WO2017115813A1 - Soluble polyfunctional vinyl aromatic copolymer, method for producing same and curable composition - Google Patents

Soluble polyfunctional vinyl aromatic copolymer, method for producing same and curable composition Download PDF

Info

Publication number
WO2017115813A1
WO2017115813A1 PCT/JP2016/088966 JP2016088966W WO2017115813A1 WO 2017115813 A1 WO2017115813 A1 WO 2017115813A1 JP 2016088966 W JP2016088966 W JP 2016088966W WO 2017115813 A1 WO2017115813 A1 WO 2017115813A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
aromatic compound
copolymer
compound
Prior art date
Application number
PCT/JP2016/088966
Other languages
French (fr)
Japanese (ja)
Inventor
川辺 正直
道貴 太田
Original Assignee
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鉄住金化学株式会社 filed Critical 新日鉄住金化学株式会社
Priority to JP2017559221A priority Critical patent/JP6833723B2/en
Publication of WO2017115813A1 publication Critical patent/WO2017115813A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Definitions

  • the present invention relates to a novel soluble polyfunctional vinyl aromatic copolymer having improved heat resistance, compatibility, transparency and toughness, a method for producing the same, and a curable composition containing the copolymer. Furthermore, it is related with the film which consists of the curable composition, the hardened
  • Patent Document 1 includes a phenyl group and a double bond in the main chain by polymerizing a divinyl aromatic compound in the presence of a sulfonate anion or a perchlorate anion. It is disclosed that a solvent-soluble polydivinylbenzene having a structure represented by the formula (a2) of the present application (hereinafter simply referred to as “formula (a2)”) is obtained.
  • combine the polydivinylbenzene which has a structure represented only by a formula (a2) is an aromatic compound like benzene etc.
  • a saturated aliphatic hydrocarbon such as n-hexane, a saturated alicyclic hydrocarbon such as cyclohexane or methylcyclohexane, or a halide such as chloroform or trichloroethane.
  • the polarity of the solvent is preferably nonpolar or low in polarity, and that the monomer concentration is preferably 20 vol% or less.
  • Patent Document 1 a divinyl aromatic compound can be copolymerized with a monovinyl aromatic compound, and the copolymer obtained by copolymerizing the monovinyl aromatic compound has some useful properties. Is not disclosed at all. In addition, there is a description about the possibility of forming a polymer having a vinyl group in the side chain by using a polar compound in combination with the polymerization, but it is disclosed that a bridging reaction easily occurs and is not preferable. .
  • a divinyl aromatic compound is copolymerized with a styrene having a lower alkyl group, a halogenated alkyl group, an acyl group, an acyloxyl group, a hydroxyl group, or a halogen atom as a monovinyl aromatic compound. It is disclosed. However, in the copolymer synthesized according to the technique disclosed in Patent Document 2, the main chain is composed of polydivinylbenzene having a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain. The styrenes are introduced as end groups added to the ends.
  • the molar ratio of styrenes to divinylbenzene is in the range of 5 to 0.01 in order to increase the yield of the copolymer while maintaining solvent solubility.
  • acetyl perchlorate or trifluoromethanesulfonic acid is used as a catalyst as a catalyst
  • benzene is used as a solvent
  • Patent Document 3 discloses divinyl aromatic compounds and monovinyl aromatic compounds in an organic solvent, such as a Lewis acid catalyst, 1-chloroethylbenzene, 1-bromoethylbenzene, bis (1-chloro-1-methylethyl) benzene, and the like.
  • a soluble polyfunctional vinyl aromatic copolymer obtained by polymerizing at a temperature of 20 to 100 ° C. in the presence of an initiator having a specific structure is disclosed.
  • Patent Document 4 discloses a monomer component containing 20 to 100 mol% of a divinyl aromatic compound in the presence of a quaternary ammonium salt, using a Lewis acid catalyst and an initiator having a specific structure.
  • a method for producing a soluble polyfunctional vinyl aromatic copolymer having a controlled molecular weight distribution by cationic polymerization at a temperature of 0 ° C. is disclosed.
  • the soluble polyfunctional vinyl aromatic copolymer obtained by the techniques disclosed in these two patent documents is excellent in solvent solubility and processability, and by using this, a cured product excellent in heat resistance having a high glass transition temperature. Can be obtained.
  • the soluble polyfunctional vinyl aromatic copolymer obtained by these techniques itself has a polymerizable double bond, it is cured to give a cured product having a high glass transition temperature. Therefore, it can be said that this hardened
  • the polarity is high.
  • the compatibility or solubility between the epoxy compound and the phenol resin is not sufficient, and the thermal decomposition resistance to a high process temperature is not sufficient. Therefore, there are many cases in which a heterogeneous composition is given depending on the type of epoxy compound or phenol resin, and it becomes difficult to produce a uniform cured product of the epoxy compound or phenol resin and a soluble polyfunctional vinyl aromatic copolymer. .
  • the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 3 and Patent Document 4 includes a phenyl group and a double bond in the main chain, that is, a structure represented by the formula (a2).
  • the formula (a1) with respect to the sum of formula (a1) and formula (a2) is actually included in the copolymers disclosed in Examples of Patent Document 3 and Patent Document 4.
  • the molar fraction of the structural unit represented by () was 0.98 to 0.99, and the structure represented by the formula (a2) was present only in a very limited amount.
  • Patent Document 5 discloses a copolymer obtained by copolymerizing a divinyl aromatic compound (a) and a monovinyl aromatic compound (b), and an ether bond or a thioether bond is interposed in part of the end group.
  • a soluble polyfunctional vinyl aromatic copolymer having a chain hydrocarbon group or an aromatic hydrocarbon group is disclosed.
  • this soluble polyfunctional vinyl aromatic copolymer has insufficient toughness, sufficient mechanical properties cannot be obtained in the cured product of the curable composition. There were problems such as insufficient delamination strength and reduced reliability.
  • an ester compound can be used as a cocatalyst
  • examples of specifically usable ester compounds include soluble polyfunctional vinyl aromatic copolymers such as ethyl acetate and methyl propionate. It was an ester compound that does not have a function of introducing a functional group at the end of the. Therefore, the terminal group of the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 5 is a chain hydrocarbon compound having an alcoholic hydroxyl group, an aromatic hydrocarbon compound and a chain having a thioalcohol mercapto group. It contained a chain hydrocarbon group or an aromatic hydrocarbon group via either an ether bond or a thioether bond derived from a chain hydrocarbon compound and an aromatic hydrocarbon compound.
  • the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 5 can be introduced with a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain.
  • the moles of the structural unit represented by the formula (a1) with respect to the sum of the formula (a1) and the formula (a2) in the copolymer actually disclosed in the examples of Patent Document 5 The fraction was 0.98 to 0.99, and the structure represented by the formula (a2) was present only in a very limited amount.
  • Patent Document 6 and Patent Document 7 include a polyfunctional vinyl aromatic copolymer having an end group derived from an aromatic ether compound, and a soluble polyfunctional vinyl aroma having an end group derived from a thio (meth) acrylate compound. Group copolymers are disclosed. However, although the soluble polyfunctional vinyl aromatic copolymer disclosed in these Patent Documents 6 and 7 has improved toughness, it has low dielectric properties in a high frequency band accompanying an increase in information communication volume in recent years. There is a problem that it cannot be applied to a field that requires high-performance, high-level electrical characteristics, thermal and mechanical characteristics, such as the advanced electrical and electronic fields.
  • soluble polyfunctional vinyl aromatic copolymers have a drawback in that they cannot be used as substrate materials in fields requiring high reliability because adhesion at the interface with the glass cloth decreases after wet heat history. It was.
  • the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Documents 6 and 7 can be introduced with a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain. Was not disclosed.
  • Patent Document 8 discloses curing comprising a polyphenylene ether oligomer having vinyl groups at both ends, and a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer comprising a divinyl aromatic compound and an ethyl vinyl aromatic compound.
  • a functional resin composition is disclosed.
  • the curable resin composition using this soluble polyfunctional vinyl aromatic copolymer has insufficient delamination strength, plating peel strength and dielectric properties after wet heat history, as a substrate material in the field of advanced electronics Had the disadvantage that it could not be used.
  • Patent Document 9 discloses a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound and an ethyl vinyl aromatic compound, an epoxy group, a cyanate group, a vinyl group, an ethynyl group, and an isocyanate group. And a curable resin composition comprising a thermosetting resin containing one or more functional groups selected from the group consisting of hydroxyl groups.
  • the curable resin composition using the soluble polyfunctional vinyl aromatic copolymer has a problem that it cannot be applied to a high-functional advanced technology field that requires a high degree of miniaturization because the plating property is insufficient. was there.
  • the present invention has a low dielectric property in a high frequency band accompanying an increase in the amount of information communication in recent years, and has advanced electrical / thermal / mechanical characteristics required for high-performance electrical / mechanical characteristics. It is an object of the present invention to provide a material that can be applied to the field of electronics, particularly a material useful for use as a laminate as an electrical insulating material. From this viewpoint, the present invention provides a novel soluble polyfunctional vinyl aromatic copolymer having improved heat resistance, compatibility, transparency and toughness, a method for producing the same, and a curable composition containing the copolymer.
  • a film comprising the curable composition, a cured product obtained by curing, a curable composite material comprising the curable composition and a substrate, a laminate comprising the cured product and a metal foil, and copper with resin
  • the purpose is to provide a foil.
  • the inventors of the present invention polymerized a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) together with a Lewis base compound in an oxo acid catalyst that selectively generates a vinylene group.
  • 1,2-addition polymerization which generates a vinyl group (vinylene group) in the course of the reaction, proceeds while a vinylene group-containing unit or vinylene group-containing end group is generated by a ⁇ -hydrogen elimination reaction.
  • the present inventors have found that a molecular weight can be controlled without using a transfer agent, and that a copolymer obtained by such polymerization solves the above-mentioned problems, thereby completing the present invention.
  • the present invention is a polyfunctional vinyl aromatic copolymer containing a structural unit derived from a divinyl aromatic compound (a) and a structural unit derived from a monovinyl aromatic compound (b), the divinyl aromatic compound (a ) Derived from a vinyl group-containing unit represented by the following formula (a1), a vinylene group-containing unit represented by the following formula (a2), and a crosslinked structural unit represented by the following formula (a3):
  • the structural unit having a vinylene group-containing terminal unit represented by the following formula (ta1) and derived from the monovinyl aromatic compound (b) is a structural unit represented by the following formula (b1) and the following formula (tb1 It is a soluble polyfunctional vinyl aromatic copolymer characterized by having a vinylene group-containing terminal unit represented by formula (II) and being soluble in a solvent and polymerizable.
  • R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • R 1 is the same as in formula (a1).
  • R 1 is the same as in formula (a1).
  • R 1 is the same as in formula (a1).
  • R 2 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms
  • R 3 represents hydrogen or a hydrocarbon group having 1 to 12 carbon atoms.
  • R 2 and R 3 are the same as those in the formula (b1).
  • the present invention preferably contains 20 mol% to 95 mol% of a structural unit derived from the divinyl aromatic compound (a), and has the formula (a1), formula (a2), formula (a3), and formula (ta1).
  • the molar fraction of the structural units represented by formula (b1) and formula (tb1) satisfies the following formula (1) and the following formula (2): 0.2 ⁇ [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] ⁇ 0.9 (1) (ta1) / [(ta1) + (tb1)]> 0.2
  • a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) are converted from an inorganic acid, an organic sulfonic acid and a perchloric acid compound in the presence of a Lewis base compound (c) as a promoter component.
  • a method for producing a polyfunctional vinyl aromatic copolymer by polymerizing using one or more catalysts (d) selected from the group consisting of a divinyl aromatic compound (a) and a monovinyl aromatic compound (b ) Is used in an amount of 5 to 95 mol% of the divinyl aromatic compound (a) and 95 to 5 mol% of the monovinyl aromatic compound (b), and the total amount of all monomers is 100 mol.
  • the Lewis base compound (c) is used in an amount of 0.005 to 500 mol, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to form a uniform solution at a temperature of 20 to 120 ° C. Obtained by polymerization A soluble polyfunctional vinyl aromatic copolymer characterized and.
  • the present invention provides a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) in the presence of a Lewis base compound (c) as a promoter component, an inorganic acid, an organic sulfonic acid and a perchloric acid type.
  • the divinyl aromatic compound (a) is used in an amount of 5 to 95 mol% and the monovinyl aromatic compound (b) is used in an amount of 95 to 5 mol% with respect to a total of 100 mol% of the compound (b).
  • the Lewis base compound (c) is used in an amount of 0.005 to 500 moles per 100 moles, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to form a uniform solution at 20 to 120 ° C. Polymerized at a temperature of Is a manufacturing method of the soluble polyfunctional vinyl aromatic copolymer according to claim Rukoto.
  • the catalyst (d) in a range of 0.001 to 10 mol per 1 mol of the Lewis base compound (c).
  • the present invention also provides a curable composition comprising the above-mentioned soluble polyfunctional vinyl aromatic copolymer and a radical polymerization initiator.
  • the curable composition can further contain a thermosetting resin or a thermoplastic resin.
  • the thermosetting resin is preferably a modified polyphenylene ether (XC).
  • the thermosetting resin is an epoxy resin having two or more epoxy groups and an aromatic structure in one molecule, an epoxy resin having two or more epoxy groups and a cyanurate structure in one molecule, and / or 2 in one molecule.
  • One or more epoxy resins (XD) selected from the group consisting of the above epoxy groups and epoxy resins having an alicyclic structure may be used.
  • 1 or more types of vinyl compounds (XF) which have 1 or more unsaturated hydrocarbon groups in a molecule
  • the present invention is a cured product obtained by curing the above curable composition, or a film obtained by molding the above curable composition into a film.
  • the present invention is a curable composite material comprising the above curable composition and a base material, wherein the base material is contained in a proportion of 5 to 90% by weight, and A cured composite material obtained by curing the curable composite material, and a laminate comprising the cured composite material layer and a metal foil layer.
  • the present invention provides a resin-coated metal foil having a film formed from the above curable composition on one side of the metal foil, or a circuit board obtained by dissolving the above curable composition in an organic solvent It is a varnish for materials.
  • the cured product obtained from the soluble polyfunctional vinyl aromatic copolymer of the present invention or a material containing the same has improved heat resistance, compatibility, transparency, and toughness. Moreover, according to the production method of the present invention, the copolymer can be produced with high efficiency. Further, by using the soluble polyfunctional vinyl aromatic copolymer of the present invention as a curable compound, the molecule has a free volume with a large molecular size and a small number of polar groups. A cured product having characteristics can be obtained, and good adhesion, plating properties and dielectric loss tangent characteristics after wet heat history can be realized simultaneously.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention comprises a monomer comprising a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b) in the presence of a Lewis base compound (c) as a promoter component.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention is abbreviated as a soluble polyfunctional vinyl aromatic copolymer or simply a copolymer when no misunderstanding occurs.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention has a structural unit derived from the divinyl aromatic compound (a) and a structural unit derived from the ethyl vinyl aromatic compound (b) in the copolymer or at the terminal.
  • the molar fraction of the structural unit represented by formula (a1), formula (a2), formula (a3), formula (ta1), formula (b1), and formula (tb1) satisfies the following formula (1). Is preferred. 0.2 ⁇ [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] ⁇ 0.9 (1)
  • the significance of the above formula (1) is as follows.
  • the structural units (a1) and (ta1) contain a pendant vinyl group.
  • the structural unit (a3) can be regarded as after the reaction of the pendant vinyl group. For this reason, the total molar fraction of (a1) + (a3) + (ta1) is prescribed
  • (ta1) includes a vinylene group, but a vinyl group is dominant.
  • vinyl groups including pendant vinyl groups that have undergone reaction
  • These structural units are (a1), (a3) and (ta1).
  • vinylene groups are less susceptible to curing reaction when used as a curable resin composition.
  • the structural units are (a2), (ta1) and (tb21). Further, substituents other than the vinyl group of the monomer of the mono (ethyl) vinyl aromatic compound do not undergo any further reaction after undergoing one reaction in the polymerization reaction.
  • the structural units are (b1) and (tb1).
  • the total molar fraction represented by the above formula (1) exceeds 0.9, the molecular weight increases and the moldability decreases.
  • the ratio of the pendant vinyl represented by (a1) decreases, and the internal olefin structure is the main component, so that the heat resistance and curability are lowered. More preferably, it is in the range of 0.5 to 0.7.
  • the molar fraction of a terminal group satisfies the following. (ta1) / [(ta1) + (tb1)]> 0.2 (2)
  • the molar fraction of the terminal group represented by the above formula (2) is larger than 0.2, the copolymer of the present invention has good curability.
  • the molar fraction of the terminal group represented by the above formula (2) is 0.2 or less, the curability tends to be lowered.
  • a more preferred lower limit is 0.25, a further preferred lower limit is 0.40, and a further preferred lower limit is 0.50.
  • a preferable upper limit is 0.95, a more preferable upper limit is 0.90, and a more preferable upper limit is 0.85.
  • the total molar fraction represented by the above formula (1) exceeds 0.95, the molding processability of the cured product tends to decrease.
  • the molar fraction (a1) / [(a1) + (a2) + (a3)] of the vinyl group-containing unit is preferably 0.2 or more and less than 0.9. More preferably, it is 0.25 to 0.85, and more preferably 0.3 to 0.8.
  • the structural unit of the copolymer of the present invention so as to satisfy the above relationship, it has a low dielectric loss tangent, high toughness, excellent heat resistance, and compatibility with other resins.
  • the resin composition can be made excellent in transparency and molding processability.
  • the molar fraction of the above formula (a1) is smaller than 0.2, heat resistance and molding processability are deteriorated.
  • compatibility with other resins cannot be maintained, and a fine wiring pattern is obtained.
  • the resin filling property is 0.1 or more , Less than 0.8. Preferably, it is 0.15 to 0.75, more preferably 0.2 to 0.8.
  • the structural unit of the copolymer of the present invention so as to satisfy the above relationship, it has a low dielectric loss tangent, high toughness, excellent heat resistance, and compatibility with other resins.
  • the resin composition can be made excellent in transparency and molding processability.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention comprises a structural unit (A) derived from the divinyl aromatic compound (a) and a structural unit (B) derived from the monovinyl aromatic compound (b).
  • the molar fraction (A) / ⁇ (A) + (B) ⁇ of the structural unit (A) is preferably 0.2 to 0.95, more preferably 0.4 to 0.90, still more preferably Is in the range of 0.50 to 0.85 mol.
  • the molar fraction (B) / ⁇ (A) + (B) ⁇ of the structural unit (B) is calculated from the molar fraction of the structural unit (A).
  • the structural unit (A) is contained in an amount of 20 to 950 mol% with respect to a total of 100 mol% of all the structural units.
  • the structural unit (A) derived from the divinyl aromatic compound (a) contains a vinyl group as a crosslinking component for developing heat resistance, while the structural unit (B) derived from the monovinyl aromatic compound (b). Since it does not have a vinyl group involved in the curing reaction, it imparts moldability and the like. Accordingly, when the molar fraction of the structural unit (A) is less than 0.2, the heat resistance of the cured product is insufficient, and when it exceeds 0.95, the moldability is deteriorated.
  • the heat resistance is lowered with a decrease in the crosslink density, so that a good shape can be maintained when subjected to a thermal history in an optical waveguide formation process or the like. If the amount is too large, the etching characteristics deteriorate and it becomes difficult to form an optical waveguide having a fine microstructure.
  • a structural unit having one vinyl group or one vinylene group for example, the units (a1) and (a2) gives the copolymer polymerizability, and the copolymer is polyfunctional to make a curable resin.
  • the unit (a3) which is a structural unit having no vinyl group or vinylene group, gives a crosslinked structure and increases the degree of branching. However, if the crosslinking proceeds too much, the unit cures and becomes insoluble in the solvent. It is necessary that (a1) and unit (a2) exist.
  • generated in the reaction process, the vinylene group containing terminal group (ta1), and (tb1) are contained as an essential component.
  • the total mol% of the group-containing structural unit and the unsaturated group-containing end group represented by the formulas (ta1) and (tb1) is preferably 40 mol with respect to the total 100 mol% of all the structural units in the copolymer. 0.0 to 80.0 mol%, more preferably 50.0 to 70.0 mol%.
  • R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, which is a divinyl aromatic compound (a) It is understood from the explanation. Specifically, R 1 is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a phenylene group, a biphenylene group, or a naphthylene group.
  • R 2 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms
  • R 3 represents hydrogen or a hydrocarbon group having 1 to 12 carbon atoms. Since it is derived from the monovinyl aromatic compound (b), it can be understood from the description.
  • R 2 is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a phenylene group, a biphenylene group, or a naphthylene group.
  • R 3 is preferably hydrogen or a saturated hydrocarbon group having 1 to 12 carbon atoms, more preferably hydrogen or a saturated hydrocarbon group having 1 to 6 carbon atoms, and still more preferably hydrogen or a carbon number having 1 to 12 carbon atoms. 3 saturated hydrocarbon groups.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention has an Mn (where Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography) of 300 to 100,000, preferably Is 400 to 50,000, more preferably 500 to 10,000.
  • Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography
  • Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography
  • Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography
  • Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography
  • Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography
  • Mn is a number average molecular weight in terms of standard polysty
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention is soluble in a solvent selected from toluene, xylene, tetrahydrofuran, dichloroethane or chloroform, but is preferably soluble in any of the above solvents.
  • “soluble in a solvent” means that 5 g or more, preferably 10 g or more is dissolved in 100 g of a solvent at 25 ° C.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention includes structural units represented by the above formula (a1), formula (a2), formula (a3) and formula (b1), and formula (ta1) and formula (tb1). Therefore, the compatibility with the ether compound and the epoxy compound having the rigidity of the main chain is high. Accordingly, when the curable resin composition with a curable ether compound and an epoxy compound having a rigid structure is cured, it is excellent in uniform curability and transparency.
  • the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) are converted from an inorganic acid, an organic sulfonic acid, and a perchloric acid compound in the presence of a Lewis base compound (c) as a promoter component.
  • One or more catalysts (d) selected from the group can be used for reaction to produce a copolymer.
  • the divinyl aromatic compound (a) plays an important role as a crosslinking component for branching the copolymer to make it polyfunctional and for developing heat resistance when the copolymer is thermally cured.
  • divinylbenzene including each isomer
  • divinylnaphthalene including each isomer
  • divinylbiphenyl including each isomer
  • these can be used individually or in combination of 2 or more types. From the viewpoint of moldability, divinylbenzene (m-isomer, p-isomer or a mixture of isomers thereof) is more preferable.
  • Monovinyl aromatic compound (b) improves the solvent solubility and processability of the copolymer.
  • the monovinyl aromatic compound (b) include a nuclear alkyl-substituted ethyl vinyl aromatic compound, an ⁇ -alkyl substituted ethyl vinyl aromatic compound, a ⁇ -alkyl substituted ethyl vinyl aromatic compound, and an alkoxy substituted ethyl vinyl aromatic compound. It is not limited to.
  • ethylvinylbenzene including each isomer
  • ethylvinylbiphenyl including each isomer
  • ethylvinylnaphthalene Including each isomer
  • ethyl vinylbenzene m-isomer, p-isomer or a mixture of isomers thereof is more preferable.
  • a trivinyl aromatic compound, a trivinyl aliphatic compound, and divinyl are used as long as the effects of the present invention are not impaired.
  • These monomers can be introduced into the copolymer using other monomers (e) such as aliphatic compounds and monovinyl aliphatic compounds.
  • the other monomer (e) examples include 1,3,5-trivinylbenzene, 1,3,5-trivinylnaphthalene, 1,2,4-trivinylcyclohexane, ethylene glycol diacrylate. , Butadiene and the like, but are not limited thereto. These can be used alone or in combination of two or more.
  • the other monomer (e) may be used within a range of less than 30 mol% of the total monomers. Thereby, the structural unit derived from the other monomer component (e) is within a range of less than 30 mol% with respect to the total amount of the structural unit in the copolymer.
  • Lewis base compound (c) as a promoter component examples include 1) ester compounds such as ethyl acetoacetate, butyl acetate, phenyl acetate and methyl propionate, and 2) methyl mercaptopropionic acid, ethyl mercaptopropionic acid and the like.
  • Thioester compounds 3) ketone compounds such as methyl ethyl ketone, methyl isobutyl ketone, benzophenone, 4) methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc.
  • ether compounds such as diethyl ether and tetrahydrolane
  • thioether compounds such as diethyl sulfide and diphenyl sulfide
  • tripropylphosphine tributy One or more Lewis base compounds selected from the group consisting of phosphine compounds such as phosphine, trihexylphosphine, tricyclohexylphosphine, trioctylphosphine, vinylphosphine, propenylphosphine, cyclohexenylphosphine, dialkenylphosphine, and trialkenylphosphine (c ).
  • ester compounds and ketone compounds are preferably used from the viewpoint that they can act synergistically with the component (d) catalyst to easily control the polymerization rate and the molecular weight distribution of the polymer.
  • the Lewis base compound (c) as a co-catalyst component is electron-donating, and coordinates with the hydrogen at the ⁇ -position of the carbocation species that are polymerization-active species during the polymerization reaction, whereby the catalyst (d) and ⁇ - It controls the interaction between hydrogen and regulates the relative reaction frequency between ⁇ -hydrogen elimination reaction and vinyl group 1,2-addition reaction. Therefore, by adding the Lewis base compound (c), the soluble polyfunctional vinyl aromatic copolymer of the present invention has the formulas (a1), (a2), (a) derived from the divinyl aromatic compound and the ethylvinyl aromatic compound.
  • the abundance ratios of the structural units represented by the formula (a3) and the formula (b1) and the terminal groups represented by the formula (ta1) and the formula (tb1) can be widely controlled. That is, the Lewis base compound (c) is a structural unit represented by formula (a1), formula (a2), formula (a3) and formula (b1), and terminal represented by formula (ta1) and formula (tb1). It is a compound that makes it possible to control the abundance ratio of groups and to impart functions such as heat resistance, toughness, and low dielectric properties of the copolymer.
  • ethyl acetate, propyl acetate, butyl acetate, phenyl acetate, and methyl ethyl ketone, and methyl isobutyl ketone are preferably used from the viewpoint of reactivity, availability, and heat resistance of the cured product. . From the viewpoint of reaction rate, propyl acetate, butyl acetate, methyl ethyl ketone, and methyl isobutyl ketone are more preferably used.
  • the Lewis base compound (c) is used in an amount of 0.005 to 500 mol, preferably 0.01 to 100 mol, more preferably 0.1 to 50 mol, per 100 mol of all monomers.
  • amount is less than 0.005 mol, the introduction amount of the repeating structural unit represented by the above formula (a1) with respect to the formula (a2) and the formula (a3) is reduced, and not only functions such as toughness are lowered, but also heat resistance The moldability is deteriorated and the curability is also deteriorated.
  • it is used in excess of 500 mol the polymerization rate is remarkably lowered, the productivity is lowered, and the dielectric properties are deteriorated.
  • the polymerization reaction uses a divinyl aromatic compound (a), an ethyl vinyl aromatic compound (b), a Lewis base compound (c), and a catalyst (d).
  • a copolymer can be obtained by cationic copolymerization at a temperature of 20 to 120 ° C. in a homogeneous solvent dissolved in 15.0 solvent.
  • catalyst (d) one or more kinds of catalysts (d) selected from the group consisting of inorganic acids, organic sulfonic acids and perchloric acid compounds are used.
  • the catalyst (d) can be used without particular limitation as long as it is a compound that generates a sulfonate anion or a perchlorate anion and can accept an electron pair.
  • inorganic acids that generate sulfonate anions include sulfuric acid, fluorosulfuric acid, chlorosulfuric acid, and bischlorosulfuric acid.
  • organic sulfonic acid examples include methyl sulfuric acid, trifluoromethane sulfonic acid, perfluoroethane sulfonic acid, benzene sulfonic acid, paratoluene sulfonic acid, methane sulfonic acid anhydride, and benzene sulfonic acid anhydride.
  • Perchlorate compounds that generate perchlorate anions include perchloric acid, acetyl perchlorate, butyryl perchlorate, benzoyl perchlorate, dioxonium perchlorate, triphenylmethyl perchlorate, tropylium. Park Lorate etc. can be mentioned.
  • Methyl sulfuric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, or methanesulfonic anhydride is most preferably used from the viewpoint of controlling the molecular weight and molecular weight distribution of the obtained copolymer and polymerization activity.
  • the catalyst (d) is used in an amount of 0.001 to 10 mol, more preferably 0.005 to 5 mol, per 1 mol of the Lewis base compound (c) as a co-catalyst. . If it exceeds 10 moles, the polymerization rate becomes too high, making it difficult to control the molecular weight distribution.
