WO2017115855A1 - ガス攪拌式発酵装置 - Google Patents

ガス攪拌式発酵装置 Download PDF

Info

Publication number
WO2017115855A1
WO2017115855A1 PCT/JP2016/089141 JP2016089141W WO2017115855A1 WO 2017115855 A1 WO2017115855 A1 WO 2017115855A1 JP 2016089141 W JP2016089141 W JP 2016089141W WO 2017115855 A1 WO2017115855 A1 WO 2017115855A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
culture
metal film
sintered metal
culture tank
Prior art date
Application number
PCT/JP2016/089141
Other languages
English (en)
French (fr)
Inventor
慎一郎 松家
暢久 新田
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201680076444.0A priority Critical patent/CN109415672A/zh
Priority to EP16881829.2A priority patent/EP3399015A4/en
Priority to JP2017559240A priority patent/JPWO2017115855A1/ja
Publication of WO2017115855A1 publication Critical patent/WO2017115855A1/ja
Priority to US16/019,681 priority patent/US20180327705A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • C12M29/08Air lift
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/04Stirrer or mobile mixing elements with introduction of gas through the stirrer or mixing element
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • C12M1/08Apparatus for enzymology or microbiology with gas introduction means with draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/18Flow directing inserts
    • C12M27/24Draft tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes

