11, wherein the hard coating layer has a thickness of 10 to 50 μm.
  14. 제 11 항에 있어서, 상기 폴리이미드 기판은 JIS K56000 측정 기준 표면경도가 5H 내지 9H인 것을 특징으로 하는 폴리이미드 기판.12. The polyimide substrate of claim 11, wherein the polyimide substrate has a JIS K56000 measurement surface hardness of 5H to 9H.
  15. 제 11 항에 있어서, 상기 폴리이미드 기판은 ASTM E96BW 측정기준 수분투과도가 0.001 내지 10g/m2*day인 것을 특징으로 하는 폴리이미드 기판.The polyimide substrate of claim 11, wherein the polyimide substrate has an ASTM E96BW measurement moisture permeability of 0.001 to 10 g / m 2 * day.
  16. 투명 접착층, 블랙메트리스 층 및 상기 제 1 항 내지 제 15 항 중 어느 한 항의 폴리이미 기판을 포함하는 표시 기판 모듈.A display substrate module comprising a transparent adhesive layer, a black mattress layer and a polyimide substrate according to any one of claims 1 to 15.
PCT/KR2016/015280 2015-12-31 2016-12-26 Polyimide substrate and display substrate module comprising same WO2017116103A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0191068 2015-12-31
KR20150191068 2015-12-31
KR20160178134 2016-12-23
KR10-2016-0178134 2016-12-23

Publications (1)

Publication Number Publication Date
WO2017116103A1 true WO2017116103A1 (en) 2017-07-06

Family

ID=59225340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015280 WO2017116103A1 (en) 2015-12-31 2016-12-26 Polyimide substrate and display substrate module comprising same

Country Status (2)

Country Link
TW (1) TW201727274A (en)
WO (1) WO2017116103A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985344B2 (en) 2017-10-27 2021-04-20 Applied Materials, Inc. Flexible cover lens films
EP3683047A4 (en) * 2017-09-04 2021-08-04 Kolon Industries, Inc. Hard coating film having multilayer-structure, and polyimide film comprising same
US11260638B2 (en) 2019-08-29 2022-03-01 Shpp Global Technologies B.V. Transparent, flexible, impact resistant, multilayer film comprising polycarbonate copolymers
US11571881B2 (en) 2020-03-03 2023-02-07 Kolon Industries, Inc. Hard coating film having multilayer-structure, and polyimide film comprising same
US11579339B2 (en) 2018-05-10 2023-02-14 Applied Materials, Inc. Replaceable cover lens for flexible display
US11789300B2 (en) 2019-06-26 2023-10-17 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543834A (en) * 1991-08-13 1993-02-23 Nippon Zeon Co Ltd Thermoplastic norbornene resin coating material and method for formign coating layer
KR20130003339A (en) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 Flexible display substrate
KR20140014209A (en) * 2011-03-01 2014-02-05 에이제토 엘렉토로닉 마티리알즈 아이피 (재팬) 가부시키가이샤 Composition for forming low-refractive-index film, method of forming low-refractive-index film, and low-refractive-index film and antireflective film both formed by the formation method
KR20140093632A (en) * 2013-01-18 2014-07-28 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and photosemiconductor device using the same
KR20140128638A (en) * 2013-04-29 2014-11-06 이근수 Modified polysilazane-based polymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysilazane-based polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543834A (en) * 1991-08-13 1993-02-23 Nippon Zeon Co Ltd Thermoplastic norbornene resin coating material and method for formign coating layer
KR20140014209A (en) * 2011-03-01 2014-02-05 에이제토 엘렉토로닉 마티리알즈 아이피 (재팬) 가부시키가이샤 Composition for forming low-refractive-index film, method of forming low-refractive-index film, and low-refractive-index film and antireflective film both formed by the formation method
KR20130003339A (en) * 2011-06-30 2013-01-09 코오롱인더스트리 주식회사 Flexible display substrate
KR20140093632A (en) * 2013-01-18 2014-07-28 신에쓰 가가꾸 고교 가부시끼가이샤 Primer composition and photosemiconductor device using the same
KR20140128638A (en) * 2013-04-29 2014-11-06 이근수 Modified polysilazane-based polymer, coating composition comprising the same, coated plastic substrate obtainable using the same and its preparing method, and method of preparing the modified polysilazane-based polymer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3683047A4 (en) * 2017-09-04 2021-08-04 Kolon Industries, Inc. Hard coating film having multilayer-structure, and polyimide film comprising same
US11117355B2 (en) 2017-09-04 2021-09-14 Kolon Industries, Inc. Hard coating film having multilayer-structure, and polyimide film comprising same
US10985344B2 (en) 2017-10-27 2021-04-20 Applied Materials, Inc. Flexible cover lens films
US11758757B2 (en) 2017-10-27 2023-09-12 Applied Materials, Inc. Flexible cover lens films
US11579339B2 (en) 2018-05-10 2023-02-14 Applied Materials, Inc. Replaceable cover lens for flexible display
US11789300B2 (en) 2019-06-26 2023-10-17 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11934056B2 (en) 2019-06-26 2024-03-19 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11940683B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11940682B2 (en) 2019-06-26 2024-03-26 Applied Materials, Inc. Flexible multi-layered cover lens stacks for foldable displays
US11260638B2 (en) 2019-08-29 2022-03-01 Shpp Global Technologies B.V. Transparent, flexible, impact resistant, multilayer film comprising polycarbonate copolymers
US11571881B2 (en) 2020-03-03 2023-02-07 Kolon Industries, Inc. Hard coating film having multilayer-structure, and polyimide film comprising same