  • the polymerization reaction is preferably carried out in one or more organic solvents having a dielectric constant of 2.0 to 15.0 as a solvent for dissolving the produced soluble polyfunctional vinyl aromatic copolymer.
  • Organic solvent is a compound that does not essentially inhibit cationic polymerization, and dissolves catalyst, polymerization additive, co-catalyst, monomer and polyfunctional vinyl aromatic copolymer to form a uniform solution.
  • the dielectric constant is not particularly limited as long as it is in the range of 2 to 15, and can be used alone or in combination of two or more. When the dielectric constant of the solvent is less than 2, the molecular weight distribution becomes wide, which is not preferable. When it exceeds 15, the polymerization rate is remarkably reduced.
  • the organic solvent toluene, xylene, n-hexane, cyclohexane, methylcyclohexane or ethylcyclohexane is particularly preferable from the viewpoint of a balance between polymerization activity and solubility.
  • the amount of the solvent used is such that the concentration of the copolymer in the polymerization solution is 1 to 90 wt%, preferably 10 to 80 wt%, particularly at the end of the polymerization, in consideration of the viscosity of the polymerization solution obtained and ease of heat removal. Preferably, it is determined to be 20 to 70 wt%. If this concentration is less than 1 wt%, the polymerization efficiency is low, resulting in an increase in cost. If it exceeds 90 wt%, the molecular weight and molecular weight distribution increase, resulting in a decrease in molding processability.
  • the polymerization reaction temperature is preferably 20 to 120 ° C, more preferably 40 to 100 ° C. If the polymerization temperature is too high, the selectivity of the reaction will be reduced, causing problems such as an increase in molecular weight distribution and gel generation. If the polymerization temperature is too low, the catalytic activity will be significantly reduced, so a large amount of catalyst must be added. Arise.
  • the method for recovering the copolymer after the polymerization reaction is stopped is not particularly limited.
  • a commonly used method such as a steam stripping method or precipitation with a poor solvent may be used.
  • the curable composition of the present invention contains a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (also referred to as a radical polymerization catalyst) (XB).
  • a radical polymerization initiator for example, the resin composition of the present invention is cured by causing a crosslinking reaction by means of heating or the like as described later.
  • a radical polymerization initiator for the purpose of accelerating the crosslinking reaction, a radical polymerization initiator (XB) may be used.
  • the amount of the radical polymerization initiator used for this purpose is 0.01 to 10% by weight, preferably 0.1 to 8% by weight, based on the sum of the components (XA) and (XB).
  • the radical polymerization initiator is also a radical polymerization catalyst, but is represented by a radical polymerization initiator below.
  • a known substance is used for the radical polymerization initiator.
  • Representative examples include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy ) Hexin-3, di-t-butyl peroxide, t-butylcumyl peroxide, ⁇ , ⁇ '-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (T-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis (t-butylperoxy) butane, 2,2-bis (T-butylperoxy) octane, 2,5-dimethyl-2,5-di (benzoylperoxy)
  • the reaction can be satisfactorily performed without inhibiting the curing reaction. Progresses.
  • the polymerizable polyfunctional vinyl aromatic copolymer (XA) -containing curable composition may be mixed with another polymerizable monomer copolymerizable with the copolymer (XA) and cured.
  • a known substance is used as such a copolymerizable polymerizable monomer.
  • Typical examples are styrene, styrene dimer, alphamethylstyrene, alphamethylstyrene dimer, divinylbenzene, vinyltoluene, t-butylstyrene, chlorostyrene, dibromostyrene, vinylnaphthalene, vinylbiphenyl, acenaphthylene, divinylbenzyl ether. And allyl phenyl ether.
  • the curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) includes known thermosetting resins such as vinyl ester resins, polyvinyl benzyl resins, unsaturated polyester resins, curable vinyl resins, and modified polyphenylenes. Ether resins, maleimide resins, epoxy resins, polycyanate resins, phenol resins, and other known thermoplastic resins such as polystyrene, polyphenylene ether, polyether imide, polyether sulfone, PPS resins, polycyclopentadiene resins, polycycloolefins Resins, etc.
  • thermosetting resins such as vinyl ester resins, polyvinyl benzyl resins, unsaturated polyester resins, curable vinyl resins, and modified polyphenylenes.
  • Ether resins maleimide resins, epoxy resins, polycyanate resins, phenol resins
  • other known thermoplastic resins such as polystyrene, polyphenylene ether,
  • thermoplastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene Butazier Copolymers, hydrogenated styrene - isoprene copolymer and or gums such as polybutadiene, may be blended with polyisoprene.
  • thermoplastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene Butazier Copolymers, hydrogenated styrene - isoprene copolymer and or gums such as poly
  • the curable composition comprises a modified polyphenylene ether (XC) represented by the following formula (7) together with a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (XB), particularly at least one terminal.
  • XC modified polyphenylene ether
  • a group having a polymerizable unsaturated double bond for example, a modified polyphenylene ether (XC) having a phenolic hydroxyl group, a vinyl group, or a (meth) acryl group may be contained.
  • terminal-modified soluble polyfunctional vinyl aromatic copolymer (XA) and the modified polyphenylene ether (XC) have good compatibility, overcoming the problem of reduced reliability due to a decrease in compatibility, It exhibits improved properties such as high low dielectric properties and toughness, as well as properties such as formability and delamination strength in any formulation.
  • m represents 1 or 2
  • L represents a polyphenylene ether chain represented by the following formula (8).
  • M represents a hydrogen atom, a group represented by the following formula (9). When m is 1, M is not a hydrogen atom, and when m is 2, at least one of the two M is hydrogen. It is not an atom.
  • T represents a hydrogen atom when m is 1, and represents a group represented by an alkylene group, the following formula (10), or the following formula (11) when m is 2.
  • n represents a positive integer of 50 or less
  • R 5 , R 6 , R 7 , and R 8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group
  • X is an organic group having 1 or more carbon atoms and may contain an oxygen atom.
  • Y is a vinyl group.
  • j represents an integer of 0 or 1.
  • R 10 , R 11 , R 12 , and R 13 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, formyl group, alkylcarbonyl group, alkenylcarbonyl group, or alkynyl. A carbonyl group is shown.
  • R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group; F is a linear, branched or cyclic hydrocarbon group having 20 or less carbon atoms, including the case of 0 carbon atoms. )
  • the modified polyphenylene ether (XC) used in the present embodiment is not particularly limited as long as it is a modified polyphenylene ether represented by the above formula (7).
  • the modified polyphenylene ether represented by the formula (7) is one in which m in the formula (7) is 1 or 2.
  • the modified polyphenylene ether represented by the formula (7) is specifically a modified polyphenylene ether represented by TLMM or MLTLM.
  • L represents a polyphenylene ether chain represented by the formula (8).
  • n represents a positive integer of 50 or less.
  • R 5 , R 6 , R 7 , and R 8 are independent of each other. That is, R 5 , R 6 , R 7 , and R 8 may be the same group or different groups.
  • R 5 , R 6 , R 7 , and R 8 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferable.
  • M represents a hydrogen atom or a group represented by the formula (9).
  • M represents a group represented by the formula (9) instead of a hydrogen atom when m is 1, that is, when the modified polyphenylene ether is TLM.
  • M is 2, that is, when the modified polyphenylene ether is MLTLM, at least one of the two Ms is not a hydrogen atom, and the heat resistance of the cured product It is preferable that the two Ms are groups represented by the formula (9) for the reasons of property and toughness.
  • T represents a hydrogen atom when m is 1, that is, when the modified polyphenylene ether is TLM.
  • the modified polyphenylene ether represented by TLM is a modified polyphenylene ether represented by HLM.
  • T is m, that is, when the modified polyphenylene ether is MLTLM, an alkylene group, a group represented by the formula (10), or a formula (11) The group represented by these is shown.
  • m is preferably 2
  • T is an alkylene group
  • m is 2
  • T is a 2,2-propylene group because of the toughness of the cured product and the solubility of the modified polyphenylene ether. Is preferred.
  • R 10 , R 11 , R 12 , and R 13 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, Or an alkynylcarbonyl group is shown.
  • R 10 , R 11 , R 12 , and R 13 may be the same group or different groups.
  • R 5 to R 21 Specific examples of the functional groups listed in R 5 to R 21 include the following.
  • the alkyl group is not particularly limited.
  • an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable.
  • Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
  • the alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
  • alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
  • the alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group.
  • an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable.
  • Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
  • the alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group.
  • an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • an acryloyl group, a methacryloyl group, a crotonoyl group, etc. are mentioned, for example.
  • the alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group.
  • an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable.
  • a propioyl group etc. are mentioned, for example.
  • the number average molecular weight of the modified polyphenylene ether (XC) is not particularly limited, but is preferably 800 to 7000, more preferably 1000 to 5000. Most preferably, it is 1000 to 3000. Further, as described above, n is a positive integer of 50 or less, and is preferably a numerical value such that the number average molecular weight of the modified polyphenylene ether falls within such a range. Specifically, it is preferably 1 to 50. In addition, the number average molecular weight should just be what was measured by the general molecular weight measuring method here, and the value etc. which were specifically measured using gel permeation chromatography (GPC) are mentioned.
  • GPC gel permeation chromatography
  • the toughness and moldability of the cured product of the obtained curable composition become higher. This is because when the number average molecular weight of the modified polyphenylene ether is within such a range, it has a relatively low molecular weight, so that the fluidity is improved while maintaining toughness. When a normal polyphenylene ether having such a low molecular weight is used, the heat resistance and toughness of the cured product tend to be lowered.
  • the modified polyphenylene ether (XC) used in this embodiment has a polymerizable unsaturated double bond at the terminal
  • the modified polyphenylene ether and the thermally crosslinked resin are cured by curing together with a vinyl-based thermally crosslinked curable resin.
  • Crosslinking with the mold curable resin suitably proceeds, and a cured product having sufficiently high heat resistance and toughness can be obtained. Therefore, the cured product of the obtained curable composition will be excellent in both heat resistance and toughness.
  • the curable composition of the present invention comprises an epoxy resin (XD) and a cured resin together with a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (XB) for the purpose of improving the adhesion reliability between different materials. It is also a preferred embodiment to contain an agent (XE).
  • the epoxy resin of component (XD) is not particularly limited, but is an epoxy resin having two or more epoxy groups and an aromatic structure in one molecule, and an epoxy resin having two or more epoxy groups and a cyanurate structure in one molecule. It is preferable to use one or more epoxy resins selected from the group consisting of epoxy resins having two or more epoxy groups and an alicyclic structure in one molecule.
  • (XD) component includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alkylphenol novolac type epoxy resin, xylylene modified phenol novolac type epoxy resin, xylylene modified alkylphenol novolak type epoxy resin, biphenyl type epoxy It is more preferably one or more epoxy resins selected from the group consisting of resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, triglycidyl isocyanurate, cyclohexane type epoxy resins and adamantane type epoxy resins.
  • Examples of the bisphenol F type epoxy resin used as the component (XD) include epoxy resins mainly composed of 4,4′-methylenebis (2,6-dimethylphenol) diglycidyl ether, 4,4′-methylenebis.
  • Examples thereof include an epoxy resin mainly composed of (2,3,6-trimethylphenol) diglycidyl ether and an epoxy resin mainly composed of 4,4′-methylenebisphenol diglycidyl ether.
  • an epoxy resin mainly composed of 4,4'-methylenebis (2,6-dimethylphenol) diglycidyl ether is preferable.
  • it can be obtained as a commercial product under the trade name YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • biphenyl type epoxy resin examples include epoxy resins such as 4,4'-diglycidyl biphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • epoxy resins such as 4,4'-diglycidyl biphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl.
  • they are commercially available as trade names YX-4000 and YL-6121H manufactured by Mitsubishi Chemical Corporation.
  • dicyclopentadiene type epoxy resin examples include dicyclopentadiene dioxide and phenol novolac epoxy monomers having a dicyclopentadiene skeleton.
  • naphthalene type epoxy resins 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidylnaphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene , And 1,2,5,6-tetraglycidylnaphthalene, naphthol / aralkyl type epoxy resin, naphthalene skeleton modified cresol novolak type epoxy resin, methoxynaphthalene modified cresol novolak type epoxy resin, naphthylene ether type epoxy resin, methoxynaphthalene dimethylene Modified naphthalene type epoxy resins such as type epoxy resins.
  • Examples of adamantane type epoxy resins include 1- (2,4-diglycidyloxyphenyl) adamantane, 1- (2,3,4-triglycidyloxyphenyl) adamantane, and 1,3-bis (2,4-diglycidyloxy).
  • Phenyl) adamantane 1,3-bis (2,3,4-triglycidyloxyphenyl) adamantane, 2,2-bis (2,4-diglycidyloxyphenyl) adamantane, 1- (2,3,4-tri Hydroxyphenyl) adamantane, 1,3-bis (2,4-dihydroxyphenyl) adamantane, 1,3-bis (2,3,4-trihydroxyphenyl) adamantane, and 2,2-bis (2,4- And dihydroxyphenyl) adamantane.
  • epoxy resins from the viewpoint of compatibility with the component (XA), dielectric properties, and small warpage of the molded product, bisphenol F type epoxy resin, alkylphenol novolak type epoxy resin, xylylene modified phenol novolak type epoxy resin, xylylene modified Alkylphenol novolac type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, triglycidyl isocyanurate, cyclohexane type epoxy resins and adamantene type epoxy resins are preferably used.
  • the weight average molecular weight (Mw) of the epoxy resin used as the (XD) component is preferably less than 10,000. More preferable Mw is 600 or less, and more preferably 200 or more and 550 or less. When Mw is less than 200, the volatility of this component increases, and the handleability of the cast film / sheet tends to deteriorate. On the other hand, when Mw exceeds 10,000, the cast film / sheet tends to be hard and brittle, and the adhesiveness of the cured product of the cast film / sheet tends to be lowered.
  • the content of the component (XD) is preferably 5 parts by weight with respect to 100 parts by weight of the component (XA) and 100 parts by weight with the upper limit.
  • a more preferred lower limit is 10 parts by weight.
  • a more preferred upper limit is 80 parts by weight, and a still more preferred upper limit is 60 parts by weight.
  • the curing agent of the component (XE) is a phenol resin, an acid anhydride having an aromatic skeleton or an alicyclic skeleton, an acid anhydride water additive, a modified acid anhydride, a hydroxyl-terminated polyphenylene ether oligomer, and an activity. It is preferable to select appropriately from ester compounds. By using these preferable curing agents, it is possible to obtain a curable composition that becomes a cured product having an excellent balance of heat resistance, moisture resistance and dielectric properties.
  • the phenol resin used as a curing agent for the component is not particularly limited.
  • Specific examples of the phenol resin include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, phenol aralkyl resin, naphthol aralkyl resin, biphenyl.
  • Type phenol novolak resin biphenyl type naphthol novolak resin, decalin modified novolak, poly (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di-p-hydroxyphenyl) methane, etc.
  • a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group is preferable.
  • phenol resins examples include MEH-8005, MEH-8010, and NEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Japan Epoxy Resin Co., Ltd.), LA-7052, LA-7054, and LA-7751. , LA1356 and LA3018-50P (all of which are manufactured by DIC), PS6313 and PS6492 (manufactured by Gunei Chemical Co., Ltd.), and the like.
  • the structure of the acid anhydride having an aromatic skeleton used as a curing agent for the (XE) component, its water additive or a modified product is not particularly limited.
  • the acid anhydride having an aromatic skeleton, a water additive or a modified product thereof include, for example, styrene / maleic anhydride copolymer, benzophenonetetracarboxylic acid anhydride, pyromellitic acid anhydride, trimellitic acid anhydride, 4,4 '-Oxydiphthalic anhydride, phenylethynylphthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, And trialkyltetrahydrophthalic anhydride, methylnadic acid anhydride, trialkyltetrahydrophthalic anhydride, acid
  • Examples of commercially available acid anhydrides having an aromatic skeleton, water additives or modified products thereof include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (all of which are manufactured by Sartomer Japan), ODPA- M and PEPA (both of which are manufactured by Manac), Rikagit MTA10, Rikagit MTA15, Rikagit TMTA, Rikagit TMEG-100, Rikagit TMEG-200, Rikagit TMEG-300, Rikagit TMEG-500, Rikagit TMEG-S, Rikagit TH, Rikagit HT-1A, Rikagit HH, Rikagit MH-700, Rikagit MT-500, Rikagit DSDA and Rikagit TDA100 (all of which are manufactured by Shin Nippon Rika), and EPICLON B4400, PICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).
  • An acid anhydride having an alicyclic skeleton, a water additive or a modified product thereof is an acid anhydride having a polyalicyclic skeleton, a water additive or a modified product thereof, or an addition reaction between a terpene compound and maleic anhydride. It is preferable that the acid anhydride having an alicyclic skeleton obtained by the above, a water additive or a modified product thereof. In this case, the flexibility, moisture resistance or adhesion of the insulating sheet can be further enhanced.
  • Examples of the acid anhydride having an alicyclic skeleton, a water additive or a modified product thereof include methyl nadic acid anhydride, an acid anhydride having a dicyclopentadiene skeleton, or a modified product thereof.
  • Examples of commercially available acid anhydrides having an alicyclic skeleton, water additives or modified products thereof include Rikajit HNA and Rikajito HNA100 (both are manufactured by Shin Nippon Rika Co., Ltd.), and EpiCure YH306, EpiCure YH307, EpiCure YH308H and EpiCure YH309 (all are made by Japan Epoxy Resin Co., Ltd.) and the like.
  • a hydroxyl-terminated polyphenylene ether oligomer can also be used as the (XE) component.
  • a hydroxyl group-terminated polyphenylene ether oligomer represented by the following formula (12) can be exemplified.
  • p represents 1 or 2
  • E represents a polyphenylene ether chain represented by the following formula (13)
  • G represents a hydrogen atom
  • p represents an integer of 1 or 2.
  • V represents a hydrogen atom when p is 1, and when p is 2, it represents an alkylene group or a group represented by the following formula (14) or formula (15).
  • R 22 , R 23 , R 24 , and R 25 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group;
  • R 26 , R 27 , R 28 , and R 29 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynyl group.
  • R 30 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , and R 37 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group;
  • W is a linear, branched or cyclic hydrocarbon group having 20 or less carbon atoms, including the case of 0 carbon atoms.
  • An active ester compound can also be used as a component. Any compound having an active ester group may be used, but in the present invention, a compound having at least two active ester groups in the molecule is preferable.
  • the active ester compound used as the component (XE) is an active ester obtained from a product obtained by reacting a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound from the viewpoint of heat resistance and the like.
  • a compound is preferable, and an active ester compound obtained by reacting a carboxylic acid compound with one or more selected from the group consisting of a phenol compound, a naphthol compound, and a thiol compound is more preferable.
  • An aromatic compound obtained from a reaction with an aromatic compound having a phenolic hydroxyl group and having at least two active ester groups in the molecule is particularly preferred.
  • the active ester compound may be linear or multi-branched, and when the active ester compound is derived from a compound having at least two carboxylic acids in the molecule, such at least two carboxylic acids When the compound having an in-molecule contains an aliphatic chain, the compatibility with the epoxy resin can be increased, and when the compound has an aromatic ring, the heat resistance can be increased.
  • carboxylic acid compound for forming the active ester compound examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like.
  • succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid and terephthalic acid are preferable, phthalic acid, isophthalic acid and terephthalic acid are more preferable, and isophthalic acid and terephthalic acid are more preferable.
  • Specific examples of the thiocarboxylic acid compound for forming the active ester compound include thioacetic acid and thiobenzoic acid.
  • hydroxy compounds for forming active ester compounds include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenol phthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, ⁇ -naphthol, ⁇ -naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, Examples thereof include tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyl diphenol, phenol novolac and the like.
  • 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl Diphenol and phenol novolak are preferable, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl diphenol and phenol novolak are more preferable, and dicyclopentadienyl diphenol and phenol novolak are more preferable.
  • Specific examples of the thiol compound for forming the active ester compound include benzenedithiol and triazinedithiol.
  • active ester compound for example, active ester compounds disclosed in JP-A Nos. 2002-12650 and 2004-277460, or commercially available ones can be used.
  • commercially available active ester compounds include trade names “EXB9451, EXB9460, EXB9460S, HPC-8000-65T” (manufactured by DIC), trade names “DC808” (manufactured by Japan Epoxy Resins), trade names, and the like.
  • “YLH1026” manufactured by Japan Epoxy Resin Co., Ltd.
  • the production method of the active ester compound is not particularly limited and can be produced by a known method.
  • the amount of the active ester compound (XE) is preferably in the range of 20 to 120 parts by weight, more preferably 40 to 100 parts by weight, and still more preferably 50 to 90 parts by weight with respect to 100 parts by weight of the epoxy resin (XD). It is. By making the compounding quantity of an active ester compound (XE) into the said range, the dielectric property as a hardened
  • Curing agents used as the (XE) component include o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol from the viewpoint of compatibility with the (XA) component, moisture resistance, and adhesion.
  • the curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) of the present invention includes an inorganic filler such as fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride, decabromodiphenylethane, brominated Use in combination with a flame retardant imparting agent such as polystyrene is particularly useful as an electrical or electronic component material that requires dielectric properties, flame retardancy, or heat resistance, particularly as a semiconductor sealing material or a circuit board varnish.
  • an inorganic filler such as fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride, decabromodiphenylethane, brominated
  • a flame retardant imparting agent such as polystyrene is particularly useful as an electrical or electronic component material that requires dielectric properties, flame retardancy, or heat resistance, particularly as a semiconductor sealing material or a circuit board varnish.
  • the circuit board material When used as a varnish for circuit board materials, it can be produced by dissolving the curable composition of the present invention in an organic solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like.
  • an organic solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like.
  • the circuit board material include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
  • a cured product obtained by curing a curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) of the present invention is used as a molded product, a laminate, a cast product, an adhesive, a coating film, or a film. it can.
  • a cured product of a semiconductor sealing material is a cast or molded product.
  • a curable composition is cast, or a transfer molding machine, an injection molding machine, or the like is used.
  • the cured product can be obtained by heating at 80 to 230 ° C. for 0.5 to 10 hours.
  • cured material of the varnish for circuit boards is a laminated body, and as a method of obtaining this hardened
  • base materials such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper It is impregnated and heat-dried to obtain a prepreg, which can be obtained alone or laminated with a metal foil such as a copper foil and subjected to hot press molding.
  • inorganic high dielectric powder such as barium titanate or inorganic magnetic material such as ferrite
  • it is useful as a material for electronic parts, particularly as a high frequency electronic part material.
  • the curable composition of the present invention can be used by laminating with a metal foil (meaning including a metal plate; the same shall apply hereinafter) as in the case of the cured composite material described later.
  • a metal foil meaning including a metal plate; the same shall apply hereinafter
  • a substrate is added to the curable composite material of the curable composition of the present invention in order to increase mechanical strength and increase dimensional stability.
  • a substrate known materials can be used.
  • various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat, asbestos cloth, metal fiber cloth, and other synthetic or natural inorganic fiber cloth.
  • Woven fabrics or nonwoven fabrics obtained from liquid crystal fibers such as wholly aromatic polyamide fibers, wholly aromatic polyester fibers, polybenzozal fibers, woven fabrics or nonwoven fabrics obtained from synthetic fibers such as polyvinyl alcohol fibers, polyester fibers, acrylic fibers
  • Examples include natural fiber cloth such as cotton cloth, linen cloth, felt, carbon fiber cloth, craft paper, cotton paper, natural cellulosic cloth such as paper-glass mixed paper, paper, etc., each alone or 2 Used in combination with more than seeds.
  • the amount of the base material used is 5 to 90 wt% in the curable composite material, preferably 10 to 80 wt%, more preferably 20 to 70 wt%. If the substrate is less than 5 wt%, the composite material is insufficient in dimensional stability and strength after curing, and if the substrate is more than 90 wt%, the dielectric properties of the composite material are inferior.
  • a coupling agent can be used for the purpose of improving the adhesiveness at the interface between the resin and the substrate, if necessary.
  • general materials such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent, and the like can be used.
  • the curable composition and other components as necessary are uniformly dissolved or dispersed in the above-mentioned aromatic or ketone-based solvent or a mixed solvent thereof.
  • the method of drying after impregnating a base material is mentioned. Impregnation is performed by dipping or coating. Impregnation can be repeated multiple times as necessary. At this time, it is possible to repeat the impregnation using a plurality of solutions having different compositions and concentrations, and finally adjust the resin composition and the amount of resin as desired. It is.
  • a cured composite material is obtained by curing the curable composite material by a method such as heating.
  • the manufacturing method is not particularly limited. For example, a plurality of curable composite materials are stacked, and each layer is bonded under heat and pressure, and at the same time, thermosetting is performed to obtain a cured composite material having a desired thickness. it can. It is also possible to obtain a cured composite material having a new layer structure by combining a cured composite material once cured with adhesive and a curable composite material. Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. That is, an uncured or semi-cured composite material obtained by lamination molding in advance can be cured by heat treatment or another method.
  • Molding and curing are performed at a temperature of 80 to 300 ° C., a pressure of 0.1 to 1000 kg / cm 2 , a time of 1 minute to 10 hours, and more preferably a temperature of 150 to 250 ° C. and a pressure of 1 to 500 kg / cm. 2. Time: 1 minute to 5 hours.
  • the laminate is composed of the cured composite material layer and the metal foil layer.
  • the metal foil used here include a copper foil and an aluminum foil.
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 3 to 105 ⁇ m.
  • a curable composite material obtained from a curable composition and a substrate, and a metal foil are laminated in a layer structure according to the purpose, and at the same time, the layers are bonded together under heat and pressure.
  • the method include thermosetting.
  • a hardening composite material and metal foil are laminated
  • the metal foil can be used as a surface layer or an intermediate layer.
  • An adhesive can also be used for bonding to the metal foil.
  • the adhesive include, but are not limited to, epoxy, acrylic, phenol, and cyanoacrylate. Lamination molding and curing can be performed under the same conditions as in the production of a cured composite material.
  • the film is obtained by forming the curable composition into a film.
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 5 to 105 ⁇ m.
  • the method for producing the film is not particularly limited.
  • the curable composition and other components as required are uniformly dissolved or dispersed in an aromatic solvent, a ketone solvent, or a mixed solvent thereof.
  • a method of drying after applying to a resin film such as a PET film The application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally the resin composition and resin amount desired can be adjusted. is there.
  • the metal foil with resin is composed of the curable composition and the metal foil.
  • the metal foil used here include a copper foil and an aluminum foil.
  • the thickness is not particularly limited, but is in the range of 3 to 200 ⁇ m, more preferably 5 to 105 ⁇ m.
  • the method for producing the resin-coated metal foil is not particularly limited.
  • the curable composition and other components as required may be uniformly mixed in an aromatic or ketone solvent or a mixed solvent thereof.
  • Examples include a method of dissolving or dispersing, applying to a metal foil, and drying.
  • the application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention can be processed into a molding material, a sheet or a film, and has a low dielectric constant, a low water absorption, a high heat resistance, etc. in fields such as the electrical industry, the space / aircraft industry, etc. It can be used for a low dielectric material, an insulating material, a heat resistant material, a structural material, etc. that can satisfy the above characteristics. In particular, it can be used as a single-sided, double-sided, multilayer printed board, flexible printed board, build-up board or the like.
  • semiconductor-related materials or optical materials paints, photosensitive materials, adhesives, sewage treatment agents, heavy metal scavengers, ion exchange resins, antistatic agents, antioxidants, antifogging agents, rustproofing agents It can be applied to anti-dyeing agents, bactericides, insect repellents, medical materials, flocculants, surfactants, lubricants, solid fuel binders, conductive treatment agents and the like.
  • the curable composition of the present invention has a high dielectric property (low dielectric constant and low dielectric loss tangent) even after severe thermal history, and gives a cured product having high adhesion reliability even under severe conditions, Moreover, it has excellent resin fluidity, low linear expansion, and excellent wiring embedding flatness. Therefore, in the fields of electrical / electronics industry, space / aircraft industry, etc., molding defects such as warping etc. corresponding to the miniaturization and thinning that have been strongly demanded in recent years as dielectric materials, insulating materials, heat resistant materials, structural materials, etc. A cured molded product having no phenomenon can be provided. Furthermore, it is possible to realize a resin composition, a cured product, or a material including the same that is excellent in reliability due to excellent wiring embedding flatness and adhesion between different materials.
  • the content of the structural unit of the copolymer such as vinyl group and vinylene group was determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as a solvent, and the tetramethylsilane resonance line was used as an internal standard. And content of ta1 and tb1 was computed from these measurement results.
  • Tg glass transition temperature
  • softening temperature of cured product Copolymer solution was uniformly applied to a glass substrate so that the thickness after drying was 20 ⁇ m, and 30 minutes in 90 minutes using a hot plate. Heated and dried.