Definitions

  • the present invention relates to a gas stirring type fermentation apparatus. Furthermore, it is related with the manufacturing method of a chemical substance.
  • Patent Document 1 discloses a method for producing isoprene by culturing a microorganism having an isoprene-producing ability represented by Bacillus subtilis.
  • flammable substances such as isoprene are also included.
  • combustible substances When combustible substances are to be manufactured, the specification of a fermentation apparatus that takes into account the risk of fire and explosion due to continued combustion is required. There are three factors that cause combustion and explosion: a combustible substance, oxygen, and an ignition source. To prevent combustion and explosion, it is necessary to remove at least one of these three components.
  • a combustible material such as isoprene is produced by a fermentation method, there are three elements: “combustible material to be produced”, “oxygen”, and “electric energy of a stirrer that is an ignition source”. There is concern about the possibility of combustion and explosion (hereinafter also referred to as “explosion”).
  • Non-Patent Document 1 discloses an airlift reactor capable of releasing gas from a nozzle provided at the bottom of a culture tank and stirring the culture solution in the culture tank.
  • Patent Document 2 discloses a technique for performing aerobic culture by dispersing and supplying air, oxygen, or a mixed gas thereof to a culture tank using an air diffuser provided with a sintered metal film.
  • Non-Patent Document 1 the gas released from the nozzle forms bubbles in the culture tank.
  • the culture solution in the culture tank is agitated by the movement of the bubbles.
  • the mixing performance of the culture solution is reduced compared to conventional fermentation equipment that uses a mechanical stirrer, so that chemical substances cannot be produced sufficiently. Found that there is a case.
  • aerobic culture is performed using the technique described in Non-Patent Document 1, it is necessary to release an oxygen-containing gas from a nozzle to stir the culture solution and supply oxygen to the culture solution. It has also been found that, compared with a conventional fermentation apparatus that stirs a culture solution with a stirrer, the shearing and dispersing action of bubbles is reduced, and the oxygen supply performance to the culture solution may be significantly reduced.
  • Patent Document 2 does not exclude the use of a mechanical stirrer, and there is a concern about the possibility of an explosion or the like when producing a flammable substance.
  • An object of the present invention is to provide a gas-stirring fermentation apparatus excellent in culture medium mixing performance, and particularly to provide a gas-stirring fermentation apparatus that can be applied to aerobic culture with a high oxygen demand.
  • the present invention includes the following contents.
  • a culture tank a draft tube arranged inside the culture tank;
  • the gas supply pipe includes a gas discharge portion made of a sintered metal film,
  • a gas stirring type fermentation apparatus characterized in that a culture solution in a culture tank can be stirred by a gas released from a gas releasing unit.
  • the discharge gas linear velocity (gas release amount [m 3 / s] / sintered metal film surface area [m 2 ]) of the gas release portion made of the sintered metal film is 0.04 m / s or less.
  • the device according to [1] or [2]. [4] When the inner diameter of the culture tank is D 1 and the inner diameter of the draft tube is D 2 , D 1 and D 2 satisfy the relationship 0.7 ⁇ D 2 / D 1 [1] to [3] The apparatus in any one of. [5] A gas containing a microorganism capable of producing a chemical substance is discharged from a gas discharge part made of a sintered metal film, and the medium containing the released gas is allowed to pass through the inside of the draft tube. A method for producing a chemical substance, comprising stirring a culture solution and culturing a microorganism to produce a chemical substance. [6] The method according to [5], wherein the chemical substance includes a combustible substance.
  • a gas-stirring fermentation apparatus excellent in culture medium mixing performance particularly a gas-stirring fermentation apparatus that can be applied to aerobic culture with a high oxygen demand.
  • FIG. 1 is a schematic view showing a gas stirring type fermentation apparatus in one embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the circulation flow of the culture solution in the gas stirring type fermentation apparatus in one embodiment of the present invention.
  • Drawing 3 is a mimetic diagram for explaining the suitable size and arrangement of the gas stirring type fermentation device of the present invention.
  • FIG. 2 is a view showing a pAH162-Para-mvaES plasmid carrying the faecalis-derived mvaES operon.
  • FIG. 5 is a diagram showing a map of pAH162-mvaES.
  • FIG. 1 is a schematic view showing a gas stirring type fermentation apparatus in one embodiment of the present invention.
  • FIG. 2 is a schematic diagram for explaining the circulation flow of the culture solution in the gas stirring type fermentation apparatus in one embodiment of the present invention.
  • Drawing 3 is a mimetic diagram for explaining
  • FIG. 6 shows a plasmid for pAH162-MCS-mvaES chromosome fixation.
  • FIG. 7 is a diagram showing a set of chromosome-fixing plasmids that retain the mvaES gene under the transcriptional control of (A) P lldD , (B) P phoC , or (C) P pstS .
  • FIG. 8 is a diagram showing an outline of the construction of the pAH162- ⁇ attL-KmR- ⁇ attR vector.
  • FIG. 9 shows an expression vector for pAH162-Ptac chromosome fixation.
  • FIG. 10 is a diagram showing codon optimization in the KDyI operon obtained by chemical synthesis.
  • FIG. 11 shows (A) pAH162-Tc-Ptac-KDyI and (B) pAH162-Km-Ptac-KDyI chromosome-fixing plasmids that retain the codon-optimized KDyI operon.
  • FIG. It is a figure which shows the chromosome fixed plasmid holding the mevalonate kinase gene derived from palidicola.
  • FIG. 13 shows maps of genomic variants of (A) ⁇ ampC :: attB phi80 , (B) ⁇ ampH :: attB phi80 , and (C) ⁇ crt :: attB phi80 .
  • FIG. 14 shows maps of genomic variants of A) ⁇ crt :: pAH162-P tac -mvk (X) and (B) ⁇ crt :: P tac -mvk (X).
  • FIG. 15 shows (A) ⁇ ampH :: pAH162-Km-P tac -KDyI, (B) ⁇ ampC :: pAH162-Km-P tac -KDyI, and (C) ⁇ ampC :: P tac -KDyI. It is a figure which shows a map.
  • FIG. 15 shows (A) ⁇ ampH :: pAH162-Km-P tac -KDyI, (B) ⁇ ampC :: pAH162-Km-P tac -KDyI, and (C) ⁇ ampC :: P tac -KDyI. It is a figure which shows a map.
  • FIG. 15 shows (A) ⁇ ampH :
  • FIG. 16 shows maps of chromosome modifications of (A) ⁇ ampH :: pAH162-Px-mvaES and (B) ⁇ ampC :: pAH162-Px-mvaES.
  • FIG. 17 is a diagram showing (A) growth and (B) isoprene production amount (mg / Batch) by culturing the isoprene-producing microorganism SWITCH-PphoC ⁇ gcd / IspSM strain.
  • FIG. 18 is a graph showing dissolved oxygen (DO) concentration in the culture of the isoprene-producing microorganism SWITCH-PphoC ⁇ gcd / IspSM strain.
  • DO dissolved oxygen
  • the gas stirring type fermentation apparatus of the present invention is: A culture tank; A draft tube arranged inside the culture tank; A gas supply pipe for supplying gas to the inside of the culture tank; Including The gas supply pipe includes a gas discharge portion made of a sintered metal film, The culture solution in the culture tank can be stirred by the gas released from the gas release part.
  • the gas-stirring fermenter is a fermenter that stirs a culture solution only by a gas flow action, unlike a conventional fermenter equipped with a mechanical stirrer.
  • the gas agitating fermentation apparatus when gas is released from a gas discharge portion installed in the culture tank, bubbles composed of the released gas are generated.
  • the gas discharge part is installed in the lower part of a culture tank, and the produced
  • bubbles rise in the culture tank the bubbles tend to collect at the center of the culture tank due to the wall effect of the culture tank. As a result, there is a difference in the apparent density of the culture solution between the central portion in the culture tank and the outside (wall surface side) portion.
  • the culture solution rises with bubbles at the center of the culture tank and falls at the outer side (wall surface side). Thereby, the circulation flow of a culture solution generate
  • the above apparent density difference can be further increased, and stirring of the culture solution can be promoted.
  • the gas release part and the draft tube are aligned so that a culture solution containing a large amount of bubbles and having a low apparent density passes through the inside of the draft tube.
  • the apparent density difference of the culture solution can be increased between the inside and the outside of the draft tube, and the stirring of the culture solution can be promoted.
  • an upward flow of the culture solution is generated inside the draft tube (hereinafter, the action of expressing the upward flow of the culture solution is also referred to as “gas lift action”), and a downward flow of the culture solution is generated outside the draft tube. .
  • the present invention achieves the conventional gas stirring type fermenter by using a gas releasing part made of a sintered metal film as the gas releasing part in the gas stirring type fermenting apparatus in which the draft tube is arranged inside the culture tank. It achieves an excellent culture medium mixing performance. Furthermore, in the present invention, when an oxygen-containing gas is used as the gas released from the gas release part, excellent oxygen supply performance can be realized to the extent that it can be applied to aerobic culture with a high oxygen demand. .
  • the gas stirring type fermentation apparatus of the present invention is suitable for producing various chemical substances, particularly hydrophobic substances.
  • Hydrophobic substances have low solubility in the culture medium, and can be easily separated and recovered.
  • the hydrophobic substance may be recovered from the lower part of the culture tank.
  • the hydrophobic substance may be recovered from the upper part of the culture tank.
  • the hydrophobic substance refers to a substance exhibiting low solubility in the culture solution to such an extent that it can be easily separated from the culture solution to be used.
  • the solubility (normal temperature) of the hydrophobic substance in the culture solution is preferably 10 g / kg or less, more preferably 5 g / kg or less, 1 g / kg or less, or 0.1 g / kg or less because separation and recovery are easy. It is.
  • the hydrophobic substance to be produced is not particularly limited as long as it can be produced by fermentation.
  • hydrogen saturated hydrocarbon such as methane
  • unsaturated carbon such as ethylene, propylene, butadiene, isobutene, and isoprene.
  • the gas stirred fermenter of the present invention is also suitable for producing a hydrophilic or water-miscible substance.
  • a hydrophilic or water-miscible substance means a high solubility in a culture solution to such an extent that a purification treatment such as distillation treatment or membrane separation treatment is required to separate the substance from the culture solution used. Or a substance exhibiting miscibility.
  • the solubility (normal temperature) of the hydrophilic or water-miscible substance in the culture solution exceeds 10 g / kg, and is usually 20 g / kg or more, or 30 g / kg or more.
  • Such a hydrophilic or water-miscible substance is not particularly limited as long as it can be produced by a fermentation method, and examples thereof include lower (C 1 -C 6 ) alcohol compounds such as ethanol and propanol.
  • Isoprenoid compounds can be synthesized via two different metabolic pathways that converge to IPP and its isomer, DMAPP.
  • an isoprenoid compound consists of one or more isoprene units having the molecular formula (C 5 H 8 ) n .
  • the precursor of the isoprene unit is isopentenyl pyrophosphate or dimethylallyl pyrophosphate.
  • 30,000 isoprenoid compounds have been identified and new compounds have been identified.
  • Isoprenoids are also known as terpenoids. The difference between terpenes and terpenoids is that terpenoids are hydrocarbons, whereas terpenoids contain additional functional groups.
  • Terpenes are classified according to the number of isoprene units in the molecule [for example, hemiterpene (C5), monoterpene (C10), sesquiterpene (C15), diterpene (C20), sesterterpene (C25), triterpene (C30), Sescal terpenes (C35), tetraterpenes (C40), polyterpenes, norisoprenoids].
  • monoterpenes include pinene, nerol, citral, camphor, menthol, limonene, carvone, and linalool.
  • sesquiterpenes include nerolidol and farnesol.
  • diterpenes examples include phytol and vitamin A1.
  • Squalene is an example of a triterpene and carotene (provitamin A1) is a tetraterpene (Nature Chemical Biology 2,674 to 681 (2006); Nature Chemical Biology 5,283 to 291 (2009); Nature Reviews 9 Microbiols 37 947 (2005); Adv Biochem Eng Biotechmol (DOI: 10.1007 / 10 — 2014 — 288)).
  • the isoprenoid compound is isoprene (monomer).
  • a microorganism having an ability to produce an isoprenoid compound has a dimethylallyl diphosphate supply route.
  • Dimethylallyl diphosphate (DMAPP, dimethylallyl diphosphate) is a precursor of peptidoglycan and electron acceptors (menaquinone and the like) and is known to be essential for the growth of microorganisms (Fujisaki et al., J. Biochem). , 1986; 99: 1137-1146).
  • Examples of the dimethylallyl diphosphate supply route include a methyl erythritol phosphate (MEP) route and a mevalonic acid (MVA) route.
  • DMAPP which is a material of an isoprenoid compound (for example, a substrate for isoprene synthesis)
  • the isoprenoid compound-producing microorganism is an aerobic microorganism.
  • the isoprenoid compound-producing microorganism is preferably cultured under aerobic conditions.
  • the concentration of dissolved oxygen in the medium may be a concentration sufficient for the growth of microorganisms.
  • the concentration of dissolved oxygen in the medium that is sufficient for the growth of aerobic microorganisms is not particularly limited as long as it is a concentration that can promote the growth of aerobic microorganisms, for example, 1 ppm or more, 3 ppm or more, 5 ppm or more, 7 ppm or more, or 7 .22 ppm or more may be used.
  • the concentration of dissolved oxygen for the growth of aerobic microorganisms may also be, for example, 0.3 ppm or less, 0.15 ppm or less, or 0.05 ppm or less.
  • the gas stirring fermentation apparatus of the present invention can be widely applied to the production of chemical substances by fermentation.
  • the chemical substance to be manufactured contains a flammable substance
  • the specification of the fermenter considering the danger of fire and explosion due to continued combustion is required.
  • an auxiliary agent such as an organic solvent used for production contains a flammable substance
  • the specification of the fermentation apparatus considering the risk of fire or explosion due to continued combustion is required.
  • the chemical substance itself to be produced is flammable, ignitable or explosive
  • an auxiliary agent such as an organic solvent used for production is flammable, ignitable or explosive.
  • the explosibility of substances and auxiliaries can be investigated by general test methods that measure the explosive limits of combustible gases and vapors.
  • a mixed gas is put into an explosion test container, an ignition source is activated, and the presence or absence of an explosion is detected by a temperature sensor and a pressure sensor. The same operation is repeated by changing the concentration of the mixed gas, and an explosion occurs.
  • the range can be determined (Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure, ASTM E918-83 (2011)).
  • JIS standard JIS K 2265 is known.
  • the chemical substance to be manufactured contains a flammable substance and the flammable substance is manufactured by aerobic culture, there is a concern about the possibility of an explosion or the like.
  • the flammable substance contains a flammable gas
  • the flammable gas and oxygen are likely to coexist in the upper part of the culture tank.
  • the “electric energy of the stirrer as an ignition source” is excluded from factors that cause an explosion or the like. Is possible. Thereby, in the gas stirring type fermentation apparatus of the present invention, it is possible to reduce the possibility of explosion or the like.
  • the oxygen utilization efficiency is further extremely high, and the concentration of oxygen discharged to the upper part of the culture tank can be kept low. Therefore, it is possible to adjust the atmosphere in the upper part of the culture tank so as not to enter the combustion range of the combustible gas, and the possibility of explosion or the like can be further reduced. Therefore, the gas stirring type fermentation apparatus of the present invention is particularly suitable for producing a combustible substance.
  • the flammable substance is a substance that is liquid at 1 atm. 20 ° C. and has a flash point of 70 ° C. or less, or a lower limit of the combustion limit of the substance is 10% or less, or a lower limit of the limit oxygen concentration. A substance whose value is 15% or less.
  • fermentation using a two-phase extraction fermentation in which a hydrophobic substance is cultured together with an organic substance may be performed, and the organic layer containing the hydrophobic substance may be recovered as a gas.
  • the organic substance used in the two-phase extraction fermentation is preferably an organic solvent that is immiscible with water, but is not limited thereto.
  • the organic substance used is preferably an organic solvent that is harmless to microorganisms used for fermentation production.
  • organic solvents examples include corn oil, dodecane, hexadecane, oleyl alcohol, butyl oleate, butyl phthalate, dodecanol, bis (2-ethylhexyl) phthalate, farnesene, isopropyl myristate, butanol, cyclohexane, n-tetradecane, and the like.
  • Bennan TC et al., Alleviating monoterpene toxicity using a two-phase extractive biofermentation for the bioproduction mechanism.) 3-2522, 2012 is not intended to be limited to this.
  • microorganisms that are resistant to organic solvents harmful to microorganisms such as toluene and benzene can be used (Kosuke Honda et al. “Manufacturing in the non-aqueous world using organic solvent-resistant microorganisms” environmental biotechnology Academic Journal, Vol. 6, No. 2, p. 109-114, 2006).
  • the produced hydrophobic substance has moved to the organic layer and can be removed from the fermentation medium by dispensing operation.
  • the hydrophobic substance may be removed from the fermentation medium in combination with other types of organic extractants.
  • Gas stripping may be performed by passing a gas such as air, nitrogen, or carbon dioxide through the fermentation medium, thereby forming a hydrophobic substance-containing gas phase.
  • Hydrophobic product can be obtained using methods known in the art, for example, using a cold water trap to concentrate the hydrophobic material, or by scrubbing the gas phase with a solvent.
  • it may be recovered from the hydrophobic substance-containing gas phase by combining unit operations such as cooling, absorption, adsorption, and membrane separation.
  • the culture tank is not particularly limited as long as it can be provided with a gas supply pipe and a draft tube provided with a gas release portion made of a sintered metal film to be described later.
  • Properties specific gravity, flammability, etc.), production scale, culture method (batch culture method, fed-batch culture method, continuous culture method, etc.), culture conditions (aerobic conditions, anaerobic conditions, etc.) ) Etc., an appropriate culture tank may be selected. The culture solution will be described later.
  • the draft tube is not particularly limited as long as the above-described gas lift action can be achieved, and a known draft tube (also referred to as “gas lift pipe”) may be used.
  • the draft tube is generally arranged inside the culture tank so that the tube axis direction is perpendicular to the horizontal plane.
  • the gas superficial velocity in the draft tube may be determined to achieve a desired mixing performance, but is preferably 0.001 m / s or more, more preferably 0.005 m / s or more, and still more preferably 0.01 m / s. That's it.
  • the upper limit of the gas superficial velocity is preferably high from the viewpoint of the mixing performance of the culture solution, but can usually be 0.2 m / s or less, 0.1 m / s or less, 0.05 m / s or less, or the like.
  • an oxygen-containing gas is released from the gas discharge section, and the culture solution is stirred and oxygen is supplied to the culture solution.
  • the gas stirring type fermentation apparatus of the present invention as long as the discharge gas linear velocity of the gas discharge portion made of a sintered metal film, which will be described later, is below a certain value, the gas superficial velocity in the draft tube is simply over a wide range.
  • the inventors of the present invention have found that remarkably superior oxygen supply performance can be realized as compared with a conventional apparatus using a hole nozzle or the like.
  • the gas stirring type fermentation apparatus of the present invention covers a wide range of gas superficial velocities in the draft tube as long as the linear gas velocity of the gas releasing portion made of the sintered metal film is 0.04 m / s or less.
  • the oxygen utilization efficiency based on the sodium sulfite method also called oxygen dissolution efficiency and oxygen transfer efficiency
  • the oxygen utilization is 10 times higher than that of the conventional apparatus using a single hole nozzle.
  • Efficiency can be realized. Therefore, the concentration of oxygen discharged to the upper part of the culture tank can be kept low, and the atmosphere of the upper part of the culture tank can be adjusted so that it does not enter the combustion range of combustible gas. It is possible to further reduce the possibility.
  • the gas supply pipe has a function of supplying gas to the inside of the culture tank.
  • the gas supply pipe is provided with a gas discharge portion made of a sintered metal film. The details of the gas supplied to the inside of the culture tank will be described later.
  • the gas that has passed through the gas supply pipe is discharged from the gas discharge portion made of the sintered metal film into the culture tank.
  • the sintered metal film has a large number of pores, and the gas is released into the culture vessel as fine bubbles according to the diameter of the pores.
  • an oxygen transfer capacity coefficient K L a (where K L is a liquid boundary film mass transfer coefficient, and a is a unit volume) serving as an index of oxygen supply performance.
  • K L is a liquid boundary film mass transfer coefficient
  • a is a unit volume
  • the average pore diameter of the sintered metal film is preferably 20 ⁇ m or less, more preferably. Is 10 ⁇ m or less, more preferably 8 ⁇ m or less, 6 ⁇ m or less, or 5 ⁇ m or less.
  • the lower limit of the average pore diameter of the sintered metal film is not particularly limited, but can usually be 0.1 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more.
  • the sintered metal film can be manufactured by pressing and sintering a metal powder having a uniform particle size distribution. It is possible to adjust the average pore diameter of the obtained sintered metal film by changing the average particle diameter, sintering temperature, etc. of the metal powder.
  • the material of the sintered metal film include nickel, stainless steel, inconel, titanium, and the like. From the viewpoint of mechanical strength, chemical resistance, thermal shock resistance, etc., a sintered metal film made of stainless steel is preferable.
  • the gas discharge part made of the sintered metal film is aligned with the draft tube so that the culture solution containing the gas released from the gas discharge part passes through the inside of the draft tube.
  • the gas discharge part which consists of a sintered metal film is arrange
  • the mixing performance of the culture solution may vary. Specifically, in the range where the released gas linear velocity is 0.04 m / s or less, if the gas superficial velocity in the draft tube is the same, even if the released gas linear velocity is changed, the mixing performance of the culture solution is almost unchanged. There is no effect. That is, when the linear velocity of the released gas is 0.04 m / s or less, the influence of the gas superficial velocity is dominant in the mixing performance of the culture solution.
  • the discharge gas linear velocity of the gas discharge portion made of the sintered metal film is 0.04 m / s or less.
  • the lower limit of the released gas linear velocity is preferably 0.005 m / s or more, more preferably 0.01 m / s or more, 0.02 m / s or more, or 0 from the viewpoint of easily achieving the desired gas superficial velocity. 0.03 m / s or more.
  • the linear velocity of the released gas of the gas releasing portion made of the sintered metal film is 0.04 m / s or less.
  • the discharge gas linear velocity is 0.04 m / s or less, it is possible to achieve oxygen utilization efficiency exceeding 70% over a wide range of gas superficial velocity in the draft tube.
  • the present inventors have found that, in the range where the released gas linear velocity exceeds 0.04 m / s, the oxygen utilization efficiency decreases as the released gas linear velocity increases.
  • the discharge gas linear velocity of the gas release part made of a sintered metal film is , Preferably 0.04 m / s or less, more preferably in the range of 0.005 to 0.04 m / s, still more preferably in the range of 0.01 to 0.04 m / s, and 0.02 to 0.04 m / s.
  • the range is 0.03 to 0.04 m / s.
  • the shape and dimensions of the gas discharge part made of the sintered metal film are not particularly limited as long as the above-mentioned preferable discharge gas linear velocity can be achieved.
  • a plurality of gas discharge portions made of a sintered metal film may be provided.
  • the gas stirring type fermentation apparatus of the present invention may include other elements necessary for producing a chemical substance by a fermentation method.
  • Such other elements include, for example, a culture solution supply pipe for supplying a culture solution to the inside of the culture tank, a base compound supply pipe for supplying a basic compound for pH adjustment to the inside of the culture tank, and a manufactured chemical substance.
  • Examples include a collection tube to be collected, a gas discharge tube for taking out the gas from the upper part of the culture tank, and a temperature controller for adjusting the temperature of the culture tank. These may use known elements commonly used in fermenters.
  • FIG. 1 shows a schematic diagram of a gas stirring type fermentation apparatus according to an embodiment of the present invention.
  • a gas agitating fermentation apparatus 10 includes a culture tank 1, a draft tube 2 disposed inside the culture tank, and a gas supply pipe 3 that supplies gas to the inside of the culture tank.
  • a gas release part 4 made of a sintered metal film.
  • the gas stirring type fermentation apparatus 10 can stir the culture solution 5 in the culture tank with the gas released from the gas release unit.
  • FIG. 1 shows an embodiment provided with one gas discharge part made of a sintered metal film. In order to achieve a suitable discharge gas linear velocity and to achieve a desired gas superficial velocity, sintering is performed. A plurality of gas discharge portions made of a metal film may be provided.
  • FIG. 2 is a schematic diagram for explaining the circulation flow of the culture solution in the gas stirring type fermentation apparatus in one embodiment of the present invention.
  • the meaning of each symbol is the same as in FIG.
  • the gas that has passed through the gas supply pipe 3 is released from the gas release portion 4 made of a sintered metal film into the culture tank 1.
  • the sintered metal film has a large number of pores, and the gas is released into the culture vessel as fine bubbles according to the diameter of the pores.
  • a culture solution containing many bubbles and having a low apparent density rises inside the draft tube 2. Outside of the draft tube, the culture solution with a low bubble content and high apparent density falls.
  • an upward flow of the culture solution is generated inside the draft tube, and a downward flow of the culture solution is generated outside the draft tube. Therefore, a circulating flow of the culture solution is generated inside the culture tank, and the culture solution is stirred.
  • FIG. 3 shows a schematic diagram for explaining suitable dimensions and arrangement of the gas stirring type fermentation apparatus of the present invention. The meaning of each symbol is the same as in FIG.
  • the gas-stirring fermentation apparatus of the present invention can be used from the viewpoint of further enhancing the mixing performance of the culture solution. It is preferable to satisfy the relationship of 0.7 ⁇ D 2 / D 1 .
  • the D 2 / D 1 ratio is more preferably 0.75 or more, further preferably 0.8 or more, 0.82 or more, 0.84 or more, 0.86 or more, or 0 from the viewpoint of the mixing performance of the culture solution. .88 or more.
  • the upper limit of the D 2 / D 1 ratio is preferably 0.98 or less, more preferably 0.96 or less, still more preferably 0.94 or less, or 0.92 or less from the viewpoint of the mixing performance of the culture solution.
  • the draft tube 2 is preferably arranged coaxially with the culture tank 1.
  • the gas-stirring fermentation apparatus of the present invention has the following conditions (i), ( It is preferable to satisfy at least one of ii). (I): 1 ⁇ (H L ⁇ H 2max ) / D 1 (Ii): H 2min / D 2 ⁇ 2
  • the (H L -H 2max ) / D 1 ratio is more preferably 1.5 or more, and further preferably 2 or more.
  • the upper limit of the (H L -H 2max ) / D 1 ratio is not particularly limited as long as a smooth circulating flow of the culture solution can be achieved, but it can usually be 5 or less, 4 or less, and the like.
  • the H 2min / D 2 ratio is more preferably 1.5 or less, still more preferably 1 or less, 0.9 or less, 0.8 or less, 0.8. 7 or less, or 0.6 or less.
  • the lower limit of the H 2min / D 2 ratio is not particularly limited as long as a smooth circulating flow of the culture solution can be achieved, but is usually 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, etc. obtain.
  • the gas stirring type fermentation apparatus of the present invention can realize stirring of a culture solution only by a gas flow action, and a mechanical stirrer can be substantially eliminated.
  • the oxygen utilization efficiency is extremely high, and the concentration of oxygen discharged to the upper part of the culture tank can be kept low. Therefore, it is possible to adjust the atmosphere in the upper part of the culture tank so as not to enter the combustion range, and even if a mechanical stirrer is used, the possibility of explosion or the like can be reduced.
  • the method for producing a chemical substance of the present invention comprises: Gas is released from a gas discharge part made of a sintered metal film into a culture solution containing microorganisms capable of producing chemical substances, and the culture solution containing the released gas is allowed to pass through the inside of the draft tube. Stirring, and culturing microorganisms to produce chemicals.
  • the chemical substance to be manufactured, the gas discharge part made of a sintered metal film, and the draft tube are as described in the above [Gas Stirring Fermenter].
  • the method for producing a chemical substance of the present invention is characterized in that the culture solution is agitated by the gas lift action of the gas released from the gas releasing part made of a sintered metal film, and can be achieved by the conventional gas stirring type fermentation method. Achieves excellent mixing performance of culture broth. Furthermore, when an oxygen-containing gas is used as the gas released from the gas release part, excellent oxygen supply performance can be realized to the extent that it can be applied to aerobic culture with a high oxygen demand.
  • the advantageous effects described for the gas stirring type fermentation apparatus of the present invention are similarly applied to the chemical substance production method of the present invention.
  • microorganisms capable of producing chemical substances include 1) microorganisms that inherently have the ability to produce chemical substances, and 2) inherently have no ability to produce chemical substances, or substantially It includes both microorganisms that do not have, but have been introduced with chemical production genes by genetic recombination and have acquired chemical production ability.
  • microorganisms having the ability to produce chemical substances various microorganisms are known depending on the type of chemical substance, and these known microorganisms may be widely used in the present invention.
  • the present invention can be widely applied to microorganisms to be developed in the future.
  • Gram-positive bacteria examples include Bacillus genus bacteria, Listeria genus bacteria, Staphylococcus genus bacteria, Streptococcus genus bacteria, Enterococcus genus bacteria, Clostridium (Clostridium genus)
  • Examples include bacteria, bacteria belonging to the genus Corynebacterium, and bacteria belonging to the genus Streptomyces, and bacteria belonging to the genus Bacillus and bacteria belonging to the genus Corynebacterium are preferred.