Also Published As

Publication number Publication date
TW201727274A (en) 2017-08-01

Similar Documents

Publication Publication Date Title
WO2017116103A1 (en) Polyimide substrate and display substrate module comprising same
EP2931795A1 (en) Transparent polyimide substrate and method for fabricating the same
KR101874616B1 (en) A resin film, a laminate, an optical member, a gas barrier material, and a touch sensor base material
WO2014163352A1 (en) Polyimide cover substrate
US10431753B2 (en) Substrate for display, color filter using the same and method for the production thereof, organic EL element and method for the production thereof, and flexible organic EL display
WO2017111289A1 (en) Polyamic acid composition to which alicyclic monomers are applied and transparent polyimide film using same
KR20180001175A (en) Polyimide Substrate having antistatic property And Display Substrate Module Including The Same
WO2015080428A1 (en) Composition for forming adhesive film, adhesive film for processing prior to photo-curing, adhesive film, and electronic paper display device
WO2013002614A2 (en) Polyamic acid, polyamic acid solution, polyimide protective layer, and polyimide film
WO2018212545A1 (en) Hard coating film and image display apparatus comprising same
US11805616B2 (en) Polyimide-based composite film and display device comprising same
US20210047485A1 (en) Polyimide-based composite film and display device comprising same
TW201940570A (en) Hybrid resin composition
KR20180072268A (en) Composition For Hard Coating and Polyimide Substrate Including Cured Product Of The Same As A Hard Coating Layer
WO2021054513A1 (en) Method for producing polyimide powder, and polyimide powder produced thereby
WO2012153966A2 (en) Composite sheet and display substrate using same
WO2018124769A1 (en) Coating composition and film manufactured therefrom
KR20160082478A (en) Polyimide Substrate And Display Substrate Module Including The Same
WO2018212547A1 (en) Hard coating film and image display apparatus comprising same
WO2016108629A1 (en) Polyimide substrate and display substrate module comprising same
WO2021117961A1 (en) Polyimide film having excellent weather resistance
TWI757319B (en) Composition for forming peeling layer
WO2013019040A2 (en) Photo-curable organic-inorganic hybrid resin composition
WO2021220919A1 (en) Method for producing surface-modified metal oxide microparticles, method for producing surface-modified metal oxide microparticle dispersion, and method for producing solid product
WO2018221980A1 (en) Resin composition for coating, and coating film comprising cured product thereof as coating layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16882055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16882055

Country of ref document: EP

Kind code of ref document: A1