  • the resin film obtained together with the glass substrate is set in TMA (thermomechanical analyzer), heated to 220 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream, and further heat-treated at 220 ° C. for 20 minutes. The remaining solvent was removed and the copolymer was cured.
  • an analytical probe is brought into contact with the sample in the TMA measuring apparatus, and scan measurement is performed from 30 ° C. to 360 ° C.
  • the softening temperature was determined.
  • the glass transition temperature is measured by setting the above test piece in a DMA (dynamic viscoelasticity device) measuring device and scanning from 30 ° C. to 320 ° C. at a temperature rising rate of 3 ° C./min under a nitrogen stream.
  • the Tg was determined from the peak top of the tan ⁇ curve.
  • the heat resistance of the copolymer is evaluated by setting the sample in a TGA (thermobalance) measuring device, and at a temperature increase rate of 10 ° C./min under a nitrogen stream at 30 ° C. to 400 ° C. The measurement was performed by scanning until the weight loss at 350 ° C. was determined as heat resistance.
  • the measurement of heat discoloration was carried out using 6.0 g of copolymer, 4.0 g of benzyl methacrylate, and 0.02 g of t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation, Perbutyl O). The mixture was mixed and heated at 200 ° C.
  • Example 1 Divinylbenzene (a mixture of 1,4-divinylbenzene and 1,3-divinylbenzene, the following examples are also the same) 1.82 mol (259.6 mL), ethylvinylbenzene (1-ethyl-4-vinylbenzene and 1-ethylbenzene) A mixture of ethyl-3-vinylbenzene, also in the following example) 0.43 mol (60.9 mL), 0.28 mol (36.9 mL) n-butyl acetate, and 140 mL toluene were added to a 1.0 L reactor.
  • the copolymer A was obtained by the above formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified.
  • the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.51.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.67.
  • the copolymer A contained 84.0 mol% of the structural units derived from the divinyl aromatic compound (a) and 16.0 mol% in total of the structural units derived from the monovinyl aromatic compound (b).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer A The group content was 64.2 mol%.
  • Tg was 256 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • Example 2 In a 1.0 L reactor, 1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethyl vinylbenzene, 0.28 mol (36.9 mL) of n-butyl acetate, and 140 mL of toluene were added. Then, a solution prepared by dissolving 40 mmol of p-toluenesulfonic acid monohydrate in 0.12 mol (15.7 mL) of n-butyl acetate at 70 ° C. was added and reacted for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 124.3 g of copolymer B was obtained.
  • the copolymer B has the formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified.
  • the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.60.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.71.
  • the copolymer B contained 82.3 mol% of the structural units derived from the divinyl aromatic compound (a) and 17.7 mol% in total of the structural units derived from the monovinyl aromatic compound (b).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer B The group content was 67.8 mol%.
  • Tg was 247 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • Copolymer B was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
  • Mn of the obtained copolymer C was 2030, Mw was 5180, and Mw / Mn was 2.55.
  • a resonance line derived from the end of 2-phenoxyethyl methacrylate was observed in copolymer C.
  • it was C: 87.3 wt%, H: 7.4 wt%, and O: 5.2 wt%.
  • the amount (c1) of structural units derived from 2-phenoxyethyl methacrylate in the soluble polyfunctional vinyl aromatic polymer calculated from the elemental analysis results and the number average molecular weight in terms of standard polystyrene was 2.3 (pieces / molecule).
  • the copolymer C is obtained by the above formulas (a1), (a2), (a3), (ta1), (ta).
  • the structural units derived from the divinyl aromatic compound (a) and the ethyl vinyl aromatic compound (b) represented by b1) and (tb1) were quantified. From the results, the structural units represented by the formulas (a2), (ta1) and (tb1) among the above structural units were not observed.
  • the divinyl aromatic compound calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)]
  • the molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from (a) and the monovinyl aromatic compound (b) was 0.59.
  • the content of the terminal structural unit of the copolymer C derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1) is represented by the formula (ta1) and Since none of the structural units represented by the formula (tb1) was detected in the analysis, the terminal structure containing a vinyl group calculated by the formula (ta1) / [(ta1) + (tb1)] The mole fraction of units can be considered as zero. Further, it contained 59.2 mol% of structural units derived from divinylbenzene and 40.8 mol% in total of structural units derived from styrene and ethylbenzene (excluding terminal structural units).
  • the vinyl group content contained in the copolymer C was 35.3 mol% (excluding the terminal structural unit). Moreover, Tg was 197 degreeC as a result of DMA measurement of hardened
  • Comparative Example 2 1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethylvinylbenzene, and 140 mL of toluene were charged into a 1.0 L reactor, and 40 mmol of p-toluenesulfone was added at 70 ° C. Acid monohydrate was added and allowed to react for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 187.3 g of copolymer D was obtained.
  • the copolymer D has the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)]
  • the molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) calculated by the formula (1) was 0.04.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.05.
  • the copolymer D contained 83.1 mol% of structural units derived from divinylbenzene and 16.9 mol% in total of structural units derived from monovinylbenzene.
  • the unsaturated hydrocarbon group content derived from the divinyl aromatic compounds (a) and monovinyl aromatic compounds (b) represented by the above formulas (a1) to (a3) contained in the copolymer D is 81.3. Mol%.
  • Tg was 136 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 125 ° C.
  • the weight loss at 350 ° C. was 7.31 wt%, and the heat discoloration property was ⁇ .
  • the compatibility with the epoxy resin was ⁇ .
  • Copolymer D was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
  • Example 3 Divinyl biphenyl 1.80 mol (324.4 g), ethyl vinyl biphenyl 0.45 mol (81.1 g), n-butyl acetate 0.28 mol (36.9 mL), and 140 mL of toluene in a 1.0 L reactor Then, a solution of 40 mmol of methanesulfonic acid dissolved in 0.12 mol (15.7 mL) of n-butyl acetate at 70 ° C. was added and reacted for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 259.5 g of copolymer E was obtained.
  • Mn of the obtained copolymer E was 1342, Mw was 13960, and Mw / Mn was 10.4.
  • the copolymer E is converted into the above formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified.
  • the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.60.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.57.
  • the copolymer E contained 82.6 mol% of the structural units derived from the divinyl aromatic compound (a) and 17.4 mol% in total of the structural units derived from the monovinyl aromatic compound (b).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer E The group content was 68.2 mol%.
  • Tg was 271 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • Example 4 In a 1.0 L reactor, 1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethyl vinylbenzene, 0.28 mol (36.9 mL) of n-butyl acetate, and 140 mL of toluene were added. Then, a solution prepared by dissolving 60 mmol of methanesulfonic acid in 0.12 mol (15.7 mL) of n-butyl acetate at 60 ° C. was added and reacted for 12 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 167.8 g of copolymer F was obtained.
  • the copolymer A is obtained by the above formulas (a1), (a2), (a3), (ta1), (b1 ) And (tb1) and the structural units derived from the divinyl aromatic compound (a) and the ethyl vinyl aromatic compound (b) were quantified.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.61.
  • the copolymer F contained 83.6 mol% of structural units derived from the divinyl aromatic compound (a) and 16.4 mol% in total of structural units derived from the monovinyl aromatic compound (a).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and ethylvinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer F The group content was 58.6 mol%.
  • Tg was 271 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • the weight loss at 350 ° C. was 1.12 wt%, and the heat discoloration resistance was ⁇ .
  • the compatibility with the epoxy resin was ⁇ .
  • Copolymer F was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
  • the test piece used for the bending test was prepared by placing the curable resin composition on a mold under a vacuum press molding machine and placing the solvent under a heating vacuum. Volatilized. Thereafter, an upper mold was placed, heated and pressed under vacuum, and held at 200 ° C. for 1 hour to form a flat plate having a thickness of 1.0 mm.
  • a test piece having a width of 5.0 mm, a thickness of 1.0 mm, a length of 120 mm was prepared from a flat plate obtained by molding, and a bending test was performed. The bending strength and bending elongation at break of the produced bending test pieces were measured using a universal testing apparatus.
  • the bending strength and the bending elongation at break are ⁇ when the value is less than ⁇ 10% with respect to the measurement value of the reference blend, ⁇ when the value is 10% or more, and ⁇ 10 to ⁇ 20%.
  • the evaluation was made with ⁇ for the range value and x for the value of ⁇ 20% or less.
  • a test piece having a width of 3.0 mm, a thickness of 0.2 mm, a length of 40 mm is prepared from the flat plate obtained by molding, and is set only on the chuck above the TMA (thermomechanical analyzer). Under an air stream, the temperature was raised to 220 ° C. at a heating rate of 10 ° C./min, and the remaining solvent was removed by heat treatment at 220 ° C. for 20 minutes, and the molding distortion in the test piece was removed. After allowing the TMA to cool to room temperature, the lower part of the test piece in the TMA measuring device is also set on the probe for analysis, and scan measurement is performed from 30 ° C. to 360 ° C. at a heating rate of 10 ° C./min in a nitrogen stream.
  • TMA thermomechanical analyzer
  • the linear expansion coefficient was calculated from the dimensional change at 0 to 40 ° C.
  • the above test piece is set in a DMA (dynamic viscoelasticity device) measuring device and scanned from 30 ° C. to 320 ° C. at a temperature rising rate of 3 ° C./min under a nitrogen stream. Measurement was performed and Tg was obtained from the peak top of the tan ⁇ curve.
  • DMA dynamic viscoelasticity device
  • Dielectric constant and dielectric loss tangent In accordance with JIS C2565 standard, cured after storing for 24 hours in a room at 23 ° C and 50% humidity after dry-drying using a cavity resonator method dielectric constant measuring device manufactured by AET Co., Ltd. Using a flat plate test piece, the dielectric constant and dielectric loss tangent at 18 GHz were measured. Moreover, after leaving the hardened
  • a plurality of the above curable composite materials are stacked as necessary so that the thickness after molding becomes about 0.6 mm to 1.0 mm, and a copper foil having a thickness of 18 ⁇ m on both sides thereof (Product name: F2-WS copper foil, Rz: 2.0 ⁇ m, Ra: 0.3 ⁇ m) was placed and molded and cured by a vacuum press molding machine to obtain a laminate for evaluation.
  • Curing conditions were as follows: the temperature was increased at 3 ° C./min, the pressure was 3 MPa, and the temperature was maintained at 200 ° C. for 60 minutes to obtain a copper clad laminate for evaluation.
  • a test piece having a width of 20 mm and a length of 100 mm was cut out from the cured laminate thus obtained, and a parallel cut having a width of 10 mm was made on the copper foil surface, and then 50 mm / 90 ° in the direction of 90 ° with respect to the surface.
  • the copper foil was continuously peeled off at a speed of minutes, the stress at that time was measured with a tensile tester, and the minimum value of the stress was recorded as the copper foil peel strength. (Conforms to JIS C 6481).
  • the copper foil peel strength test after the wet heat resistance test was measured in the same manner as described above after the test piece was left at 85 ° C. and a relative humidity of 85% for 2 weeks.
  • Circoposite MLB conditioner 211 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) at 80 ° C. for 5 minutes by the dipping method.
  • Circoposit MLB promoter 213 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) is used as a strongly alkaline aqueous solution of permanganate, and similarly at 80 ° C. for 10 minutes by the dip method. Immersion treatment.
  • a base copper having a thickness of 0.5 ⁇ m is formed on both sides of the laminate by dipping at room temperature for 15 minutes, and further on the electrolytic copper. Then, the copper was plated up to a thickness of 20 ⁇ m.
  • the above cured test laminate with plating is etched into a line having a copper width of 10 mm and a length of 100 mm, and one end thereof is peeled off and is gripped with a gripper, and is vertically aligned in accordance with JIS-C-6421.
  • the minimum value of the load when peeled off at room temperature of about 50 mm was recorded as the copper plating peel strength.
  • This core material was subjected to blackening treatment, and then a prepreg was further laminated thereon, followed by secondary molding to produce a laminated substrate for evaluation having an inner layer of a lattice pattern.
  • a prepreg was further laminated thereon, followed by secondary molding to produce a laminated substrate for evaluation having an inner layer of a lattice pattern.
  • the produced laminated substrate for evaluation for example, it was confirmed whether defects such as voids due to insufficient fluidity of the resin varnish occurred.
  • the laminated substrate for evaluation was immersed in boiling water for 4 hours and then immersed in a solder bath at 280 ° C. At that time, the presence of voids could not be confirmed, and even when immersed in a solder bath, it was swollen, and there was no occurrence of defective phenomena such as delamination and measling (white spots). Although not seen, the case where warpage or bleedout (separation of the compound) occurred was evaluated as “ ⁇ ”, and the case where the defect phenomenon occurred was evaluated as “x”.
  • Example 5 A curable resin obtained by dissolving 20 g of the copolymer-A obtained in Example 1, 0.2 g of Parkmill P as a polymerization initiator, 0.2 g of AO-60 as an antioxidant, and 8.6 g of toluene as a curing accelerator. A composition (varnish A) was obtained.
  • the prepared varnish A was dropped on the lower mold, the solvent was devolatilized at 130 ° C. under reduced pressure, the mold was assembled, and vacuum pressing was performed at 200 ° C. and 3 MPa for 1 hour to perform thermosetting.
  • various characteristics including the dielectric constant of 18 GHz and a dielectric loss tangent were measured.
  • the dielectric constant and dielectric loss tangent were measured, and the dielectric constant and dielectric loss tangent after a heat-and-moisture resistance test were measured. The results obtained from these measurements are shown in Table 1.
  • Examples 6-8, Comparative Examples 3-4 A curable resin composition (varnish) was obtained in the same manner as in Example 5 except that the formulation shown in Table 1 was used. And the hardened
  • Example 24 Divinylbenzene 8.91 mol (1269.1 mL), ethyl vinylbenzene 2.09 mol (297.7 mL), methyl ethyl ketone 0.40 mol (36.3 mL), toluene 1100 mL were charged into a 3.0 L reactor, A solution prepared by dissolving 0.50 mmol of trifluoromethanesulfonic acid in 0.10 mol (9.0 mL) of methyl ethyl ketone at 70 ° C. was added and reacted for 6 hours. The polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, washed with water, and filtered using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 1698.7 g of copolymer G was obtained.
  • Mn of the obtained copolymer G was 884, Mw was 11800, and Mw / Mn was 13.4.
  • the copolymer G is converted into the above formulas (a1), (a2), (a3), (ta1), (b1) and The repeating structural unit derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) was quantified.
  • the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.54.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.71.
  • Copolymer G contained 82.4 mol% of structural units derived from divinyl aromatic compound (a) and 17.6 mol% in total of structural units derived from monovinyl aromatic compound (b).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer G The group content was 64.7 mol%.
  • Tg was 264 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • Copolymer G was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
  • Example 25 Divinylbenzene 8.91 mol (1269.1 mL), Ethylvinylbenzene 2.09 mol (297.7 mL), Styrene 1.00 mol (115.0 mL), Propyl acetate 0.40 mol (46.0 mL), Toluene 1000 mL was added to a 3.0 L reactor, and a solution prepared by dissolving 0.70 mmol of trifluoromethanesulfonic acid in 0.10 mol (11.5 mL) of propyl acetate at 50 ° C. was added and reacted for 7 hours. . The polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, and then washed with water. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 1643.5 g of copolymer H was obtained.
  • Mn of the obtained copolymer H was 947, Mw was 13800, and Mw / Mn was 14.6.
  • the copolymer H is converted into the above formulas (a1), (a2), (a3), (ta1), (b1) and The repeating structural unit derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) was quantified.
  • the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.51.
  • the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.65.
  • the copolymer H contained 83.1 mol% of structural units derived from the divinyl aromatic compound (a) and 16.9 mol% in total of structural units derived from the monovinyl aromatic compound (b).
  • Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer H The group content was 61.3 mol%.
  • Tg was 217 degreeC as a result of DMA measurement of hardened
  • the softening temperature was 300 ° C. or higher.
  • Examples 26 and 27 A curable resin composition (varnish) was obtained in the same manner as in Example 5 except that the copolymers G and H obtained in Examples 24 and 25 were used to obtain the compounding formulations shown in Table 4. It was. And the hardened
  • the soluble polyfunctional vinyl aromatic copolymer of the present invention can be processed into a molding material, a sheet or a film.
  • low dielectric materials, insulating materials, heat resistant materials, structures It can be used for materials.
  • semiconductor-related materials, optical materials, paints, photosensitive materials, adhesives, sewage treatment agents, heavy metal scavengers, ion exchange resins, antistatic agents, antioxidants, antifogging agents, rustproofing agents, and antifouling It can be applied to agents, fungicides, insect repellents, medical materials, flocculants, surfactants, lubricants, binders for solid fuels, conductive treatment agents, and the like.

Abstract

Provided are: a soluble polyfunctional vinyl aromatic copolymer which has improved heat resistance, thermal decomposition resistance, solubility in solvents, processability and compatibility with specific resins; and a curable composition of this soluble polyfunctional vinyl aromatic copolymer . A soluble polyfunctional vinyl aromatic copolymer which contains a repeating structural unit derived from a divinyl aromatic compound (a) and a repeating unit derived from a monovinyl aromatic compound (b), and which is characterized in that, the repeating structural unit derived from a divinyl aromatic compound (a) is a unit having an unsaturated hydrocarbon group, which is a vinyl group-containing unit and/or a vinylene group-containing unit; and the copolymer has, as a terminal group, a vinylene group-containing terminal group that is derived from the divinyl aromatic compound (a) and/or the monovinyl aromatic compound (b). This soluble polyfunctional vinyl aromatic copolymer is also characterized by being polymerizable and by being soluble in a solvent.

Description

可溶性多官能ビニル芳香族共重合体、その製造方法及び硬化性組成物Soluble polyfunctional vinyl aromatic copolymer, process for producing the same and curable composition
 本発明は、耐熱性、相溶性、透明性及び靱性が改善された新規な可溶性多官能ビニル芳香族共重合体、その製造方法、及びその共重合体を含有する硬化性組成物に関する。更に、その硬化性組成物からなるフィルム、硬化して得られる硬化物、硬化性組成物と基材からなる硬化性複合材料、硬化物と金属箔からなる積層体、及び樹脂付き銅箔に関する。 The present invention relates to a novel soluble polyfunctional vinyl aromatic copolymer having improved heat resistance, compatibility, transparency and toughness, a method for producing the same, and a curable composition containing the copolymer. Furthermore, it is related with the film which consists of the curable composition, the hardened | cured material obtained by hardening | curing, the curable composite material which consists of a curable composition and a base material, the laminated body which consists of hardened | cured material and metal foil, and copper foil with resin.
 近年の情報通信量の増加にともない高周波数帯域での情報通信が盛んに行われるようになり、より優れた電気特性、なかでも高周波数帯域での伝送損失を低減させるため、低誘電率と低誘電正接を有し、特に吸水後の誘電特性変化の小さい電気絶縁材料が求められている。更に、それら電気絶縁材料が使われているプリント基板あるいは電子部品は、実装時に高温のハンダリフローに曝されるために、耐熱性の高い、すなわち高ガラス転移温度を示す材料が望まれている。特に最近は、環境問題の観点から融点の高い鉛フリーのハンダが使われるために、より耐熱性の高い電気絶縁材料の要求が高まってきている。これらの要求に対し、従来より、種々の化学構造を持つビニル系化合物を使用した硬化樹脂が提案されている。 With the increase in information traffic in recent years, information communication in the high frequency band has been actively performed, and in order to reduce the transmission loss in the higher frequency band, more excellent electrical characteristics, in particular, low dielectric constant and low There is a need for an electrical insulating material that has a dielectric loss tangent and in particular has a small change in dielectric properties after water absorption. Furthermore, since printed circuit boards or electronic components using these electrically insulating materials are exposed to high-temperature solder reflow during mounting, a material having high heat resistance, that is, a high glass transition temperature is desired. In particular, recently, since lead-free solder having a high melting point is used from the viewpoint of environmental problems, there is an increasing demand for an electrically insulating material with higher heat resistance. In response to these requirements, conventionally, curable resins using vinyl compounds having various chemical structures have been proposed.
 このような硬化樹脂としては、例えば、特許文献1にはジビニル芳香族化合物をスルホネートアニオン又は過塩素酸アニオンの存在下で重合させることにより、主鎖にフェニル基と二重結合とを含む、つまり、本願の式(a2)(以下、単に「式(a2)」という)で表される構造を有する、溶剤可溶性のポリジビニルベンゼンが得られること開示されている。そして、特許文献1では、専ら式(a2)で表される構造を有するポリジビニルベンゼンを合成するために重合時に使用可能な溶媒として例示されているのは、ベンゼンなどのような芳香族化合物、n-ヘキサンなどのような飽和脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサンのような飽和脂環式炭化水素、あるいはクロロホルム、トリクロロエタンなどのハロゲン化物である。そして、溶媒の極性に関しては、無極性か極性の低いものが好ましく、かつ、モノマー濃度は20vol%以下にすることが好ましいことが開示されている。さらに、極性の高い溶媒を用いた場合には、橋架け反応が起こり易く、好ましくないことが記載されている。
 よって、特許文献1には、ジビニル芳香族化合物にモノビニル芳香族化合物を共重合させることができ、かつ、モノビニル芳香族化合物を共重合させることによって得られる共重合体が何らかの有用な特性を持つことは何ら開示されていない。また、重合の際に、極性化合物を併用することにより、側鎖にビニル基を持つポリマーが生成する可能性についての記載はあるものの、橋架け反応が起こりやすく、好ましくないことが開示されている。
 従って、特許文献1の開示技術に基づき、ジビニル芳香族化合物にモノビニル芳香族化合物を共重合させた溶剤可溶性の共重合体を高度の耐熱性が求められる絶縁材料用硬化樹脂として使用すると、耐熱性の低下、硬化反応性の低下に伴う成形加工性の悪化を招き、工業的実施に適さないものとなる。
As such a cured resin, for example, Patent Document 1 includes a phenyl group and a double bond in the main chain by polymerizing a divinyl aromatic compound in the presence of a sulfonate anion or a perchlorate anion. It is disclosed that a solvent-soluble polydivinylbenzene having a structure represented by the formula (a2) of the present application (hereinafter simply referred to as “formula (a2)”) is obtained. And in patent document 1, what is illustrated as a solvent which can be used at the time of superposition | polymerization in order to synthesize | combine the polydivinylbenzene which has a structure represented only by a formula (a2) is an aromatic compound like benzene etc., A saturated aliphatic hydrocarbon such as n-hexane, a saturated alicyclic hydrocarbon such as cyclohexane or methylcyclohexane, or a halide such as chloroform or trichloroethane. It is disclosed that the polarity of the solvent is preferably nonpolar or low in polarity, and that the monomer concentration is preferably 20 vol% or less. Furthermore, it is described that when a highly polar solvent is used, a crosslinking reaction is likely to occur, which is not preferable.
Therefore, in Patent Document 1, a divinyl aromatic compound can be copolymerized with a monovinyl aromatic compound, and the copolymer obtained by copolymerizing the monovinyl aromatic compound has some useful properties. Is not disclosed at all. In addition, there is a description about the possibility of forming a polymer having a vinyl group in the side chain by using a polar compound in combination with the polymerization, but it is disclosed that a bridging reaction easily occurs and is not preferable. .
Therefore, when a solvent-soluble copolymer obtained by copolymerizing a divinyl aromatic compound with a monovinyl aromatic compound is used as a cured resin for an insulating material that requires a high degree of heat resistance, based on the disclosed technology of Patent Document 1, This results in deterioration of molding processability due to a decrease in curing reactivity and a decrease in curing reactivity, and is not suitable for industrial implementation.
 特許文献2には、ジビニル芳香族化合物と、モノビニル芳香族化合物として、低級アルキル基、ハロゲン化アルキル基、アシル基、アシルオキシル基、ヒドロキシル基又はハロゲン原子を有するスチレン類とを共重合することが開示されている。しかし、特許文献2で開示されている技術に従って合成された共重合体は、主鎖にフェニル基と二重結合とを含む、式(a2)で表される構造を有するポリジビニルベンゼンが主鎖を構成する主骨格となり、スチレン類は末端に付加した末端基として導入される。このため、特許文献2には、溶剤可溶性を維持しながら、共重合体の収率を上げるために、スチレン類とジビニルベンゼンとのモル比は5~0.01の範囲にすることが好ましいことが開示されている。実際に特許文献2の実施例を見ると、触媒として、過塩素酸アセチル、又は、トリフルオロメタンスルホン酸を触媒として使用し、溶媒としてベンゼンを使用して、スチレン類とジビニルベンゼンとのモル比はジビニルベンゼン/スチレン類=0.33~3の範囲で行うことによって、ビニル基が消失し、末端がスチレン類によって封止されたオリゴマーが回収されることが開示されている。
 しかし、特許文献2の開示技術に基づき、スチレン類とジビニルベンゼンを共重合させた溶剤可溶性の共重合体を高度の耐熱性と電気特性が求められる絶縁材料用硬化樹脂として使用すると、耐熱性の低下、硬化反応性の低下に伴う成形加工性の悪化を招き、工業的実施に適さないものとなる。
In Patent Document 2, a divinyl aromatic compound is copolymerized with a styrene having a lower alkyl group, a halogenated alkyl group, an acyl group, an acyloxyl group, a hydroxyl group, or a halogen atom as a monovinyl aromatic compound. It is disclosed. However, in the copolymer synthesized according to the technique disclosed in Patent Document 2, the main chain is composed of polydivinylbenzene having a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain. The styrenes are introduced as end groups added to the ends. Therefore, in Patent Document 2, it is preferable that the molar ratio of styrenes to divinylbenzene is in the range of 5 to 0.01 in order to increase the yield of the copolymer while maintaining solvent solubility. Is disclosed. Actually, in the example of Patent Document 2, acetyl perchlorate or trifluoromethanesulfonic acid is used as a catalyst as a catalyst, benzene is used as a solvent, and the molar ratio of styrenes and divinylbenzene is It is disclosed that by carrying out in the range of divinylbenzene / styrenes = 0.33-3, an oligomer having a vinyl group disappeared and terminal-terminated with styrenes is recovered.
However, when a solvent-soluble copolymer obtained by copolymerizing styrenes and divinylbenzene is used as a cured resin for an insulating material that requires high heat resistance and electrical characteristics, based on the disclosed technology of Patent Document 2, Decrease in molding processability due to lowering and curing reactivity, which is not suitable for industrial implementation.
 特許文献3には、ジビニル芳香族化合物とモノビニル芳香族化合物を、有機溶媒中、ルイス酸触媒、及び1-クロロエチルベンゼン、1-ブロモエチルベンゼン及びビス(1-クロロ-1-メチルエチル)ベンゼン等の特定構造の開始剤の存在下、20~100℃の温度で重合させることによって得られる可溶性多官能ビニル芳香族共重合体が開示されている。また、特許文献4には、4級アンモニウム塩の存在下で、ルイス酸触媒及び特定構造の開始剤により、ジビニル芳香族化合物を20~100モル%含有してなる単量体成分を20~120℃の温度でカチオン重合させることにより制御された分子量分布を有する可溶性多官能ビニル芳香族共重合体の製造方法が開示されている。これら2つの特許文献で開示されている技術によって得られる可溶性多官能ビニル芳香族共重合体は溶剤可溶性及び加工性に優れ、これを使用することによってガラス転移温度の高い耐熱性に優れた硬化物を得ることができる。 Patent Document 3 discloses divinyl aromatic compounds and monovinyl aromatic compounds in an organic solvent, such as a Lewis acid catalyst, 1-chloroethylbenzene, 1-bromoethylbenzene, bis (1-chloro-1-methylethyl) benzene, and the like. A soluble polyfunctional vinyl aromatic copolymer obtained by polymerizing at a temperature of 20 to 100 ° C. in the presence of an initiator having a specific structure is disclosed. Patent Document 4 discloses a monomer component containing 20 to 100 mol% of a divinyl aromatic compound in the presence of a quaternary ammonium salt, using a Lewis acid catalyst and an initiator having a specific structure. A method for producing a soluble polyfunctional vinyl aromatic copolymer having a controlled molecular weight distribution by cationic polymerization at a temperature of 0 ° C. is disclosed. The soluble polyfunctional vinyl aromatic copolymer obtained by the techniques disclosed in these two patent documents is excellent in solvent solubility and processability, and by using this, a cured product excellent in heat resistance having a high glass transition temperature. Can be obtained.
 これらの技術によって得られる可溶性多官能ビニル芳香族共重合体は、それ自体が重合性の二重結合を有するため、これを硬化させることにより高いガラス転移温度を持つ硬化物を与える。そのため、この硬化物又は可溶性多官能ビニル芳香族共重合体は、耐熱性に優れた重合体又はその前駆体であると言うことができる。そして、この可溶性多官能ビニル芳香族共重合体は他のラジカル重合性モノマーと共重合して硬化物を与えるが、この硬化物も耐熱性に優れた重合体となる。 Since the soluble polyfunctional vinyl aromatic copolymer obtained by these techniques itself has a polymerizable double bond, it is cured to give a cured product having a high glass transition temperature. Therefore, it can be said that this hardened | cured material or soluble polyfunctional vinyl aromatic copolymer is a polymer excellent in heat resistance, or its precursor. And this soluble polyfunctional vinyl aromatic copolymer is copolymerized with other radical polymerizable monomers to give a cured product, and this cured product is also a polymer having excellent heat resistance.