  • Bacillus genus bacteria include Bacillus subtilis, Bacillus anthracis, Bacillus cereus, and the like, and Bacillus subtilis is more preferable.
  • bacteria belonging to the genus Corynebacterium include Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium cornebacteria and the like. -Glutamicum is more preferred.
  • Examples of the gram-negative bacteria include Escherichia bacteria, Pantoea bacteria, Salmonella bacteria, Vibrio bacteria, Serratia bacteria, Enterobacter bacteria Escherichia bacteria, Pantoea bacteria, Enterobacter bacteria are preferable.
  • Escherichia bacteria As the bacterium belonging to the genus Escherichia, Escherichia coli is preferable.
  • Examples of the bacteria belonging to the genus Pantoea include Pantoea ananatis, Pantoea stewartii, Pantoea agglomerans, Pantoea citrea, Pantoea pantoea, and Pantoea pantoea. Ananatis (Panthea ananatis) and Pantoea citrea are preferred.
  • Pantoea bacterium strains exemplified in European Patent Application Publication No. 09522121 may be used.
  • Representative strains of the genus Pantoea include, for example, Pantoea ananatis AJ13355 strain (FERM BP-6614) and Pantoea ananatis AJ13356 strain (FERM BP-6615) disclosed in European Patent Application No. 0952212.
  • Examples of Enterobacter genus bacteria include Enterobacter agglomerans, Enterobacter aerogenes, and the like, with Enterobacter aerogenes being preferred.
  • a strain exemplified in European Patent Application Publication No. 09522121 may be used as the Enterobacter bacterium.
  • Enterobacter bacteria include, for example, Enterobacter agglomerans ATCC 12287 strain, Enterobacter aerogenes ATCC 13048 strain, Enterobacter aerogenes NBRC 12010 strain (Biotechnol Bioeng. 2007 Mar 27; 98 (2): 340-348. ), Enterobacter aerogenes AJ11037 (FERM BP-10955) strain, and the like.
  • Enterobacter aerogenes AJ110737 strain was deposited on August 22, 2007 at the National Institute of Advanced Industrial Science and Technology, Patent Biological Depositary Center (1-6 Higashi 1-chome, 1-chome, Tsukuba, Ibaraki 305-8565, Japan) Deposited as FERM P-21348, transferred to an international deposit under the Budapest Treaty on March 13, 2008, and given the receipt number of FERM BP-10955.
  • Examples of the fungi include, for example, the genus Saccharomyces, the genus Schizosaccharomyces, the genus Yarrowia, the genus Trichoderma, the genus Aspergillus, Examples include microorganisms, and microorganisms belonging to the genus Saccharomyces, Schizosaccharomyces, Yarrowia, or Trichoderma are preferred.
  • Saccharomyces Saccharomyces (Saccharomyces) genus, for example, Saccharomyces carlsbergensis (Saccharomyces carlsbergensis), Saccharomyces cerevisiae (Saccharomyces cerevisiae), Saccharomyces Deer statics (Saccharomyces diastaticus), Saccharomyces Dougurashi (Saccharomyces douglasii), Saccharomyces Kuruibera (Saccharomyces kluyveri), Saccharomyces norbensis, Saccharomyces obiformis, and Saccharomyces olviformis. S. cerevisiae is preferred.
  • Schizosaccharomyces As a microorganism belonging to the genus Schizosaccharomyces, Schizosaccharomyces pombe is preferable. As a microorganism belonging to the genus Yarrowia, Yarrowia lipolytica is preferable.
  • Trichoderma microorganisms of the genus, for example, Trichoderma Harujianumu (Ttichoderma harzianum), Trichoderma Koningi (Trichoderma koningii), Trichoderma Rongifurakiamu (Trichoderma longibrachiatum), Trichoderma reesei (Trichoderma reesei), Trichoderma viride (Trichoderma viride And Trichoderma reesei is preferred.
  • Microorganisms that have essentially no or substantially no ability to produce isoprenoid compounds introduce a gene encoding an isoprenoid compound synthase that is an enzyme of the dimethylallyl diphosphate supply pathway using an expression vector, or on a chromosome. It is possible to confer the ability to produce isoprenoid compounds by introducing it into the gene by genetic recombination.
  • examples of the dimethylallyl diphosphate supply route include a methyl erythritol phosphate (MEP) route and a mevalonic acid (MVA) route.
  • MEP methyl erythritol phosphate
  • MVA mevalonic acid
  • the methylerythritol phosphate (MEP) pathway is a biosynthetic pathway of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) (Nat. Prod. Rep. 16 (5): 565-574 1999. ). Since Methylerythritol phosphate (MEP) and 1-deoxy-D-xylulose-5-phosphate (DXP or DOXP) are biosynthesized as metabolic intermediates, the MEP pathway, DXP pathway, DOXP pathway, and MEP / DOXP pathway be called.
  • IPP isopentenyl diphosphate
  • DMAPP dimethylallyl diphosphate
  • Examples of enzymes involved in the methylerythritol phosphate (MEP) pathway include 1-deoxy-D-xylulose-5-phosphate synthase (EC: 2.2.1.7, Example 1, Dxs, ACCESSION ID NP_414954; Example 2, AT3G21500, ACCESSION ID NP_566686; Example 3, AT4G15560, ACCESSION ID NP_193291; Example 4, AT5G11380, ACCESSION ID NP_001078570), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (EC: 1.1.
  • Example 1 Dxr, ACCESSION ID NP_414715; Example 2, AT5G62790, ACCESSION ID NP_001190600), 4 Diphosphocytidyl-2-C-methyl-D-erythritol synthase (EC: 2.7.7.60; Example 1, IspD, ACCESSION ID NP_417227; Example 2, AT2G02500, ACCESSION ID NP_565286), 4-diphosphocytidyl-2-C- Methyl-D-erythritol kinase (EC: 2.7.1.148; Example 1, IspE, ACCESSION ID NP_415726; Example 2, AT2G26930, ACCESSION ID NP_180261), 2-C-methyl-D-erythritol-2,4- Cycloniphosphate synthase (EC: 4.6.1.12; Example 1, IspF, ACCESSION ID NP_417226;
  • the mevalonic acid (MVA) pathway is a biosynthetic pathway for synthesizing isopentenyl diphosphate and dimethylallyl diphosphate, which are starting synthetic substances of isoprenoids, from acetyl CoA.
  • Examples of enzymes involved in the mevalonate (MVA) pathway include, for example, mevalonate kinase (EC: 2.7.1.36; Example 1, Erg12p, ACCESSION ID NP — 013935; Example 2, AT5G27450, ACCESSION ID NP — 001190411), phosphomevalonic acid Kinase (EC: 2.7.4.2; Example 1, Erg8p, ACCESSION ID NP_013947; Example 2, AT1G31910, ACCESSION ID NP_001185124), diphosphomevalonate decarboxylase (EC: 4.1.1.33; Example 1, Mvd1p , ACCESSION ID NP_014441; Example 2, AT2G38700, ACCESS
  • Example 1 Hmg2p, ACCESSION ID NP_013555; Example 2, Hmg1p, ACCESSION ID NP_013636; Example 3, AT1G76490, ACCESSION ID NP_177775; Example 4, AT2G17370, ACCESSION NP. 5, MvaA, ACCESSION ID P13702), acetyl-CoA-C-acetyltransferase / hydroxymethylglutaryl-CoA reductase (EC: 2.3.1.9/1.1.1.34, eg, MvaE, ACCESSION ID) AAG02439).
  • one or more enzymes involved in the mevalonate (MVA) pathway eg, phosphomevalonate kinase, diphosphomevalonate decarboxylase, acetyl-CoA-C-acetyltransferase / hydroxymethylglutaryl-CoA reductase, hydroxymethylglutaryl
  • MVA mevalonate
  • the gene encoding (-CoA synthase) may be placed under the control of a growth promoter reverse-dependent promoter.
  • the isoprenoid compound-producing microorganism may further have an enhanced pathway for synthesizing dimethylallyl diphosphate (DMAPP), which is a material of an isoprenoid compound (eg, a substrate for isoprene synthase).
  • DMAPP dimethylallyl diphosphate
  • IPP isopentenyl diphosphate
  • DMAPP dimethylallyl diphosphate
  • an expression vector for one or more enzymes involved in the mevalonate pathway and / or methylerythritol phosphate pathway associated with the production of IPP and / or DMAPP may be introduced into the isoprenoid compound-producing microorganism.
  • Such an enzyme expression vector may be an integrative vector or a non-integrative vector.
  • Such enzyme expression vectors further express together or individually a plurality of enzymes (eg, 1, 2, 3 or 4 or more) involved in the mevalonate pathway and / or the methylerythritol phosphate pathway.
  • it may be an expression vector for polycistronic mRNA.
  • the origin of one or more enzymes involved in the mevalonate pathway and / or the methylerythritol phosphate pathway may be homologous or heterologous to the host.
  • the origin of the enzyme involved in the mevalonate pathway and / or methylerythritol phosphate pathway is heterologous to the host, for example, the host is a bacterium as described above (eg, E. coli), and the mevalonate pathway
  • the enzyme involved may be derived from a fungus (eg, Saccharomyces cerevisiae).
  • the expression vector introduced into the host may express an enzyme involved in the mevalonate pathway.
  • the isoprenoid compound synthase expression vector may be an integral vector or a non-integration vector.
  • the culture solution preferably contains a carbon source.
  • the carbon source include carbohydrates such as monosaccharides, disaccharides, oligosaccharides, and polysaccharides; invert sugar obtained by hydrolyzing sucrose; glycerol; carbon atoms such as methanol, formaldehyde, formate, carbon monoxide, and carbon dioxide Compound of number 1; oil such as corn oil, palm oil, soybean oil; acetate; animal oil; animal oil; fatty acid such as saturated fatty acid and unsaturated fatty acid; lipid; phospholipid; glycerolipid; monoglyceride, diglyceride, triglyceride, etc.
  • the culture solution preferably contains a hydrogen-containing material among the materials exemplified as the carbon source.
  • the culture solution preferably further contains a nitrogen source, inorganic ions and other organic trace components as required.
  • a nitrogen source, inorganic ions, and other organic trace components any conventionally known components may be used.
  • the method of the present invention can be performed in a system having a liquid phase and a gas phase.
  • a closed system for example, a reactor such as a fermenter or a fermentation tank can be used in order to avoid disappearance due to diffusion of the produced isoprene.
  • a medium containing an isoprene-producing microorganism can be used as the liquid phase.
  • the gas phase is the space above the liquid phase in the system, also called head space, and contains fermentation gas. Isoprene has a boiling point of 34 ° C.
  • isoprene produced in the liquid phase can be easily transferred into the gas phase, the isoprene-producing reaction by the isoprene-producing microorganism in the liquid phase (enzymatic reaction by isoprene synthase) is always inclined toward the isoprene producing side. You can also.
  • Isoprene has an explosive limit of 1.0 to 9.7% (w / w) (eg, Brandes et al., Physikalish Technology Bureaualtalt (PTB), 2008) and has an explosive property, and isoprene is a gas phase. This is because the explosion range fluctuates depending on the mixing ratio with oxygen (see U.S. Pat. No. 8,420,360B2, FIG. 24), so that it is necessary to control the oxygen concentration in the gas phase from the viewpoint of avoiding the explosion.
  • the oxygen concentration in the gas phase can be controlled by supplying a gas with a controlled oxygen concentration into the system.
  • the gas supplied into the system may contain gas components other than oxygen, such as nitrogen, carbon dioxide, and argon. More specifically, the oxygen concentration in the gas phase can be controlled by adding an inert gas so that the oxygen concentration is equal to or lower than the critical oxygen concentration of the gas having the explosion range. An inert gas is desirable as a gas component other than oxygen.
  • the oxygen concentration-controlled gas is supplied into the liquid phase, whereby the oxygen concentration in the gas phase is indirectly controlled. This is because the oxygen concentration in the gas phase can be controlled by adjusting the dissolved oxygen concentration in the liquid phase as follows.
  • Oxygen in the gas supplied into the liquid phase dissolves in the liquid phase and eventually reaches a saturated concentration.
  • dissolved oxygen in the liquid phase is consumed by the metabolic activity of the microorganism to be cultured, and as a result, the dissolved oxygen concentration falls below the saturation concentration.
  • oxygen in the gas phase or oxygen in the newly supplied gas can move to the liquid phase due to gas-liquid equilibrium. That is, the oxygen concentration in the gas phase decreases depending on the oxygen consumption rate of the microorganism. It is also possible to control the oxygen concentration in the gas phase by controlling the oxygen consumption rate of the microorganism to be cultured.
  • the oxygen consumption rate is increased, and the oxygen concentration in the gas phase is 9% (v / v) or less (eg, 5% (v / v) or less, 0.8 % (V / v) or less, 0.6% (v / v) or less, 0.5% (v / v) or less, 0.4% (v / v) or less, 0.3% (v / v)
  • it can be set to 0.2% (v / v) or less, or 0.1% (v / v) or less) or substantially 0% (v / v).
  • the oxygen concentration in the initially supplied gas can be set low. Therefore, the oxygen concentration in the gas phase can be set in consideration of the oxygen consumption rate by the microorganisms in the liquid phase and the oxygen concentration in the gas to be supplied.
  • Cultivation can be performed using a liquid medium.
  • a microorganism cultured in a solid medium such as an agar medium may be directly inoculated into a liquid medium, or a microorganism cultured with a seed in a liquid medium may be inoculated into a liquid medium for main culture.
  • the culture may be performed separately for seed culture and main culture.
  • the culture conditions of seed culture and main culture may be the same or different.
  • the amount of microorganisms contained in the medium at the start of culture is not particularly limited.
  • a seed culture solution having an OD660 of 4 to 8 may be added at 0.1 to 30% by mass, preferably 1 to 10% by mass with respect to the medium for main culture at the start of culture.
  • Culturing can be carried out by batch culture, fed-batch culture, continuous culture, or a combination thereof.
  • the culture medium at the start of the culture is also referred to as “initial culture medium”.
  • a medium supplied to a culture system (fermentor) in fed-batch culture or continuous culture is also referred to as “fed-batch medium”.
  • supplying a feeding medium to a culture system in fed-batch culture or continuous culture is also referred to as “fed-batch”.
  • cultivation is performed by dividing into seed culture and main culture, for example, both seed culture and main culture may be performed by batch culture. Further, for example, seed culture may be performed by batch culture, and main culture may be performed by fed-batch culture or continuous culture.
  • Cultivation may be performed under aerobic conditions, may be performed under slight aerobic conditions, or may be performed under anaerobic conditions.
  • the culture is preferably performed under microaerobic conditions or anaerobic conditions.
  • the aerobic condition means that the dissolved oxygen concentration in the liquid medium is 0.33 ppm or more, preferably 1.5 ppm or more, which is a detection limit by the oxygen membrane electrode.
  • the microaerobic condition means that oxygen is supplied to the culture system, but the dissolved oxygen concentration in the liquid medium is less than 0.33 ppm.
  • Anaerobic conditions refer to conditions where oxygen is not supplied to the culture system.
  • the culture may be performed under the conditions selected above during the entire period, or may be performed under the conditions selected above only during a part of the period.
  • “culturing under aerobic conditions” means that culture is performed under aerobic conditions during at least a part of the whole period of culture.
  • “culturing under microaerobic conditions” means that the culture is performed under microaerobic conditions during at least a part of the entire culture period.
  • “culturing under anaerobic conditions” means that culturing is performed under anaerobic conditions in at least a part of the entire period of culture.
  • the “partial period” may be, for example, a period of 50% or more, 70 or more, 80% or more, 90% or more, 95% or more, or 99% or more of the entire culture period.
  • cultivation may mean the whole period of main culture, when culture
  • the dissolved oxygen concentration in the liquid medium can be reduced by means such as reducing the aeration volume and stirring speed, culturing without sealing the container and aerated with an inert gas containing carbon dioxide gas. Achieving anaerobic or anaerobic conditions.
  • the pH of the medium may be, for example, pH 3 to 10, preferably pH 4.0 to 9.5. During the culture, the pH of the medium can be adjusted as necessary. The pH of the medium is adjusted using various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, and magnesium hydroxide. can do.
  • various alkaline or acidic substances such as ammonia gas, ammonia water, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, magnesium carbonate, sodium hydroxide, calcium hydroxide, and magnesium hydroxide. can do.
  • the medium may contain carbonate ions, bicarbonate ions, carbon dioxide gas, or a combination thereof.
  • These components may be supplied, for example, by microbial metabolism or may be supplied from carbonates and / or bicarbonates used for pH adjustment. Moreover, these components can also be supplied by separately adding carbonic acid, bicarbonate, a salt thereof, or carbon dioxide as necessary.
  • Specific examples of the carbonate or bicarbonate salt include, for example, calcium carbonate, magnesium carbonate, ammonium carbonate, sodium carbonate, potassium carbonate, ammonium bicarbonate, sodium bicarbonate, and potassium bicarbonate.
  • Carbonate ions and / or bicarbonate ions may be added at a concentration of, for example, 0.001 to 5M, preferably 0.1 to 3M, more preferably 1 to 2M.
  • carbon dioxide is contained, for example, 50 mg to 25 g, preferably 100 mg to 15 g, more preferably 150 mg to 10 g of carbon dioxide may be contained per liter of the solution.
  • the culture temperature may be, for example, 20 ° C. to 45 ° C., preferably 25 ° C. to 37 ° C.
  • the culture period may be, for example, 10 hours to 120 hours.
  • the culture may be continued, for example, until the carbon source in the medium is consumed or until the activity of the microorganism is lost.
  • gas is released from a gas discharge portion made of a sintered metal film, and the culture solution containing the released gas is passed through the inside of the draft tube to stir the culture solution.
  • the culture medium containing gas has a low apparent density and usually rises perpendicular to the horizontal plane. Therefore, in the method of the present invention, a draft tube is provided so that a tube axis direction thereof is perpendicular to a horizontal plane so that a gas-containing culture medium having a low apparent density passes through the inside of the draft tube. It is preferable to release gas from a gas discharge portion provided in the vicinity of the lower opening.
  • the culture medium stirring mechanism by the gas lift action is as described above.
  • the gas released from the gas discharge part may be determined according to the culture conditions (aerobic conditions, anaerobic conditions, etc.) of the microorganisms.
  • the gas released from the gas release part is preferably an oxygen-containing gas.
  • the oxygen-containing gas is not particularly limited as long as it has an oxygen concentration sufficient for culturing microorganisms under aerobic conditions. For example, air, oxygen-enriched air, pure oxygen, and an inert gas (nitrogen) Etc.).
  • the gas released from the gas releasing part is not particularly limited as long as it does not substantially contain oxygen, such as nitrogen, carbon dioxide, hydrogen, methane, carbon monoxide, and These mixed gases are mentioned.
  • the preferable range of the gas discharge linear velocity of the gas discharge portion made of the sintered metal film and the gas superficial velocity of the draft tube is as described in the above [Gas Stirring Fermenter].
  • the linear velocity of the released gas of the gas releasing portion made of a sintered metal film is preferably 0.04 m / s or less.
  • the method of the present invention may further include recovering the chemical substance.
  • a chemical substance has low solubility in a culture solution and can be easily separated and collected.
  • the chemical substance may be recovered as a liquid, or the chemical substance may be recovered as a gas.
  • purification and isolation treatment may be performed by a known method.
  • Preparation Example 1 Microaerobic inducible isoprenoid compound-producing microorganism (SWITCH-Plld / IspSM), phosphate deficiency-inducing isoprenoid compound-producing microorganism (SWITCH-PphoC / IspSM, SWITCH-PpstS / IspSM), arabinose-induced isoprenoid compound production Construction of microorganisms (SWITCH-Para / IspSM) 1-1) Construction of pMW-Para-mvaES-Trp 1-1-1) Chemical synthesis of movaE gene derived from Enterococcus faecalis Acetyl-CoA acyltransferase coding and hydroxymethyl-encoding enzyme The base sequence of mvaE and the amino acid sequence are already (Base sequence ACCESSION numbers: AF29009.1, (1479..3890), amino acid sequence ACCESSION numbers: AAG02439) (J.
  • the amino acid sequence of Enterococcus faecalis-derived mvaE protein and the nucleotide sequence of the gene are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively.
  • the mvaE gene was transformed into E. coli. E. coli for efficient expression in E. coli.
  • An mvaE gene optimized for E. coli codon usage was designed and named EFmvaE. This base sequence is shown in SEQ ID NO: 7.
  • the mvaE gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaE.
  • coli An mvaS gene optimized for E. coli codon usage was designed and named EFmvaS. This base sequence is shown in SEQ ID NO: 10. The mvaS gene was chemically synthesized and then cloned into pUC57 (GenScript), and the resulting plasmid was named pUC57-EFmvaS.
  • arabinose-inducible mevalonate pathway upstream gene expression vector was constructed by the following procedure. E. coli by PCR using the plasmid pKD46 as a template and the synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 12 as primers. A PCR fragment containing Para comprising the araC and araBAD promoter sequences from E. coli was obtained. A PCR fragment containing the EFmvaE gene was obtained by PCR using the plasmid pUC57-EFmvaE as a template and the synthetic oligonucleotides shown in SEQ ID NO: 13 and SEQ ID NO: 14 as primers.
  • a PCR fragment containing the EFmvaS gene was obtained by PCR using the plasmid pUC57-EFmvaS as a template and the synthetic oligonucleotides shown in SEQ ID NO: 15 and SEQ ID NO: 16 as primers.
  • a PCR fragment containing the Ttrp sequence was obtained by PCR using the plasmid pSTV-Ptac-Ttrp as a template and the synthetic oligonucleotides shown in SEQ ID NO: 17 and SEQ ID NO: 18 as primers.
  • Prime Star polymerase (manufactured by Takara Bio Inc.) was used for PCR to obtain these four PCR fragments.
  • the reaction solution was prepared according to the composition attached to the kit, and 30 cycles of reaction at 98 ° C. for 10 seconds, 55 ° C. for 5 seconds, and 72 ° C. for 1 minute / kb were performed.
  • Synthetic oligonucleotides shown in SEQ ID NO: 11 and SEQ ID NO: 14 using a PCR product containing purified Para and a PCR product containing EFmvaE gene as a template, and a PCR product containing purified EFmvaS gene and a PCR product containing Ttrp as a template.
  • PCR was performed using 15 and the synthetic oligonucleotide shown in SEQ ID NO: 18 as primers.
  • Plasmid pMW219 (manufactured by Nippon Gene Co., Ltd.) was digested with SmaI according to a conventional method. A PCR product containing pMW219 and purified Para and EFmvaE genes, and a PCR product containing EFmvaS gene and Ttrp after SmaI digestion were ligated using In-Fusion HD Cloning Kit (Clontech). The resulting plasmid was named pMW-Para-mvaES-TTrp.
  • the KpnI-SalI fragment of pMW-Para-mvaES-Ttrp was cloned into the SphI-SalI recognition site of pAH162- ⁇ attL-TcR- ⁇ attR.
  • E.I. E. coli under the control of the Para Para promoter and repressor gene araC.
  • the pAH162-Para-mvaES plasmid carrying the faecalis-derived mvaES operon was constructed (FIG. 4).
  • a set of plasmids for immobilizing chromosomes holding mvaES genes under the control of different promoters was constructed.
  • a polylinker containing I-SceI, XhoI, PstI and SphI recognition sites was inserted into the only HindIII recognition site located upstream of the mvaES gene.
  • annealing was performed using primers 1 and 2 (Table 5) and polynucleotide kinase.
  • the obtained double-stranded DNA fragment was 5 'phosphorylated with polynucleotide kinase, and the obtained phosphorylated fragment was inserted into pAH162-mvaES plasmid cleaved with HindIII by ligation reaction.
  • the resulting pAH162-MCS-mvaES plasmid (FIG. 6) is convenient for cloning the promoter while maintaining the desired orientation in front of the mvaES gene.
  • DNA fragments carrying the regulatory regions of the lldD, phoC and pstS genes were obtained from P. cerevisiae.
  • the P tac promoter was inserted into the HindIII-SphI recognition site of the pAH162- ⁇ attL-Tc R - ⁇ attR vector (Minaeva NI et al., BMC Biotechnol., 2008; 8:63). As a result, an expression vector pAH162-P tac for chromosome fixation was constructed. The sequence of the cloned promoter fragment was determined and confirmed to be the sequence as designed. A map of pAH162-P tac is shown in FIG.
  • FIG. 11 A DNA fragment (FIG. 10) carrying the cerevisiae-derived PMK, MVD and yIDI genes was subcloned into the SphI-KpnI restriction enzyme recognition site of the chromosome fixing vector pAH162-Ptac.
  • the DNA sequence containing the chemically synthesized KDyI operon is shown in SEQ ID NO: 43.
  • the resulting plasmid pAH162-Tc-Ptac-KDyI carrying the Ptac-KDyI expression cassette is shown in FIG. 11 (A).
  • SC17 (0) P. ananatis AJ13355 is a ⁇ Red resistant derivative (Katashkina JI et al., BMC Mol Biol., 2009; 10:34); The annotated complete genome sequence of ananatis AJ13355 is available as PRJDA 162073 or GenBank accession numbers AP012032.1 and AP012033.1. pMWattphi plasmid [Minaeva NI et al. , BMC Biotechnol.
  • the DNA fragment used to replace the crt operon with attL phi80 -kan-attR phi80 was amplified in a reaction using primers 19 and 20 (Table 1).
  • the pMWattphi plasmid (Minaeva NI et al., BMC Biotechnol., 2008; 8:63) was used as a template in this reaction.
  • the resulting integrant was named SC17 (0) ⁇ crt :: attL phi80 -kan-attR phi80 .
  • Primers 21 and 22 (Table 1) were combined with SC17 (0) ⁇ crt :: attL phi80 -kan-attR phi80 . It was used for PCR verification of the chromosomal structure.
  • the pAH162-Ptac-mvk (M. palidicola) plasmid was prepared according to a previously reported protocol (Andrewa IG et al., FEMS Microbiol Lett., 2011; 318 (1): 55-60) SC17 (0) ⁇ crt :: attB It was integrated into the attB phi80 site of phi80 . Plasmid integration was confirmed by polymerase chain reaction using primers 21 and 23 and primers 22 and 24 (Table 1). As a result, an SC17 (0) ⁇ crt :: pAH162-P tac -mvk (M. palidicola) strain was obtained.
  • FIG. 14 (A) A map of the ⁇ crt :: pAH162-P tac -mvk (M. palidicola) modification is shown in FIG. 14 (A).
  • the genetic traits of SC17 (0) ⁇ crt :: pAH162-P tac -mvk (M. palladicola) via a genomic DNA electroporation technique (Katashkina JI et al., BMC Mol Biol., 2009; 10:34).
  • the obtained strain uses the tetracycline resistance gene tetRA as a marker.
  • SWITCH strain set The pAH162-Km-Ptac-KDyI plasmid was prepared according to the previously reported protocol (Andrewa IG et al. FEMS Microbiol Lett. 2011; 318 (1): 55-60), SC17 (0 ) ⁇ ampH :: attB ⁇ 80 ⁇ ampC :: attB ⁇ 80 ⁇ crt :: P tac -mvk (M.palladicola) / pAH123-cat was integrated into the chromosome of the strain. Cells were seeded on LB agar containing 50 mg / L kanamycin.
  • Proliferated Km R clones were tested in a PCR reaction using primers 11 and 15 and primers 11 and 17 (Table 1). Strains carrying the pAH162-Km-Ptac-KDyI plasmid integrated into ⁇ ampH :: attB ⁇ 80 or ⁇ ampC :: attB ⁇ 80 m were selected. Maps of ⁇ ampH :: pAH162-Km-Ptac-KDyI and ⁇ ampC :: pAH162-Km-Ptac-KDyI chromosome variants are shown in FIGS. 15 (A) and (B).
  • pAH162-Px-mvaES (where, Px is the one of the following regulatory region: araC-P ara (E.coli) , P lldD, P phoC, P pstS) a previously reported protocol [Andreeva IG et al. , FEMS Microbiol Lett. , 2011; 318 (1): 55-60] using the pAH123-cat helper plasmid, SC17 (0) ⁇ ampC :: pAH162-Km-P tac -KDyI ⁇ ampH pH :: attB phi80 ⁇ crt :: P tac -mvk ( M.
  • Preparation Example 2 Construction of SC17 (0) ⁇ gcd and SWITCH-PphoC ⁇ gcd and introduction of isoprene synthase
  • the Ananatis gcd gene encodes glucose dehydrogenase; Ananatis is known to accumulate gluconic acid during aerobic growth (Andreeva IG et al., FEMS Microbiol Lett. 2011 May; 318 (1): 55-60).
  • ⁇ Red-dependent integration of DNA fragments obtained by PCR using primers gcd-attL and gcd-attR (Table 2) and pMW118-attL-kan-attR plasmid as template Minaeva NI et al., BMC Biotechnol.
  • Primers gcd-t1 and gcd-t2 are used for PCR analysis of the resulting integrants.
  • the kanamycin resistance marker gene was obtained by standard ⁇ Ing / Xis mediated procedures [Katashkina JI et al., BMC Mol Biol. 2009; 10:34].
  • the resulting strain is named SWITCH-PphoC ⁇ gcd strain.
  • a competent cell of SWITCH-PphoC ⁇ gcd strain was prepared according to a standard method, and pSTV28-Ptac-IspSM (WO2013 / 179722), a vector for expressing isoprene synthase derived from Mucuna, was introduced by electroporation.
  • the resulting isoprenoid compound-producing microorganism was named SWITCH-PphoC ⁇ gcd / IspSM.
  • the gas stirring type fermentation apparatus includes a draft tube disposed inside and a gas supply pipe for supplying gas to the inside of the culture tank, and the gas supply pipe is made of a sintered metal film having an average pore diameter of 5.0 ⁇ m. A discharge part is provided.
  • the culture conditions are pH 6.8 (controlled with ammonia gas), 34 ° C., and 2.3 L / min (2.3 L / min) so that the linear velocity of the released gas of the gas releasing portion made of the sintered metal film is 0.03 m / sec.
  • the isoprene concentration in the fermentation exhaust gas is measured using a multi-gas analyzer (F10 manufactured by GASERA).
  • the oxygen and carbon dioxide concentrations in the fermentation exhaust gas are measured using a gas analyzer (DEX-1562A manufactured by Able Co., Ltd.).
  • Example 2 Culture evaluation of SWITCH-PphoC ⁇ gcd / IspSM A culture test of the isoprene-producing microorganism SWITCH-PphoC ⁇ gcd / IspSM was performed using a gas-stirring fermentation apparatus.
  • a 3 L volume gas stirring type fermenter (BMA-02PI type manufactured by Able Co., Ltd.) was used for the culture.
  • the gas-stirring fermentation apparatus includes a culture tank, a draft tube disposed inside the culture tank, and a gas supply pipe that supplies gas to the inside of the culture tank, and the gas supply pipe has an average pore diameter of 5.
  • the gas discharge part which consists of a 0-micrometer sintered metal film was provided.
  • the inner diameter D 1 of the culture vessel is 7.6 cm
  • the inner diameter D 2 of the draft tube is 5.5cm
  • the top of the height H 2max draft tube from the bottom of the culture vessel 33.1Cm draft from the bottom of the culture tank
  • the lowermost height H 2min of the tube was 9.8 cm.
  • the glycerol stock of SWITCH-PphoC ⁇ gcd / IspSM strain was thawed, and 50 ⁇ L of the cell suspension was evenly applied to 6 LB plates containing 60 mg / L chloramphenicol, and precultured at 34 ° C. for 16 Incubate for hours. Subsequently, 2.0 L of fermentation medium was poured into the culture tank of the gas stirring type fermentation apparatus.
  • the fermentation medium performs heat sterilization at 120 ° C. for 20 minutes, and after cooling, mixes A section and B section 1: 1.
  • the culture temperature is 34 ° C.
  • aseptic air is 2.3 L / min (oxygen concentration: 21% (v / v)) so that the linear velocity of the released gas of the gas releasing part made of a sintered metal film is 0.03 m / sec. was fed into the fermentation medium.
  • the pH of the fermentation medium was controlled to 6.8 using ammonia gas, and the culture was performed for 24 hours while measuring the DO concentration in the fermentation medium using a galvanic DO sensor (SDOU-10L160-125 manufactured by Able Co., Ltd.). Went.
  • the DO concentration at the start of cultivation before inoculation was 21%, and the DO concentration in the saturated sodium sulfite solution was 0%.
  • Ammonia gas for pH adjustment was supplied from the upper part of the fermentation apparatus by connecting a gas supply pipe dedicated to supplying ammonia gas to the fermentation medium, and the culture temperature was controlled using a silicon rubber heater and cooling water.
  • a glucose medium containing 0.07 mL / L of a deformed GD-113K adjusted to 700 g / L is continuously added so that the glucose concentration in the fermentation medium is in the range of 20 g / L to 40 g / L. did.
  • Sampling is performed as appropriate after the start of culture. Analysis of D. value and glucose concentration was performed.
  • concentration of isoprene in the fermentation exhaust gas is measured using a multi-gas analyzer (F10 manufactured by GASERA), and the oxygen and carbon dioxide concentrations in the fermentation exhaust gas are measured using a gas analyzer (DEX-1562A manufactured by Able Co., Ltd.). It was measured.
  • the OD value was measured at 600 nm after diluting the fermentation broth 101 times with a spectrophotometer (U-2900, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the gas release section includes a culture layer, a draft tube arranged inside the culture tank, and a gas supply pipe for supplying gas to the inside of the culture tank, and the gas supply pipe is made of a sintered metal film. It was demonstrated that a chemical substance (isoprene) can be produced by using a gas stirring fermenter equipped with

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Medicinal Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

培養液の混合性能に優れると共に、酸素要求量の高い好気性培養への適用が可能であるガス攪拌式発酵装置を提供する。該ガス攪拌式発酵装置は、培養槽と、培養槽の内部に配置されたドラフトチューブと、培養槽の内部へとガスを供給するガス供給管とを含み、ガス供給管が、焼結金属膜からなるガス放出部を備え、ガス放出部から放出されるガスにより培養槽内の培養液を攪拌可能としたことを特徴とする。

Description

ガス攪拌式発酵装置
 本発明は、ガス攪拌式発酵装置に関する。さらには、化学物質の製造方法に関する。
 化学物質の製造方法の一つとして、発酵法が知られている。例えば、特許文献1には、枯草菌(Bacillus subtilis)に代表されるイソプレン生産能を有する微生物を培養することによりイソプレンを製造する方法が開示されている。
 発酵法により製造可能な化学物質の中には、上記のイソプレンのような可燃性物質も含まれる。可燃性物質を製造対象とする場合には、燃焼の継続による火災や爆発の危険性を考慮した発酵装置の仕様が求められる。燃焼や爆発を起こす因子として、可燃性物質、酸素、着火源の3要素が存在し、燃焼や爆発を防止するためには、これら3要素のうち少なくとも1つを取り除く必要がある。しかしながら、イソプレンのような可燃性物質を発酵法により製造する場合、「製造対象である可燃性物質」、「酸素」、「着火源となる攪拌機の電気エネルギー」の3要素が存在することから、燃焼や爆発(以下「爆発等」ともいう。)の可能性が危惧される。
 爆発等の可能性を減じることが可能な発酵装置としては、従来の機械攪拌機を使用しない発酵装置が考えられる。例えば、非特許文献1には、培養槽下部に備え付けられたノズルからガスを放出し、培養槽内の培養液を攪拌することのできるエアリフト型リアクタが開示されている。
 また、特許文献2には、焼結金属膜を備えた散気管を用いて空気、酸素又はそれらの混合ガスを培養槽に分散供給して好気性培養を行う技術が開示されている。
米国特許第5849970号明細書 特許第4200655号明細書
坂東芳行「ドラフトチューブ付気泡塔の流動特性とその性能改善」 化学工学論文集 第27巻 第4号 p.430-441
 非特許文献1記載の技術において、ノズルから放出されたガスは培養槽内で気泡を形成する。斯かる気泡の運動により、培養槽内の培養液は攪拌されることとなる。発酵法による化学物質の製造に際して斯かる技術の適用を試みたところ、機械攪拌機を使用する従来の発酵装置と比較して培養液の混合性能が低下してしまうため、化学物質を十分に製造できない場合があることを見出した。さらに、非特許文献1記載の技術を使用して好気性培養を行うに際しては、酸素含有ガスをノズルから放出して、培養液の攪拌と培養液への酸素供給を行う必要があるが、機械攪拌機により培養液の攪拌を行う従来の発酵装置と比較して、気泡の剪断、分散作用が低下し、培養液への酸素供給性能が著しく低下する場合があることも見出した。
 特許文献2記載の技術は、機械攪拌機の使用を排除するものではなく、可燃性物質を製造する場合には爆発等の可能性が危惧される。
 本発明は、培養液の混合性能に優れるガス攪拌発酵装置を提供すること、特に酸素要求量の高い好気性培養への適用が可能であるガス攪拌式発酵装置を提供することを課題とする。
 本発明者らは、上記の課題につき鋭意検討した結果、下記特定の構成を有するガス攪拌式発酵装置によれば上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の内容を含む。
[1] 培養槽と、
 培養槽の内部に配置されたドラフトチューブと、
 培養槽の内部へとガスを供給するガス供給管と、
を含み、
 ガス供給管が、焼結金属膜からなるガス放出部を備え、
 ガス放出部から放出されるガスにより培養槽内の培養液を攪拌可能としたことを特徴とする、ガス攪拌式発酵装置。
[2] 焼結金属膜の平均細孔径が20μm以下である、[1]に記載の装置。
[3] 焼結金属膜からなるガス放出部の放出ガス線速(ガス放出量[m/s]/焼結金属膜の表面積[m])が、0.04m/s以下である、[1]又は[2]に記載の装置。
[4] 培養槽の内径をD、ドラフトチューブの内径をDとしたとき、DとDが、0.7<D/Dの関係を満たす、[1]~[3]のいずれかに記載の装置。
[5] 化学物質の生産能を有する微生物を含む培養液に、焼結金属膜からなるガス放出部からガスを放出し、放出されたガスを含有する培養液をドラフトチューブの内部を通過させて培養液を攪拌すること、及び
 微生物を培養して化学物質を製造すること
を含む、化学物質の製造方法。
[6] 化学物質が、可燃性物質を含む、[5]に記載の方法。
[7] 化学物質が、疎水性物質である、[5]又は[6]に記載の方法。
[8] 化学物質が、イソプレノイド化合物である、[5]~[7]のいずれかに記載の方法。
[9] 焼結金属膜の平均細孔径が20μm以下である、[5]~[8]のいずれかに記載の方法。
[10] 焼結金属膜からなるガス放出部の放出ガス線速(ガス放出量[m/s]/焼結金属膜の表面積[m])が、0.04m/s以下である、[5]~[9]のいずれかに記載の方法。
 本発明によれば、培養液の混合性能に優れるガス攪拌発酵装置、特に酸素要求量の高い好気性培養への適用が可能であるガス攪拌式発酵装置を提供することができる。
図1は、本発明の一実施形態におけるガス攪拌式発酵装置を示す模式図である。 図2は、本発明の一実施形態におけるガス攪拌式発酵装置において培養液の循環流を説明するための模式図である。 図3は、本発明のガス攪拌式発酵装置の好適な寸法や配置を説明するための模式図である。 図4は、E.coli Paraプロモーターおよびリプレッサー遺伝子araCの制御下にあるE.faecalis由来mvaESオペロンを保有するpAH162-Para-mvaESプラスミドを示す図である。 図5は、pAH162-mvaESのマップを示す図である。 図6は、pAH162-MCS-mvaES染色体固定用プラスミドを示す図である。 図7は、(A)PlldD、(B)PphoC、または(C)PpstSの転写制御下にあるmvaES遺伝子を保持する染色体固定用プラスミドのセットを示す図である。 図8は、pAH162-λattL-KmR-λattRベクターの構築の概要を示す図である。 図9は、pAH162-Ptac染色体固定用発現ベクターを示す図である。 図10は、化学合成により得られたKDyIオペロン中のコドン最適化を示す図である。 図11は、コドン最適化したKDyIオペロンを保持する、(A)pAH162-Tc-Ptac-KDyI、および(B)pAH162-Km-Ptac-KDyIの染色体固定プラスミドを示す図である。 図12は、M.paludicola由来のメバロン酸キナーゼ遺伝子を保持する染色体固定プラスミドを示す図である。 図13は、(A)ΔampC::attBphi80、(B)ΔampH::attBphi80、および(C)Δcrt::attBphi80のゲノム改変体のマップを示す図である。 図14は、A)Δcrt::pAH162-Ptac-mvk(X)、および(B)Δcrt::Ptac-mvk(X)のゲノム改変物のマップを示す図である。 図15は、(A)ΔampH::pAH162-Km-Ptac-KDyI、(B)ΔampC::pAH162-Km-Ptac-KDyI、および(C)ΔampC::Ptac-KDyIの染色体改変物のマップを示す図である。 図16は、(A)ΔampH::pAH162-Px-mvaES、および(B)ΔampC::pAH162-Px-mvaESの染色体改変物のマップを示す図である。 図17は、イソプレン生成微生物SWITCH―PphoCΔgcd/IspSM株の培養による、(A)増殖、ならびに(B)イソプレン生成量(mg/Batch)を示す図である。 図18は、イソプレン生成微生物SWITCH―PphoCΔgcd/IspSM株の培養における溶存酸素(DO)濃度を示す図である。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 [ガス攪拌式発酵装置]
 本発明のガス攪拌式発酵装置は、
 培養槽と、
 培養槽の内部に配置されたドラフトチューブと、
 培養槽の内部へとガスを供給するガス供給管と、
を含み、
 ガス供給管が、焼結金属膜からなるガス放出部を備え、
 ガス放出部から放出されるガスにより培養槽内の培養液を攪拌可能としたことを特徴とする。
 ガス攪拌式発酵装置は、機械攪拌機を備えた従来の発酵装置とは異なり、ガスの流動作用のみで培養液の攪拌を行う発酵装置である。ガス攪拌式発酵装置では、培養槽に設置されたガス放出部からガスが放出されると、放出ガスからなる気泡が発生する。一般にガス放出部は培養槽の下部に設置されており、発生した気泡は培養槽内を上昇することとなる。培養槽内を気泡が上昇する際、培養槽の壁効果により、気泡は培養槽の中心部に集まる傾向がある。その結果、培養槽内の中心部分とその外側(壁面側)の部分とでは培養液の見掛け密度に差が生じる。この見掛け密度差に起因して、培養液は、培養槽の中心部では気泡と共に上昇し、その外側(壁面側)の部分では下降する。これにより、培養槽の内部で培養液の循環流が発生し、培養液の攪拌が行われる。
 培養槽の内部にドラフトチューブを配置することで、上記の見掛け密度差をより大きくすることができ、培養液の攪拌を促進することができる。詳細には、気泡を多く含有する見掛け密度の低い培養液がドラフトチューブの内部を通過するように、ガス放出部とドラフトチューブとを位置合わせする。これにより、ドラフトチューブの内部と外部とで培養液の見掛け密度差を大きくすることが可能であり、培養液の攪拌を促進することができる。なお、ドラフトチューブの内部では培養液の上昇流が生じ(以下、斯かる培養液の上昇流を発現する作用を「ガスリフト作用」ともいう。)、ドラフトチューブの外部では培養液の下降流が生じる。
 本発明は、ドラフトチューブを培養槽の内部に配置したガス攪拌式発酵装置において、ガス放出部として、焼結金属膜からなるガス放出部を使用することにより、従来のガス攪拌式発酵装置では達成し得ない、優れた培養液の混合性能を実現したものである。本発明ではさらに、ガス放出部から放出するガスとして酸素含有ガスを使用する場合には、酸素要求量の高い好気性培養にも適用可能な程度に、優れた酸素供給性能を実現することができる。
 本発明のガス攪拌式発酵装置は、種々の化学物質、特に疎水性物質を製造するために好適である。疎水性物質は、培養液に対する溶解度が低く、容易に分離・回収することが可能である。例えば、疎水性物質の比重が培養液よりも大きい場合は、培養槽の下部から疎水性物質を回収すればよい。疎水性物質の比重が培養液よりも小さい場合は、培養槽の上部から疎水性物質を回収すればよい。本発明において、疎水性物質とは、使用する培養液から容易に分離する程度に培養液に対し低い溶解度を呈する物質をいう。培養液に対する疎水性物質の溶解度(常温)は、分離・回収が容易であることから、好ましくは10g/kg以下、より好ましくは5g/kg以下、1g/kg以下、又は0.1g/kg以下である。
 製造対象である疎水性物質は、発酵法により製造することが可能な限りにおいて特に限定されず、例えば、水素;メタン等の飽和炭化水素;エチレン、プロピレン、ブタジエン、イソブテン、イソプレン等の不飽和炭化水素;1,3アモルファジエン、ファルネセン、リモネン、カルボン、リナロール、ヌートカトン、バレンセン等のイソプレノイド化合物;ベンズアルデヒド、シンナムアルデヒド、バニリン、オイゲノール、アネトール、トリメチルピラジン等の芳香族化合物;セラミド等の脂質化合物;ノナラクトン、デカラクトン等のラクトン化合物;酢酸イソペンチル、乳酸メンチル、コハク酸モノメンチル等の有機酸エステル化合物;キシリトール、アラビトール等の糖アルコール化合物が挙げられる。
 本発明のガス攪拌式発酵装置はまた、親水性若しくは水混和性の物質を製造するために好適である。本発明において、親水性若しくは水混和性の物質とは、使用する培養液から該物質を分離するにあたって、蒸留処理、膜分離処理等の精製処理を必要とする程度に培養液に対し高い溶解性若しくは混和性を呈する物質をいう。培養液に対する親水性若しくは水混和性の物質の溶解度(常温)は、10g/kgを超え、通常、20g/kg以上、又は30g/kg以上である。斯かる親水性若しくは水混和性の物質としては、発酵法により製造することが可能な限りにおいて特に限定されず、例えば、エタノール、プロパノール等の低級(C-C)アルコール化合物が挙げられる。
 イソプレノイド化合物は、IPP及びその異性体であるDMAPPに収斂する2つの異なる代謝経路を介して合成することができる。例えば、イソプレノイド化合物は、分子式(Cを有する1以上のイソプレン単位からなる。イソプレン単位の前駆体は、イソペンテニルピロリン酸、またはジメチルアリルピロリン酸である。30,000種のイソプレノイド化合物が同定されており、新たな化合物が同定されている。イソプレノイドはまた、テルペノイドとしても知られている。テルペンとテルペノイドとの相違は、テルペンが炭化水素であるのに対し、テルペノイドはさらなる官能基を含む点にある。テルペンは、分子中のイソプレン単位数により分類される〔例えば、ヘミテルペン(C5)、モノテルペン(C10)、セスキテルペン(C15)、ジテルペン(C20)、セステルテルペン(C25)、トリテルペン(C30)、セスカルテルペン(C35)、テトラテルペン(C40)、ポリテルペン、ノルイソプレノイド〕。モノテルペンとしては、例えば、ピネン、ネロール、シトラール、カンファー、メントール、リモネン、カルボン、およびリナロールが挙げられる。セスキテルペンとしては、例えば、ネロリドール、およびファルネソールが挙げられる。ジテルペンとしては、例えば、フィトール、およびビタミンA1が挙げられる。スクアレンはトリテルペンの例であり、カロテン(プロビタミンA1)はテトラテルペンである(Nature Chemical Biology 2,674~681(2006);Nature Chemical Biology 5,283~291(2009);Nature Reviews Microbiology 3,937~947(2005);Adv Biochem Eng Biotechmol(DOI:10.1007/10_2014_288))。好ましくは、イソプレノイド化合物は、イソプレン(モノマー)である。
 イソプレノイド化合物の生産能を有する微生物(以下、「イソプレノイド化合物生成微生物」ともいう。)は、ジメチルアリル二リン酸供給経路を有する。ジメチルアリル二リン酸(DMAPP、dimethylallyl diphosphate)は、ペプチドグリカンや電子受容体(メナキノン等)の前駆体であり、微生物の増殖に必須であることが知られている(Fujisaki et al.,J.Biochem.,1986;99:1137-1146)。ジメチルアリル二リン酸供給経路としては、例えば、メチルエリスリトールリン酸(MEP)経路及びメバロン酸(MVA)経路が挙げられる。
 イソプレノイド化合物の材料(例えば、イソプレン合成の基質)であるDMAPPは、通常、微生物が固有またはネイティブに有するメチルエリスリトールリン酸経路またはメバロン酸経路のいずれかにより生合成される。したがって、効率的なイソプレノイド化合物の製造のためのDMAPPの供給の観点から、本発明で用いられるイソプレノイド化合物生成微生物は、後述するように、メチルエリスリトールリン酸経路および/またはメバロン酸経路が強化されていてもよい。
 イソプレノイド化合物生成微生物は、好気性微生物であることが好ましい。イソプレノイド化合物生成微生物は、好気条件下で培養されることが好ましい。好気条件下で培養するときは、培地中の溶存酸素の濃度は微生物の増殖に十分な程度以上の濃度であればよい。好気性微生物の増殖に十分である培地中の溶存酸素の濃度は、好気性微生物の増殖を促進できる濃度である限り特に限定されず、例えば1ppm以上、3ppm以上、5ppm以上、7ppm以上、または7.22ppm以上であってもよい。好気性微生物の増殖のための溶存酸素の濃度はまた、例えば0.3ppm以下、0.15ppm以下、または0.05ppm以下であってもよい。
 本発明のガス攪拌式発酵装置は、発酵法による化学物質の製造に広く適用可能である。製造対象である化学物質が可燃性物質を含む場合、燃焼の継続による火災や爆発の危険性を考慮した発酵装置の仕様が求められる。また、製造に用いる有機溶剤等の助剤が可燃性物質を含む場合も、燃焼の継続による火災や爆発の危険性を考慮した発酵装置の仕様が求められる。本発明のガス攪拌式発酵装置は、製造対象である化学物質そのものが引火性、発火性や爆発性を持つ場合の他、製造に用いる有機溶剤等の助剤が引火性、発火性や爆発性を持つ場合においても有効である。物質や助剤の爆発性については、可燃性ガス、蒸気の爆発限界を測定する一般的な試験方法により調査可能である。試験方法としては、爆発試験容器内に混合ガスを入れ、点火源を作動させて爆発の有無を温度センサー及び圧力センサーで検知するもので、混合ガスの濃度を変えて同様の操作を繰り返し、爆発範囲を求めることができる(Standard Practice for Determining Limits of Flammability of Chemicals at Elevated Temperature and Pressure、ASTM E918 - 83(2011))。物質や助剤の引火点の測定方法として、例えばJIS規格、JIS K 2265が知られている。物質や助剤の発火点の測定方法として、例えば、ASTM International(米国試験材料協会)による「Standard Test Method for Autoignition Temperature of Liquid Chemicals」(ASTM E659-1978)に規定される方法等が知られている。物質や助剤の沸点の測定方法として、例えばJIS規格 「自動車用非鉱油系ブレーキ液」(JIS K2233-1989)7.1に規定する「平衡還流沸点試験方法」に準ずる方法等が知られている。
 中でも、製造対象である化学物質が可燃性物質を含み且つ該可燃性物質を好気性培養により製造する場合には、爆発等の可能性が危惧される。特に、可燃性物質が可燃性ガスを含む場合、培養槽の上部において可燃性ガスと酸素とが共存し易いため、特に爆発等の可能性が危惧される。この点、本発明のガス攪拌式発酵装置では、培養液の攪拌をガスの流動作用のみで実現することから、爆発等を起こす因子のうち、「着火源となる攪拌機の電気エネルギー」を排除することが可能である。これにより、本発明のガス攪拌式発酵装置では、爆発等の可能性を減じることが可能である。詳細は後述するが、本発明のガス攪拌式発酵装置ではさらに、酸素利用効率が極めて高く、培養槽上部に排出される酸素の濃度を低く抑えることが可能である。そのため、培養槽上部の雰囲気を可燃性ガスの燃焼範囲に入らないように調整することが可能であり、爆発等の可能性をより一層減じることが可能である。したがって、本発明のガス攪拌式発酵装置は、可燃性物質を製造するために特に好適である。本発明において、可燃性物質とは、1気圧20℃で液状であり、かつ、引火点が70℃以下の物質、あるいは、物質の燃焼限界の下限値が10%以下、あるいは限界酸素濃度の下限値が15%以下の物質をいう。
 さらに本発明においては、疎水性物質を有機物質と共に培養する二相抽出発酵を用いた発酵を行い、疎水性物質を含む有機層をガスとして回収してもよい。二相抽出発酵で用いる有機物質は水と混和しない有機溶媒が好ましいがこれに限定されるものではない。用いる有機物質は発酵生産に用いられる微生物にとって無害である有機溶剤が好ましい。例えば有機溶剤としては、コーン油、ドデカン、ヘキサデカン、オレイルアルコール、オレイン酸ブチル、フタル酸ブチル、ドデカノール、フタル酸ビス(2-エチルヘキシル)、ファルネセン、ミリスチン酸イソプロピル、ブタノール、シクロヘキサン、n-テトラデカンやこれらを混合して用いることが出来る(Brennan TC et al., Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae, Biotechnol Bioeng. 109, 2513-2522, 2012)がこれに限定されるものではない。あるいは、トルエン、ベンゼンといった微生物に対して有害な有機溶剤に対して耐性がある微生物を用いる事もできる(本田孝祐ほか「有機溶媒耐性微生物を用いた非水系の世界でのものつくり」環境バイオテクノロジー学会誌 第6巻 第2号 p.109-114,2006)。
 生産された疎水性物質は有機層に移動しており分注操作により発酵培地から取り出すことが出来る。また、他の種類の有機抽出剤と併用し、疎水性物質を発酵培地から取り出してもよい。大気、窒素、または二酸化炭素などの気体を発酵培地に対して通過させることによってガスストリッピングを行い、それによって疎水性物質含有気相を形成してもよい。疎水性物質生成物は、当該技術分野で既知の方法を用いて、例えば疎水性物質を濃縮するための冷水トラップ(chilled water trap)を用いて、または気相を溶媒で洗い落とす(scrubbing)ことにより、あるいは冷却、吸収、吸着、膜分離といった単位操作を組み合わせることにより疎水性物質含有気相から回収してもよい。
 以下、本発明のガス攪拌式発酵装置に含まれる各部材について説明する。
 -培養槽-
 培養槽は、後述する焼結金属膜からなるガス放出部を備えたガス供給管とドラフトチューブとを設けることが可能である限りにおいて特に限定されない。製造対象である化学物質の性質(比重、可燃性の有無等)や製造規模、培養方法(バッチ培養法、流加培養法、連続培養法等)、培養条件(好気性条件、嫌気性条件等)などに応じて、適切な培養槽を選択してよい。なお、培養液については後述することとする。
 -ドラフトチューブ-
 ドラフトチューブは、上記のガスリフト作用を達成し得る限りにおいて特に限定されず、公知のドラフトチューブ(「ガスリフト管」とも呼ばれる。)を使用してよい。