 しかし、特許文献3及び特許文献4に開示されている可溶性多官能ビニル芳香族共重合体と他の硬化性樹脂との相溶性や、硬化後の耐熱変色性という観点から見ると、極性の高いエポキシ化合物やフェノール樹脂との間の相溶性又は溶解性が十分でなく、また高いプロセス温度に対する耐熱分解性も十分ではない。従って、エポキシ化合物やフェノール樹脂の種類によっては不均一な組成物を与えるケースが多く、エポキシ化合物やフェノール樹脂と可溶性多官能ビニル芳香族共重合体との均一な硬化物を作るのが困難となる。よって、配合処方設計の自由度が小さく、硬化物の靱性が低いという欠点を生じる他、280~300℃近傍の高い熱履歴によって、膨れや剥離などの不良が生ずるケースがあった。 However, from the viewpoint of the compatibility between the soluble polyfunctional vinyl aromatic copolymer and other curable resins disclosed in Patent Document 3 and Patent Document 4 and heat-resistant discoloration after curing, the polarity is high. The compatibility or solubility between the epoxy compound and the phenol resin is not sufficient, and the thermal decomposition resistance to a high process temperature is not sufficient. Therefore, there are many cases in which a heterogeneous composition is given depending on the type of epoxy compound or phenol resin, and it becomes difficult to produce a uniform cured product of the epoxy compound or phenol resin and a soluble polyfunctional vinyl aromatic copolymer. . Therefore, there are cases in which the degree of freedom of the compounding formulation design is small and the toughness of the cured product is low, and in addition, there are cases where defects such as blistering and peeling occur due to a high thermal history near 280 to 300 ° C.
 一方、特許文献3及び特許文献4に開示されている可溶性多官能ビニル芳香族共重合体には、主鎖にフェニル基と二重結合とを含む、つまり式(a2)で表される構造が導入され得ることが開示されているが、実際に特許文献3及び特許文献4の実施例中に開示されている共重合体中に、式(a1)と式(a2)の合計に対する式(a1)で表される構造単位のモル分率は0.98~0.99と、式(a2)で表される構造はごく限られた量でしか存在しないものであった。 On the other hand, the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 3 and Patent Document 4 includes a phenyl group and a double bond in the main chain, that is, a structure represented by the formula (a2). Although it is disclosed that it can be introduced, the formula (a1) with respect to the sum of formula (a1) and formula (a2) is actually included in the copolymers disclosed in Examples of Patent Document 3 and Patent Document 4. The molar fraction of the structural unit represented by () was 0.98 to 0.99, and the structure represented by the formula (a2) was present only in a very limited amount.
 特許文献5には、ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を共重合して得られる共重合体であって、その末端基の一部にエーテル結合又はチオエーテル結合を介した鎖状炭化水素基又は芳香族炭化水素基を有する可溶性多官能ビニル芳香族共重合体が開示されている。
 しかし、この可溶性多官能ビニル芳香族共重合体は、靱性が不足しているために、その硬化性組成物の硬化物において、十分な力学的性質が得られないため、複合体硬化物において、層間剥離強度の不足、信頼性の低下といった課題があった。また、助触媒としてエステル化合物が使用できることが記載されているものの、具体的に使用可能なエステル化合物として例示されているのは、酢酸エチル、プロピオン酸メチルといった、可溶性多官能ビニル芳香族共重合体の末端に官能基を導入する機能を持たないエステル化合物であった。このため、特許文献5に開示されている可溶性多官能ビニル芳香族共重合体の末端基は、アルコール性水酸基を有する鎖状炭化水素化合物及び芳香族炭化水素化合物及びチオアルコール性メルカプト基を有する鎖状炭化水素化合物及び芳香族炭化水素化合物に由来するエーテル結合又はチオエーテル結合のいずれかを介した鎖状炭化水素基又は芳香族炭化水素基を含有したものであった。
Patent Document 5 discloses a copolymer obtained by copolymerizing a divinyl aromatic compound (a) and a monovinyl aromatic compound (b), and an ether bond or a thioether bond is interposed in part of the end group. A soluble polyfunctional vinyl aromatic copolymer having a chain hydrocarbon group or an aromatic hydrocarbon group is disclosed.
However, since this soluble polyfunctional vinyl aromatic copolymer has insufficient toughness, sufficient mechanical properties cannot be obtained in the cured product of the curable composition. There were problems such as insufficient delamination strength and reduced reliability. Moreover, although it is described that an ester compound can be used as a cocatalyst, examples of specifically usable ester compounds include soluble polyfunctional vinyl aromatic copolymers such as ethyl acetate and methyl propionate. It was an ester compound that does not have a function of introducing a functional group at the end of the. Therefore, the terminal group of the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 5 is a chain hydrocarbon compound having an alcoholic hydroxyl group, an aromatic hydrocarbon compound and a chain having a thioalcohol mercapto group. It contained a chain hydrocarbon group or an aromatic hydrocarbon group via either an ether bond or a thioether bond derived from a chain hydrocarbon compound and an aromatic hydrocarbon compound.
 また、特許文献5に開示されている可溶性多官能ビニル芳香族共重合体には、主鎖にフェニル基と2重結合とを含む、式(a2)で表される構造が導入され得ることが開示されているが、実際に特許文献5の実施例中に開示されている共重合体中に、式(a1)と式(a2)の合計に対する式(a1)で表される構造単位のモル分率は0.98~0.99と、式(a2)で表される構造はごく限られた量でしか存在しないものであった。 In addition, the soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Document 5 can be introduced with a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain. Although disclosed, the moles of the structural unit represented by the formula (a1) with respect to the sum of the formula (a1) and the formula (a2) in the copolymer actually disclosed in the examples of Patent Document 5 The fraction was 0.98 to 0.99, and the structure represented by the formula (a2) was present only in a very limited amount.
 特許文献6及び特許文献7には、芳香族系エーテル化合物由来の末端基を有する多官能ビニル芳香族共重合体、及びチオ(メタ)アクリレート系化合物に由来する末端基を有する可溶性多官能ビニル芳香族共重合体が開示されている。しかし、これらの特許文献6,7に開示されている可溶性多官能ビニル芳香族共重合体は、靱性は改善されているものの、近年の情報通信量の増加に伴う高周波数帯域における低誘電特性を有しておらず、先端電気・電子分野のような高機能で高度の電気的特性、熱的・機械的特性が要求される分野に適用できないという問題点があった。また、これらの可溶性多官能ビニル芳香族共重合体は、湿熱履歴後にガラスクロスとの界面の密着性が低下するため、高度の信頼性を求められる分野の基板材料には使用できないという欠点もあった。
 また、特許文献6,7に開示されている可溶性多官能ビニル芳香族共重合体には、主鎖にフェニル基と二重結合とを含む式(a2)で表される構造が導入され得ることは開示されていなかった。
Patent Document 6 and Patent Document 7 include a polyfunctional vinyl aromatic copolymer having an end group derived from an aromatic ether compound, and a soluble polyfunctional vinyl aroma having an end group derived from a thio (meth) acrylate compound. Group copolymers are disclosed. However, although the soluble polyfunctional vinyl aromatic copolymer disclosed in these Patent Documents 6 and 7 has improved toughness, it has low dielectric properties in a high frequency band accompanying an increase in information communication volume in recent years. There is a problem that it cannot be applied to a field that requires high-performance, high-level electrical characteristics, thermal and mechanical characteristics, such as the advanced electrical and electronic fields. In addition, these soluble polyfunctional vinyl aromatic copolymers have a drawback in that they cannot be used as substrate materials in fields requiring high reliability because adhesion at the interface with the glass cloth decreases after wet heat history. It was.
The soluble polyfunctional vinyl aromatic copolymer disclosed in Patent Documents 6 and 7 can be introduced with a structure represented by the formula (a2) containing a phenyl group and a double bond in the main chain. Was not disclosed.
 特許文献8には、両末端にビニル基を有するポリフェニレンエーテルオリゴマー、及びジビニル芳香族化合物及びエチルビニル芳香族化合物からなる単量体由来の構造単位を有する多官能ビニル芳香族共重合体とからなる硬化性樹脂組成物が開示されている。しかし、この可溶性多官能ビニル芳香族共重合体を用いた硬化性樹脂組成物では、層間剥離強度、メッキピール強度と湿熱履歴後の誘電特性が不足するため、先端電子機器分野での基板材料としては使用できないという欠点があった。 Patent Document 8 discloses curing comprising a polyphenylene ether oligomer having vinyl groups at both ends, and a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer comprising a divinyl aromatic compound and an ethyl vinyl aromatic compound. A functional resin composition is disclosed. However, since the curable resin composition using this soluble polyfunctional vinyl aromatic copolymer has insufficient delamination strength, plating peel strength and dielectric properties after wet heat history, as a substrate material in the field of advanced electronics Had the disadvantage that it could not be used.
 特許文献9には、ジビニル芳香族化合物及びエチルビニル芳香族化合物からなる単量体由来の構造単位を有する多官能ビニル芳香族共重合体と、エポキシ基、シアネート基、ビニル基、エチニル基、イソシアネート基及び水酸基からなる群から選ばれる一つ以上の官能基を含む熱硬化性樹脂とからなる硬化性樹脂組成物が開示されている。しかし、この可溶性多官能ビニル芳香族共重合体を用いた硬化性樹脂組成物は、めっき性が不足しているため、高度の微細化が求められる高機能の先端技術分野に適用できないという問題点があった。 Patent Document 9 discloses a polyfunctional vinyl aromatic copolymer having a structural unit derived from a monomer composed of a divinyl aromatic compound and an ethyl vinyl aromatic compound, an epoxy group, a cyanate group, a vinyl group, an ethynyl group, and an isocyanate group. And a curable resin composition comprising a thermosetting resin containing one or more functional groups selected from the group consisting of hydroxyl groups. However, the curable resin composition using the soluble polyfunctional vinyl aromatic copolymer has a problem that it cannot be applied to a high-functional advanced technology field that requires a high degree of miniaturization because the plating property is insufficient. was there.
特開昭56-62808号公報JP-A-56-62808 特開昭58-76411号公報JP 58-76411 A 特開2004-123873号公報JP 2004-123873 A 特開2005-213443号公報Japanese Patent Laying-Open No. 2005-213443 特開2007-332273号公報JP 2007-332273 A 特開2010-229263号公報JP 2010-229263 A 特開2010-209279号公報JP 2010-209279 A WO2005/73264号公報WO2005 / 73264 特開2006-274169号公報JP 2006-274169 A
 本発明は、こうした背景技術を考慮し、近年の情報通信量の増加に伴う高周波数帯域における低誘電特性を備え、高機能の電気的特性、熱的・機械的特性が要求される先端電気・電子分野分野に適用できる材料、特に電気絶縁材料としての積層体用途に有用な材料を提供することを目的とする。
 その観点から、本発明は、耐熱性、相溶性、透明性及び靱性が改善された新規な可溶性多官能ビニル芳香族共重合体、その製造方法及びその共重合体を含有する硬化性組成物を提供すること、更にその硬化性組成物からなるフィルム、硬化して得られる硬化物、硬化性組成物と基材からなる硬化性複合材料、硬化物と金属箔からなる積層体、及び樹脂付き銅箔を提供することを目的とする。
In consideration of such background art, the present invention has a low dielectric property in a high frequency band accompanying an increase in the amount of information communication in recent years, and has advanced electrical / thermal / mechanical characteristics required for high-performance electrical / mechanical characteristics. It is an object of the present invention to provide a material that can be applied to the field of electronics, particularly a material useful for use as a laminate as an electrical insulating material.
From this viewpoint, the present invention provides a novel soluble polyfunctional vinyl aromatic copolymer having improved heat resistance, compatibility, transparency and toughness, a method for producing the same, and a curable composition containing the copolymer. A film comprising the curable composition, a cured product obtained by curing, a curable composite material comprising the curable composition and a substrate, a laminate comprising the cured product and a metal foil, and copper with resin The purpose is to provide a foil.
 本発明者らは、鋭意検討を重ねた結果、ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)とともに、ビニレン基を選択的に生成させるオキソ酸触媒にルイス塩基化合物を配合させて重合することによって、反応過程でビニル基(ビニレン基)を生成させる1,2-付加重合を進行させながら、β-水素脱離反応によって、ビニレン基含有単位ないしビニレン基含有末端基を生成させ、連鎖移動剤を使用することなく、分子量を制御させることができ、こうした重合によって得られる共重合体が、上述の課題を解決することを見出し、本発明を完成した。 As a result of intensive studies, the inventors of the present invention polymerized a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) together with a Lewis base compound in an oxo acid catalyst that selectively generates a vinylene group. As a result, 1,2-addition polymerization, which generates a vinyl group (vinylene group) in the course of the reaction, proceeds while a vinylene group-containing unit or vinylene group-containing end group is generated by a β-hydrogen elimination reaction. The present inventors have found that a molecular weight can be controlled without using a transfer agent, and that a copolymer obtained by such polymerization solves the above-mentioned problems, thereby completing the present invention.
 本発明は、ジビニル芳香族化合物(a)に由来する構造単位及びモノビニル芳香族化合物(b)に由来する構造単位を含有する多官能ビニル芳香族共重合体であって、ジビニル芳香族化合物(a)に由来する構造単位が、下記式(a1)で表されるビニル基含有単位、下記式(a2)で表されるビニレン基含有単位、及び下記式(a3)で表される架橋構造単位及び下記式(ta1)で表されるビニレン基含有末端単位を有し、かつ、モノビニル芳香族化合物(b)に由来する構造単位が、下記式(b1)で表される構造単位及び下記式(tb1)で表されるビニレン基含有末端単位を有し、溶剤可溶性で重合性を有することを特徴とする可溶性多官能ビニル芳香族共重合体である。
Figure JPOXMLDOC01-appb-C000007
(式中、R1は炭素数6~30の芳香族炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000008
(式中、R1は式(a1)と同意である。)
Figure JPOXMLDOC01-appb-C000009
(式中、R1は式(a1)と同意である。)
Figure JPOXMLDOC01-appb-C000010
(式中、R1は式(a1)と同意である。)
Figure JPOXMLDOC01-appb-C000011
(式中、R2は炭素数6~30の芳香族炭化水素基を示し、Rは水素又は炭素数1~12の炭化水素基を示す。)
Figure JPOXMLDOC01-appb-C000012
(式中、R2、Rは式(b1)と同意である。)
The present invention is a polyfunctional vinyl aromatic copolymer containing a structural unit derived from a divinyl aromatic compound (a) and a structural unit derived from a monovinyl aromatic compound (b), the divinyl aromatic compound (a ) Derived from a vinyl group-containing unit represented by the following formula (a1), a vinylene group-containing unit represented by the following formula (a2), and a crosslinked structural unit represented by the following formula (a3): The structural unit having a vinylene group-containing terminal unit represented by the following formula (ta1) and derived from the monovinyl aromatic compound (b) is a structural unit represented by the following formula (b1) and the following formula (tb1 It is a soluble polyfunctional vinyl aromatic copolymer characterized by having a vinylene group-containing terminal unit represented by formula (II) and being soluble in a solvent and polymerizable.
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.)
Figure JPOXMLDOC01-appb-C000008
(In the formula, R 1 is the same as in formula (a1).)
Figure JPOXMLDOC01-appb-C000009
(In the formula, R 1 is the same as in formula (a1).)
Figure JPOXMLDOC01-appb-C000010
(In the formula, R 1 is the same as in formula (a1).)
Figure JPOXMLDOC01-appb-C000011
(Wherein R 2 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 3 represents hydrogen or a hydrocarbon group having 1 to 12 carbon atoms.)
Figure JPOXMLDOC01-appb-C000012
(In the formula, R 2 and R 3 are the same as those in the formula (b1).)
 本発明は、好ましくは、ジビニル芳香族化合物(a)に由来する構造単位を20モル%~95モル%含有し、前記式(a1)、式(a2)、式(a3)、式(ta1)、式(b1)及び式(tb1)で表される構造単位のモル分率が、下記式(1)及び下記式(2)を満足し、
 0.2≦[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]≦0.9  ・・・(1)
 (ta1)/[(ta1)+(tb1)]>0.2     ・・・(2)
数平均分子量Mnが300~100,000で、分子量分布(Mw/Mn)が100.0以下であり、トルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶である請求項1に記載の可溶性多官能ビニル芳香族共重合体である。
The present invention preferably contains 20 mol% to 95 mol% of a structural unit derived from the divinyl aromatic compound (a), and has the formula (a1), formula (a2), formula (a3), and formula (ta1). The molar fraction of the structural units represented by formula (b1) and formula (tb1) satisfies the following formula (1) and the following formula (2):
0.2 ≦ [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] ≦ 0.9 (1)
(ta1) / [(ta1) + (tb1)]> 0.2 (2)
The soluble polyfunctional group according to claim 1, having a number average molecular weight Mn of 300 to 100,000, a molecular weight distribution (Mw / Mn) of 100.0 or less, and being soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Vinyl aromatic copolymer.
 本発明は、ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を、助触媒成分であるルイス塩基化合物(c)の存在下で、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、重合させて多官能ビニル芳香族共重合体を製造する方法であって、ジビニル芳香族化合物(a)とモノビニル芳香族化合物(b)の合計100モル%に対し、ジビニル芳香族化合物(a)を5~95モル%、モノビニル芳香族化合物(b)を95~5モル%使用し、かつ、全単量体の合計100モルに対し、ルイス塩基化合物(c)を0.005~500モル使用し、これらを含む重合原料を誘電率2.0~15.0の溶媒に溶解させて均一溶液とし、20~120℃の温度で重合させて得られることを特徴とする可溶性多官能ビニル芳香族共重合体である。 In the present invention, a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) are converted from an inorganic acid, an organic sulfonic acid and a perchloric acid compound in the presence of a Lewis base compound (c) as a promoter component. A method for producing a polyfunctional vinyl aromatic copolymer by polymerizing using one or more catalysts (d) selected from the group consisting of a divinyl aromatic compound (a) and a monovinyl aromatic compound (b ) Is used in an amount of 5 to 95 mol% of the divinyl aromatic compound (a) and 95 to 5 mol% of the monovinyl aromatic compound (b), and the total amount of all monomers is 100 mol. On the other hand, the Lewis base compound (c) is used in an amount of 0.005 to 500 mol, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to form a uniform solution at a temperature of 20 to 120 ° C. Obtained by polymerization A soluble polyfunctional vinyl aromatic copolymer characterized and.
 また、本発明は、ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を、助触媒成分であるルイス塩基化合物(c)の存在下で、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、重合させて可溶性多官能ビニル芳香族共重合体を製造する方法であって、ジビニル芳香族化合物(a)とモノビニル芳香族化合物(b)の合計100モル%に対し、ジビニル芳香族化合物(a)を5~95モル%、モノビニル芳香族化合物(b)を95~5モル%使用し、かつ、全単量体の合計100モルに対し、ルイス塩基化合物(c)を0.005~500モル使用し、これらを含む重合原料を誘電率2.0~15.0の溶媒に溶解させて均一溶液とし、20~120℃の温度で重合させることを特徴とする上記可溶性多官能ビニル芳香族共重合体の製造方法である。 Further, the present invention provides a divinyl aromatic compound (a) and a monovinyl aromatic compound (b) in the presence of a Lewis base compound (c) as a promoter component, an inorganic acid, an organic sulfonic acid and a perchloric acid type. A method for producing a soluble polyfunctional vinyl aromatic copolymer by polymerization using at least one catalyst (d) selected from the group consisting of compounds, comprising divinyl aromatic compound (a) and monovinyl aromatic The divinyl aromatic compound (a) is used in an amount of 5 to 95 mol% and the monovinyl aromatic compound (b) is used in an amount of 95 to 5 mol% with respect to a total of 100 mol% of the compound (b). The Lewis base compound (c) is used in an amount of 0.005 to 500 moles per 100 moles, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to form a uniform solution at 20 to 120 ° C. Polymerized at a temperature of Is a manufacturing method of the soluble polyfunctional vinyl aromatic copolymer according to claim Rukoto.
 上記可溶性多官能ビニル芳香族共重合体の製造方法において、ルイス塩基化合物(c)1モルに対し、触媒(d)を0.001~10モルの範囲内で使用することが望ましい。 In the above-mentioned method for producing a soluble polyfunctional vinyl aromatic copolymer, it is desirable to use the catalyst (d) in a range of 0.001 to 10 mol per 1 mol of the Lewis base compound (c).
 また、本発明は上記の可溶性多官能ビニル芳香族共重合体と、ラジカル重合開始剤とを含有することを特徴とする硬化性組成物である。 The present invention also provides a curable composition comprising the above-mentioned soluble polyfunctional vinyl aromatic copolymer and a radical polymerization initiator.
 上記硬化性組成物は、更に熱硬化性樹脂又は熱可塑性樹脂を含有することができる。 The curable composition can further contain a thermosetting resin or a thermoplastic resin.
 この場合、熱硬化性樹脂が変性ポリフェニレンエーテル(XC)であることが好ましい。また、熱硬化性樹脂が、1分子中に2以上のエポキシ基と芳香族構造を有するエポキシ樹脂、1分子中に2以上のエポキシ基とシアヌレート構造を有するエポキシ樹脂及び/又は1分子中に2以上のエポキシ基と脂環構造を有するエポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂(XD)であってもよい。また、分子中に1個以上の不飽和炭化水素基を有する1種以上のビニル化合物(XF)であってもよい。 In this case, the thermosetting resin is preferably a modified polyphenylene ether (XC). Further, the thermosetting resin is an epoxy resin having two or more epoxy groups and an aromatic structure in one molecule, an epoxy resin having two or more epoxy groups and a cyanurate structure in one molecule, and / or 2 in one molecule. One or more epoxy resins (XD) selected from the group consisting of the above epoxy groups and epoxy resins having an alicyclic structure may be used. Moreover, 1 or more types of vinyl compounds (XF) which have 1 or more unsaturated hydrocarbon groups in a molecule | numerator may be sufficient.
 更に、本発明は上記の硬化性組成物を硬化してなる硬化物、又は上記の硬化性組成物をフィルム状に成形してなるフィルムである。 Furthermore, the present invention is a cured product obtained by curing the above curable composition, or a film obtained by molding the above curable composition into a film.
 更に、本発明は上記の硬化性組成物と基材からなる硬化性複合材料であって、基材を5~90重量%の割合で含有することを特徴とする硬化性複合材料であり、またこの硬化性複合材料を硬化して得られたことを特徴とする硬化複合材料であり、そして上記硬化複合材料の層と金属箔層とを有することを特徴とする積層体である。 Furthermore, the present invention is a curable composite material comprising the above curable composition and a base material, wherein the base material is contained in a proportion of 5 to 90% by weight, and A cured composite material obtained by curing the curable composite material, and a laminate comprising the cured composite material layer and a metal foil layer.
 また、本発明は上記の硬化性組成物から形成された膜を金属箔の片面に有することを特徴とする樹脂付き金属箔、又は上記の硬化性組成物を有機溶剤に溶解させてなる回路基板材料用ワニスである。 Further, the present invention provides a resin-coated metal foil having a film formed from the above curable composition on one side of the metal foil, or a circuit board obtained by dissolving the above curable composition in an organic solvent It is a varnish for materials.
 本発明の可溶性多官能ビニル芳香族共重合体又はこれを含む材料から得られる硬化物は、耐熱性、相溶性、透明性及び靱性が改善される。また、本発明の製造方法によれば、上記共重合体を高効率で製造することができる。また、本発明の可溶性多官能ビニル芳香族共重合体を硬化性化合物として使用することにより、分子内には、分子サイズの大きな自由体積を有し、極性基が少ないことから、高度の低誘電特性の硬化物が得られ、良好な接着性、めっき性と湿熱履歴後の誘電正接特性とを同時に実現できる。 The cured product obtained from the soluble polyfunctional vinyl aromatic copolymer of the present invention or a material containing the same has improved heat resistance, compatibility, transparency, and toughness. Moreover, according to the production method of the present invention, the copolymer can be produced with high efficiency. Further, by using the soluble polyfunctional vinyl aromatic copolymer of the present invention as a curable compound, the molecule has a free volume with a large molecular size and a small number of polar groups. A cured product having characteristics can be obtained, and good adhesion, plating properties and dielectric loss tangent characteristics after wet heat history can be realized simultaneously.
 本発明の可溶性多官能ビニル芳香族共重合体は、ジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)からなる単量体を、助触媒成分であるルイス塩基化合物(c)の存在下に、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、重合することにより得られる多官能ビニル芳香族共重合体であって、その共重合体中に、上記式(a1)~(a3)で表されるジビニル芳香族化合物(a)由来の構造単位、及び上記式(b1)で表されるエチルビニル芳香族化合物(b)由来の構造単位を有する。また、その共重合体の末端に、上記式(ta1)で表されるジビニル芳香族化合物(a)由来のビニレン基含有末端基、又は上記式(tb1)で表されるモノビニル芳香族化合物(b)由来のビニレン基含有末端基を有する。そして、トルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶である。本発明の可溶性多官能ビニル芳香族共重合体は、誤解を生じない場合は、可溶性多官能ビニル芳香族共重合体、あるいは、単に共重合体と略称する。 The soluble polyfunctional vinyl aromatic copolymer of the present invention comprises a monomer comprising a divinyl aromatic compound (a) and an ethyl vinyl aromatic compound (b) in the presence of a Lewis base compound (c) as a promoter component. A polyfunctional vinyl aromatic copolymer obtained by polymerization using one or more catalysts (d) selected from the group consisting of inorganic acids, organic sulfonic acids and perchloric acid compounds, In the copolymer, the structural unit derived from the divinyl aromatic compound (a) represented by the above formulas (a1) to (a3), and the ethyl vinyl aromatic compound (b) represented by the above formula (b1) Having a structural unit of Further, a vinylene group-containing terminal group derived from the divinyl aromatic compound (a) represented by the above formula (ta1) or a monovinyl aromatic compound represented by the above formula (tb1) (b ) -Derived vinylene group-containing end groups. It is soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. The soluble polyfunctional vinyl aromatic copolymer of the present invention is abbreviated as a soluble polyfunctional vinyl aromatic copolymer or simply a copolymer when no misunderstanding occurs.
 本発明の可溶性多官能ビニル芳香族共重合体は、共重合体中又は末端に、ジビニル芳香族化合物(a)に由来する構造単位及びエチルビニル芳香族化合物(b)に由来する構造単位を有する。式(a1)、式(a2)、式(a3)、式(ta1)、式(b1)及び式(tb1)で表される構造単位のモル分率が、下記式(1)を満足することが好ましい。
 0.2≦[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]≦0.9   ・・・(1)
 上記式(1)の意義は、次のとおりである。反応性を比較すると、ビニル基はビニレン基よりも高い。(a1)と(ta1)の構造単位には、ペンダントビニル基が含まれている。また、(a3)の構造単位は、ペンダントビニル基が反応した後とみなすことができる。このため、(a1)+(a3)+(ta1)の合計モル分率を規定している。なお、(ta1)には、ビニレン基も含まれているが、ビニル基が優位となる。
 換言すれば、ビニル基(反応を受けたペンダントビニル基を含む)は、硬化性樹脂組成物としたときに、硬化反応を受けやすい。この構造単位が、(a1)、(a3)及び(ta1)である。一方、ビニレン基は、硬化性樹脂組成物としたときに、硬化反応を受け難い。この構造単位は、(a2)、(ta1)及び(tb21)である。また、モノ(エチル)ビニル芳香族化合物のモノマーのビニル基以外の置換基は、重合反応で1回反応を受けた後は、それ以上反応を受けることはない。この構造単位は、(b1)及び(tb1)である。
 上記式(1)で表される合計モル分率が、0.9を超えると、分子量が増大し、成形性が低下する。一方、0.2未満では、(a1)で表されるペンダントビニルの割合が少なくなり、内部オレフィン構造が主体となるため、耐熱性及び硬化性が低下する。より好ましくは、0.5~0.7の範囲である。
The soluble polyfunctional vinyl aromatic copolymer of the present invention has a structural unit derived from the divinyl aromatic compound (a) and a structural unit derived from the ethyl vinyl aromatic compound (b) in the copolymer or at the terminal. The molar fraction of the structural unit represented by formula (a1), formula (a2), formula (a3), formula (ta1), formula (b1), and formula (tb1) satisfies the following formula (1). Is preferred.