 ドラフトチューブは、ガスリフト作用を効果的に達成する観点から、一般に、その管軸方向が水平面に対し垂直となるように、培養槽の内部に配置される。
 ドラフトチューブを備えたガス攪拌式発酵装置では、ドラフトチューブにおけるガス空塔速度を高くすると、ガスリフト作用が向上し、培養液の混合性能が高くなることが知られている。この点、焼結金属膜からなるガス放出部を使用する本発明のガス攪拌式発酵装置では、先述の非特許文献1に記載されるような、単孔ノズル等の粗なガス放出部を使用する従来の装置に比し、ガス空塔速度(V)を一定値(ΔV)高めた場合に得られる培養液の混合性能(P)の上昇値(ΔP)が大きい。すなわち、本発明のガス攪拌式発酵装置では、ドラフトチューブにおけるガス空塔速度を高くするほど、単孔ノズル等を使用する従来の装置に比して優れた混合性能を実現することができる。ドラフトチューブにおけるガス空塔速度は、所望の混合性能を実現すべく決定してよいが、好ましくは0.001m/s以上、より好ましくは0.005m/s以上、さらに好ましくは0.01m/s以上である。該ガス空塔速度の上限は、培養液の混合性能の観点からは高いことが好ましいが、通常、0.2m/s以下、0.1m/s以下、0.05m/s以下などとし得る。
 好気性培養に際しては、酸素含有ガスをガス放出部から放出して、培養液の攪拌と培養液への酸素供給を行う。この点、本発明のガス攪拌式発酵装置では、後述する焼結金属膜からなるガス放出部の放出ガス線速を一定値以下とする限り、ドラフトチューブにおけるガス空塔速度の広い範囲にわたって、単孔ノズル等を使用する従来の装置に比して著しく優れた酸素供給性能を実現し得ることを本発明者らは見出した。詳細には、本発明のガス攪拌式発酵装置は、焼結金属膜からなるガス放出部の放出ガス線速が0.04m/s以下である限り、ドラフトチューブにおけるガス空塔速度の広い範囲にわたって、亜硫酸ソーダ法に基づく酸素利用効率(酸素溶解効率や酸素移動効率とも呼ばれる。)が70%を超えており、単孔ノズルを使用する従来の装置に比して実に10倍以上も高い酸素利用効率を実現することができる。したがって、培養槽上部に排出される酸素の濃度を低く抑えることが可能であり、培養槽上部の雰囲気を可燃性ガスの燃焼範囲に入らないように調整することが可能であるため、爆発等の可能性をより一層減じることが可能である。
 -ガス供給管-
 ガス供給管は、培養槽の内部へとガスを供給する機能を有する。本発明のガス攪拌式発酵装置において、ガス供給管は、焼結金属膜からなるガス放出部を備えることを特徴とする。なお、培養槽の内部へと供給されるガスの詳細は後述することとする。
 ガス供給管を通過したガスは、焼結金属膜からなるガス放出部から、培養槽の内部へと放出される。焼結金属膜は多数の細孔を有しており、ガスは該細孔の径に応じて、微細な気泡として培養槽の内部へと放出される。この結果、本発明のガス攪拌式発酵装置では、単孔ノズル等を使用する従来の装置に比し、培養液中における気泡の滞留時間が長くなり、ドラフトチューブの内部と外部とで培養液の見掛け濃度差がより大きくなり、先述のように優れた混合性能を呈することが可能である。また、微細な気泡を発生する本発明のガス攪拌式発酵装置では、酸素供給性能の指標となる酸素移動容量係数Ka(ここでKは液境膜物質移動係数、aは単位容積当たりの気液接触面積を表す。)のうち、a値を極めて高くすることが可能である。その結果、本発明のガス攪拌式発酵装置では、単孔ノズル等を使用する従来の装置に比し、酸素移動容量係数Kaを高めることが可能であり、ひいては先述のように優れた酸素利用効率を呈することが可能である。
 培養液の混合性能を高める観点、酸素要求量の高い好気性培養にも適用可能な優れた酸素供給性能を達成する観点から、焼結金属膜の平均細孔径は、好ましくは20μm以下、より好ましくは10μm以下、さらに好ましくは8μm以下、6μm以下、又は5μm以下である。焼結金属膜の平均細孔径の下限は特に限定されないが、通常、0.1μm以上、0.5μm以上、1μm以上などとし得る。
 焼結金属膜は、粒子径分布の一様な金属粉末を加圧成形し、焼結することにより製造することができる。金属粉末の平均粒子径や焼結温度等を変化させることで、得られる焼結金属膜の平均細孔径を調整することが可能である。焼結金属膜の材質としては、例えば、ニッケル、ステンレス、インコネル、チタン等が挙げられる。機械的強度、耐薬品性、耐熱衝撃性等の観点から、ステンレス製の焼結金属膜が好ましい。
 焼結金属膜からなるガス放出部は、該ガス放出部から放出されたガスを含有する培養液が上記ドラフトチューブの内部を通過するように、ドラフトチューブと位置合わせする。通常、焼結金属膜からなるガス放出部は、ドラフトチューブの下側開口の近傍に配置される。
 本発明のガス攪拌式発酵装置においては、ドラフトチューブにおけるガス空塔速度が同一の場合であっても、焼結金属膜からなるガス放出部の放出ガス線速(ガス放出量[m/s]/焼結金属膜の表面積[m])に応じて、培養液の混合性能に差が生じる場合がある。詳細には、該放出ガス線速が0.04m/s以下の範囲においては、ドラフトチューブにおけるガス空塔速度が同一であれば、放出ガス線速が変化しても培養液の混合性能にほとんど影響はない。すなわち、放出ガス線速が0.04m/s以下の範囲では、培養液の混合性能においてガス空塔速度の影響が支配的である。放出ガス線速が0.04m/sを超えると、ドラフトチューブにおけるガス空塔速度が同一であっても、培養液の混合性能は徐々に低下する。したがって、所期のガス空塔速度を達成し得る限りにおいて、焼結金属膜からなるガス放出部の放出ガス線速は、0.04m/s以下であることが好ましい。放出ガス線速の下限は、所期のガス空塔速度を達成し易い観点から、好ましくは0.005m/s以上、より好ましくは0.01m/s以上、0.02m/s以上、又は0.03m/s以上である。
 また、酸素供給性能の観点から、焼結金属膜からなるガス放出部の放出ガス線速は、0.04m/s以下とすることが好ましい。該放出ガス線速が0.04m/s以下であると、ドラフトチューブにおけるガス空塔速度の広い範囲にわたって、70%を超える酸素利用効率を達成することが可能である。放出ガス線速が0.04m/sを超える範囲では、放出ガス線速が高くなるほど、酸素利用効率が低下することを本発明者らは見出した。
 培養液の混合性能に優れると共に、酸素要求量の高い好気性培養への適用が可能であるガス攪拌式発酵装置を実現する観点から、焼結金属膜からなるガス放出部の放出ガス線速は、好ましくは0.04m/s以下、より好ましくは0.005~0.04m/sの範囲、さらに好ましくは0.01~0.04m/sの範囲、0.02~0.04m/sの範囲、又は0.03~0.04m/sの範囲である。
 焼結金属膜からなるガス放出部の形状や寸法は、上記の好適な放出ガス線速を達成し得る限りにおいて特に限定されない。上記の好適な放出ガス線速を達成すると共に、所期のガス空塔速度を達成するにあたって、焼結金属膜からなるガス放出部は、複数設けてもよい。
 本発明のガス攪拌式発酵装置は、発酵法により化学物質を製造するために必要となる他の要素を含んでもよい。斯かる他の要素としては、例えば、培養槽の内部に培養液を供給する培養液供給管、培養槽の内部にpH調整用の塩基化合物を供給する塩基化合物供給管、製造された化学物質を回収する回収管、培養槽上部のガスを外部に取り出すガス排出管、培養槽の温度を調整する温度調整器等が挙げられる。これらは、発酵装置に通常使用される公知の要素を使用してよい。
 以下、本発明のガス攪拌式発酵装置の実施形態について、図面を参照しつつ、説明することとする。
 図1には、本発明の一実施形態におけるガス攪拌式発酵装置の模式図を示す。図1において、ガス攪拌式発酵装置10は、培養槽1、培養槽の内部に配置されたドラフトチューブ2、培養槽の内部へとガスを供給するガス供給管3とを含み、ガス供給管3は、焼結金属膜からなるガス放出部4を備える。ガス攪拌式発酵装置10は、ガス放出部から放出されるガスにより培養槽内の培養液5を攪拌することが可能である。図1には、焼結金属膜からなるガス放出部を1つ備えた実施形態を示すが、好適な放出ガス線速を達成すると共に、所期のガス空塔速度を達成するにあたって、焼結金属膜からなるガス放出部は、複数設けてもよい。
 図2には、本発明の一実施形態におけるガス攪拌式発酵装置において培養液の循環流を説明するための模式図を示す。各符号の意味は図1と同じである。ガス攪拌式発酵装置10において、ガス供給管3を通過したガスは、焼結金属膜からなるガス放出部4から、培養槽1の内部へと放出される。焼結金属膜は多数の細孔を有しており、ガスは該細孔の径に応じて、微細な気泡として培養槽の内部へと放出される。気泡を多く含有する見掛け密度の低い培養液はドラフトチューブ2の内部を上昇する。ドラフトチューブの外部では、気泡の含有量が少なく見掛け密度の高い培養液が下降する。こうして、ドラフトチューブの内部では培養液の上昇流が生じ、ドラフトチューブの外部では培養液の下降流が生じる。そのため、培養槽の内部で培養液の循環流が発生し、培養液の攪拌が行われる。
 図3には、本発明のガス攪拌式発酵装置の好適な寸法や配置を説明するための模式図を示す。各符号の意味は図1と同じである。
 図3に示すように、培養槽1の内径をD、ドラフトチューブ2の内径をDとしたとき、本発明のガス攪拌式発酵装置は、培養液の混合性能をより一層高める観点から、0.7<D/Dの関係を満たすことが好ましい。D/D比は、培養液の混合性能の観点から、より好ましくは0.75以上、さらに好ましくは0.8以上、0.82以上、0.84以上、0.86以上、又は0.88以上である。D/D比の上限は、培養液の混合性能の観点から、好ましくは0.98以下、より好ましくは0.96以下、さらに好ましくは0.94以下、又は0.92以下である。培養液の円滑な循環流を実現する観点から、ドラフトチューブ2は、培養槽1と同軸上に配置することが好ましい。
 また、培養槽1の内径をD、ドラフトチューブ2の内径をD、培養槽1の底部からの培養液5の液面高さをH、培養槽1の底部からのドラフトチューブ2の最上部の高さをH2max、培養槽1の底部からのドラフトチューブ2の最下部の高さをH2minとしたとき、本発明のガス攪拌式発酵装置は、以下の条件(i)、(ii)のうち少なくとも一方を満たすことが好ましい。
 (i):1≦(H-H2max)/D
 (ii):H2min/D≦2
 条件(i)について、培養液の混合性能を高める観点から、(H-H2max)/D比は、より好ましくは1.5以上、さらに好ましくは2以上である。(H-H2max)/D比の上限は、培養液の円滑な循環流を達成し得る限り特に限定されないが、通常、5以下、4以下などとし得る。
 条件(ii)について、培養液の混合性能を高める観点から、H2min/D比は、より好ましくは1.5以下、さらに好ましくは1以下、0.9以下、0.8以下、0.7以下、又は0.6以下である。H2min/D比の下限は、培養液の円滑な循環流を達成し得る限り特に限定されないが、通常、0.1以上、0.2以上、0.3以上、0.4以上などとし得る。
 本発明のガス攪拌式発酵装置は、培養液の攪拌をガスの流動作用のみで実現することが可能であり、機械撹拌機は実質的に排除し得る。他方において、本発明のガス攪拌式発酵装置では、酸素利用効率が極めて高く、培養槽上部に排出される酸素の濃度を低く抑えることが可能である。そのため、培養槽上部の雰囲気を燃焼範囲に入らないように調整することが可能であり、たとえ機械撹拌機を使用する場合であっても爆発等の可能性を減じることが可能である。
 [化学物質の製造方法]
 本発明の化学物質の製造方法は、
 化学物質の生産能を有する微生物を含む培養液に、焼結金属膜からなるガス放出部からガスを放出し、放出されたガスを含有する培養液をドラフトチューブの内部を通過させて培養液を攪拌すること、及び
 微生物を培養して化学物質を製造すること
を含む。
 製造対象である化学物質、焼結金属膜からなるガス放出部、ドラフトチューブは、上記[ガス攪拌式発酵装置]において記載したとおりである。本発明の化学物質の製造方法では、焼結金属膜からなるガス放出部から放出されたガスのガスリフト作用により培養液を攪拌することを特徴としており、従来のガス攪拌式発酵法では達成し得ない、優れた培養液の混合性能を実現する。さらに、ガス放出部から放出するガスとして酸素含有ガスを使用する場合には、酸素要求量の高い好気性培養にも適用可能な程度に、優れた酸素供給性能を実現することができる。本発明のガス攪拌式発酵装置について説明した有利な効果は、本発明の化学物質の製造方法についても同様に適用される。
 本発明において、「化学物質の生産能を有する微生物」には、1)本来的に化学物質の生産能を有する微生物と、2)本来的には化学物質の生産能を有しない又は実質的に有しないが化学物質生産遺伝子を遺伝子組み換えにより導入されて後天的に化学物質の生産能を有するに至った微生物の双方が含まれる。化学物質の生産能を有する微生物に関しては、化学物質の種類に応じて種々の微生物が知られており、本発明においては、これら既知の微生物を広く使用してよい。また、化学物質の生産能を有する限り、今後開発される微生物に関しても本発明を広く適用することが可能である。
 以下、製造対象である化学物質がイソプレノイド類化合物である実施形態について、好適な微生物を例示する。
 グラム陽性細菌としては、例えば、バシラス(Bacillus)属細菌、リステリア(Listeria)属細菌、スタフィロコッカス(Staphylococcus)属細菌、ストレプトコッカス(Streptococcus)属細菌、エンテロコッカス(Enterococcus)属細菌、クロストリジウム(Clostridium)属細菌、コリネバクテリウム(Corynebacterium)属細菌、ストレプトマイセス(Streptomyces)属細菌等が挙げられ、バシラス(Bacillus)属細菌、コリネバクテリウム(Corynebacterium)属細菌が好ましい。
 バシラス(Bacillus)属細菌としては、例えば、枯草菌(Bacillus subtilis)、炭疽菌(Bacillus anthracis)、セレウス菌(Bacillus cereus)等が挙げられ、枯草菌(Bacillus subtilis)がより好ましい。
 コリネバクテリウム(Corynebacterium)属細菌としては、例えば、コリネバクテリウム・グルタミカム(Corynebacterium glutamicum)、コリネバクテリウム・エフィシエンス(Corynebacterium efficiens)、コリネバクテリウム・カルナエ(Corynebacterium callunae)等が挙げられ、コリネバクテリウム・グルタミカムがより好ましい。
 グラム陰性細菌としては、例えば、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、サルモネラ(Salmonella)属細菌、ビブリオ(Vivrio)属細菌、セラチア(Serratia)属細菌、エンテロバクター(Enterobacter)属細菌等が挙げられ、エシェリヒア(Escherichia)属細菌、パントエア(Pantoea)属細菌、エンテロバクター(Enterobacter)属細菌が好ましい。
 エシェリヒア(Escherichia)属細菌としては、エシェリヒア・コリ(Escherichia coli)が好ましい。
 パントエア(Pantoea)属細菌としては、例えば、パントエア・アナナティス(Pantoea ananatis)、パントエア・スチューアルティ(Pantoea stewartii)、パントエア・アグロメランス(Pantoea agglomerans)、パントエア・シトレア(Pantoea citrea)等が挙げられ、パントエア・アナナティス(Pantoea ananatis)、パントエア・シトレア(Pantoea citrea)が好ましい。また、パントエア属細菌としては、欧州特許出願公開第0952221号に例示された株を使用してもよい。パントエア属細菌の代表的な株としては、例えば、欧州特許出願公開第0952221号に開示されるパントエア・アナナティスAJ13355株(FERM BP-6614)およびパントエア・アナナティスAJ13356株(FERM BP-6615)が挙げられる。
 エンテロバクター(Enterobacter)属細菌としては、例えば、エンテロバクター・アグロメランス(Enterobacter agglomerans)、エンテロバクター・アエロゲネス(Enterobacter aerogenes)等が挙げられ、エンテロバクター・アエロゲネス(Engerobacter aerogenes)が好ましい。また、エンテロバクター属細菌としては、欧州特許出願公開第0952221号に例示された菌株を使用してもよい。エンテロバクター属細菌の代表的な株としては、例えば、エンテロバクター・アグロメランスATCC12287株、エンテロバクター・アエロゲネスATCC13048株、エンテロバクター・アエロゲネスNBRC12010株(Biotechnol Bioeng. 2007 Mar 27;98(2):340-348)、エンテロバクター・アエロゲネスAJ110637(FERM BP-10955)株等が挙げられる。エンテロバクター・アエロゲネスAJ110637株は、2007年8月22日付で独立行政法人 産業技術総合研究所 特許生物寄託センター(〒305-8566 日本国茨城県つくば市東1丁目1番地1 中央第6)に受託番号FERM P-21348として寄託され、2008年3月13日にブダペスト条約に基づく国際寄託に移管され、FERM BP-10955の受領番号が付与されている。
 真菌としては、例えば、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、トリコデルマ(Trichoderma)属、アスペルギルス(Aspergillus)属、フザリウム(Fusarium)属、ムコール(Mucor)属の微生物等が挙げられ、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Schizosaccharomyces)属、ヤロウイア(Yarrowia)属、またはトリコデルマ(Trichoderma)属の微生物が好ましい。
 サッカロミセス(Saccharomyces)属の微生物としては、例えば、サッカロミセス・カールスベルゲンシス(Saccharomyces carlsbergensis)、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)、サッカロミセス・ディアスタティクス(Saccharomyces diastaticus)、サッカロミセス・ドウグラシー(Saccharomyces douglasii)、サッカロミセス・クルイベラ(Saccharomyces kluyveri)、サッカロミセス・ノルベンシス(Saccharomyces norbensis)、サッカロミセス・オビフォルミス(Saccharomyces oviformis)が挙げられ、サッカロミセス・セレビシエー(Saccharomyces cerevisiae)が好ましい。
 シゾサッカロミセス(Schizosaccharomyces)属の微生物としては、シゾサッカロミセス・ポンベ(Schizosaccharomyces pombe)が好ましい。
 ヤロウイア(Yarrowia)属の微生物としては、ヤロウィア・リポリティカ(Yarrowia lipolytica)が好ましい。
 トリコデルマ(Trichoderma)属の微生物としては、例えば、トリコデルマ・ハルジアヌム(Ttichoderma harzianum)、トリコデルマ・コニンギー(Trichoderma koningii)、トリコデルマ・ロンギフラキアム(Trichoderma longibrachiatum)、トリコデルマ・リーゼイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)が挙げられ、トリコデルマ・リーゼイ(Trichoderma reesei)が好ましい。
 本来的にイソプレノイド化合物の生産能を有しない又は実質的に有しない微生物は、ジメチルアリル二リン酸供給経路の酵素であるイソプレノイド化合物合成酵素をコードする遺伝子を発現ベクターにて導入する、あるいは染色体上に遺伝子組換えで導入することにより、イソプレノイド化合物の生産能を付与することができる。
 例えば、ジメチルアリル二リン酸供給経路としては、例えば、メチルエリスリトールリン酸(MEP)経路及びメバロン酸(MVA)経路が挙げられる。
 メチルエリスリトールリン酸(MEP)経路とは、イソペンテニル二リン酸(IPP)とジメチルアリル二リン酸(DMAPP)の生合成経路である(Nat. Prod. Rep. 16 (5): 565-574 1999)。代謝中間体としてメチルエリスリトールリン酸(MEP)及び1-デオキシ-D-キシルロース-5-リン酸(DXPまたはDOXP)を生合成することから、MEP経路、DXP経路、DOXP経路、MEP/DOXP経路とも呼ばれる。
 メチルエリスリトールリン酸(MEP)経路に関与する酵素としては、例えば、1-デオキシ-D-キシルロース-5-リン酸シンターゼ(EC:2.2.1.7、例1、Dxs、ACCESSION ID NP_414954;例2、AT3G21500、ACCESSION ID NP_566686;例3、AT4G15560、ACCESSION ID NP_193291;例4、AT5G11380、ACCESSION ID NP_001078570)、1-デオキシ-D-キシルロース-5-リン酸リダクトイソメラーゼ(EC:1.1.1.267;例1、Dxr、ACCESSION ID NP_414715;例2、AT5G62790、ACCESSION ID NP_001190600)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールシンターゼ(EC:2.7.7.60;例1、IspD、ACCESSION ID NP_417227;例2、AT2G02500、ACCESSION ID NP_565286)、4-ジホスホシチジル-2-C-メチル-D-エリスリトールキナーゼ(EC:2.7.1.148;例1、IspE、ACCESSION ID NP_415726;例2、AT2G26930、ACCESSION ID NP_180261)、2-C-メチル―D-エリスリトール-2,4-シクロニリン酸シンターゼ(EC:4.6.1.12;例1、IspF、ACCESSION ID NP_417226;例2、AT1G63970、ACCESSION ID NP_564819)、1-ヒドロキシ-2-メチル-2-(E)-ブテニル-4-ニリン酸シンターゼ(EC:1.17.7.1;例1、IspG、ACCESSION ID NP_417010;例2、AT5G60600、ACCESSION ID NP_001119467)、4-ヒドロキシ-3-メチル-2-ブテニル二リン酸レダクターゼ(EC:1.17.1.2;例1、IspH、ACCESSION ID NP_414570;例2、AT4G34350、ACCESSION ID NP_567965)が挙げられる。
 メバロン酸(MVA)経路はイソプレノイドの出発合成物質であるイソペンテニル二リン酸およびジメチルアリル二リン酸をアセチルCoAから合成する生合成経路である。メバロン酸(MVA)経路に関与する酵素としては、例えば、メバロン酸キナーゼ(EC:2.7.1.36;例1、Erg12p、ACCESSION ID NP_013935;例2、AT5G27450、ACCESSION ID NP_001190411)、ホスホメバロン酸キナーゼ(EC:2.7.4.2;例1、Erg8p、ACCESSION ID NP_013947;例2、AT1G31910、ACCESSION ID NP_001185124)、ジホスホメバロン酸デカルボキシラーゼ(EC:4.1.1.33;例1、Mvd1p、ACCESSION ID NP_014441;例2、AT2G38700、ACCESSION ID NP_181404;例3、AT3G54250、ACCESSION ID NP_566995)、アセチル-CoA-C-アセチルトランスフェラーゼ(EC:2.3.1.9;例1、Erg10p、ACCESSION ID NP_015297;例2、AT5G47720、ACCESSION ID NP_001032028;例3、AT5G48230、ACCESSION ID NP_568694)、ヒドロキシメチルグルタリル-CoAシンターゼ(EC:2.3.3.10;例1、Erg13p、ACCESSION ID NP_013580;例2、AT4G11820、ACCESSION ID NP_192919;例3、MvaS、ACCESSION ID AAG02438)、ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:1.1.1.34;例1、Hmg2p、ACCESSION ID NP_013555;例2、Hmg1p、ACCESSION ID NP_013636;例3、AT1G76490、ACCESSION ID NP_177775;例4、AT2G17370、ACCESSION ID NP_179329、EC:1.1.1.88、例5、MvaA、ACCESSION ID P13702)、アセチル-CoA-C-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ(EC:2.3.1.9/1.1.1.34、例、MvaE、ACCESSION ID AAG02439)が挙げられる。発現ベクターにおいて、メバロン酸(MVA)経路に関与する1以上の酵素(例、ホスホメバロン酸キナーゼ、ジホスホメバロン酸デカルボキシラーゼ、アセチル-CoA-C-アセチルトランスフェラーゼ/ヒドロキシメチルグルタリル-CoAリダクターゼ、ヒドロキシメチルグルタリル-CoAシンターゼ)をコードする遺伝子は、増殖促進剤逆依存性プロモーターの制御下に配置されてもよい。
 イソプレノイド化合物生成微生物は、さらにイソプレノイド化合物の材料(例、イソプレンシンターゼの基質)であるジメチルアリル二リン酸(DMAPP)を合成する経路が強化されていてもよい。このような強化のため、イソペンテニル二リン酸(IPP)からジメチルアリル二リン酸(DMAPP)への変換能を有するイソペンテニル二リン酸デルタイソメラーゼの発現ベクターが、イソプレノイド化合物生成微生物に導入されてもよい。また、IPPおよび/またはDMAPPの生成に関連するメバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の発現ベクターが、イソプレノイド化合物生成微生物に導入されてもよい。このような酵素の発現ベクターは、組込み型ベクターであっても、非組込み型ベクターであってもよい。このような酵素の発現ベクターはさらに、メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する複数の酵素(例、1種、2種、3種または4種以上)を一緒または個別に発現するものであってもよく、例えば、ポリシストロニックmRNAの発現ベクターであってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する1以上の酵素の由来は、宿主に対して同種であってもよいし、異種であってもよい。メバロン酸経路および/またはメチルエリスリトールリン酸経路に関与する酵素の由来が宿主に対して異種である場合、例えば、宿主が上述したような細菌(例、大腸菌)であり、かつ、メバロン酸経路に関与する酵素が真菌(例、サッカロミセス・セレビシエ)に由来するものであってもよい。また、宿主が、メチルエリスリトールリン酸経路に関与する酵素を固有に産生するものである場合、宿主に導入される発現ベクターは、メバロン酸経路に関与する酵素を発現するものであってもよい。
 製造対象である化学物質がイソプレンである場合、上記のMEP経路またはMVA経路の酵素に加え、イソプレンシンターゼを細胞内で強化することが好ましい。イソプレンシンターゼとしては、例えば、葛(Pueraria montana var.lobata)、ポプラ(Populus alba x Populus tremula)、ムクナ(Mucuna bracteata)、ヤナギ(Salix)、ニセアカシア(Robinia pseudoacacia)、フジ(Wisterria)、ユーカリ(Eucalyptus globulus)、茶ノ木(Melaleuca alterniflora)由来のイソプレンシンターゼが挙げられる(例、Evolution 67 (4),1026-1040(2013)を参照)。イソプレノイド化合物合成酵素発現ベクターは、組込み型(integrative)ベクターであっても、非組込み型ベクターであってもよい。
 製造対象である化学物質が炭化水素のように炭素含有物質である場合、培養液は炭素源を含むことが好ましい。炭素源としては、例えば、単糖類、二糖類、オリゴ糖類、多糖類等の炭水化物;ショ糖を加水分解した転化糖;グリセロール;メタノール、ホルムアルデヒド、ギ酸塩、一酸化炭素、二酸化炭素等の炭素原子数が1の化合物;コーン油、パーム油、大豆油等のオイル;アセテート;動物油脂;動物オイル;飽和脂肪酸、不飽和脂肪酸等の脂肪酸;脂質;リン脂質;グリセロ脂質;モノグリセライド、ジグリセライド、トリグリセライド等のグリセリン脂肪酸エステル;微生物性タンパク質、植物性タンパク質等のポリペプチド;加水分解されたバイオマス炭素源等の再生可能な炭素源;酵母エキス;及びこれらの組み合わせが挙げられる。製造対象である化学物質が水素である場合、培養液は、上記炭素源として例示した材料のうち、水素含有材料を含むことが好ましい。培養液はさらに、窒素源、無機イオン及び必要に応じてその他の有機微量成分を含むことが好ましい。斯かる窒素源、無機イオン及びその他の有機微量成分としては、従来公知の任意の成分を使用してよい。
 イソプレノイド化合物がイソプレンである場合、本発明の方法は、液相および気相を備える系において、行うことができる。このような系としては、生成するイソプレンの拡散による消失を回避するため、閉鎖されている系、例えば、発酵槽、発酵タンク等の反応器を利用することができる。液相としては、イソプレン生成微生物を含む培地を用いることができる。気相は、系における液相上部の空間であり、ヘッドスペースとも呼ばれ、発酵ガスを含む。イソプレンは、標準大気圧で沸点が34℃であり、かつ水に対して難溶性(水に対する溶解性:0.6g/L)で20℃における蒸気圧が60.8kPaであることから(例、Brandes et al.,Physikalish Technische Bundesanstalt(PTB),2008)、イソプレン生成微生物を34℃以上の温度条件下の液相中で培養した場合、液相中で生成したイソプレンは容易に気相中に移行し得る。したがって、このような系を用いる場合、液相中で生成したイソプレンを、気相中から回収することができる。また、液相中で生成したイソプレンは容易に気相中に移行し得ることから、液相中のイソプレン生成微生物によるイソプレン生成反応(イソプレンシンターゼによる酵素反応)を、常に、イソプレン生成側に傾斜させることもできる。
 液相および気相を備える系において本発明の方法が行われる場合、気相中の酸素濃度を制御することが望ましい。イソプレンは爆発限界が1.0~9.7%(w/w)(例、Brandes et al.,Physikalish Technische Bundesanstalt(PTB),2008)であり爆発し易い性質を有すること、およびイソプレンは気相中での酸素との混合比率に応じて爆発範囲が変動することから(US8420360B2、図24を参照)、爆発の回避の観点から、気相中の酸素濃度を制御する必要があるためである。
 気相中の酸素濃度の制御は、酸素濃度を調節した気体を系中に供給することにより行うことができる。系中に供給される気体は、窒素、二酸化炭素、アルゴン等の酸素以外の気体成分を含んでいてもよい。より具体的には酸素濃度が爆発範囲を持つガスの限界酸素濃度以下になるよう不活性ガスを加えることで気相中の酸素濃度を制御できる。酸素以外の気体成分としては不活性ガスが望ましい。好ましくは、酸素濃度を調節した気体は液相中に供給され、それにより気相中の酸素濃度が間接的に制御される。気相中の酸素濃度は、以下のとおり、液相中の溶存酸素濃度の調節により制御できるためである。
 液相中に供給された気体中の酸素は液相中に溶存し、やがて飽和濃度に達する。一方、微生物が存在する系においては、液相中の溶存酸素は、培養される微生物の代謝活動により消費され、その結果、溶存酸素濃度は飽和濃度以下に低下する。飽和濃度以下の酸素を含む液相において、気液平衡により気相中の酸素、あるいは新たに供給する気体中の酸素は液相への移動が可能である。すなわち、微生物の酸素消費速度に依存して、気相中の酸素濃度は低下する。また、培養される微生物の酸素消費速度を制御することにより、気相中の酸素濃度を制御することも可能である。
 例えば、微生物の炭素源の代謝速度を上げることにより、酸素消費速度をあげ、気相中の酸素濃度を9%(v/v)以下(例、5%(v/v)以下、0.8%(v/v)以下、0.6%(v/v)以下、0.5%(v/v)以下、0.4%(v/v)以下、0.3%(v/v)以下、0.2%(v/v)以下、もしくは0.1%(v/v)以下)または実質的に0%(v/v)に設定することができる。あるいは、初期に供給する気体中の酸素濃度を、低く設定することでも成し得る。したがって、気相中の酸素濃度は、液相中の微生物による酸素の消費速度と供給する気体中の酸素濃度を考慮した上で、設定することができる。
 培養は、液体培地を用いて行うことができる。培養の際には、微生物を寒天培地等の固体培地で培養したものを直接液体培地に接種してもよく、微生物を液体培地で種培養したものを本培養用の液体培地に接種してもよい。すなわち、培養は、種培養と本培養とに分けて行われてもよい。その場合、種培養と本培養の培養条件は、同一であってもよく、異なってもよい。培養開始時に培地に含有される微生物の量は特に制限されない。例えば、OD660=4~8の種培養液を、培養開始時に、本培養用の培地に対して0.1質量%~30質量%、好ましくは1質量%~10質量%、添加してよい。
 培養は、回分培養(batch culture)、流加培養(Fed-batch culture)、連続培養(continuous culture)、またはそれらの組み合わせにより実施することができる。なお、培養開始時の培地を、「初発培地」ともいう。また、流加培養または連続培養において培養系(発酵槽)に供給する培地を、「流加培地」ともいう。また、流加培養または連続培養において培養系に流加培地を供給することを、「流加」ともいう。なお、培養が種培養と本培養とに分けて行われる場合、例えば、種培養と本培養を、共に回分培養で行ってもよい。また、例えば、種培養を回分培養で行い、本培養を流加培養または連続培養で行ってもよい。
 培養は、好気条件で行ってもよく、微好気条件で行ってもよく、嫌気条件で行ってもよい。培養は、微好気条件または嫌気条件で行うのが好ましい。好気条件とは、液体培地中の溶存酸素濃度が、酸素膜電極による検出限界である0.33ppm以上であることをいい、好ましくは1.5ppm以上であることであってよい。微好気条件とは、培養系に酸素が供給されているが、液体培地中の溶存酸素濃度が0.33ppm未満であることをいう。嫌気条件とは、培養系に酸素が供給されない条件をいう。培養は、その全期間において上記で選択された条件で行われてもよく、一部の期間のみ上記で選択された条件で行われてもよい。すなわち、「好気条件で培養する」とは、培養の全期間の内の、少なくとも一部の期間において好気条件で培養が行われることをいう。また、「微好気条件で培養する」とは、培養の全期間の内の、少なくとも一部の期間において微好気条件で培養が行われることをいう。また、「嫌気条件で培養する」とは、培養の全期間の内の、少なくとも一部の期間において嫌気条件で培養が行われることをいう。「一部の期間」とは、例えば、培養の全期間の50%以上、70以上、80%以上、90%以上、95%以上、または99%以上の期間であってよい。なお、「培養の全期間」とは、培養が種培養と本培養とに分けて行われる場合には、本培養の全期間を意味してよい。また、通気量や攪拌速度を低下させる、容器を密閉して無通気で培養する、炭酸ガス含有の不活性ガスを通気する等の手段により、液体培地中の溶存酸素濃度を低下させ、微好気条件または嫌気条件を達成できる。
 培地のpHは、例えば、pH3~10、好ましくはpH4.0~9.5であってよい。培養中、必要に応じて培地のpHを調整することができる。培地のpHは、アンモニアガス、アンモニア水、炭酸ナトリウム、重炭酸ナトリウム、炭酸カリウム、重炭酸カリウム、炭酸マグネシウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム等の各種アルカリ性または酸性物質を用いて調整することができる。
 培地には、炭酸イオン、重炭酸イオン、炭酸ガス、またはそれらの組み合わせが含有されていてよい。これらの成分は、例えば、微生物の代謝により供給されてもよく、pH調整に用いられる炭酸塩および/または重炭酸塩から供給されてもよい。また、これらの成分は、必要に応じて、炭酸、重炭酸、それらの塩、または炭酸ガスを別途添加することにより供給することもできる。炭酸又は重炭酸の塩の具体例としては、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸アンモニウム、炭酸ナトリウム、炭酸カリウム、重炭酸アンモニウム、重炭酸ナトリウム、重炭酸カリウムが挙げられる。炭酸イオンおよび/または重炭酸イオンは、例えば、0.001~5M、好ましくは0.1~3M、さらに好ましくは1~2Mの濃度で添加してよい。炭酸ガスを含有させる場合は、例えば、溶液1L当たり50mg~25g、好ましくは100mg~15g、さらに好ましくは150mg~10gの炭酸ガスを含有させてよい。
 培養温度は、例えば、20℃~45℃、好ましくは25℃~37℃であってよい。培養期間は、例えば、10時間~120時間であってよい。培養は、例えば、培地中の炭素源が消費されるまで、あるいは微生物の活性がなくなるまで、継続してもよい。
 本発明の方法では、焼結金属膜からなるガス放出部からガスを放出し、放出されたガスを含有する培養液をドラフトチューブの内部を通過させて培養液を攪拌する。ガスを含有する培養液は見掛け密度が低く、通常、水平面に対し垂直に上昇する。したがって、本発明の方法では、ガスを含有する見掛け密度の低い培養液がドラフトチューブの内部を通過するように、その管軸方向が水平面に対し垂直となるようにドラフトチューブを設け、ドラフトチューブの下側開口部の近傍に設けたガス放出部からガスを放出することが好ましい。ガスリフト作用による培養液の攪拌機構に関しては先述のとおりである。
 本発明において、ガス放出部から放出するガスは、微生物の培養条件(好気性条件、嫌気性条件等)に応じて決定してよい。好気性条件にて微生物を培養する場合、ガス放出部から放出するガスは、酸素含有ガスが好ましい。酸素含有ガスとしては、好気性条件にて微生物を培養するのに十分な酸素濃度を有する限り特に限定されず、例えば、空気、酸素濃化した空気、純酸素、及びこれらと不活性ガス(窒素等)との混合ガスが挙げられる。嫌気性条件にて微生物を培養する場合、ガス放出部から放出するガスとしては、酸素を実質的に含有しない限り特に限定されず、例えば、窒素、二酸化炭素、水素、メタン、一酸化炭素、及びこれらの混合ガスが挙げられる。
 焼結金属膜からなるガス放出部の放出ガス線速、ドラフトチューブにおけるガス空塔速度の好適な範囲は、上記[ガス攪拌式発酵装置]に記載のとおりである。好適な一実施形態において、焼結金属膜からなるガス放出部の放出ガス線速は、好ましくは0.04m/s以下である。
 本発明の方法は、化学物質を回収することをさらに含んでもよい。化学物質は、培養液に対する溶解度が低く、容易に分離・回収することが可能である。化学物質の種類に応じて、液体として化学物質を回収してもよく、気体として化学物質を回収してもよい。高純度の化学物質を得るべく、公知の方法により、精製・単離処理を行ってもよい。
調製例1:微好気誘導型イソプレノイド化合物生成微生物(SWITCH-Plld/IspSM)及びリン酸欠乏誘導型イソプレノイド化合物生成微生物(SWITCH-PphoC/IspSM,SWITCH-PpstS/IspSM)、アラビノース誘導型イソプレノイド化合物生成微生物(SWITCH-Para/IspSM)の構築
1-1)pMW-Para-mvaES-Ttrpの構築
1-1-1)Enterococcus faecalis由来mvaE遺伝子の化学合成
 acetyl-CoA acetyltransferaseとhydroxymethlglutaryl-CoAreductaseをコードするEnterococcus faecalis由来mvaEの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、(1479..3890)、アミノ酸配列のACCESSION番号:AAG02439)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaEタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号5、及び配列番号6にそれぞれ示す。mvaE遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaE遺伝子を設計し、これをEFmvaEと名付けた。この塩基配列を配列番号7に示す。mvaE遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaEと名付けた。
1-1-2)Enterococcus faecalis由来mvaS遺伝子の化学合成
 hydroxymethylglutaryl-CoA synthaseをコードするEnterococcus faecalis由来mvaSの塩基配列、及びアミノ酸配列はすでに知られている(塩基配列のACCESSION番号:AF290092.1、complement(142..1293)、アミノ酸配列のACCESSION番号:AAG02438)(J.Bacteriol.182(15),4319-4327(2000))。Enterococcus faecalis由来mvaSタンパク質のアミノ酸配列、及び遺伝子の塩基配列を配列番号8、及び配列番号9にそれぞれ示す。mvaS遺伝子をE.coliで効率的に発現させるためにE.coliのコドン使用頻度に最適化したmvaS遺伝子を設計し、これをEFmvaSと名付けた。この塩基配列を配列番号10に示す。mvaS遺伝子は化学合成された後、pUC57(GenScript社製)にクローニングされ、得られたプラスミドをpUC57-EFmvaSと名付けた。
1-1-3)アラビノース誘導型mvaES発現ベクターの構築
 アラビノース誘導型メバロン酸経路上流遺伝子発現ベクターは次の手順で構築した。プラスミドpKD46を鋳型として配列番号11と配列番号12に示す合成オリゴヌクレオチドをプライマーとしたPCRによりE.coli由来araCとaraBADプロモーター配列からなるParaを含むPCR断片を得た。プラスミドpUC57-EFmvaEを鋳型として配列番号13と配列番号14に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaE遺伝子を含むPCR断片を得た。プラスミドpUC57-EFmvaSを鋳型として配列番号15と配列番号16に示す合成オリゴヌクレオチドをプライマーとしたPCRによりEFmvaS遺伝子を含むPCR断片を得た。プラスミドpSTV-Ptac-Ttrpを鋳型として配列番号17と配列番号18に示す合成オリゴヌクレオチドをプライマーとしたPCRによりTtrp配列を含むPCR断片を取得した。これら4つのPCR断片を得るためのPCRにはPrime Starポリメラーゼ(タカラバイオ(株)製)を用いた。反応溶液はキットに添付された組成に従って調整し、98℃にて10秒、55℃にて5秒、72℃にて1分/kbの反応を30サイクル行った。精製したParaを含むPCR産物とEFmvaE遺伝子を含むPCR産物を鋳型として配列番号11と配列番号14に示す合成オリゴヌクレオチドを、精製したEFmvaS遺伝子を含むPCR産物とTtrpを含むPCR産物を鋳型として配列番号15と配列番号18に示す合成オリゴヌクレオチドをプライマーとしてPCRを行った。その結果、ParaとEFmvaE遺伝子、EFmvaSとTtrp含むPCR産物を取得した。プラスミドpMW219((株)ニッポンジーン製)は常法に従ってSmaI消化した。SmaI消化後pMW219と精製したParaとEFmvaE遺伝子を含むPCR産物、EFmvaS遺伝子とTtrpを含むPCR産物はIn-Fusion HD Cloning Kit(Clontech社製)を用いて連結した。得られたプラスミドは、pMW-Para-mvaES-Ttrpと命名した。