0.2 ≦ [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] ≦ 0.9 (1)
The significance of the above formula (1) is as follows. When the reactivity is compared, the vinyl group is higher than the vinylene group. The structural units (a1) and (ta1) contain a pendant vinyl group. The structural unit (a3) can be regarded as after the reaction of the pendant vinyl group. For this reason, the total molar fraction of (a1) + (a3) + (ta1) is prescribed | regulated. Note that (ta1) includes a vinylene group, but a vinyl group is dominant.
In other words, vinyl groups (including pendant vinyl groups that have undergone reaction) are susceptible to a curing reaction when used as a curable resin composition. These structural units are (a1), (a3) and (ta1). On the other hand, vinylene groups are less susceptible to curing reaction when used as a curable resin composition. The structural units are (a2), (ta1) and (tb21). Further, substituents other than the vinyl group of the monomer of the mono (ethyl) vinyl aromatic compound do not undergo any further reaction after undergoing one reaction in the polymerization reaction. The structural units are (b1) and (tb1).
When the total molar fraction represented by the above formula (1) exceeds 0.9, the molecular weight increases and the moldability decreases. On the other hand, if it is less than 0.2, the ratio of the pendant vinyl represented by (a1) decreases, and the internal olefin structure is the main component, so that the heat resistance and curability are lowered. More preferably, it is in the range of 0.5 to 0.7.
 また、末端基のモル分率が、下記を満足することが好ましい。
  (ta1)/[(ta1)+(tb1)]>0.2     ・・・(2)
 上記式(2)で現される末端基のモル分率が0.2よりも大きいことによって、本発明の共重合体は、良好な硬化性を有することになる。一方、上記式(2)で現される末端基のモル分率が0.2以下となると、硬化性が低下する傾向にある。より好ましい下限は0.25であり、さらに好ましい下限は0.40であり、さらに好ましい下限は0.50である。一方、好ましい上限は0.95であり、より好ましい上限は0.90であり、さらに好ましい上限は0.85である。上記式(1)で表される合計モル分率が0.95を超えると、硬化物の成形加工性が低下する傾向にある。
Moreover, it is preferable that the molar fraction of a terminal group satisfies the following.
(ta1) / [(ta1) + (tb1)]> 0.2 (2)
When the molar fraction of the terminal group represented by the above formula (2) is larger than 0.2, the copolymer of the present invention has good curability. On the other hand, when the molar fraction of the terminal group represented by the above formula (2) is 0.2 or less, the curability tends to be lowered. A more preferred lower limit is 0.25, a further preferred lower limit is 0.40, and a further preferred lower limit is 0.50. On the other hand, a preferable upper limit is 0.95, a more preferable upper limit is 0.90, and a more preferable upper limit is 0.85. When the total molar fraction represented by the above formula (1) exceeds 0.95, the molding processability of the cured product tends to decrease.
 ビニル基含有単位のモル分率(a1)/[(a1)+(a2)+(a3)]は、0.2以上、0.9未満であること好ましい。より好ましくは、0.25~0.85、より好ましくは0.3~0.8である。本発明の共重合体の構造単位を上記の関係を満足するように導入することによって、低誘電正接であり、靱性が高く、また、優れた耐熱性を有し、他の樹脂との相溶性に優れ、透明性、及び、成形加工性にも優れた樹脂組成物とすることができる。上記式(a1)のモル分率が0.2より小さいと耐熱性と成形加工性が低下し、0.9よりも大きいと、他の樹脂との相溶性が維持できず、微細な配線パターンに対する樹脂充填性も低下する傾向にある。
 一方、ビニレン基含有単位(a2)及び架橋構造単位(a3)の合計モル分率[(a2)+(a3)]/[(a1)+(a2)+(a3)]は、0.1以上、0.8未満であることが必要である。好ましくは、0.15~0.75、より好ましくは0.2~0.8である。本発明の共重合体の構造単位を上記の関係を満足するように導入することによって、低誘電正接であり、靱性が高く、また、優れた耐熱性を有し、他の樹脂との相溶性に優れ、透明性、及び、成形加工性にも優れた樹脂組成物とすることができる。式(a2)及び式(a3)のモル分率が0.1より小さいと成形加工性が低下し、微細な配線パターンに対する樹脂充填性も低下する傾向にある。また、0.8よりも大きいと、硬化反応性が低下し、耐熱性も低下する傾向にある。
The molar fraction (a1) / [(a1) + (a2) + (a3)] of the vinyl group-containing unit is preferably 0.2 or more and less than 0.9. More preferably, it is 0.25 to 0.85, and more preferably 0.3 to 0.8. By introducing the structural unit of the copolymer of the present invention so as to satisfy the above relationship, it has a low dielectric loss tangent, high toughness, excellent heat resistance, and compatibility with other resins. In addition, the resin composition can be made excellent in transparency and molding processability. When the molar fraction of the above formula (a1) is smaller than 0.2, heat resistance and molding processability are deteriorated. When it is larger than 0.9, compatibility with other resins cannot be maintained, and a fine wiring pattern is obtained. There is also a tendency for the resin filling property to decrease.
On the other hand, the total molar fraction [(a2) + (a3)] / [(a1) + (a2) + (a3)] of the vinylene group-containing unit (a2) and the crosslinked structural unit (a3) is 0.1 or more , Less than 0.8. Preferably, it is 0.15 to 0.75, more preferably 0.2 to 0.8. By introducing the structural unit of the copolymer of the present invention so as to satisfy the above relationship, it has a low dielectric loss tangent, high toughness, excellent heat resistance, and compatibility with other resins. In addition, the resin composition can be made excellent in transparency and molding processability. When the molar fraction of the formula (a2) and the formula (a3) is smaller than 0.1, the moldability tends to be lowered, and the resin filling property to a fine wiring pattern tends to be lowered. Moreover, when larger than 0.8, there exists a tendency for hardening reactivity to fall and for heat resistance to fall.
 更に、本発明の可溶性多官能ビニル芳香族共重合体は、ジビニル芳香族化合物(a)に由来する構造単位(A)及びモノビニル芳香族化合物(b)に由来する構造単位(B)からなるが、構造単位(A)のモル分率(A)/{(A)+(B)}は、好ましくは0.2~0.95であり、より好ましくは0.4~0.90、更に好ましくは0.50~0.85モルの範囲である。構造単位(B)のモル分率(B)/{(A)+(B)}は、構造単位(A)のモル分率から計算される。
 別の観点からは、構造単位(A)を全ての構造単位の合計100モル%に対して、20~950モル%含むことが好ましい。ジビニル芳香族化合物(a)に由来する構造単位(A)は、耐熱性を発現させるための架橋成分としてのビニル基を含み、一方、モノビニル芳香族化合物(b)に由来する構造単位(B)は、硬化反応に関与するビニル基を有しないため、成形性等を与える。したがって、構造単位(A)のモル分率が0.2に満たないと硬化物の耐熱性が不足し、0.95を超えると成形加工性が低下する。すなわち、構造単位(A)の含有量が少ないと、架橋密度の低下に伴って、耐熱性が低下するため、光導波路形成プロセス等に於ける熱履歴を受けたとき、良好な形状の維持が困難となり、多すぎると、エッチング特性が悪化して、微細構造が優れた形状の光導波路等を形成することが困難となる。
Further, the soluble polyfunctional vinyl aromatic copolymer of the present invention comprises a structural unit (A) derived from the divinyl aromatic compound (a) and a structural unit (B) derived from the monovinyl aromatic compound (b). The molar fraction (A) / {(A) + (B)} of the structural unit (A) is preferably 0.2 to 0.95, more preferably 0.4 to 0.90, still more preferably Is in the range of 0.50 to 0.85 mol. The molar fraction (B) / {(A) + (B)} of the structural unit (B) is calculated from the molar fraction of the structural unit (A).
From another viewpoint, it is preferable that the structural unit (A) is contained in an amount of 20 to 950 mol% with respect to a total of 100 mol% of all the structural units. The structural unit (A) derived from the divinyl aromatic compound (a) contains a vinyl group as a crosslinking component for developing heat resistance, while the structural unit (B) derived from the monovinyl aromatic compound (b). Since it does not have a vinyl group involved in the curing reaction, it imparts moldability and the like. Accordingly, when the molar fraction of the structural unit (A) is less than 0.2, the heat resistance of the cured product is insufficient, and when it exceeds 0.95, the moldability is deteriorated. That is, when the content of the structural unit (A) is small, the heat resistance is lowered with a decrease in the crosslink density, so that a good shape can be maintained when subjected to a thermal history in an optical waveguide formation process or the like. If the amount is too large, the etching characteristics deteriorate and it becomes difficult to form an optical waveguide having a fine microstructure.
 ビニル基やビニレン基を1つ有する構造単位、例えば単位(a1)、(a2)は共重合体に重合性を与え、共重合体を多官能とし、硬化性樹脂とする。ビニル基やビニレン基を有しない構造単位である単位(a3)は架橋構造を与え、分岐度を増やすが、架橋が進行しすぎると硬化して溶剤不溶性となるので、架橋に関与していない単位(a1)及び単位(a2)が存在することが必要である。本発明では、反応過程で生成するビニレン基含有単位(a2)やビニレン基含有末端基(ta1)、(tb1)を必須成分として含有している。 A structural unit having one vinyl group or one vinylene group, for example, the units (a1) and (a2) gives the copolymer polymerizability, and the copolymer is polyfunctional to make a curable resin. The unit (a3), which is a structural unit having no vinyl group or vinylene group, gives a crosslinked structure and increases the degree of branching. However, if the crosslinking proceeds too much, the unit cures and becomes insoluble in the solvent. It is necessary that (a1) and unit (a2) exist. In this invention, the vinylene group containing unit (a2) produced | generated in the reaction process, the vinylene group containing terminal group (ta1), and (tb1) are contained as an essential component.
 ビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)に由来するビニル基やビニレン基の不飽和炭化水素基を有する構造単位、すなわち、式(a1)、(a2)で表される不飽和基含有構造単位、及び式(ta1)、(tb1)で表される不飽和基含有末端基の合計モル%は、共重合体中の全構造単位の合計100モル%に対して、好ましくは40.0~80.0モル%、より好ましくは50.0~70.0モル%である。 Structural units having a vinyl group or vinylene unsaturated hydrocarbon group derived from the vinyl aromatic compound (a) and the monovinyl aromatic compound (b), that is, the unsaturated group represented by the formulas (a1) and (a2) The total mol% of the group-containing structural unit and the unsaturated group-containing end group represented by the formulas (ta1) and (tb1) is preferably 40 mol with respect to the total 100 mol% of all the structural units in the copolymer. 0.0 to 80.0 mol%, more preferably 50.0 to 70.0 mol%.
 上記各式(a1)、(a2)、式(a3)及び式(ta1)において、Rは炭素数6~30の芳香族炭化水素基を示すが、これらは、ジビニル芳香族化合物(a)に由来するので、その説明から理解される。具体的には、Rは、好ましくは炭素数6~12の芳香族炭化水素基であり、より好ましくはフェニレン基、ビフェニレン基又はナフチレン基である。また、式(b1)及び式(tb1)において、R2は炭素数6~30の芳香族炭化水素基を示し、R3は水素又は炭素数1~12の炭化水素基示すが、これらは、モノビニル芳香族化合物(b)に由来するので、その説明から理解される。具体的には、Rは、好ましくは炭素数6~12の芳香族炭化水素基であり、より好ましくはフェニレン基、ビフェニレン基又はナフチレン基である。また、Rは、好ましくは水素又は炭素数1~12の飽和炭化水素基であり、より好ましくは水素又は炭素数1~6の飽和炭化水素基であり、さらに好ましくは水素又は炭素数1~3の飽和炭化水素基である。 In each of the above formulas (a1), (a2), formula (a3) and formula (ta1), R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, which is a divinyl aromatic compound (a) It is understood from the explanation. Specifically, R 1 is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a phenylene group, a biphenylene group, or a naphthylene group. In the formulas (b1) and (tb1), R 2 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 3 represents hydrogen or a hydrocarbon group having 1 to 12 carbon atoms. Since it is derived from the monovinyl aromatic compound (b), it can be understood from the description. Specifically, R 2 is preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a phenylene group, a biphenylene group, or a naphthylene group. R 3 is preferably hydrogen or a saturated hydrocarbon group having 1 to 12 carbon atoms, more preferably hydrogen or a saturated hydrocarbon group having 1 to 6 carbon atoms, and still more preferably hydrogen or a carbon number having 1 to 12 carbon atoms. 3 saturated hydrocarbon groups.
 本発明の可溶性多官能ビニル芳香族共重合体のMn(ここで、Mnはゲル浸透クロマトグラフィーを用いて測定される標準ポリスチレン換算の数平均分子量である)は300~100,000であり、好ましくは400~50,000、更に好ましくは500~10,000である。Mnが300未満であると共重合体中に含まれる単官能の共重合体の量が増えるため、硬化物の耐熱性が低下し、一方、Mnが100,000を超えると、ゲルが生成しやすくなり、また粘度が高くなるため、成形加工性の低下を招くので好ましくない。分子量分布(Mw/Mn)の値は100.0以下、好ましくは50.0以下、より好ましくは1.5~30.0である。最も好ましくは、2.0~20.0である。Mw/Mnが100.0を超えると、共重合体の加工特性の悪化、ゲルの発生といった問題点を生ずる。 The soluble polyfunctional vinyl aromatic copolymer of the present invention has an Mn (where Mn is a number average molecular weight in terms of standard polystyrene measured using gel permeation chromatography) of 300 to 100,000, preferably Is 400 to 50,000, more preferably 500 to 10,000. When Mn is less than 300, the amount of the monofunctional copolymer contained in the copolymer increases, so the heat resistance of the cured product decreases. On the other hand, when Mn exceeds 100,000, a gel is formed. Since it becomes easy and the viscosity becomes high, the molding processability is lowered, which is not preferable. The molecular weight distribution (Mw / Mn) is 100.0 or less, preferably 50.0 or less, more preferably 1.5 to 30.0. Most preferably, it is 2.0 to 20.0. When Mw / Mn exceeds 100.0, problems such as deterioration of the processing characteristics of the copolymer and generation of a gel occur.
 本発明の可溶性多官能ビニル芳香族共重合体は、トルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムから選ばれる溶剤に可溶であるが、有利には上記溶剤のいずれにも可溶である。ここで、溶剤に可溶とは、25℃で、溶剤100gに5g以上、好ましくは10g以上が溶解することをいう。溶剤に可溶で、多官能な共重合体であるためには、ジビニルベンゼンのビニル基の一部は架橋せずに残存し適度な架橋度であることが必要である。重合方法については後記する。 The soluble polyfunctional vinyl aromatic copolymer of the present invention is soluble in a solvent selected from toluene, xylene, tetrahydrofuran, dichloroethane or chloroform, but is preferably soluble in any of the above solvents. Here, “soluble in a solvent” means that 5 g or more, preferably 10 g or more is dissolved in 100 g of a solvent at 25 ° C. In order to be a polyfunctional copolymer that is soluble in a solvent, it is necessary that some vinyl groups of divinylbenzene remain without being crosslinked and have an appropriate degree of crosslinking. The polymerization method will be described later.
 本発明の可溶性多官能ビニル芳香族共重合体は、上記式(a1)、式(a2)、式(a3)及び式(b1)で表される構造単位及び式(ta1)及び式(tb1)で表される末端基を有する共重合体であるため、主鎖の剛直性を有するエーテル系化合物及びエポキシ系化合物に対する相溶性が高い。したがって、剛直な構造を有する硬化型エーテル系化合物及びエポキシ系化合物との硬化性樹脂組成物について硬化させた場合、均一硬化性や透明性に優れるものとなる。 The soluble polyfunctional vinyl aromatic copolymer of the present invention includes structural units represented by the above formula (a1), formula (a2), formula (a3) and formula (b1), and formula (ta1) and formula (tb1). Therefore, the compatibility with the ether compound and the epoxy compound having the rigidity of the main chain is high. Accordingly, when the curable resin composition with a curable ether compound and an epoxy compound having a rigid structure is cured, it is excellent in uniform curability and transparency.
 次に、可溶性多官能ビニル芳香族共重合体を有利に製造することができる製造方法について説明する。 Next, a production method capable of advantageously producing a soluble polyfunctional vinyl aromatic copolymer will be described.
 好適には、ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を、助触媒成分であるルイス塩基化合物(c)の存在下に、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、反応させて共重合体を製造することができる。 Preferably, the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) are converted from an inorganic acid, an organic sulfonic acid, and a perchloric acid compound in the presence of a Lewis base compound (c) as a promoter component. One or more catalysts (d) selected from the group can be used for reaction to produce a copolymer.
 ジビニル芳香族化合物(a)は共重合体を分岐させ、多官能とさせると共に、共重合体を熱硬化する際に耐熱性を発現させるための架橋成分として重要な役割を果たす。ジビニル芳香族化合物(a)の例としては、ジビニルベンゼン(各異性体含む)、ジビニルナフタレン(各異性体を含む)、ジビニルビフェニル(各異性体を含む)が好ましく使用されるが、これらに限定されるものではない。また、これらは単独又は2種以上を組み合わせて用いることができる。成形加工性の観点から、より好ましくはジビニルベンゼン(m-体、p-体又はこれらの異性体混合物)である。 The divinyl aromatic compound (a) plays an important role as a crosslinking component for branching the copolymer to make it polyfunctional and for developing heat resistance when the copolymer is thermally cured. As examples of the divinyl aromatic compound (a), divinylbenzene (including each isomer), divinylnaphthalene (including each isomer), and divinylbiphenyl (including each isomer) are preferably used. Is not to be done. Moreover, these can be used individually or in combination of 2 or more types. From the viewpoint of moldability, divinylbenzene (m-isomer, p-isomer or a mixture of isomers thereof) is more preferable.
 モノビニル芳香族化合物(b)は、共重合体の溶剤可溶性及び加工性を改善する。モノビニル芳香族化合物(b)の例としては、核アルキル置換エチルビニル芳香族化合物、α-アルキル置換エチルビニル芳香族化合物、β-アルキル置換エチルビニル芳香族化合物、アルコキシ置換エチルビニル芳香族化合物等があるが、これらに制限されるものではない。共重合体のゲル化を防ぎ、溶媒への溶解性、加工性の改善するために、特にエチルビニルベンゼン(各異性体含む)、エチルビニルビフェニル(各異性体を含む)、及び、エチルビニルナフタレン(各異性体を含む)がコスト及び入手の容易さの観点から、好まれて使用される。誘電特性とコストの観点から、より好ましくはエチルビニルベンゼン(m-体、p-体又はこれらの異性体混合物)である。 Monovinyl aromatic compound (b) improves the solvent solubility and processability of the copolymer. Examples of the monovinyl aromatic compound (b) include a nuclear alkyl-substituted ethyl vinyl aromatic compound, an α-alkyl substituted ethyl vinyl aromatic compound, a β-alkyl substituted ethyl vinyl aromatic compound, and an alkoxy substituted ethyl vinyl aromatic compound. It is not limited to. In order to prevent the gelation of the copolymer and to improve solubility in solvents and processability, in particular ethylvinylbenzene (including each isomer), ethylvinylbiphenyl (including each isomer), and ethylvinylnaphthalene (Including each isomer) is preferred and used from the viewpoint of cost and availability. From the viewpoint of dielectric properties and cost, ethyl vinylbenzene (m-isomer, p-isomer or a mixture of isomers thereof) is more preferable.
 また、共重合体の製造方法において、本発明の効果を損なわない範囲で、ジビニル芳香族化合物(a)、モノビニル芳香族化合物(b)の他に、トリビニル芳香族化合物、トリビニル脂肪族化合物やジビニル脂肪族化合物及びモノビニル脂肪族化合物等の他の単量体(e)を使用し、これらの単位を共重合体中に導入することができる。 In addition, in the copolymer production method, in addition to the divinyl aromatic compound (a) and the monovinyl aromatic compound (b), a trivinyl aromatic compound, a trivinyl aliphatic compound, and divinyl are used as long as the effects of the present invention are not impaired. These monomers can be introduced into the copolymer using other monomers (e) such as aliphatic compounds and monovinyl aliphatic compounds.
 他の単量体(e)の具体例としては、1,3,5-トリビニルベンゼン、1,3,5-トリビニルナフタレン、1,2,4-トリビニルシクロへキサン、エチレングリコールジアクリレート、ブタジエン等が挙げられるが、これらに制限されるものではない。これらは単独で又は2種以上を組合せて用いることができる。他の単量体(e)は、全単量体の30モル%未満の範囲内で使用されることがよい。それにより、他の単量体成分(e)に由来する構造単位は、共重合体中の構造単位の総量に対して30モル%未満の範囲内とされる。 Specific examples of the other monomer (e) include 1,3,5-trivinylbenzene, 1,3,5-trivinylnaphthalene, 1,2,4-trivinylcyclohexane, ethylene glycol diacrylate. , Butadiene and the like, but are not limited thereto. These can be used alone or in combination of two or more. The other monomer (e) may be used within a range of less than 30 mol% of the total monomers. Thereby, the structural unit derived from the other monomer component (e) is within a range of less than 30 mol% with respect to the total amount of the structural unit in the copolymer.
 助触媒成分であるルイス塩基化合物(c)の具体例としては、1) 酢酸エチル、酢酸ブチル、酢酸フェニル、プロピオン酸メチル等のエステル系化合物、2)メチルメルカプトプロピオン酸、エチルメルカプトプロピオン酸等のチオエステル系化合物、3)メチルエチルケトン、メチルイソブチルケトン、ベンゾフェノン等のケトン系化合物、4)メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、シクロヘキシルアミン、メチルエチルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等のアミン系化合物、5)ジエチルエーテル、テトラヒドロラン等のエーテル系化合物、6)ジエチルスルフィド、ジフェニルスルフィド等のチオエーテル系化合物、7)トリプロピルホスフィン、トリブチルホスフィン、トリヘキシルホスフィン、トリシクロヘキシルホスフィン、トリオクチルホスフィン、ビニルホスフィン、プロペニルホスフィン、シクロヘキセニルホスフィン、ジアルケニルホスフィン、トリアルケニルホスフィンなどのホスフィン系化合物からなる群から選ばれる一種以上のルイス塩基化合物(c)を挙げることができる。これらの中でも、(d)成分の触媒と相乗的に作用して、重合速度及び重合体の分子量分布を容易に制御できる点からエステル系化合物及びケトン系化合物が好ましく使用される。 Specific examples of the Lewis base compound (c) as a promoter component include 1) ester compounds such as ethyl acetoacetate, butyl acetate, phenyl acetate and methyl propionate, and 2) methyl mercaptopropionic acid, ethyl mercaptopropionic acid and the like. Thioester compounds, 3) ketone compounds such as methyl ethyl ketone, methyl isobutyl ketone, benzophenone, 4) methylamine, ethylamine, propylamine, butylamine, cyclohexylamine, methylethylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, etc. Amine compounds, 5) ether compounds such as diethyl ether and tetrahydrolane, 6) thioether compounds such as diethyl sulfide and diphenyl sulfide, 7) tripropylphosphine, tributy One or more Lewis base compounds selected from the group consisting of phosphine compounds such as phosphine, trihexylphosphine, tricyclohexylphosphine, trioctylphosphine, vinylphosphine, propenylphosphine, cyclohexenylphosphine, dialkenylphosphine, and trialkenylphosphine (c ). Among these, ester compounds and ketone compounds are preferably used from the viewpoint that they can act synergistically with the component (d) catalyst to easily control the polymerization rate and the molecular weight distribution of the polymer.
 助触媒成分であるルイス塩基化合物(c)は、電子供与性であり、重合反応時に、重合活性種であるカルボカチオン種のβ位の水素に配位することによって、触媒(d)とβ-水素の間の相互作用を制御し、β-水素脱離反応とビニル基の1,2-付加反応の間の相対的な反応頻度を調節する。従って、ルイス塩基化合物(c)を添加することによって、本発明の可溶性多官能ビニル芳香族共重合体は、ジビニル芳香族化合物及びエチルビニル芳香族化合物に由来する式(a1)、式(a2)、式(a3)及び式(b1)で表される構造単位、及び式(ta1)及び式(tb1)で表される末端基の存在比率を広く制御することができる。すなわち、ルイス塩基化合物(c)は式(a1)、式(a2)、式(a3)及び式(b1)で表される構造単位、及び式(ta1)及び式(tb1)で表される末端基の存在比率を制御することを可能にし、共重合体の耐熱性、靱性、低誘電性等の機能付与を可能にする化合物である。 The Lewis base compound (c) as a co-catalyst component is electron-donating, and coordinates with the hydrogen at the β-position of the carbocation species that are polymerization-active species during the polymerization reaction, whereby the catalyst (d) and β- It controls the interaction between hydrogen and regulates the relative reaction frequency between β-hydrogen elimination reaction and vinyl group 1,2-addition reaction. Therefore, by adding the Lewis base compound (c), the soluble polyfunctional vinyl aromatic copolymer of the present invention has the formulas (a1), (a2), (a) derived from the divinyl aromatic compound and the ethylvinyl aromatic compound. The abundance ratios of the structural units represented by the formula (a3) and the formula (b1) and the terminal groups represented by the formula (ta1) and the formula (tb1) can be widely controlled. That is, the Lewis base compound (c) is a structural unit represented by formula (a1), formula (a2), formula (a3) and formula (b1), and terminal represented by formula (ta1) and formula (tb1). It is a compound that makes it possible to control the abundance ratio of groups and to impart functions such as heat resistance, toughness, and low dielectric properties of the copolymer.
こうした反応の一例を、以下に示す。
Figure JPOXMLDOC01-appb-C000013
An example of such a reaction is shown below.
Figure JPOXMLDOC01-appb-C000013
 ルイス塩基化合物(c)としては、反応性、入手の容易さ、硬化物の耐熱性の観点から、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸フェニル、及びメチルエチルケトン、並びにメチルイソブチルケトンが好ましく使用される。反応速度の観点から、酢酸プロピル、酢酸ブチル、メチルエチルケトン、及びメチルイソブチルケトンがより好ましく用いられる。 As the Lewis base compound (c), ethyl acetate, propyl acetate, butyl acetate, phenyl acetate, and methyl ethyl ketone, and methyl isobutyl ketone are preferably used from the viewpoint of reactivity, availability, and heat resistance of the cured product. . From the viewpoint of reaction rate, propyl acetate, butyl acetate, methyl ethyl ketone, and methyl isobutyl ketone are more preferably used.
 ルイス塩基化合物(c)は、全単量体100モルに対し0.005~500モル、好ましくは0.01~100モル、より好ましくは0.1~50モルである。0.005モル未満であると、上記式(a1)で表される繰返し構造単位の式(a2)及び式(a3)に対する導入量が減少し、靱性等の機能が低下するばかりでなく、耐熱性が低下し、硬化性も悪くなるので、成形加工性も悪化する。一方、500モルを超えて使用すると、重合速度が著しく低下し、生産性が低下する他、誘電特性が悪化する。 The Lewis base compound (c) is used in an amount of 0.005 to 500 mol, preferably 0.01 to 100 mol, more preferably 0.1 to 50 mol, per 100 mol of all monomers. When the amount is less than 0.005 mol, the introduction amount of the repeating structural unit represented by the above formula (a1) with respect to the formula (a2) and the formula (a3) is reduced, and not only functions such as toughness are lowered, but also heat resistance The moldability is deteriorated and the curability is also deteriorated. On the other hand, if it is used in excess of 500 mol, the polymerization rate is remarkably lowered, the productivity is lowered, and the dielectric properties are deteriorated.
 重合反応は、ジビニル芳香族化合物(a)、エチルビニル芳香族化合物(b)、ルイス塩基化合物(c)、及び触媒(d)を使用し、これらを含む重合原料類を、誘電率2.0~15.0の溶媒に溶解させた均一溶媒中、20~120℃の温度でカチオン共重合させて共重合体を得ることができる。 The polymerization reaction uses a divinyl aromatic compound (a), an ethyl vinyl aromatic compound (b), a Lewis base compound (c), and a catalyst (d). A copolymer can be obtained by cationic copolymerization at a temperature of 20 to 120 ° C. in a homogeneous solvent dissolved in 15.0 solvent.
 触媒(d)としては、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)が使用される。 As the catalyst (d), one or more kinds of catalysts (d) selected from the group consisting of inorganic acids, organic sulfonic acids and perchloric acid compounds are used.