1-2-1)メバロン酸経路の上流および下流遺伝子を保有する組込み型コンディショナル複製プラスミドの構築
 メバロン酸経路の上流および下流遺伝子を保有する組込み型プラスミドを構築するため、pAH162-λattL-TcR-λattR vector(Minaeva NI et al.,BMC Biotechnol.2008;8:63)を用いた。
 pMW-Para-mvaES-TtrpのKpnI-SalIフラグメントを、pAH162-λattL-TcR-λattRのSphI-SalI認識部位中にクローニングした。その結果、E.coli Paraプロモーターおよびリプレッサー遺伝子araCの制御下にあるE.faecalis由来mvaESオペロンを保有するpAH162-Para-mvaESプラスミドを構築した(図4)。
 オペロンのプロモーター欠損バリアントを得るために、pMW219-Para-mvaES-TtrpのEcl136II-SalIフラグメントを、同じ組込み型ベクター中にサブクローニングした。得られたプラスミドのマップを、図5に示す。
 異なるプロモーターの制御下にあるmvaES遺伝子を保持する染色体固定用プラスミドのセットを構築した。この目的のために、I-SceI、XhoI、PstIおよびSphI認識部位を含むポリリンカーを、mvaES遺伝子の上流に位置する唯一のHindIII認識部位中に挿入した。この目的を達成するために、プライマー1および2(表5)とポリヌクレオチドキナーゼを用いてアニーリングを行った。得られた二本鎖DNAフラグメントを、ポリヌクレオチドキナーゼで5’リン酸化し、得られたリン酸化フラグメントをHindIIIにて切断したpAH162-mvaESプラスミドにライゲーション反応により挿入した。得られたpAH162-MCS-mvaESプラスミド(図6)は、mvaES遺伝子の前で所望の配向性を保ちながらプロモーターをクローニングに都合が良いものである。lldD、phoCおよびpstS遺伝子の調節領域を保持するDNAフラグメントを、P.ananatis SC17(0)株(Katashkina JI et al.,BMC Mol Biol.,2009;10:34)のゲノムDNAを鋳型として、ならびにプライマー3および4、プライマー5および6、ならびにプライマー7および8(表1)をそれぞれ用いて、PCRにより生成し、pAH162-MCS-mvaESの適切な制限酵素認識部位中にクローニングした。得られたプラスミドを、図7に示す。クローニングされたプロモーターフラグメントの配列決定を行い、予想されるヌクレオチド配列に正確に対応することを確認した。
1-2-2)pAH162-Km-Ptac-KDyI染色体固定用プラスミドの構築
 tetAR遺伝子を含むpAH162-λattL-Tc-λattR(Minaeva NI et al.,BMC Biotechnol.,2008;8:63)のAatII-ApaIフラグメントを、プライマー9および10(表1)、ならびにpUC4Kプラスミド(Taylor LAおよびRose RE.,Nucleic Acids Res.,16,358,1988)を鋳型として用いたPCRで得られたDNAフラグメントと置換した。その結果、pAH162-λattL-Km-λattRが得られた(図8)。
 Ptacプロモーターを、pAH162-λattL-Tc-λattRベクター(Minaeva NI et al.,BMC Biotechnol.,2008;8:63)のHindIII-SphI認識部位に挿入した。その結果、染色体固定用発現ベクターpAH162-Ptacが構築された。クローニングしたプロモーターフラグメントの配列を決定し、設計通りの配列であることを確認した。pAH162-Ptacのマップを、図9に示す。
 ATG Service Gene(ロシア)により化学合成された、レアコドンを同義コドンに置換したS.cerevisiae由来PMK、MVDおよびyIDI遺伝子を保持するDNAフラグメント(図10)を、染色体固定用ベクターpAH162-PtacのSphI-KpnI制限酵素認識部位中にサブクローニングした。化学合成されたKDyIオペロンを含むDNA配列を配列番号43に示す。Ptac-KDyI発現カセットを保持する得られたプラスミドpAH162-Tc-Ptac-KDyIを、図11(A)に示す。その後、薬剤耐性マーカー遺伝子を置換する目的でtetAR遺伝子を保持するpAH162-Tc-Ptac-KDyIのNotI-KpnIフラグメントを、pAH162-λattL-KmR-λattRにて対応するフラグメントにより置換した。その結果、カナマイシン耐性遺伝子kanをマーカーとするpAH162-Km-Ptac-KDyIプラスミドを得た(図11(B))。
 古典的SD配列に連結された、メタノセラ・パルディコラ(Methanocella paludicola)株であるSANAE[完全ゲノム配列については、GenBankアクセッション番号AP011532を参照]由来の推定mvk遺伝子のコーディング部分を含む化学合成DNAフラグメントを、上記組込み型発現ベクターpAH162-PtacのPstI-KpnI認識部位中にクローニングした。mvk遺伝子を保持する染色体固定プラスミドのマップを、図12に示す。
1-3)レシピエント株SC17(0) ΔampC::attBphi80 ΔampH::attBphi80 Δcrt::Ptac-mvk(M.paludicola)の構築
 attLphi80およびattRphi80に隣接したkan遺伝子、ならびに標的染色体部位に相同な40bp配列を含むPCR増幅DNAフラグメントのλRed依存的な組込み(Katashkina JI et al.,BMC Mol Biol.,2009;10:34)、続いて、カナマイシン耐性マーカーのファージphi80 Int/Xis依存的な除去(Andreeva IG et al.,FEMS Microbiol Lett.,2011;318(1):55-60)を含む2段階の手法を用いて、ΔampH::attBphi80およびΔampC::attBphi80染色体改変を、P.ananatis SC17(0)株に段階的に導入した。SC17(0)は、P.ananatis AJ13355のλRed耐性誘導体である(Katashkina JI et al.,BMC Mol Biol.,2009;10:34);P.ananatis AJ13355の注釈付完全ゲノム配列は、PRJDA162073またはGenBankアクセッション番号AP012032.1およびAP012033.1として利用可能である。pMWattphiプラスミド[Minaeva NI et al.,BMC Biotechnol.,2008;8:63]を鋳型として用いて、プライマー11および12、ならびにプライマー13および14(表1)をプライマーとして用いて、それぞれampHおよびampC遺伝子領域への組込みに使用されるDNAフラグメントを生成した。プライマー15および16、ならびにプライマー17および18(表1)を、得られた染色体改変物のPCR検証に用いた。
 並行して、P.ananatis AJ13355ゲノムの一部である、pEA320 320kbメガプラスミド上に位置するcrtオペロンの代わりにphi80ファージのattB部位を保持するP.ananatis SC17(0)の誘導体を構築した。この株を得るために、ゲノム中の標的部位に相同な40bp領域に隣接したattLphi80-kan-attRphi80を保持するPCR増幅DNAフラグメントのλRed依存的な組込みを、以前に記載された手法(Katashkina JI et al.,BMC Mol Biol.,2009;10:34)にしたがって行った。attLphi80-kan-attRphi80によるcrtオペロンの置換に用いられるDNAフラグメントを、プライマー19および20(表1)を用いる反応で増幅した。pMWattphiプラスミド(Minaeva NI et al.,BMC Biotechnol.,2008;8:63)を、この反応で鋳型として用いた。得られた組込み体を、SC17(0)Δcrt::attLphi80-kan-attRphi80と名付けた。プライマー21および22(表1)を、SC17(0)Δcrt::attLphi80-kan-attRphi80.の染色体構造のPCR検証に用いた。構築株からのカナマイシン耐性マーカーの除去を、既報の手法に従いpAH129-catヘルパープラスミドを用いて行った(Andreeva IG et al.,FEMS Microbiol Lett.,2011;318(1):55-60)。オリゴヌクレオチド21および22を、得られたSC17(0)Δcrt::attBphi80株のPCR検証に用いた。得られたΔampC::attBphi80、ΔampH::attBphi80およびΔcrt::attBphi80ゲノム改変物のマップをそれぞれ、図13(A)、(B)および(C)に示す。
 上記pAH162-Ptac-mvk(M.paludicola)プラスミドを、既報のプロトコル(Andreeva IG et al.,FEMS Microbiol Lett.,2011;318(1):55-60)にしたがってSC17(0)Δcrt::attBphi80のattBphi80部位に組み込んだ。プラスミドの組込みを、プライマー21および23、ならびにプライマー22および24(表1)を用いたポリメラーゼ連鎖反応で確認した。その結果、SC17(0)Δcrt::pAH162-Ptac-mvk(M.paludicola)株を得た。Δcrt::pAH162-Ptac-mvk(M.paludicola)改変物のマップを、図14(A)に示す。
 その後、ゲノムDNAエレクトロポレーション手法(Katashkina JI et al.,BMC Mol Biol.,2009;10:34)を介してSC17(0)Δcrt::pAH162-Ptac-mvk(M.paludicola)の遺伝形質をSC17(0) ΔampC::attBphi80 ΔampH::attBphi80へ移行させた。得られた株はテトラサイクリン耐性遺伝子tetRAをマーカーとして利用している。tetRAマーカー遺伝子を含むpAH162-Ptac-mvk(M.paludicola)組込み型プラスミドのベクター部分を、既報のpMW-intxis-catヘルパープラスミド[Katashkina JI et al.,BMC Mol Biol.,2009;10:34]を用いて除去した。その結果、マーカー遺伝子欠損株SC17(0) ΔampH::attBφ80 ΔampC::attBφ80 Δcrt::Ptac-mvk(M.paludicola)を得た。Δcrt::Ptac-mvk(M.paludicola)ゲノム改変物のマップを、図14(B)に示す。
1-4)SWITCH株のセットの構築
 pAH162-Km-Ptac-KDyIプラスミドを、既報のプロトコル(Andreeva IG et al. FEMS Microbiol Lett. 2011;318(1):55-60)にしたがい、SC17(0)ΔampH::attBφ80 ΔampC::attBφ80 Δcrt::Ptac-mvk(M.paludicola)/pAH123-cat株の染色体に組み込んだ。50mg/Lカナマイシンを含むLBアガー上に細胞を撒いた。増殖したKmクローンを、プライマー11および15、ならびにプライマー11および17(表1)を用いたPCR反応で試験した。ΔampH::attBφ80またはΔampC::attBφ80mに組み込まれたpAH162-Km-Ptac-KDyIプラスミドを保持する株を選択した。ΔampH::pAH162-Km-Ptac-KDyIおよびΔampC::pAH162-Km-Ptac-KDyI染色体改変物のマップを、図15(A)および(B)に示す。
 pAH162-Px-mvaES(ここで、Pxは、以下の調節領域のうちの一つである:araC-Para(E.coli)、PlldD、PphoC、PpstS)を、既報のプロトコル[Andreeva IG et al.,FEMS Microbiol Lett.,2011;318(1):55-60]にしたがってpAH123-catヘルパープラスミドを用いてSC17(0) ΔampC::pAH162-Km-Ptac-KDyI ΔampH::attBphi80 Δcrt::Ptac-mvk(M.paludicola)およびSC17(0) ΔampC::attBphi80 ΔampH::pAH162-Km-Ptac-KDyI Δcrt::Ptac-mvk(M.paludicola)レシピエント株のattBphi80部位に挿入した。その結果、SWITCH-Px-1およびSWITCH-Px-2とそれぞれ名付けられた2セットの株を得た。ΔampH::pAH162-Px-mvaESおよびΔampC::pAH162-Px-mvaES染色体改変物のマップを図16に示す。
Figure JPOXMLDOC01-appb-T000001
1-5)イソプレンシンターゼ発現プラスミドの導入
 常法に従いSWITCH菌のエレクトロコンピテントセルを作成し、エレクトロポレーションによりムクナ由来イソプレンシンターゼの発現プラスミドであるpSTV28-Ptac-IspSM(WO2013/179722)を導入した。得られたイソプレノイド化合物生成微生物をそれぞれ、SWITCH-Para/IspSM、SWITCH-Plld/IspSM、SWITCH-PpstS/IspSM、SWITCH-PphoC/IspSMと命名した。
調製例2:SC17(0)ΔgcdとSWITCH-PphoCΔgcdの構築とイソプレンシンターゼの導入
 P.アナナティスのgcd遺伝子は、グルコースデヒドロゲナーゼをコードしており、P.アナナティスは好気性増殖中にグルコン酸を蓄積することが知られている(Andreeva IGら,FEMS Microbiol Lett.2011 May;318(1):55-60)。
 プライマーgcd-attLおよびgcd-attR(表2)及び鋳型としてpMW118-attL-kan-attRプラスミドを用いるPCRで得られたDNAフラグメントのλRed依存的な組込み(Minaeva NIら,BMC Biotechnol.2008;8:63)により、gcd遺伝子が破壊されたSC17(0)Δgcd株を構築する。組込み体を確認するため、プライマーgcd-t1およびgcd-t2(表2)を用いる。
 SC17(0)Δgcd株のゲノムDNAを、Wizard Genomic DNA Purification Kit(プロメガ)を用いて単離し、既報の方法〔Katashkina JIら,BMC Mol Biol.2009;10:34〕にしたがってSWITCH-PphoC株のマーカーを含まない誘導体中に電気形質転換する。その結果、SWITCH-PphoC-Δgcd(KmR)株を得る。プライマーgcd-t1およびgcd-t2(表2)を、得られた組込み体のPCR解析に用いる。カナマイシン耐性マーカー遺伝子を、標準的なλIng/Xis媒介手法〔Katashkina JIら,BMC Mol Biol.2009;10:34〕にしたがって得る。得られた株を、SWITCH-PphoC Δgcd株と命名する。
 SWITCH-PphoC Δgcd株のコンピテントセルを標準的な方法にしたがって調製し、ムクナ由来のイソプレンシンターゼ発現用ベクターであるpSTV28-Ptac-IspSM(WO2013/179722)をエレクトロポレーションにより導入した。得られたイソプレノイド化合物生成微生物を、SWITCH-PphoC Δgcd/IspSMと命名した。
Figure JPOXMLDOC01-appb-T000002
実施例1: SWITCH-PphoC Δgcd/IspSMの培養評価
1)イソプレン生成微生物SWITCH―PphoCΔgcd/IspSM株のジャー培養条件
 イソプレン生成微生物SWITCH―PphoCΔgcd/IspSM株の菌体増殖のため、ジャー培養を行う。ジャー培養には3L容積のガス攪拌式発酵装置(エイブル(株)製)を使用する。グルコース培地は表3に示す組成になるように調整する。前培養としてクロラムフェニコール(60mg/L)を含むLBプレートにイソプレン生成微生物SWITCH―PphoCΔgcd/IspSM株を塗布し、34℃にて16時間培養を実施する。2Lのグルコース培地を3L容積のガス攪拌式発酵装置に投入後、充分に増殖したプレート7枚分の菌体を接種し、培養を開始する。ガス攪拌式発酵装置は内部に配置されたドラフトチューブと、培養槽の内部へとガスを供給するガス供給管とを含み、ガス供給管が平均細孔径5.0μmの焼結金属膜からなるガス放出部を備える。培養条件は、pH6.8(アンモニアガスにて制御)、34℃であり、焼結金属膜からなるガス放出部の放出ガス線速が0.03m/secとなるように2.3L/min(酸素濃度:20%(v/v)の空気を培地中に供給する。ガルバニ式DOセンサー(エイブル(株)製)を用いて培養液中の溶存酸素(Dissolved Oxigen,DO)濃度を測定し、48時間培養を行う。培養中は、培地中のグルコース濃度が15g/L以上になるよう500g/Lに調整したグルコースを連続的に添加する。
Figure JPOXMLDOC01-appb-T000003
 A区とB区を1L調整後、120℃、20minで加熱滅菌を行う。放冷後、A区とB区を1:1で混合し、クロラムフェニコール(60mg/L)を添加し、培地として使用する。
2)発酵排気ガス中の酸素とイソプレン濃度の測定方法
 発酵排気ガス中のイソプレン濃度はマルチガスアナライザー(GASERA社製 F10)を用いて測定する。発酵排気ガス中の酸素、炭酸ガス濃度はガス分析装置(エイブル(株)製 DEX-1562A)を用いて測定する。
実施例2: SWITCH-PphoC Δgcd/IspSMの培養評価
 ガス攪拌式発酵装置を用いて、イソプレン生成微生物SWITCH-PphoC Δgcd/IspSM株の培養試験を実施した。培養には3L容積のガス攪拌式発酵装置(エイブル(株)製 BMA-02PI型)を使用した。該ガス攪拌式発酵装置は、培養槽と、培養槽の内部に配置されたドラフトチューブと、培養槽の内部へとガスを供給するガス供給管とを含み、ガス供給管が平均細孔径5.0μmの焼結金属膜からなるガス放出部を備えた。培養槽の内径Dは7.6cm、ドラフトチューブの内径Dは5.5cm、培養槽の底部からのドラフトチューブの最上部の高さH2maxは33.1cm、培養槽の底部からのドラフトチューブの最下部の高さH2minは9.8cmであった。
 SWITCH-PphoC Δgcd/IspSM株のグリセロールストックを融解し、菌体懸濁液50μLを6枚の60mg/Lのクロラムフェニコールを含むLBプレートに均一に塗布し、前培養として34℃にて16時間培養した。
 次いで、発酵培地2.0Lをガス攪拌式発酵装置の培養槽に注入した。ここで、発酵培地は、表4記載のA区とB区をそれぞれ1L調製した後、120℃で20分加熱滅菌を行い、放冷後、A区とB区を1:1で混合し、クロラムフェニコール(60mg/L)を添加して調製した。得られた前培養プレート6枚分の菌体の全量を発酵培地に植菌し、培養を開始した。培養槽の底部からの培養液の液面高さHは34.8cmであった。
 培養温度は34℃とし、焼結金属膜からなるガス放出部の放出ガス線速0.03m/secとなるように2.3L/min(酸素濃度:21%(v/v))の無菌空気を発酵培地中に供給した。発酵培地のpHはアンモニアガスを用いて6.8に制御し、ガルバニ式DOセンサー(エイブル(株)製 SDOU-10L160-125)を用いて発酵培地中のDO濃度を測定しながら、24時間培養を行った。植菌前の培養開始時のDO濃度を21%とし、飽和亜硫酸ナトリウム溶液中のDO濃度を0%とした。pH調整用のアンモニアガスは、発酵装置上部からアンモニアガス供給専用のガス供給管を発酵培地に繋いで供給し、培養温度はシリコンラバーヒーターと冷却水を用いて制御した。培養中は、発酵培地中のグルコース濃度が20g/Lから40g/Lの範囲になるように、700g/Lに調整したディスホームGD-113K 0.07mL/Lを含むグルコース培地を連続的に添加した。
Figure JPOXMLDOC01-appb-T000004
 培養開始後、適宜サンプリングし、O.D.値とグルコース濃度の分析を実施した。発酵排気ガス中のイソプレン濃度はマルチガスアナライザー(GASERA社製 F10)を用いて測定し、発酵排気ガス中の酸素、炭酸ガス濃度はガス分析装置(エイブル(株)製 DEX―1562A)を用いて測定した。O.D.値は分光光度計((株)日立ハイテクサイエンス製 U-2900)によって発酵ブロスを101倍に希釈した後、600nmで測定した。
 SWITCH-PphoC Δgcd株/IspSM株の培養終了時のO.D.値とイソプレン生成量を表5に示す。また、培養時のO.D.値とイソプレン生成量の経時変化のグラフをそれぞれ図17(A)、図17(B)に示す。また、発酵培地中のDO濃度の経時変化のグラフを図18に示す。
Figure JPOXMLDOC01-appb-T000005
 24時間の培養でSWITCH-PphoC Δgcd/IspSM株は364gのグルコースを消費し、イソプレンの生成量は440mgであった。また、発酵培地中のDO濃度は培養の全期間にわたって5%以上を維持した。この結果から、培養層と、培養槽の内部に配置されたドラフトチューブと、培養槽の内部へとガスを供給するガス供給管とを含み、ガス供給管が焼結金属膜からなるガス放出部を備えるガス攪拌式発酵装置を使用することで、化学物質(イソプレン)の製造が可能であることを実証した。
 1 培養槽
 2 ドラフトチューブ
 3 ガス供給管
 4 焼結金属膜からなるガス放出部
 5 培養液
10 ガス攪拌式発酵装置

Claims (10)

  1.  培養槽と、
     培養槽の内部に配置されたドラフトチューブと、
     培養槽の内部へとガスを供給するガス供給管と、
    を含み、
     ガス供給管が、焼結金属膜からなるガス放出部を備え、
     ガス放出部から放出されるガスにより培養槽内の培養液を攪拌可能としたことを特徴とする、ガス攪拌式発酵装置。
  2.  焼結金属膜の平均細孔径が20μm以下である、請求項1に記載の装置。
  3.  焼結金属膜からなるガス放出部の放出ガス線速(ガス放出量[m/s]/焼結金属膜の表面積[m])が、0.04m/s以下である、請求項1又は2に記載の装置。
  4.  培養槽の内径をD、ドラフトチューブの内径をDとしたとき、DとDが、0.7<D/Dの関係を満たす、請求項1~3のいずれか1項に記載の装置。
  5.  化学物質の生産能を有する微生物を含む培養液に、焼結金属膜からなるガス放出部からガスを放出し、放出されたガスを含有する培養液をドラフトチューブの内部を通過させて培養液を攪拌すること、及び
     微生物を培養して化学物質を製造すること
    を含む、化学物質の製造方法。
  6.  化学物質が、可燃性物質を含む、請求項5に記載の方法。
  7.  化学物質が、疎水性物質である、請求項5又は6に記載の方法。
  8.  化学物質が、イソプレノイド化合物である、請求項5~7のいずれか1項に記載の方法。
  9.  焼結金属膜の平均細孔径が20μm以下である、請求項5~8のいずれか1項に記載の方法。
  10.  焼結金属膜からなるガス放出部の放出ガス線速(ガス放出量[m/s]/焼結金属膜の表面積[m])が、0.04m/s以下である、請求項5~9のいずれか1項に記載の方法。
PCT/JP2016/089141 2015-12-28 2016-12-28 ガス攪拌式発酵装置 WO2017115855A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680076444.0A CN109415672A (zh) 2015-12-28 2016-12-28 气体搅拌式发酵装置
EP16881829.2A EP3399015A4 (en) 2015-12-28 2016-12-28 FERMENTATION DEVICE WITH GAS AGITATION
JP2017559240A JPWO2017115855A1 (ja) 2015-12-28 2016-12-28 ガス攪拌式発酵装置
US16/019,681 US20180327705A1 (en) 2015-12-28 2018-06-27 Gas Stirring Fermentation Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256881 2015-12-28
JP2015-256881 2015-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/019,681 Continuation US20180327705A1 (en) 2015-12-28 2018-06-27 Gas Stirring Fermentation Device

Publications (1)

Publication Number Publication Date
WO2017115855A1 true WO2017115855A1 (ja) 2017-07-06

Family

ID=59224911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089141 WO2017115855A1 (ja) 2015-12-28 2016-12-28 ガス攪拌式発酵装置

Country Status (5)

Country Link
US (1) US20180327705A1 (ja)
EP (1) EP3399015A4 (ja)
JP (1) JPWO2017115855A1 (ja)
CN (1) CN109415672A (ja)
WO (1) WO2017115855A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019191761A1 (en) * 2018-03-30 2019-10-03 Invista North America S.A.R.L. Method for controlling dissolved oxygen concentration in a continuous aerobic fermentation
WO2019191763A1 (en) * 2018-03-30 2019-10-03 Invista North America S.A.R.L. Methods for controlling oxygen concentration during aerobic biosynthesis
WO2020003833A1 (ja) * 2018-06-27 2020-01-02 富士フイルム株式会社 細胞培養方法、生産物の製造方法、及び細胞培養装置
US10975363B2 (en) 2018-03-30 2021-04-13 Inv Nylon Chemicals Americas, Llc Materials and methods for biosynthetic manufacture and utilization of synthetic polypeptides, and products therefrom
US11053287B2 (en) 2018-05-02 2021-07-06 Inv Nylon Chemicals Americas, Llc Materials and methods for differential biosynthesis in species of the genera Ralstonia and Cupriavidus and organisms related thereto
US11098381B2 (en) 2018-05-02 2021-08-24 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling regulation in biosynthesis in species of the genera Ralstonia or Cupriavidus and organisms related thereto
US11203771B2 (en) 2018-03-30 2021-12-21 Inv Nylon Chemicals Americas, Llc Materials and methods for biosynthetic manufacture of carbon-based chemicals
US11434461B2 (en) * 2018-03-20 2022-09-06 Keck Graduate Institute Of Applied Life Sciences Airlift perfusion bioreactor for the culture of cells
US11702680B2 (en) 2018-05-02 2023-07-18 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling PHA biosynthesis in PHA-generating species of the genera Ralstonia or Cupriavidus and organisms related thereto
US11788055B2 (en) 2018-05-02 2023-10-17 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling oxidation and reduction in biosynthetic pathways of species of the genera ralstonia and cupriavidus and organisms related thereto

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262664A (zh) * 2022-03-01 2022-04-01 深圳市路阳农业科技有限公司 一种胰蛋白酶酶解装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571487A (en) * 1978-11-25 1980-05-29 Kanegafuchi Chem Ind Co Ltd Aerobic culture device of microorganisms and cultivation with it
JPH06253824A (ja) * 1993-03-02 1994-09-13 Japan Synthetic Rubber Co Ltd 菌体の培養法
JPH09135680A (ja) * 1995-11-14 1997-05-27 Kanegafuchi Chem Ind Co Ltd 焼結金属エレメントを用いた培養方法並びに培養装置
WO2014058761A1 (en) * 2012-10-08 2014-04-17 Calysta Energy, Llc Gas-fed fermentation systems

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665295B2 (ja) * 1984-08-28 1994-08-24 鐘淵化学工業株式会社 焼結金属エレメントを用いる培養方法
US5849970A (en) * 1995-06-23 1998-12-15 The Regents Of The University Of Colorado Materials and methods for the bacterial production of isoprene
JP4200655B2 (ja) * 2000-12-26 2008-12-24 味の素株式会社 焼結金属膜を用いた好気的培養方法
JP2003088355A (ja) * 2001-09-13 2003-03-25 Sumitomo Chem Co Ltd 好気性微生物の培養装置およびこれを使用した培養方法
CN203999599U (zh) * 2014-06-26 2014-12-10 陆飞浩 自吸式气升发酵罐

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571487A (en) * 1978-11-25 1980-05-29 Kanegafuchi Chem Ind Co Ltd Aerobic culture device of microorganisms and cultivation with it
JPH06253824A (ja) * 1993-03-02 1994-09-13 Japan Synthetic Rubber Co Ltd 菌体の培養法
JPH09135680A (ja) * 1995-11-14 1997-05-27 Kanegafuchi Chem Ind Co Ltd 焼結金属エレメントを用いた培養方法並びに培養装置
WO2014058761A1 (en) * 2012-10-08 2014-04-17 Calysta Energy, Llc Gas-fed fermentation systems

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ABLE Biott Seihin Lineup", AIRLIFT-GATA BAIYO SOCHI BMA, 3 November 2015 (2015-11-03), XP055396365, Retrieved from the Internet <URL:http://web. archive.org/web/20151103004209/ http://www.able- biott.co.jp/product/baiyou/bma.html> [retrieved on 20170603] *
HUANG Z. ET AL.: "Isoshowacene, A C31 hydrocarbon from Botryococcus braunii var. showa", PHYTOCHEMISTRY, vol. 28, no. 11, 1989, pages 3043 - 3046, XP026620758, DOI: doi:10.1016/0031-9422(89)80276-6 *
See also references of EP3399015A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11434461B2 (en) * 2018-03-20 2022-09-06 Keck Graduate Institute Of Applied Life Sciences Airlift perfusion bioreactor for the culture of cells
WO2019191761A1 (en) * 2018-03-30 2019-10-03 Invista North America S.A.R.L. Method for controlling dissolved oxygen concentration in a continuous aerobic fermentation
WO2019191763A1 (en) * 2018-03-30 2019-10-03 Invista North America S.A.R.L. Methods for controlling oxygen concentration during aerobic biosynthesis
CN111836897B (zh) * 2018-03-30 2023-10-17 英威达纺织(英国)有限公司 用于在好氧生物合成期间控制氧浓度的方法
CN111836897A (zh) * 2018-03-30 2020-10-27 英威达纺织(英国)有限公司 用于在好氧生物合成期间控制氧浓度的方法
US11512276B2 (en) 2018-03-30 2022-11-29 Inv Nylon Chemicals Americas, Llc Methods for controlling oxygen concentration during aerobic biosynthesis
US11203771B2 (en) 2018-03-30 2021-12-21 Inv Nylon Chemicals Americas, Llc Materials and methods for biosynthetic manufacture of carbon-based chemicals
US10975363B2 (en) 2018-03-30 2021-04-13 Inv Nylon Chemicals Americas, Llc Materials and methods for biosynthetic manufacture and utilization of synthetic polypeptides, and products therefrom
US11098381B2 (en) 2018-05-02 2021-08-24 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling regulation in biosynthesis in species of the genera Ralstonia or Cupriavidus and organisms related thereto
US11053287B2 (en) 2018-05-02 2021-07-06 Inv Nylon Chemicals Americas, Llc Materials and methods for differential biosynthesis in species of the genera Ralstonia and Cupriavidus and organisms related thereto
US11702680B2 (en) 2018-05-02 2023-07-18 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling PHA biosynthesis in PHA-generating species of the genera Ralstonia or Cupriavidus and organisms related thereto
US11788055B2 (en) 2018-05-02 2023-10-17 Inv Nylon Chemicals Americas, Llc Materials and methods for controlling oxidation and reduction in biosynthetic pathways of species of the genera ralstonia and cupriavidus and organisms related thereto
EP3792344A4 (en) * 2018-06-27 2021-06-23 FUJIFILM Corporation METHOD FOR CELL CULTURE, METHOD FOR MANUFACTURING A PRODUCT AND APPARATUS FOR CELL CULTURE
JPWO2020003833A1 (ja) * 2018-06-27 2021-03-11 富士フイルム株式会社 細胞培養方法、生産物の製造方法、及び細胞培養装置
JP7053827B2 (ja) 2018-06-27 2022-04-12 富士フイルム株式会社 細胞培養方法、生産物の製造方法、及び細胞培養装置
AU2019294891B2 (en) * 2018-06-27 2022-07-21 Fujifilm Corporation Cell culture method, method for producing product, and cell culture device
CN112313326A (zh) * 2018-06-27 2021-02-02 富士胶片株式会社 细胞培养方法、产物的制造方法及细胞培养装置
KR20210005083A (ko) * 2018-06-27 2021-01-13 후지필름 가부시키가이샤 세포 배양 방법, 생산물의 제조 방법, 및 세포 배양 장치
KR102476633B1 (ko) 2018-06-27 2022-12-09 후지필름 가부시키가이샤 세포 배양 방법, 생산물의 제조 방법, 및 세포 배양 장치
WO2020003833A1 (ja) * 2018-06-27 2020-01-02 富士フイルム株式会社 細胞培養方法、生産物の製造方法、及び細胞培養装置
CN112313326B (zh) * 2018-06-27 2024-04-26 富士胶片株式会社 细胞培养方法、产物的制造方法及细胞培养装置

Also Published As

Publication number Publication date
EP3399015A1 (en) 2018-11-07
CN109415672A (zh) 2019-03-01
US20180327705A1 (en) 2018-11-15
JPWO2017115855A1 (ja) 2018-10-18
EP3399015A4 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
WO2017115855A1 (ja) ガス攪拌式発酵装置
US10913958B2 (en) Microbial fermentation for the production of terpenes
JP6254728B2 (ja) イソプレンシンターゼおよびそれをコードするポリヌクレオチド、ならびにイソプレンモノマーの製造方法
US10870866B2 (en) Method of producing linalool using a microorganism
US11939584B2 (en) Methods and microorganisms for making 2,3-butanediol and derivatives thereof from C1 carbons
US10941420B2 (en) Linalool composition and method of producing therefor
US20210403954A1 (en) Method of producing isoprenoid compound
US20220064677A1 (en) Methods and microorganisms for making 1,4-butanediol and derivatives thereof from c1 carbons
Kuzuyama et al. Heterologous mevalonate production in Streptomyces lividans TK23
JP2017104099A (ja) リモネンの製造方法
JPWO2015080273A1 (ja) イソプレンモノマーの製造方法
WO2016174875A1 (ja) ポリイソプレンの製造方法
WO2017022856A1 (ja) イソプレンモノマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881829

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881829

Country of ref document: EP

Effective date: 20180730