 触媒(d)としては、スルホネートアニオン又は過塩素酸アニオンを生成させる化合物であって、電子対を受け取ることのできるものであれば特に制限なく使用できる。スルホネートアニオンを生成させる無機酸としては、硫酸、フルオロ硫酸、クロロ硫酸、ビスクロロ硫酸などを挙げることができる。有機スルホン酸の具体例としては、メチル硫酸、トリフルオロメタンスルホン酸、パーフルオロエタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸、メタンスルホン酸無水物、ベンゼンスルホン酸無水物等を挙げることができる。過塩素酸アニオンを生成させる過塩素酸系化合物としては、過塩素酸、過塩素酸アセチル、過塩素酸ブチリル、ベンゾイルパークロレイト、ジオキソニウムパークロレイト、トリフェニルメチルパークロレイト、トロピリウムパークロレイト等を挙げることができる。これらの触媒は、単独又は2種以上を組み合わせて用いることができる。
 得られる共重合体の分子量及び分子量分布の制御及び重合活性の観点から、メチル硫酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、又はメタンスルホン酸無水物が最も好ましく使用される。
The catalyst (d) can be used without particular limitation as long as it is a compound that generates a sulfonate anion or a perchlorate anion and can accept an electron pair. Examples of inorganic acids that generate sulfonate anions include sulfuric acid, fluorosulfuric acid, chlorosulfuric acid, and bischlorosulfuric acid. Specific examples of the organic sulfonic acid include methyl sulfuric acid, trifluoromethane sulfonic acid, perfluoroethane sulfonic acid, benzene sulfonic acid, paratoluene sulfonic acid, methane sulfonic acid anhydride, and benzene sulfonic acid anhydride. Perchlorate compounds that generate perchlorate anions include perchloric acid, acetyl perchlorate, butyryl perchlorate, benzoyl perchlorate, dioxonium perchlorate, triphenylmethyl perchlorate, tropylium. Park Lorate etc. can be mentioned. These catalysts can be used alone or in combination of two or more.
Methyl sulfuric acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, or methanesulfonic anhydride is most preferably used from the viewpoint of controlling the molecular weight and molecular weight distribution of the obtained copolymer and polymerization activity.
 触媒(d)は、助触媒であるルイス塩基化合物(c)1モルに対し、触媒(d)を0.001~10モルの範囲内で用いるが、より好ましくは0.005~5モルである。10モルを越えると、重合速度が大きくなりすぎるため、分子量分布の制御が困難となる。 The catalyst (d) is used in an amount of 0.001 to 10 mol, more preferably 0.005 to 5 mol, per 1 mol of the Lewis base compound (c) as a co-catalyst. . If it exceeds 10 moles, the polymerization rate becomes too high, making it difficult to control the molecular weight distribution.
 重合反応は、生成する可溶性多官能ビニル芳香族共重合体を溶解する溶媒として、誘電率が2.0~15.0である1種以上の有機溶媒中で行うことが好ましい。有機溶媒としては、カチオン重合を本質的に阻害しない化合物であり、かつ触媒、重合添加剤、助触媒、単量体及び多官能ビニル芳香族共重合体を溶解して、均一溶液を形成するもので、誘電率が2~15の範囲内であれば特に制限はなく、単独又は2種以上を組み合わせて用いることができる。溶媒の誘電率が2未満であると、分子量分布が広くなるため好ましくなく、15を超えると重合速度が著しく低下する。 The polymerization reaction is preferably carried out in one or more organic solvents having a dielectric constant of 2.0 to 15.0 as a solvent for dissolving the produced soluble polyfunctional vinyl aromatic copolymer. Organic solvent is a compound that does not essentially inhibit cationic polymerization, and dissolves catalyst, polymerization additive, co-catalyst, monomer and polyfunctional vinyl aromatic copolymer to form a uniform solution. The dielectric constant is not particularly limited as long as it is in the range of 2 to 15, and can be used alone or in combination of two or more. When the dielectric constant of the solvent is less than 2, the molecular weight distribution becomes wide, which is not preferable. When it exceeds 15, the polymerization rate is remarkably reduced.
 有機溶媒としては、重合活性、溶解性のバランスの観点から、トルエン、キシレン、n-へキサン、シクロへキサン、メチルシクロへキサン又はエチルシクロへキサンが特に好ましい。溶媒の使用量は、得られる重合溶液の粘度や除熱の容易さを考慮して、重合終了時において重合溶液中の共重合体の濃度が1~90wt%、好ましくは10~80wt%、特に好ましくは20~70wt%となるように決定するとよい。この濃度が1wt%に満たない場合は、重合効率が低いことに起因して、コストの増大を招き、90wt%を越えると、分子量及び分子量分布が増大し、成形加工性の低下を招く。 As the organic solvent, toluene, xylene, n-hexane, cyclohexane, methylcyclohexane or ethylcyclohexane is particularly preferable from the viewpoint of a balance between polymerization activity and solubility. The amount of the solvent used is such that the concentration of the copolymer in the polymerization solution is 1 to 90 wt%, preferably 10 to 80 wt%, particularly at the end of the polymerization, in consideration of the viscosity of the polymerization solution obtained and ease of heat removal. Preferably, it is determined to be 20 to 70 wt%. If this concentration is less than 1 wt%, the polymerization efficiency is low, resulting in an increase in cost. If it exceeds 90 wt%, the molecular weight and molecular weight distribution increase, resulting in a decrease in molding processability.
 重合反応温度は、好ましくは20~120℃、より好ましくは40~100℃である。重合温度が高すぎると、反応の選択性が低下するため、分子量分布の増大やゲルの発生といった問題点が生じ、低すぎると、触媒活性が著しく低下するので、多量の触媒を添加する必要が生じる。 The polymerization reaction temperature is preferably 20 to 120 ° C, more preferably 40 to 100 ° C. If the polymerization temperature is too high, the selectivity of the reaction will be reduced, causing problems such as an increase in molecular weight distribution and gel generation. If the polymerization temperature is too low, the catalytic activity will be significantly reduced, so a large amount of catalyst must be added. Arise.
 重合反応停止後、共重合体を回収する方法は特に限定されず、例えば、スチームストリッピング法、貧溶媒での析出などの通常用いられる方法を用いればよい。 The method for recovering the copolymer after the polymerization reaction is stopped is not particularly limited. For example, a commonly used method such as a steam stripping method or precipitation with a poor solvent may be used.
 次に、本発明の硬化性組成物について説明する。
 本発明の硬化性組成物は、可溶性多官能ビニル芳香族共重合体(XA)とラジカル重合開始剤(ラジカル重合触媒ともいう。)(XB)とを含有する。ラジカル重合開始剤(XB)としては、例えば、本発明の樹脂組成物は後述するように加熱等の手段により架橋反応を起こして硬化するが、その際の反応温度を低くしたり、不飽和基の架橋反応を促進する目的でラジカル重合開始剤(XB)を含有させて使用してもよい。この目的で用いられるラジカル重合開始剤の量は(XA)成分と(XB)成分の和を基準として0.01~10重量%、好ましくは0.1~8重量%である。ラジカル重合開始剤はラジカル重合触媒でもあるが、以下ラジカル重合開始剤で代表する。
Next, the curable composition of this invention is demonstrated.
The curable composition of the present invention contains a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (also referred to as a radical polymerization catalyst) (XB). As the radical polymerization initiator (XB), for example, the resin composition of the present invention is cured by causing a crosslinking reaction by means of heating or the like as described later. For the purpose of accelerating the crosslinking reaction, a radical polymerization initiator (XB) may be used. The amount of the radical polymerization initiator used for this purpose is 0.01 to 10% by weight, preferably 0.1 to 8% by weight, based on the sum of the components (XA) and (XB). The radical polymerization initiator is also a radical polymerization catalyst, but is represented by a radical polymerization initiator below.
 ラジカル重合開始剤は、公知の物質が用いられる。代表的な例を挙げると、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、2,2-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(t-ブチルパーオキシ)オクタン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物があるがこれらに限定されない。また過酸化物ではないが、2,3-ジメチル-2,3-ジフェニルブタンも使用できる。ただし、本樹脂組成物の硬化に用いられるラジカル重合開始剤はこれらの例に限定されない。 A known substance is used for the radical polymerization initiator. Representative examples include benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy ) Hexin-3, di-t-butyl peroxide, t-butylcumyl peroxide, α, α'-bis (t-butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (T-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2,2-bis (t-butylperoxy) butane, 2,2-bis (T-butylperoxy) octane, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, di (trimethylsilyl) par Although there are peroxides such as oxide and trimethylsilyltriphenylsilyl peroxide, they are not limited to these. Although not a peroxide, 2,3-dimethyl-2,3-diphenylbutane can also be used. However, the radical polymerization initiator used for hardening of this resin composition is not limited to these examples.
 ラジカル重合開始剤の配合量は、可溶性多官能ビニル芳香族共重合体(XA)100重量部に対し、0.01~10重量部の範囲であれば、硬化反応を阻害することなく良好に反応が進行する。 When the amount of the radical polymerization initiator is in the range of 0.01 to 10 parts by weight with respect to 100 parts by weight of the soluble polyfunctional vinyl aromatic copolymer (XA), the reaction can be satisfactorily performed without inhibiting the curing reaction. Progresses.
 可溶性多官能ビニル芳香族共重合体(XA)含有硬化性組成物に、必要に応じて、共重合体(XA)と共重合可能な他の重合性モノマーを配合して硬化させてもよい。 If necessary, the polymerizable polyfunctional vinyl aromatic copolymer (XA) -containing curable composition may be mixed with another polymerizable monomer copolymerizable with the copolymer (XA) and cured.
 こうした共重合可能な重合性モノマーは、公知の物質が用いられる。代表的な例を挙げると、スチレン、スチレンダイマー、アルファメチルスチレン、アルファメチルスチレンダイマー、ジビニルベンゼン、ビニルトルエン、t-ブチルスチレン、クロロスチレン、ジブロモスチレン、ビニルナフタレン、ビニルビフェニル、アセナフチレン、ジビニルベンジルエーテル、アリルフェニルエーテル等を挙げることができる。 A known substance is used as such a copolymerizable polymerizable monomer. Typical examples are styrene, styrene dimer, alphamethylstyrene, alphamethylstyrene dimer, divinylbenzene, vinyltoluene, t-butylstyrene, chlorostyrene, dibromostyrene, vinylnaphthalene, vinylbiphenyl, acenaphthylene, divinylbenzyl ether. And allyl phenyl ether.
 可溶性多官能ビニル芳香族共重合体(XA)を含む硬化性組成物には、既知の熱硬化性樹脂、例えば、ビニルエステル樹脂、ポリビニルベンジル樹脂、不飽和ポリエステル樹脂、硬化型ビニル樹脂、変性ポリフェニレンエーテル樹脂、マレイミド樹脂、エポキシ樹脂、ポリシアナート樹脂、フェノール樹脂等や、既知の熱可塑性樹脂、例えば、ポリスチレン、ポリフェニレンエーテル、ポリエーテルイミド、ポリエーテルサルホン、PPS樹脂、ポリシクロペンタジエン樹脂、ポリシクロオレフィン樹脂等や、あるいは、既知の熱可塑性エラストマー、例えば、スチレン-エチレン-プロピレン共重合体、スチレン-エチレン-ブチレン共重合体、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、水添スチレン-ブタジエン共重合体、水添スチレン-イソプレン共重合体等やあるいはゴム類、例えばポリブタジェン、ポリイソプレンと配合することも可能である。 The curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) includes known thermosetting resins such as vinyl ester resins, polyvinyl benzyl resins, unsaturated polyester resins, curable vinyl resins, and modified polyphenylenes. Ether resins, maleimide resins, epoxy resins, polycyanate resins, phenol resins, and other known thermoplastic resins such as polystyrene, polyphenylene ether, polyether imide, polyether sulfone, PPS resins, polycyclopentadiene resins, polycycloolefins Resins, etc. or known thermoplastic elastomers such as styrene-ethylene-propylene copolymer, styrene-ethylene-butylene copolymer, styrene-butadiene copolymer, styrene-isoprene copolymer, hydrogenated styrene Butazier Copolymers, hydrogenated styrene - isoprene copolymer and or gums such as polybutadiene, may be blended with polyisoprene.
 硬化性組成物は、可溶性多官能ビニル芳香族共重合体(XA)及びラジカル重合開始剤(XB)とともに、下記式(7)で表される変性ポリフェニレンエーテル(XC)、特に末端に少なくとも1つの重合性の不飽和二重結合を有する基、例えばフェノール性水酸基、ビニル基、(メタ)アクリル基を有する変性ポリフェニレンエーテル(XC)を含有してもよい。末端変性可溶性多官能ビニル芳香族共重合体(XA)と上記変性ポリフェニレンエーテル(XC)とは良好な相溶性を有しており、相溶性の低下に伴う信頼性の低下という問題を克服し、任意の配合で高度の低誘電特性と靱性、更に成形性と層間剥離強度といった特性で改良された特性を示す。
Figure JPOXMLDOC01-appb-C000014
 式(7)中、mは、1又は2を示し、Lは、下記式(8)で表されるポリフェニレンエーテル鎖を示す。Mは、水素原子、下記式(9)で表される基を示し、mが1の場合は、Mは水素原子でなく、mが2の場合は、2つのMの少なくともいずれか一方は水素原子ではない。Tは、mが1の場合に水素原子を示し、mが2の場合に、アルキレン基、下記式(10)、又は下記式(11)で表される基を示す。
Figure JPOXMLDOC01-appb-C000015
 式(8)中、nは、50以下の正の整数を示し、R、R、R、及びRは、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
Figure JPOXMLDOC01-appb-C000016
 式(9)中、Xは、炭素数1以上の有機基であり、酸素原子を含むこともある。Yはビニル基である。jは0又は1の整数を示す。
Figure JPOXMLDOC01-appb-C000017
 式(10)中、R10、R11、R12、及びR13は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
Figure JPOXMLDOC01-appb-C000018
 式(11)中、R14、R15、R16、R17、R18、R19、R20、及びR21は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。Fは、炭素数0の場合を含む、炭素数20以下の直鎖状、分岐状又は環状の炭化水素基である。)
The curable composition comprises a modified polyphenylene ether (XC) represented by the following formula (7) together with a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (XB), particularly at least one terminal. A group having a polymerizable unsaturated double bond, for example, a modified polyphenylene ether (XC) having a phenolic hydroxyl group, a vinyl group, or a (meth) acryl group may be contained. The terminal-modified soluble polyfunctional vinyl aromatic copolymer (XA) and the modified polyphenylene ether (XC) have good compatibility, overcoming the problem of reduced reliability due to a decrease in compatibility, It exhibits improved properties such as high low dielectric properties and toughness, as well as properties such as formability and delamination strength in any formulation.
Figure JPOXMLDOC01-appb-C000014
In formula (7), m represents 1 or 2, and L represents a polyphenylene ether chain represented by the following formula (8). M represents a hydrogen atom, a group represented by the following formula (9). When m is 1, M is not a hydrogen atom, and when m is 2, at least one of the two M is hydrogen. It is not an atom. T represents a hydrogen atom when m is 1, and represents a group represented by an alkylene group, the following formula (10), or the following formula (11) when m is 2.
Figure JPOXMLDOC01-appb-C000015
In the formula (8), n represents a positive integer of 50 or less, and R 5 , R 6 , R 7 , and R 8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group;
Figure JPOXMLDOC01-appb-C000016
In formula (9), X is an organic group having 1 or more carbon atoms and may contain an oxygen atom. Y is a vinyl group. j represents an integer of 0 or 1.
Figure JPOXMLDOC01-appb-C000017
In formula (10), R 10 , R 11 , R 12 , and R 13 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, formyl group, alkylcarbonyl group, alkenylcarbonyl group, or alkynyl. A carbonyl group is shown.
Figure JPOXMLDOC01-appb-C000018
In formula (11), R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 , and R 21 are each independently a hydrogen atom, alkyl group, alkenyl group, alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group; F is a linear, branched or cyclic hydrocarbon group having 20 or less carbon atoms, including the case of 0 carbon atoms. )
 本実施形態で用いる変性ポリフェニレンエーテル(XC)は、上記式(7)で表される変性ポリフェニレンエーテルであれば、特に限定されない。 The modified polyphenylene ether (XC) used in the present embodiment is not particularly limited as long as it is a modified polyphenylene ether represented by the above formula (7).
 また、式(7)で表される変性ポリフェニレンエーテルは、式(7)中のmが1又は2を示すものである。つまり、式(7)で表される変性ポリフェニレンエーテルは、具体的には、T-L-M、又は、M-L-T-L-Mで表される変性ポリフェニレンエーテルである。 The modified polyphenylene ether represented by the formula (7) is one in which m in the formula (7) is 1 or 2. In other words, the modified polyphenylene ether represented by the formula (7) is specifically a modified polyphenylene ether represented by TLMM or MLTLM.
 また、Lは、式(8)で表されるポリフェニレンエーテル鎖を示す。式(8)において、nは、50以下の正の整数を示す。また、R、R、R、及び、Rは、それぞれ独立している。すなわち、R、R、R、及び、Rは、それぞれ同一の基であっても、異なる基であってもよい。また、R、R、R、及び、Rは、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。この中でも、水素原子及びアルキル基が好ましい。 L represents a polyphenylene ether chain represented by the formula (8). In the formula (8), n represents a positive integer of 50 or less. R 5 , R 6 , R 7 , and R 8 are independent of each other. That is, R 5 , R 6 , R 7 , and R 8 may be the same group or different groups. R 5 , R 6 , R 7 , and R 8 represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group. Among these, a hydrogen atom and an alkyl group are preferable.
 また、Mは、水素原子、式(9)で表される基を示す。また、Mは、mが1の場合、すなわち、変性ポリフェニレンエーテルがT-L-Mの場合には、水素原子でなく、式(9)で表される基を示す。また、Mは、mが2の場合、すなわち、変性ポリフェニレンエーテルがM-L-T-L-Mの場合には、2つのMの少なくともいずれか一方は、水素原子ではなく、硬化物の耐熱性と靱性という理由から、2つのMは、ともに式(9)で表される基であることが好ましい。 M represents a hydrogen atom or a group represented by the formula (9). M represents a group represented by the formula (9) instead of a hydrogen atom when m is 1, that is, when the modified polyphenylene ether is TLM. In addition, when M is 2, that is, when the modified polyphenylene ether is MLTLM, at least one of the two Ms is not a hydrogen atom, and the heat resistance of the cured product It is preferable that the two Ms are groups represented by the formula (9) for the reasons of property and toughness.
 また、Tは、mが1の場合、すなわち、変性ポリフェニレンエーテルがT-L-Mの場合には、水素原子を示す。T-L-Mで表される変性ポリフェニレンエーテルは、H-L-Mで表される変性ポリフェニレンエーテルである。また、Tは、mが2の場合、すなわち、変性ポリフェニレンエーテルがM-L-T-L-Mの場合には、アルキレン基、式(10)で表される基、又は、式(11)で表される基を示す。この中でも、硬化物の靱性と変性ポリフェニレンエーテルの可溶性という理由から、mが2であり、Tがアルキレン基であることが好ましく、mが2であり、Tが2,2-プロピレン基であることが好ましい。 T represents a hydrogen atom when m is 1, that is, when the modified polyphenylene ether is TLM. The modified polyphenylene ether represented by TLM is a modified polyphenylene ether represented by HLM. In the case where T is m, that is, when the modified polyphenylene ether is MLTLM, an alkylene group, a group represented by the formula (10), or a formula (11) The group represented by these is shown. Among these, m is preferably 2, T is an alkylene group, m is 2, and T is a 2,2-propylene group because of the toughness of the cured product and the solubility of the modified polyphenylene ether. Is preferred.
 また、式(10)において、R10、R11、R12、及びR13は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。R10、R11、R12、及びR13は、それぞれ同一の基であっても、異なる基であってもよい。 In the formula (10), R 10 , R 11 , R 12 , and R 13 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, Or an alkynylcarbonyl group is shown. R 10 , R 11 , R 12 , and R 13 may be the same group or different groups.
 R~R21において、挙げられた各官能基としては、具体的には、以下のようなものが挙げられる。 Specific examples of the functional groups listed in R 5 to R 21 include the following.
 アルキル基は、特に限定されないが、例えば、炭素数1~18のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。具体的には、例えば、メチル基、エチル基、プロピル基、ヘキシル基、及びデシル基等が挙げられる。 The alkyl group is not particularly limited. For example, an alkyl group having 1 to 18 carbon atoms is preferable, and an alkyl group having 1 to 10 carbon atoms is more preferable. Specific examples include a methyl group, an ethyl group, a propyl group, a hexyl group, and a decyl group.
 また、アルケニル基は、特に限定されないが、例えば、炭素数2~18のアルケニル基が好ましく、炭素数2~10のアルケニル基がより好ましい。具体的には、例えば、ビニル基、アリル基、及び3-ブテニル基等が挙げられる。 The alkenyl group is not particularly limited, but for example, an alkenyl group having 2 to 18 carbon atoms is preferable, and an alkenyl group having 2 to 10 carbon atoms is more preferable. Specific examples include a vinyl group, an allyl group, and a 3-butenyl group.
 また、アルキニル基は、特に限定されないが、例えば、炭素数2~18のアルキニル基が好ましく、炭素数2~10のアルキニル基がより好ましい。具体的には、例えば、エチニル基、及びプロパ-2-イン-1-イル基(プロパルギル基)等が挙げられる。 Further, the alkynyl group is not particularly limited, but for example, an alkynyl group having 2 to 18 carbon atoms is preferable, and an alkynyl group having 2 to 10 carbon atoms is more preferable. Specific examples include an ethynyl group and a prop-2-yn-1-yl group (propargyl group).
 また、アルキルカルボニル基は、アルキル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数2~18のアルキルカルボニル基が好ましく、炭素数2~10のアルキルカルボニル基がより好ましい。具体的には、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、及びシクロヘキシルカルボニル基等が挙げられる。 The alkylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkyl group. For example, an alkylcarbonyl group having 2 to 18 carbon atoms is preferable, and an alkylcarbonyl group having 2 to 10 carbon atoms is more preferable. . Specific examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, a hexanoyl group, an octanoyl group, and a cyclohexylcarbonyl group.
 また、アルケニルカルボニル基は、アルケニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルケニルカルボニル基が好ましく、炭素数3~10のアルケニルカルボニル基がより好ましい。具体的には、例えば、アクリロイル基、メタクリロイル基、及びクロトノイル基等が挙げられる。 The alkenylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkenyl group. For example, an alkenylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkenylcarbonyl group having 3 to 10 carbon atoms is more preferable. . Specifically, an acryloyl group, a methacryloyl group, a crotonoyl group, etc. are mentioned, for example.
 また、アルキニルカルボニル基は、アルキニル基で置換されたカルボニル基であれば、特に限定されないが、例えば、炭素数3~18のアルキニルカルボニル基が好ましく、炭素数3~10のアルキニルカルボニル基がより好ましい。具体的には、例えば、プロピオロイル基等が挙げられる。 The alkynylcarbonyl group is not particularly limited as long as it is a carbonyl group substituted with an alkynyl group. For example, an alkynylcarbonyl group having 3 to 18 carbon atoms is preferable, and an alkynylcarbonyl group having 3 to 10 carbon atoms is more preferable. . Specifically, a propioyl group etc. are mentioned, for example.
 変性ポリフェニレンエーテル(XC)の数平均分子量は、特に限定されないが、800~7000であることが好ましく、1000~5000であることがより好ましい。1000~3000であることが最も好ましい。また、nは、上述したように、50以下の正の整数であるが、変性ポリフェニレンエーテルの数平均分子量がこのような範囲内になるような数値であることが好ましい。具体的には、1~50であることが好ましい。なお、ここで、数平均分子量は、一般的な分子量測定方法で測定したものであればよく、具体的には、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定した値等が挙げられる。 The number average molecular weight of the modified polyphenylene ether (XC) is not particularly limited, but is preferably 800 to 7000, more preferably 1000 to 5000. Most preferably, it is 1000 to 3000. Further, as described above, n is a positive integer of 50 or less, and is preferably a numerical value such that the number average molecular weight of the modified polyphenylene ether falls within such a range. Specifically, it is preferably 1 to 50. In addition, the number average molecular weight should just be what was measured by the general molecular weight measuring method here, and the value etc. which were specifically measured using gel permeation chromatography (GPC) are mentioned.
 変性ポリフェニレンエーテル(XC)の数平均分子量がこのような範囲内であると、得られた硬化性組成物の硬化物の靱性と成形性がより高いものとなる。このことは、変性ポリフェニレンエーテルの数平均分子量がこのような範囲内であると、比較的低分子量のものであるので、靱性を維持しながら、流動性が改良されることによる。通常のポリフェニレンエーテルでは、このような低い分子量のものを使用した場合、硬化物の耐熱性と靱性が低下する傾向がある。しかし、本実施態様で用いる変性ポリフェニレンエーテル(XC)は、末端に重合性の不飽和二重結合を有するので、ビニル系の熱架橋型硬化性樹脂とともに硬化させることによって、変性ポリフェニレンエーテルと熱架橋型硬化性樹脂との架橋が好適に進行し、硬化物の耐熱性と靱性が充分に高いものが得られる。よって、得られた硬化性組成物の硬化物は、耐熱性及び靱性のともに優れたものが得られることとなる。 When the number average molecular weight of the modified polyphenylene ether (XC) is within such a range, the toughness and moldability of the cured product of the obtained curable composition become higher. This is because when the number average molecular weight of the modified polyphenylene ether is within such a range, it has a relatively low molecular weight, so that the fluidity is improved while maintaining toughness. When a normal polyphenylene ether having such a low molecular weight is used, the heat resistance and toughness of the cured product tend to be lowered. However, since the modified polyphenylene ether (XC) used in this embodiment has a polymerizable unsaturated double bond at the terminal, the modified polyphenylene ether and the thermally crosslinked resin are cured by curing together with a vinyl-based thermally crosslinked curable resin. Crosslinking with the mold curable resin suitably proceeds, and a cured product having sufficiently high heat resistance and toughness can be obtained. Therefore, the cured product of the obtained curable composition will be excellent in both heat resistance and toughness.
 本発明の硬化性組成物は、異種材料間の接着信頼性向上という理由から、可溶性多官能ビニル芳香族共重合体(XA)及びラジカル重合開始剤(XB)とともに、エポキシ樹脂(XD)及び硬化剤(XE)を含有することも好適な実施態様である。 The curable composition of the present invention comprises an epoxy resin (XD) and a cured resin together with a soluble polyfunctional vinyl aromatic copolymer (XA) and a radical polymerization initiator (XB) for the purpose of improving the adhesion reliability between different materials. It is also a preferred embodiment to contain an agent (XE).
 (XD)成分のエポキシ樹脂としては、特に制限はないが、1分子中に2以上のエポキシ基と芳香族構造を有するエポキシ樹脂、1分子中に2以上のエポキシ基とシアヌレート構造を有するエポキシ樹脂及び/又は1分子中に2以上のエポキシ基と脂環構造を有するエポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂を使用することが好ましい。(XD)成分としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、キシリレン変性フェノールノボラック型エポキシ樹脂、キシリレン変性アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂及びアダマンタン型エポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂であることがより好ましい。 The epoxy resin of component (XD) is not particularly limited, but is an epoxy resin having two or more epoxy groups and an aromatic structure in one molecule, and an epoxy resin having two or more epoxy groups and a cyanurate structure in one molecule. It is preferable to use one or more epoxy resins selected from the group consisting of epoxy resins having two or more epoxy groups and an alicyclic structure in one molecule. (XD) component includes bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, alkylphenol novolac type epoxy resin, xylylene modified phenol novolac type epoxy resin, xylylene modified alkylphenol novolak type epoxy resin, biphenyl type epoxy It is more preferably one or more epoxy resins selected from the group consisting of resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, triglycidyl isocyanurate, cyclohexane type epoxy resins and adamantane type epoxy resins.
 (XD)成分として使用されるビスフェノールF型エポキシ樹脂としては、例えば、4,4’‐メチレンビス(2,6‐ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’‐メチレンビス(2,3,6‐トリメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂、4,4’‐メチレンビスフェノールのジグリシジルエーテルを主成分とするエポキシ樹脂が挙げられる。中でも、4,4’‐メチレンビス(2,6‐ジメチルフェノール)のジグリシジルエーテルを主成分とするエポキシ樹脂が好ましい。例えば、市販品として新日鉄住金化学株式会社製商品名YSLV‐80XYとして入手可能である。 Examples of the bisphenol F type epoxy resin used as the component (XD) include epoxy resins mainly composed of 4,4′-methylenebis (2,6-dimethylphenol) diglycidyl ether, 4,4′-methylenebis. Examples thereof include an epoxy resin mainly composed of (2,3,6-trimethylphenol) diglycidyl ether and an epoxy resin mainly composed of 4,4′-methylenebisphenol diglycidyl ether. Among them, an epoxy resin mainly composed of 4,4'-methylenebis (2,6-dimethylphenol) diglycidyl ether is preferable. For example, it can be obtained as a commercial product under the trade name YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
 ビフェニル型エポキシ樹脂としては、4,4’-ジグリシジルビフェニル、及び4,4’-ジグリシジル-3,3’,5,5’-テトラメチルビフェニル等のエポキシ樹脂が挙げられる。例えば、市販品として三菱化学株式会社製商品名YX-4000、YL-6121Hとして入手可能である。 Examples of the biphenyl type epoxy resin include epoxy resins such as 4,4'-diglycidyl biphenyl and 4,4'-diglycidyl-3,3 ', 5,5'-tetramethylbiphenyl. For example, they are commercially available as trade names YX-4000 and YL-6121H manufactured by Mitsubishi Chemical Corporation.
 ジシクロペンタジエン型エポキシ樹脂としては、ジシクロペンタジエンジオキシド、及びジシクロペンタジエン骨格を有するフェノールノボラックエポキシモノマー等が挙げられる。 Examples of the dicyclopentadiene type epoxy resin include dicyclopentadiene dioxide and phenol novolac epoxy monomers having a dicyclopentadiene skeleton.
 ナフタレン型エポキシ樹脂としては、1,2-ジグリシジルナフタレン、1,5-ジグリシジルナフタレン、1,6-ジグリシジルナフタレン、1,7-ジグリシジルナフタレン、2,7-ジグリシジルナフタレン、トリグリシジルナフタレン、及び1,2,5,6-テトラグリシジルナフタレン、ナフトール・アラルキル型エポキシ樹脂、ナフタレン骨格変性クレゾールノボラック型エポキシ樹脂、メトキシナフタレン変性クレゾールノボラック型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、メトキシナフタレンジメチレン型エポキシ樹脂等の変性ナフタレン型エポキシ樹脂等が挙げられる。 As naphthalene type epoxy resins, 1,2-diglycidylnaphthalene, 1,5-diglycidylnaphthalene, 1,6-diglycidylnaphthalene, 1,7-diglycidylnaphthalene, 2,7-diglycidylnaphthalene, triglycidylnaphthalene , And 1,2,5,6-tetraglycidylnaphthalene, naphthol / aralkyl type epoxy resin, naphthalene skeleton modified cresol novolak type epoxy resin, methoxynaphthalene modified cresol novolak type epoxy resin, naphthylene ether type epoxy resin, methoxynaphthalene dimethylene Modified naphthalene type epoxy resins such as type epoxy resins.
 アダマンタン型エポキシ樹脂としては、1-(2,4-ジグリシジルオキシフェニル)アダマンタン、1-(2,3,4-トリグリシジルオキシフェニル)アダマンタン、1,3-ビス(2,4-ジグリシジルオキシフェニル)アダマンタン、1,3-ビス(2,3,4-トリグリシジルオキシフェニル)アダマンタン、2,2-ビス(2,4-ジグリシジルオキシフェニル)アダマンタン、1-(2,3,4-トリヒドロキシフェニル)アダマンタン、1,3-ビス(2,4-ジヒドロキシフェニル)アダマンタン、1,3-ビス(2,3,4-トリヒドロキシフェニル)アダマンタン、及び、2,2-ビス(2,4-ジヒドロキシフェニル)アダマンタンなどを挙げることができる。 Examples of adamantane type epoxy resins include 1- (2,4-diglycidyloxyphenyl) adamantane, 1- (2,3,4-triglycidyloxyphenyl) adamantane, and 1,3-bis (2,4-diglycidyloxy). Phenyl) adamantane, 1,3-bis (2,3,4-triglycidyloxyphenyl) adamantane, 2,2-bis (2,4-diglycidyloxyphenyl) adamantane, 1- (2,3,4-tri Hydroxyphenyl) adamantane, 1,3-bis (2,4-dihydroxyphenyl) adamantane, 1,3-bis (2,3,4-trihydroxyphenyl) adamantane, and 2,2-bis (2,4- And dihydroxyphenyl) adamantane.
 エポキシ樹脂の内、(XA)成分との相溶性、誘電特性及び成形品の反りの小ささの観点から、ビスフェノールF型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、キシリレン変性フェノールノボラック型エポキシ樹脂、キシリレン変性アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、トリグリシジルイソシアヌレート、シクロヘキサン型エポキシ樹脂、アダマンテン型エポキシ樹脂が好適に使用される。 Among the epoxy resins, from the viewpoint of compatibility with the component (XA), dielectric properties, and small warpage of the molded product, bisphenol F type epoxy resin, alkylphenol novolak type epoxy resin, xylylene modified phenol novolak type epoxy resin, xylylene modified Alkylphenol novolac type epoxy resins, biphenyl type epoxy resins, dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, triglycidyl isocyanurate, cyclohexane type epoxy resins and adamantene type epoxy resins are preferably used.
 (XD)成分として使用するエポキシ樹脂の重量平均分子量(Mw)は、1万未満であることが好ましい。より好ましいMwは、600以下であり、さらに好ましくは200以上550以下である。Mwが200未満の場合、この成分の揮発性が高くなり、キャストフィルム・シートの取扱い性が悪くなる傾向にある。一方、Mwが1万を超えると、キャストフィルム・シートが固くかつ脆くなりやすく、キャストフィルム・シートの硬化物の接着性が低下する傾向にある。 The weight average molecular weight (Mw) of the epoxy resin used as the (XD) component is preferably less than 10,000. More preferable Mw is 600 or less, and more preferably 200 or more and 550 or less. When Mw is less than 200, the volatility of this component increases, and the handleability of the cast film / sheet tends to deteriorate. On the other hand, when Mw exceeds 10,000, the cast film / sheet tends to be hard and brittle, and the adhesiveness of the cured product of the cast film / sheet tends to be lowered.
 (XD)成分の含有量は、(XA)成分100重量部に対して、下限が5重量部であり、かつ上限が100重量部であることが好ましい。より好ましい下限は10重量部である。一方、より好ましい上限は80重量部、更に好ましい上限は60重量部である。(XD)成分の含有量が上記好ましい下限を満たすと、キャストフィルム・シートの硬化物の接着性をより一層高めることができる。(XD)成分の含有量が上記好ましい上限を満たすと、未硬化状態でのキャストフィルム・シートのハンドリング性がより一層高くなり、ガラスクロスとの密着性が改良され、信頼性が高くなる。 The content of the component (XD) is preferably 5 parts by weight with respect to 100 parts by weight of the component (XA) and 100 parts by weight with the upper limit. A more preferred lower limit is 10 parts by weight. On the other hand, a more preferred upper limit is 80 parts by weight, and a still more preferred upper limit is 60 parts by weight. When content of (XD) component satisfy | fills the said preferable minimum, the adhesiveness of the hardened | cured material of a cast film sheet can be improved further. When content of (XD) component satisfy | fills the said preferable upper limit, the handleability of the cast film sheet in an uncured state will become still higher, adhesiveness with a glass cloth will be improved, and reliability will become high.
 (XE)成分の硬化剤は、フェノール樹脂、又は芳香族骨格若しくは脂環式骨格を有する酸無水物、酸無水物の水添加物、酸無水物の変性物、水酸基末端ポリフェニレンエーテルオリゴマー、及び活性エステル化合物から適宜選択することが好ましい。これらの好ましい硬化剤の使用により、耐熱性、耐湿性及び誘電特性のバランスに優れた硬化物となる硬化性組成物を得ることができる。 The curing agent of the component (XE) is a phenol resin, an acid anhydride having an aromatic skeleton or an alicyclic skeleton, an acid anhydride water additive, a modified acid anhydride, a hydroxyl-terminated polyphenylene ether oligomer, and an activity. It is preferable to select appropriately from ester compounds. By using these preferable curing agents, it is possible to obtain a curable composition that becomes a cured product having an excellent balance of heat resistance, moisture resistance and dielectric properties.
 (XE)成分の硬化剤として使用されるフェノール樹脂は特に限定されない。フェノール樹脂の具体例としては、フェノールノボラック、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、ビスフェノールA型ノボラック、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル型フェノールノボラック樹脂、ビフェニル型ナフトールノボラック樹脂、デカリン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、又はポリ(ジ-p-ヒドロキシフェニル)メタン等が挙げられる。中でも、絶縁シートの柔軟性及び難燃性をより一層高めるために、メラミン骨格を有するフェノール樹脂、トリアジン骨格を有するフェノール樹脂、又はアリル基を有するフェノール樹脂が好ましい。 (XE) The phenol resin used as a curing agent for the component is not particularly limited. Specific examples of the phenol resin include phenol novolak, o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol, polyparavinylphenol, bisphenol A type novolak, phenol aralkyl resin, naphthol aralkyl resin, biphenyl. Type phenol novolak resin, biphenyl type naphthol novolak resin, decalin modified novolak, poly (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di-p-hydroxyphenyl) methane, etc. Can be mentioned. Among these, in order to further increase the flexibility and flame retardancy of the insulating sheet, a phenol resin having a melamine skeleton, a phenol resin having a triazine skeleton, or a phenol resin having an allyl group is preferable.
 フェノール樹脂の市販品としては、例えばMEH-8005、MEH-8010及びNEH-8015(以上いずれも明和化成社製)、YLH903(ジャパンエポキシレジン社製)、LA―7052、LA-7054、LA-7751、LA1356及びLA3018-50P(以上いずれもDIC社製)、並びにPS6313及びPS6492(群栄化学社製)等が挙げられる。 Examples of commercially available phenol resins include MEH-8005, MEH-8010, and NEH-8015 (all of which are manufactured by Meiwa Kasei Co., Ltd.), YLH903 (manufactured by Japan Epoxy Resin Co., Ltd.), LA-7052, LA-7054, and LA-7751. , LA1356 and LA3018-50P (all of which are manufactured by DIC), PS6313 and PS6492 (manufactured by Gunei Chemical Co., Ltd.), and the like.
 (XE)成分の硬化剤として使用される芳香族骨格を有する酸無水物、その水添加物又は変性物についても、特に構造は限定されない。芳香族骨格を有する酸無水物、その水添加物又は変性物としては、例えば、スチレン/無水マレイン酸コポリマー、ベンゾフェノンテトラカルボン酸無水物、ピロメリット酸無水物、トリメリット酸無水物、4,4’-オキシジフタル酸無水物、フェニルエチニルフタル酸無水物、グリセロールビス(アンヒドロトリメリテート)モノアセテート、エチレングリコールビス(アンヒドロトリメリテート)、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、及びトリアルキルテトラヒドロ無水フタル酸、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、又は、ジシクロペンタジエン骨格を有する酸無水物もしくは該酸無水物の変性物等が挙げられる。 The structure of the acid anhydride having an aromatic skeleton used as a curing agent for the (XE) component, its water additive or a modified product is not particularly limited. Examples of the acid anhydride having an aromatic skeleton, a water additive or a modified product thereof include, for example, styrene / maleic anhydride copolymer, benzophenonetetracarboxylic acid anhydride, pyromellitic acid anhydride, trimellitic acid anhydride, 4,4 '-Oxydiphthalic anhydride, phenylethynylphthalic anhydride, glycerol bis (anhydrotrimellitate) monoacetate, ethylene glycol bis (anhydrotrimellitate), methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, And trialkyltetrahydrophthalic anhydride, methylnadic acid anhydride, trialkyltetrahydrophthalic anhydride, acid anhydride having a dicyclopentadiene skeleton, or a modified product of the acid anhydride, and the like.
 芳香族骨格を有する酸無水物、その水添加物又は変性物の市販品としては、SMAレジンEF30、SMAレジンEF40、SMAレジンEF60及びSMAレジンEF80(以上いずれもサートマー・ジャパン社製)、ODPA-M及びPEPA(以上いずれもマナック社製)、リカジットMTA10、リカジットMTA15、リカジットTMTA、リカジットTMEG-100、リカジットTMEG-200、リカジットTMEG-300、リカジットTMEG-500、リカジットTMEG-S、リカジットTH、リカジットHT-1A、リカジットHH、リカジットMH-700、リカジットMT-500、リカジットDSDA及びリカジットTDA100(以上いずれも新日本理化社製)、並びにEPICLON B4400、EPICLON B650、及びEPICLON B570(以上いずれもDIC社製)等が挙げられる。 Examples of commercially available acid anhydrides having an aromatic skeleton, water additives or modified products thereof include SMA Resin EF30, SMA Resin EF40, SMA Resin EF60, and SMA Resin EF80 (all of which are manufactured by Sartomer Japan), ODPA- M and PEPA (both of which are manufactured by Manac), Rikagit MTA10, Rikagit MTA15, Rikagit TMTA, Rikagit TMEG-100, Rikagit TMEG-200, Rikagit TMEG-300, Rikagit TMEG-500, Rikagit TMEG-S, Rikagit TH, Rikagit HT-1A, Rikagit HH, Rikagit MH-700, Rikagit MT-500, Rikagit DSDA and Rikagit TDA100 (all of which are manufactured by Shin Nippon Rika), and EPICLON B4400, PICLON B650, and EPICLON B570 (all manufactured by both DIC Corporation).
 脂環式骨格を有する酸無水物、その水添加物又は変性物は、多脂環式骨格を有する酸無水物、その水添加物若しくは変性物、又はテルペン系化合物と無水マレイン酸との付加反応により得られる脂環式骨格を有する酸無水物、その水添加物又は変性物であることが好ましい。この場合には、絶縁シートの柔軟性、耐湿性又は接着性をより一層高めることができる。また、脂環式骨格を有する酸無水物、その水添加物又は変性物としては、メチルナジック酸無水物、ジシクロペンタジエン骨格を有する酸無水物又はその変性物等も挙げられる。 An acid anhydride having an alicyclic skeleton, a water additive or a modified product thereof is an acid anhydride having a polyalicyclic skeleton, a water additive or a modified product thereof, or an addition reaction between a terpene compound and maleic anhydride. It is preferable that the acid anhydride having an alicyclic skeleton obtained by the above, a water additive or a modified product thereof. In this case, the flexibility, moisture resistance or adhesion of the insulating sheet can be further enhanced. Examples of the acid anhydride having an alicyclic skeleton, a water additive or a modified product thereof include methyl nadic acid anhydride, an acid anhydride having a dicyclopentadiene skeleton, or a modified product thereof.
 脂環式骨格を有する酸無水物、その水添加物又は変性物の市販品としては、リカジットHNA及びリカジットHNA100(以上いずれも新日本理化社製)、並びにエピキュアYH306、エピキュアYH307、エピキュアYH308H及びエピキュアYH309(以上いずれもジャパンエポキシレジン社製)等が挙げられる。 Examples of commercially available acid anhydrides having an alicyclic skeleton, water additives or modified products thereof include Rikajit HNA and Rikajito HNA100 (both are manufactured by Shin Nippon Rika Co., Ltd.), and EpiCure YH306, EpiCure YH307, EpiCure YH308H and EpiCure YH309 (all are made by Japan Epoxy Resin Co., Ltd.) and the like.
 (XE)成分としては、水酸基末端ポリフェニレンエーテルオリゴマーを使用することもできる。下記式(12)で表される水酸基末端ポリフェニレンエーテルオリゴマーを挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 式(12)中、pは、1又は2を示し、Eは、下記式(13)で表されるポリフェニレンエーテル鎖を示し、Gは、水素原子を示し、pは1又は2の整数を示す。Vは、pが1の場合に水素原子を示し、pが2の場合に、アルキレン基、下記式(14)、又は式(15)で表される基を示す。
Figure JPOXMLDOC01-appb-C000020
 式(13)中、qは、50以下の正の整数を示し、R22、R23、R24、及びR25は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
Figure JPOXMLDOC01-appb-C000021
 式(14)中、R26、R27、R28、及びR29は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。
Figure JPOXMLDOC01-appb-C000022
 式(15)中、R30、R31、R32、R33、R34、R35、R36、及びR37は、それぞれ独立して、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基、又はアルキニルカルボニル基を示す。Wは、炭素数0の場合を含む、炭素数20以下の直鎖状、分岐状又は環状の炭化水素基である。
As the (XE) component, a hydroxyl-terminated polyphenylene ether oligomer can also be used. A hydroxyl group-terminated polyphenylene ether oligomer represented by the following formula (12) can be exemplified.
Figure JPOXMLDOC01-appb-C000019
In formula (12), p represents 1 or 2, E represents a polyphenylene ether chain represented by the following formula (13), G represents a hydrogen atom, and p represents an integer of 1 or 2. . V represents a hydrogen atom when p is 1, and when p is 2, it represents an alkylene group or a group represented by the following formula (14) or formula (15).
Figure JPOXMLDOC01-appb-C000020
In the formula (13), q represents a positive integer of 50 or less, and R 22 , R 23 , R 24 , and R 25 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group;
Figure JPOXMLDOC01-appb-C000021
In formula (14), R 26 , R 27 , R 28 , and R 29 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynyl group. A carbonyl group is shown.
Figure JPOXMLDOC01-appb-C000022
In formula (15), R 30 , R 31 , R 32 , R 33 , R 34 , R 35 , R 36 , and R 37 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, formyl A group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group; W is a linear, branched or cyclic hydrocarbon group having 20 or less carbon atoms, including the case of 0 carbon atoms.
 (XE)成分としては、活性エステル化合物を使用することもできる。活性エステル基を有するものであればよいが、本発明においては、分子内に少なくとも2つの活性エステル基を有する化合物が好ましい。 (XE) An active ester compound can also be used as a component. Any compound having an active ester group may be used, but in the present invention, a compound having at least two active ester groups in the molecule is preferable.
 (XE)成分として使用される活性エステル化合物としては、耐熱性等の観点から、カルボン酸化合物及び/又はチオカルボン酸化合物と、ヒドロキシ化合物及び/又はチオール化合物とを反応させたものから得られる活性エステル化合物が好ましく、カルボン酸化合物と、フェノール化合物、ナフトール化合物及びチオール化合物からなる群から選択される1種又は2種以上とを反応させたものから得られる活性エステル化合物がより好ましく、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたものから得られ、かつ、分子内に少なくとも2つの活性エステル基を有する芳香族化合物が特に好ましい。活性エステル化合物は、直鎖状または多分岐状であってもよく、活性エステル化合物が、少なくとも2つのカルボン酸を分子内に有する化合物に由来する場合を例示すると、このような少なくとも2つのカルボン酸を分子内に有する化合物が、脂肪族鎖を含む場合には、エポキシ樹脂との相溶性を高くすることができ、また、芳香族環を有する場合には、耐熱性を高くすることができる。 The active ester compound used as the component (XE) is an active ester obtained from a product obtained by reacting a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound from the viewpoint of heat resistance and the like. A compound is preferable, and an active ester compound obtained by reacting a carboxylic acid compound with one or more selected from the group consisting of a phenol compound, a naphthol compound, and a thiol compound is more preferable. An aromatic compound obtained from a reaction with an aromatic compound having a phenolic hydroxyl group and having at least two active ester groups in the molecule is particularly preferred. The active ester compound may be linear or multi-branched, and when the active ester compound is derived from a compound having at least two carboxylic acids in the molecule, such at least two carboxylic acids When the compound having an in-molecule contains an aliphatic chain, the compatibility with the epoxy resin can be increased, and when the compound has an aromatic ring, the heat resistance can be increased.
 活性エステル化合物を形成するためのカルボン酸化合物の具体例としては、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。これらの中でも、耐熱性の観点より、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸が好ましく、フタル酸、イソフタル酸、テレフタル酸がより好ましく、イソフタル酸、テレフタル酸がさらに好ましい。
 活性エステル化合物を形成するためのチオカルボン酸化合物の具体例としては、チオ酢酸、チオ安息香酸等が挙げられる。
Specific examples of the carboxylic acid compound for forming the active ester compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, pyromellitic acid and the like. Among these, from the viewpoint of heat resistance, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid and terephthalic acid are preferable, phthalic acid, isophthalic acid and terephthalic acid are more preferable, and isophthalic acid and terephthalic acid are more preferable. .
Specific examples of the thiocarboxylic acid compound for forming the active ester compound include thioacetic acid and thiobenzoic acid.
 活性エステル化合物を形成するためのヒドロキシ化合物の具体例としては、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。これらのなかでも耐熱性、溶解性の観点から、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックが好ましく、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、ジシクロペンタジエニルジフェノール、フェノールノボラックがより好ましく、ジシクロペンタジエニルジフェノール、フェノールノボラックがさらに好まし好ましい。
 活性エステル化合物を形成するためのチオール化合物の具体例としては、ベンゼンジチオール、トリアジンジチオール等が挙げられる。
Specific examples of hydroxy compounds for forming active ester compounds include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenol phthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, Examples thereof include tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyl diphenol, phenol novolac and the like. Among these, from the viewpoint of heat resistance and solubility, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl Diphenol and phenol novolak are preferable, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, dicyclopentadienyl diphenol and phenol novolak are more preferable, and dicyclopentadienyl diphenol and phenol novolak are more preferable.
Specific examples of the thiol compound for forming the active ester compound include benzenedithiol and triazinedithiol.
 活性エステル化合物としては、例えば、特開2002-12650号公報及び特開2004-277460号公報に開示されている活性エステル化合物、あるいは、市販のものを用いることができる。市販されている活性エステル化合物としては、例えば、商品名「EXB9451、EXB9460、EXB9460S、HPC-8000-65T」(以上、DIC社製)、商品名「DC808」(ジャパンエポキシレジン社製)、商品名「YLH1026」(ジャパンエポキシレジン社製)などが挙げられる。
 活性エステル化合物の製造方法は特に限定されず、公知の方法により製造することができるが、例えば、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得ることができる。
 活性エステル化合物(XE)の配合量は、エポキシ樹脂(XD)100重量部に対して、好ましくは20~120重量部、より好ましくは40~100重量部、さらに好ましくは50~90重量部の範囲である。活性エステル化合物(XE)の配合量を上記範囲とすることにより、硬化物としての誘電特性、耐熱性及び線膨張係数を向上させることができる。
As the active ester compound, for example, active ester compounds disclosed in JP-A Nos. 2002-12650 and 2004-277460, or commercially available ones can be used. Examples of commercially available active ester compounds include trade names “EXB9451, EXB9460, EXB9460S, HPC-8000-65T” (manufactured by DIC), trade names “DC808” (manufactured by Japan Epoxy Resins), trade names, and the like. “YLH1026” (manufactured by Japan Epoxy Resin Co., Ltd.) and the like can be mentioned.
The production method of the active ester compound is not particularly limited and can be produced by a known method. For example, it can be obtained by a condensation reaction of a carboxylic acid compound and / or a thiocarboxylic acid compound with a hydroxy compound and / or a thiol compound. it can.
The amount of the active ester compound (XE) is preferably in the range of 20 to 120 parts by weight, more preferably 40 to 100 parts by weight, and still more preferably 50 to 90 parts by weight with respect to 100 parts by weight of the epoxy resin (XD). It is. By making the compounding quantity of an active ester compound (XE) into the said range, the dielectric property as a hardened | cured material, heat resistance, and a linear expansion coefficient can be improved.
 (XE)成分として使用される硬化剤としては、(XA)成分との相溶性と耐湿性、接着性の観点から、o-クレゾールノボラック、p-クレゾールノボラック、t-ブチルフェノールノボラック、ジシクロペンタジエンクレゾール、ポリパラビニルフェノール、キシリレン変性ノボラック、ポリ(ジ-o-ヒドロキシフェニル)メタン、ポリ(ジ-m-ヒドロキシフェニル)メタン、ポリ(ジ-p-ヒドロキシフェニル)メタン、メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ジシクロペンタジエン骨格を有する酸無水物若しくはその変性物、水酸基末端ポリフェニレンエーテルオリゴマー、又は活性エステル化合物であることがより好ましい。 Curing agents used as the (XE) component include o-cresol novolak, p-cresol novolak, t-butylphenol novolak, dicyclopentadiene cresol from the viewpoint of compatibility with the (XA) component, moisture resistance, and adhesion. , Polyparavinylphenol, xylylene-modified novolak, poly (di-o-hydroxyphenyl) methane, poly (di-m-hydroxyphenyl) methane, poly (di-p-hydroxyphenyl) methane, methyl nadic anhydride, tri Alkyltetrahydrophthalic anhydride, an acid anhydride having a dicyclopentadiene skeleton or a modified product thereof, a hydroxyl group-terminated polyphenylene ether oligomer, or an active ester compound is more preferable.
 本発明の可溶性多官能ビニル芳香族共重合体(XA)を含む硬化性組成物には、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等の無機質充填材、デカブロモジフェニルエタン、臭素化ポリスチレン等の難燃性付与剤を併用することにより、誘電特性や難燃性あるいは耐熱性が要求される電気又は電子部品材料、とりわけ半導体封止材料や回路基板用ワニスとして特に有用である。 The curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) of the present invention includes an inorganic filler such as fused silica, crystalline silica, alumina, silicon nitride, aluminum nitride, decabromodiphenylethane, brominated Use in combination with a flame retardant imparting agent such as polystyrene is particularly useful as an electrical or electronic component material that requires dielectric properties, flame retardancy, or heat resistance, particularly as a semiconductor sealing material or a circuit board varnish.
 回路基板材料用ワニスに使用する場合、本発明の硬化性組成物をトルエン、キシレン、テトラヒドロフラン、ジオキソラン等の有機溶剤に溶解させることにより製造することができる。なお、回路基板材料としては、具体的には、プリント配線基板、プリント回路板、フレキシブルプリント配線板、ビルドアップ配線板等が挙げられる。 When used as a varnish for circuit board materials, it can be produced by dissolving the curable composition of the present invention in an organic solvent such as toluene, xylene, tetrahydrofuran, dioxolane and the like. Specific examples of the circuit board material include a printed wiring board, a printed circuit board, a flexible printed wiring board, and a build-up wiring board.
 本発明の可溶性多官能ビニル芳香族共重合体(XA)を含む硬化性組成物を硬化させて得られる硬化物は、成型物、積層物、注型物、接着剤、塗膜、フィルムとして使用できる。例えば、半導体封止材料の硬化物は注型物又は成型物であり、かかる用途の硬化物を得る方法としては、硬化性組成物を注型、或いはトランスファ-成形機、射出成形機などを用いて成形し、さらに80~230℃で0.5~10時間に加熱することにより硬化物を得ることができる。また、回路基板用ワニスの硬化物は積層物であり、この硬化物を得る方法としては、回路基板用ワニスをガラス繊維、カーボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させ加熱乾燥してプリプレグを得て、それを単独同士で、或いは銅箔等の金属箔と積層し熱プレス成形して得ることができる。 A cured product obtained by curing a curable composition containing the soluble polyfunctional vinyl aromatic copolymer (XA) of the present invention is used as a molded product, a laminate, a cast product, an adhesive, a coating film, or a film. it can. For example, a cured product of a semiconductor sealing material is a cast or molded product. As a method for obtaining a cured product for such use, a curable composition is cast, or a transfer molding machine, an injection molding machine, or the like is used. The cured product can be obtained by heating at 80 to 230 ° C. for 0.5 to 10 hours. Moreover, the hardened | cured material of the varnish for circuit boards is a laminated body, and as a method of obtaining this hardened | cured material, varnish for circuit boards is used for base materials, such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper It is impregnated and heat-dried to obtain a prepreg, which can be obtained alone or laminated with a metal foil such as a copper foil and subjected to hot press molding.
 チタン酸バリウム等の無機の高誘電体粉末、あるいはフェライト等の無機磁性体を配合することにより電子部品用材料、特に高周波電子部品材料として有用である。 By blending inorganic high dielectric powder such as barium titanate or inorganic magnetic material such as ferrite, it is useful as a material for electronic parts, particularly as a high frequency electronic part material.
 本発明の硬化性組成物は、後述する硬化複合材料と同様、金属箔(金属板を含む意味である。以下同じ。)と張り合わせて用いることができる。 The curable composition of the present invention can be used by laminating with a metal foil (meaning including a metal plate; the same shall apply hereinafter) as in the case of the cured composite material described later.
 次に、本発明の硬化性組成物の硬化性複合材料とその硬化体について説明する。本発明の硬化性組成物による硬化性複合材料には、機械的強度を高め、寸法安定性を増大させるために基材を加える。 Next, the curable composite material of the curable composition of the present invention and the cured product thereof will be described. A substrate is added to the curable composite material of the curable composition of the present invention in order to increase mechanical strength and increase dimensional stability.
 このような基材としては、公知の物が用いられるが、例えば、ロービングクロス、クロス、チョップドマット、サーフェシングマットなどの各種ガラス布、アスベスト布、金属繊維布、その他合成若しくは天然の無機繊維布、全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾザール繊維等の液晶繊維から得られる織布若しくは不織布、ポリビニルアルコール繊維、ポリエステル繊維、アクリル繊維などの合成繊維から得られる織布若しくは不織布、綿布、麻布、フェルトなどの天然繊維布、カーボン繊維布、クラフト紙、コットン紙、紙ーガラス混繊紙などの天然セルロース系布などの布類、紙類等が挙げられ、それぞれ単独で、或いは2種以上併せて用いられる。 As such a substrate, known materials can be used. For example, various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat, asbestos cloth, metal fiber cloth, and other synthetic or natural inorganic fiber cloth. Woven fabrics or nonwoven fabrics obtained from liquid crystal fibers such as wholly aromatic polyamide fibers, wholly aromatic polyester fibers, polybenzozal fibers, woven fabrics or nonwoven fabrics obtained from synthetic fibers such as polyvinyl alcohol fibers, polyester fibers, acrylic fibers, Examples include natural fiber cloth such as cotton cloth, linen cloth, felt, carbon fiber cloth, craft paper, cotton paper, natural cellulosic cloth such as paper-glass mixed paper, paper, etc., each alone or 2 Used in combination with more than seeds.
 基材の使用量は、硬化性複合材料中に5~90wt%、好ましくは10~80wt%、更に好ましくは20~70wt%であることがよい。基材が5wt%より少なくなると複合材料の硬化後の寸法安定性や強度が不十分であり、また基材が90wt%より多くなると複合材料の誘電特性が劣り好ましくない。
 硬化性複合材料には、必要に応じて樹脂と基材の界面における接着性を改善する目的でカップリング剤を用いることができる。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミニウム系カップリング剤、ジルコアルミネートカップリング剤等、一般のものが使用できる。
The amount of the base material used is 5 to 90 wt% in the curable composite material, preferably 10 to 80 wt%, more preferably 20 to 70 wt%. If the substrate is less than 5 wt%, the composite material is insufficient in dimensional stability and strength after curing, and if the substrate is more than 90 wt%, the dielectric properties of the composite material are inferior.
In the curable composite material, a coupling agent can be used for the purpose of improving the adhesiveness at the interface between the resin and the substrate, if necessary. As the coupling agent, general materials such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zircoaluminate coupling agent, and the like can be used.
 硬化性複合材料を製造する方法としては、例えば、硬化性組成物と必要に応じて他の成分を前述の芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、基材に含浸させた後、乾燥する方法が挙げられる。含浸は浸漬(ディッピング)、塗布等によって行われる。含浸は必要に応じて複数回繰り返すことも可能であり、この際、組成や濃度の異なる複数の溶液を用いて含浸を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。 As a method for producing a curable composite material, for example, the curable composition and other components as necessary are uniformly dissolved or dispersed in the above-mentioned aromatic or ketone-based solvent or a mixed solvent thereof, The method of drying after impregnating a base material is mentioned. Impregnation is performed by dipping or coating. Impregnation can be repeated multiple times as necessary. At this time, it is possible to repeat the impregnation using a plurality of solutions having different compositions and concentrations, and finally adjust the resin composition and the amount of resin as desired. It is.
 硬化性複合材料を、加熱等の方法により硬化することによって硬化複合材料が得られる。その製造方法は特に限定されるものではなく、例えば硬化性複合材料を複数枚重ね合わせ、加熱加圧下に各層間を接着せしめると同時に熱硬化を行い、所望の厚みの硬化複合材料を得ることができる。また、一度接着硬化させた硬化複合材料と硬化性複合材料を組み合わせて新たな層構成の硬化複合材料を得ることも可能である。積層成形と硬化は、通常熱プレス等を用い同時に行われるが、両者をそれぞれ単独で行ってもよい。すなわち、予め積層成形して得た未硬化又は半硬化の複合材料を、熱処理又は別の方法で処理することによって硬化させることができる。 A cured composite material is obtained by curing the curable composite material by a method such as heating. The manufacturing method is not particularly limited. For example, a plurality of curable composite materials are stacked, and each layer is bonded under heat and pressure, and at the same time, thermosetting is performed to obtain a cured composite material having a desired thickness. it can. It is also possible to obtain a cured composite material having a new layer structure by combining a cured composite material once cured with adhesive and a curable composite material. Lamination molding and curing are usually performed simultaneously using a hot press or the like, but both may be performed independently. That is, an uncured or semi-cured composite material obtained by lamination molding in advance can be cured by heat treatment or another method.
 成形及び硬化は、温度:80~300℃、圧力:0.1~1000kg/cm、時間:1分~10時間の範囲、より好ましくは、温度:150~250℃、圧力1~500kg/cm、時間:1分~5時間の範囲で行うことができる。 Molding and curing are performed at a temperature of 80 to 300 ° C., a pressure of 0.1 to 1000 kg / cm 2 , a time of 1 minute to 10 hours, and more preferably a temperature of 150 to 250 ° C. and a pressure of 1 to 500 kg / cm. 2. Time: 1 minute to 5 hours.
 本発明において、積層体とは、上記硬化複合材料の層と金属箔の層より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3~200μm、より好ましくは3~105μmの範囲である。 In the present invention, the laminate is composed of the cured composite material layer and the metal foil layer. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 3 to 105 μm.
 積層体を製造する方法としては、例えば硬化性組成物と基材から得た硬化性複合材料と、金属箔を目的に応じた層構成で積層し、加熱加圧下に各層間を接着せしめると同時に熱硬化させる方法を挙げることができる。硬化性組成物の積層体においては、硬化複合材料と金属箔が任意の層構成で積層される。金属箔は表層としても中間層としても用いることができる。その他、積層と硬化を複数回繰り返して多層化することも可能である。 As a method for producing a laminate, for example, a curable composite material obtained from a curable composition and a substrate, and a metal foil are laminated in a layer structure according to the purpose, and at the same time, the layers are bonded together under heat and pressure. Examples of the method include thermosetting. In the laminated body of a curable composition, a hardening composite material and metal foil are laminated | stacked by arbitrary layer structures. The metal foil can be used as a surface layer or an intermediate layer. In addition, it is possible to make a multilayer by repeating lamination and curing a plurality of times.
 金属箔との接着には接着剤を用いることもできる。接着剤としては、エポキシ系、アクリル系、フェノール系、シアノアクリレート系等が挙げられるが、特にこれらに限定されない。積層成形と硬化は、硬化複合材料の製造と同様の条件で行うことができる。 An adhesive can also be used for bonding to the metal foil. Examples of the adhesive include, but are not limited to, epoxy, acrylic, phenol, and cyanoacrylate. Lamination molding and curing can be performed under the same conditions as in the production of a cured composite material.
 本発明において、フィルムとは、上記硬化性組成物をフィルム状に成形したものである。その厚みは特に限定されないが、3~200μm、より好ましくは5~105μmの範囲である。
 フィルムを製造する方法としては、特に限定されることはなく、例えば硬化性組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、PETフィルムなどの樹脂フィルムに塗布した後乾燥する方法などが挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、この際組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。
In the present invention, the film is obtained by forming the curable composition into a film. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 5 to 105 μm.
The method for producing the film is not particularly limited. For example, the curable composition and other components as required are uniformly dissolved or dispersed in an aromatic solvent, a ketone solvent, or a mixed solvent thereof. And a method of drying after applying to a resin film such as a PET film. The application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally the resin composition and resin amount desired can be adjusted. is there.
 本発明において、樹脂付き金属箔とは、上記硬化性組成物と金属箔より構成されるものである。ここで用いられる金属箔としては、例えば銅箔、アルミニウム箔等が挙げられる。その厚みは特に限定されないが、3~200μm、より好ましくは5~105μmの範囲である。 In the present invention, the metal foil with resin is composed of the curable composition and the metal foil. Examples of the metal foil used here include a copper foil and an aluminum foil. The thickness is not particularly limited, but is in the range of 3 to 200 μm, more preferably 5 to 105 μm.
 樹脂付き金属箔を製造する方法としては、特に限定されることはなく、例えば硬化性組成物と必要に応じて他の成分を芳香族系、ケトン系等の溶媒若しくはその混合溶媒中に均一に溶解又は分散させ、金属箔に塗布した後乾燥する方法が挙げられる。塗布は必要に応じて複数回繰り返すことも可能であり、またこの際、組成や濃度の異なる複数の溶液を用いて塗布を繰り返し、最終的に希望とする樹脂組成及び樹脂量に調整することも可能である。 The method for producing the resin-coated metal foil is not particularly limited. For example, the curable composition and other components as required may be uniformly mixed in an aromatic or ketone solvent or a mixed solvent thereof. Examples include a method of dissolving or dispersing, applying to a metal foil, and drying. The application can be repeated a plurality of times as necessary. At this time, the application can be repeated using a plurality of solutions having different compositions and concentrations, and finally adjusted to a desired resin composition and resin amount. Is possible.
 本発明の可溶性多官能ビニル芳香族共重合体は、成形材、シート又はフィルムに加工することができ、電気産業、宇宙・航空機産業等の分野において低誘電率、低吸水率、高耐熱性等の特性を満足できる低誘電材料、絶縁材料、耐熱材料、構造材料等に用いることができる。特に片面、両面、多層プリント基板、フレキシブルプリント基板、ビルドアップ基板等として用いることができる。さらに、半導体関連材料又は光学用材料、更には、塗料、感光性材料、接着剤、汚水処理剤、重金属捕集剤、イオン交換樹脂、帯電防止剤、酸化防止剤、防曇剤、防錆剤、防染剤、殺菌剤、防虫剤、医用材料、凝集剤、界面活性剤、潤滑剤、固体燃料用バインダー、導電処理剤等への適用が可能である。 The soluble polyfunctional vinyl aromatic copolymer of the present invention can be processed into a molding material, a sheet or a film, and has a low dielectric constant, a low water absorption, a high heat resistance, etc. in fields such as the electrical industry, the space / aircraft industry, etc. It can be used for a low dielectric material, an insulating material, a heat resistant material, a structural material, etc. that can satisfy the above characteristics. In particular, it can be used as a single-sided, double-sided, multilayer printed board, flexible printed board, build-up board or the like. Furthermore, semiconductor-related materials or optical materials, paints, photosensitive materials, adhesives, sewage treatment agents, heavy metal scavengers, ion exchange resins, antistatic agents, antioxidants, antifogging agents, rustproofing agents It can be applied to anti-dyeing agents, bactericides, insect repellents, medical materials, flocculants, surfactants, lubricants, solid fuel binders, conductive treatment agents and the like.
 本発明の硬化性組成物は、厳しい熱履歴後も高度の誘電特性(低誘電率・低誘電正接)を有し、かつ、厳しい環境下においても、高い密着信頼性を有する硬化物を与え、かつ、樹脂流動性に優れ、低線膨張で、配線埋め込み平坦性に優れている。そのため、電気・電子産業、宇宙・航空機産業等の分野において、誘電材料、絶縁材料、耐熱材料、構造材料等として、近年、強く求められている小型・薄型化に対応して反り等の成形不良現象のない硬化成形品を提供することができる。更に、配線埋め込み平坦性と異種材料との密着性に優れることに由来して、信頼性に優れる樹脂組成物、硬化物又はこれを含む材料を実現できる。 The curable composition of the present invention has a high dielectric property (low dielectric constant and low dielectric loss tangent) even after severe thermal history, and gives a cured product having high adhesion reliability even under severe conditions, Moreover, it has excellent resin fluidity, low linear expansion, and excellent wiring embedding flatness. Therefore, in the fields of electrical / electronics industry, space / aircraft industry, etc., molding defects such as warping etc. corresponding to the miniaturization and thinning that have been strongly demanded in recent years as dielectric materials, insulating materials, heat resistant materials, structural materials, etc. A cured molded product having no phenomenon can be provided. Furthermore, it is possible to realize a resin composition, a cured product, or a material including the same that is excellent in reliability due to excellent wiring embedding flatness and adhesion between different materials.
 以下、本発明について実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、各例中の部はいずれも重量部であり、物性の測定は以下に示す方法により行った。 Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to these examples. In addition, all the parts in each example are parts by weight, and the physical properties were measured by the following methods.
1)共重合体(可溶性多官能芳香族共重合体)の分子量及び分子量分布
 分子量及び分子量分布測定は、GPC(東ソー製、HLC-8120GPC)を使用し、溶媒にテトラヒドロフラン、流量1.0ml/min、カラム温度38℃、単分散ポリスチレンによる検量線を用いて行った。
1) Molecular weight and molecular weight distribution of copolymer (soluble polyfunctional aromatic copolymer) For measurement of molecular weight and molecular weight distribution, GPC (manufactured by Tosoh Corporation, HLC-8120GPC) was used, tetrahydrofuran as a solvent, flow rate of 1.0 ml / min. The column temperature was 38 ° C., and a calibration curve using monodisperse polystyrene was used.
2)共重合体の構造
 日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及びH-NMR分析により決定した。溶媒としてクロロホルム-dを使用し、テトラメチルシランの共鳴線を内部標準として使用した。
2) Copolymer structure: Determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d 1 was used as a solvent, and the tetramethylsilane resonance line was used as an internal standard.
3)末端基の解析
 共重合体の末端基については、重合時の各モノマーの消費量を、島津製作所製GC-2010型ガスクロマトグラフ測定装置を使用し、4-アセチルビフェニルを内部標準物質として、測定した。さらに、数平均分子量の測定は、GPC(東ソー製、HLC-8120GPC)を使用し、溶媒にテトラヒドロフラン、流量1.0ml/min、カラム温度38℃、単分散ポリスチレンによる検量線を用いて行った。それから、ビニル基、ビニレン基等の共重合体の構成単位の含有量を日本電子製JNM-LA600型核磁気共鳴分光装置を用い、13C-NMR及びH-NMR分析により決定した。溶媒としてクロロホルム-d1を使用し、テトラメチルシランの共鳴線を内部標準として使用した。そして、これらの測定結果より、ta1及びtb1の含有量を算出した。
3) Analysis of end groups For the end groups of the copolymer, the consumption of each monomer during polymerization was measured using a GC-2010 gas chromatograph measuring device manufactured by Shimadzu Corporation, with 4-acetylbiphenyl as an internal standard substance. It was measured. Furthermore, the number average molecular weight was measured using GPC (manufactured by Tosoh Corporation, HLC-8120GPC) using tetrahydrofuran as a solvent, a flow rate of 1.0 ml / min, a column temperature of 38 ° C., and a calibration curve using monodisperse polystyrene. Then, the content of the structural unit of the copolymer such as vinyl group and vinylene group was determined by 13 C-NMR and 1 H-NMR analysis using a JNM-LA600 type nuclear magnetic resonance spectrometer manufactured by JEOL. Chloroform-d1 was used as a solvent, and the tetramethylsilane resonance line was used as an internal standard. And content of ta1 and tb1 was computed from these measurement results.
4)硬化物のガラス転移温度(Tg)及び軟化温度測定
 乾燥後の厚さが20μmになるように、ガラス基板に共重合体溶液を均一に塗布し、ホットプレートを用いて90分で30分間加熱し、乾燥させた。ガラス基板とともに得られた樹脂膜はTMA(熱機械分析装置)にセットし、窒素気流下、昇温速度10℃/分で220℃まで昇温し、更に220℃で20分間加熱処理することにより残存する溶媒を除去するとともに共重合体を硬化した。ガラス基板を室温まで放冷した後、TMA測定装置中の試料に分析用プローブを接触させ、窒素気流下、昇温速度10℃/分で30℃から360℃までスキャン測定を行い、接線法で軟化温度を求めた。
 ガラス転移温度については、上記の試験片を、DMA(動的粘弾性装置)測定装置にセットし、窒素気流下、昇温速度3℃/分で30℃から320℃までスキャンさせることにより測定を行い、tanδ曲線のピークトップによりTgを求めた。
4) Measurement of glass transition temperature (Tg) and softening temperature of cured product Copolymer solution was uniformly applied to a glass substrate so that the thickness after drying was 20 μm, and 30 minutes in 90 minutes using a hot plate. Heated and dried. The resin film obtained together with the glass substrate is set in TMA (thermomechanical analyzer), heated to 220 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream, and further heat-treated at 220 ° C. for 20 minutes. The remaining solvent was removed and the copolymer was cured. After allowing the glass substrate to cool to room temperature, an analytical probe is brought into contact with the sample in the TMA measuring apparatus, and scan measurement is performed from 30 ° C. to 360 ° C. at a temperature rising rate of 10 ° C./min under a nitrogen stream. The softening temperature was determined.
The glass transition temperature is measured by setting the above test piece in a DMA (dynamic viscoelasticity device) measuring device and scanning from 30 ° C. to 320 ° C. at a temperature rising rate of 3 ° C./min under a nitrogen stream. The Tg was determined from the peak top of the tan δ curve.
5)耐熱性評価及び耐熱変色性の測定
 共重合体の耐熱性評価は、試料をTGA(熱天秤)測定装置にセットし、窒素気流下、昇温速度10℃/分で30℃から400℃までスキャンさせることにより測定を行い、350℃における重量減少を耐熱性として求めた。一方、耐熱変色性の測定は、共重合体6.0g、ベンジルメタクリレート4.0g、及びt-ブチルパーオキシ-2-エチルヘキサノエート(日本油脂(株)製、パーブチルO)0.02gを混合し、窒素気流下で200℃、1時間加熱し、硬化物を得た。そして、得られた硬化物の変色量を目視にて確認し、○:熱変色なし、△:淡黄色、×:黄色に分類することにより耐熱変色性の評価を行った。
5) Evaluation of heat resistance and measurement of heat discoloration The heat resistance of the copolymer is evaluated by setting the sample in a TGA (thermobalance) measuring device, and at a temperature increase rate of 10 ° C./min under a nitrogen stream at 30 ° C. to 400 ° C. The measurement was performed by scanning until the weight loss at 350 ° C. was determined as heat resistance. On the other hand, the measurement of heat discoloration was carried out using 6.0 g of copolymer, 4.0 g of benzyl methacrylate, and 0.02 g of t-butyl peroxy-2-ethylhexanoate (manufactured by NOF Corporation, Perbutyl O). The mixture was mixed and heated at 200 ° C. for 1 hour under a nitrogen stream to obtain a cured product. And the amount of discoloration of the obtained hardened | cured material was confirmed visually, and heat-resistant discoloration property was evaluated by classifying into (circle): No thermal discoloration, (triangle | delta): Light yellow, and x: Yellow.
6)相溶性の測定
 共重合体のエポキシ樹脂との相溶性の測定は、試料5.0gをエポキシ樹脂(液状ビスフェノールA型エポキシ樹脂:ジャパンエポキシレジン社製、エピコート828)3.0g、及びフェノール樹脂(メラミン骨格系フェノール樹脂:群栄化学工業社製、PS-6492)2.0gを、メチルエチルケトン(MEK)10gに溶解させ、溶解後の試料の透明性を目視にて確認し、○:透明、△:半透明、×:不透明もしくは溶解せず、に分類することにより相溶性の評価を行った。
6) Measurement of compatibility The measurement of the compatibility of the copolymer with the epoxy resin was carried out by using 5.0 g of a sample of 3.0 g of epoxy resin (liquid bisphenol A type epoxy resin: manufactured by Japan Epoxy Resin, Epicoat 828), and phenol. 2.0 g of resin (melamine skeleton phenolic resin: manufactured by Gunei Chemical Industry Co., Ltd., PS-6492) is dissolved in 10 g of methyl ethyl ketone (MEK), and the transparency of the sample after dissolution is visually confirmed. , Δ: translucent, x: opaque or not dissolved, and the compatibility was evaluated.
実施例1
 ジビニルベンゼン(1,4-ジビニルベンゼン及び1,3-ジビニルベンゼンの混合物、以下の例も同様)1.82モル(259.6mL)、エチルビニルベンゼン(1-エチル-4-ビニルベンゼン及び1-エチル-3-ビニルベンゼンの混合物、以下の例も同様)0.43モル(60.9mL)、酢酸n-ブチル 0.28モル(36.9mL)、及びトルエン 140mLを、1.0Lの反応器内に投入し、70℃で40ミリモルのメタンスルホン酸を酢酸n-ブチル 0.12モル(15.7mL)に溶解させた溶液を添加し、6時間反応させた。重合溶液を水酸化カルシウムで停止させた後、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体A 222.6gが得られたことを確認した。
Example 1
Divinylbenzene (a mixture of 1,4-divinylbenzene and 1,3-divinylbenzene, the following examples are also the same) 1.82 mol (259.6 mL), ethylvinylbenzene (1-ethyl-4-vinylbenzene and 1-ethylbenzene) A mixture of ethyl-3-vinylbenzene, also in the following example) 0.43 mol (60.9 mL), 0.28 mol (36.9 mL) n-butyl acetate, and 140 mL toluene were added to a 1.0 L reactor. The solution in which 40 mmol of methanesulfonic acid was dissolved in 0.12 mol (15.7 mL) of n-butyl acetate was added at 70 ° C., and reacted for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 222.6 g of copolymer A was obtained.
 得られた共重合体AのMnは1085、Mwは12400、Mw/Mnは11.4であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行うことにより、共重合体Aは前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.51であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Aの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.67であった。そして、共重合体Aは、ジビニル芳香族化合物(a)由来の構造単位を84.0モル%及びモノビニル芳香族化合物(b)由来の構造単位を合計16.0モル%含有していた。共重合体A中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、64.2モル%であった。
 また、硬化物のDMA測定の結果、Tgは256℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.21wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Aはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer A was 1085, Mw was 12400, and Mw / Mn was 11.4. By performing GC analysis, GPC measurement, FT-IR, 13 C-NMR and 1 H-NMR analysis, the copolymer A is obtained by the above formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.51. Moreover, from content of the terminal structural unit of the copolymer A derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.67. The copolymer A contained 84.0 mol% of the structural units derived from the divinyl aromatic compound (a) and 16.0 mol% in total of the structural units derived from the monovinyl aromatic compound (b). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer A The group content was 64.2 mol%.
Moreover, Tg was 256 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.21 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer A was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
実施例2
 ジビニルベンゼン 1.82モル(259.6mL)、エチルビニルベンゼン 0.43モル(60.9mL)、酢酸n-ブチル 0.28モル(36.9mL)、及びトルエン 140mLを1.0Lの反応器内に投入し、70℃で40ミリモルのp-トルエンスルホン酸・1水和物を酢酸n-ブチル 0.12モル(15.7mL)に溶解させた溶液を添加し、6時間反応させた。重合溶液を水酸化カルシウムで停止させた後、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体B 124.3gが得られたことを確認した。
Example 2
In a 1.0 L reactor, 1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethyl vinylbenzene, 0.28 mol (36.9 mL) of n-butyl acetate, and 140 mL of toluene were added. Then, a solution prepared by dissolving 40 mmol of p-toluenesulfonic acid monohydrate in 0.12 mol (15.7 mL) of n-butyl acetate at 70 ° C. was added and reacted for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 124.3 g of copolymer B was obtained.
 得られた共重合体BのMnは748、Mwは3420、Mw/Mnは4.57であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行うことにより、共重合体Bは、式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.60であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Bの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.71であった。そして、共重合体Bは、ジビニル芳香族化合物(a)由来の構造単位を82.3モル%及びモノビニル芳香族化合物(b)由来の構造単位を合計17.7モル%含有していた。共重合体B中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、67.8モル%であった。
 また、硬化物のDMA測定の結果、Tgは247℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.41wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Bはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer B was 748, Mw was 3420, and Mw / Mn was 4.57. By performing GC analysis, GPC measurement, FT-IR, 13 C-NMR, and 1 H-NMR analysis, the copolymer B has the formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.60. Moreover, from content of the terminal structural unit of the copolymer B derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.71. The copolymer B contained 82.3 mol% of the structural units derived from the divinyl aromatic compound (a) and 17.7 mol% in total of the structural units derived from the monovinyl aromatic compound (b). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer B The group content was 67.8 mol%.
Moreover, Tg was 247 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.41 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer B was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
比較例1
 ジビニルベンゼン2.03モル(288.5mL)、エチルビニルベンゼン0.084モル(12.0mL)、スチレン2.11モル(241.7mL)、2-フェノキシエチルメタクリレート2.25モル(427.3mL)、酢酸ブチル100.0mL、及びトルエン1150mLを3.0Lの反応器内に投入し、50℃で300ミリモルの三フッ化ホウ素のジエチルエーテル錯体を添加し、4時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、純水で3回油層を洗浄し、室温で反応混合液を大量のメタノールに投入し、重合体を析出させた。得られた重合体をメタノールで洗浄し、濾別、乾燥、秤量して、共重合体C 282.4gを得た。
Comparative Example 1
Divinylbenzene 2.03 mol (288.5 mL), ethyl vinylbenzene 0.084 mol (12.0 mL), styrene 2.11 mol (241.7 mL), 2-phenoxyethyl methacrylate 2.25 mol (427.3 mL) Then, 100.0 mL of butyl acetate and 1150 mL of toluene were put into a 3.0 L reactor, 300 mmol of boron trifluoride diethyl ether complex was added at 50 ° C., and the mixture was reacted for 4 hours. After stopping the polymerization solution with an aqueous sodium hydrogen carbonate solution, the oil layer was washed three times with pure water, and the reaction mixture was poured into a large amount of methanol at room temperature to precipitate a polymer. The obtained polymer was washed with methanol, filtered, dried and weighed to obtain 282.4 g of copolymer C.
 得られた共重合体CのMnは2030、Mwは5180、Mw/Mnは2.55であった。13C‐NMR及びH‐NMR分析を行うことにより、共重合体Cは2-フェノキシエチルメタクリレートの末端に由来する共鳴線が観察された。共重合体Cの元素分析結果を行った結果、C:87.3wt%、H:7.4wt%、O:5.2wt%であった。
 元素分析結果と標準ポリスチレン換算の数平均分子量から算出される可溶性多官能ビニル芳香族重合体の2-フェノキシエチルメタクリレート由来の構造単位の導入量(c1)は2.3(個/分子)であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行うことにより、共重合体Cは、前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、上記構造単位の内、式(a2)、(ta1)及び(tb1)で表される構造単位が観察されなかった。従って、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.59であった。
 一方、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Cの末端構造単位の含有量は、式(ta1)及び式(tb1)で表される構造単位がいずれも分析に於いて、検出されなかったことから、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0と考えることができる。また、ジビニルベンゼン由来の構造単位を59.2モル%及びスチレンとエチルベンゼン由来の構造単位を合計40.8モル%含有していた(末端構造単位を除く)。共重合体C中に含まれるビニル基含有量は、35.3モル%であった(末端構造単位を除く)。
 また、硬化物のDMA測定の結果、Tgは197℃であった。硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は4.86wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は△であった。
 共重合体Cはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer C was 2030, Mw was 5180, and Mw / Mn was 2.55. By performing 13 C-NMR and 1 H-NMR analysis, a resonance line derived from the end of 2-phenoxyethyl methacrylate was observed in copolymer C. As a result of conducting an elemental analysis result of the copolymer C, it was C: 87.3 wt%, H: 7.4 wt%, and O: 5.2 wt%.
The amount (c1) of structural units derived from 2-phenoxyethyl methacrylate in the soluble polyfunctional vinyl aromatic polymer calculated from the elemental analysis results and the number average molecular weight in terms of standard polystyrene was 2.3 (pieces / molecule). It was. By performing GC analysis, GPC measurement, FT-IR, 13 C-NMR and 1 H-NMR analysis, the copolymer C is obtained by the above formulas (a1), (a2), (a3), (ta1), (ta The structural units derived from the divinyl aromatic compound (a) and the ethyl vinyl aromatic compound (b) represented by b1) and (tb1) were quantified. From the results, the structural units represented by the formulas (a2), (ta1) and (tb1) among the above structural units were not observed. Therefore, the divinyl aromatic compound calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from (a) and the monovinyl aromatic compound (b) was 0.59.
On the other hand, the content of the terminal structural unit of the copolymer C derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1) is represented by the formula (ta1) and Since none of the structural units represented by the formula (tb1) was detected in the analysis, the terminal structure containing a vinyl group calculated by the formula (ta1) / [(ta1) + (tb1)] The mole fraction of units can be considered as zero. Further, it contained 59.2 mol% of structural units derived from divinylbenzene and 40.8 mol% in total of structural units derived from styrene and ethylbenzene (excluding terminal structural units). The vinyl group content contained in the copolymer C was 35.3 mol% (excluding the terminal structural unit).
Moreover, Tg was 197 degreeC as a result of DMA measurement of hardened | cured material. As a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 4.86 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was Δ.
Copolymer C was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
比較例2
 ジビニルベンゼン 1.82モル(259.6mL)、エチルビニルベンゼン 0.43モル(60.9mL)、及びトルエン 140mLを1.0Lの反応器内に投入し、70℃で40ミリモルのp-トルエンスルホン酸・1水和物を添加し、6時間反応させた。重合溶液を水酸化カルシウムで停止させた後、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体D 187.3gが得られたことを確認した。
Comparative Example 2
1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethylvinylbenzene, and 140 mL of toluene were charged into a 1.0 L reactor, and 40 mmol of p-toluenesulfone was added at 70 ° C. Acid monohydrate was added and allowed to react for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 187.3 g of copolymer D was obtained.
 得られた共重合体DのMnは1024、Mwは7820、Mw/Mnは7.64であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行ったところ、前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、共重合体Dは、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.04であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Bの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.05であった。そして、共重合体Dはジビニルベンゼン由来の構造単位を83.1モル%及びモノビニルベンゼン由来の構造単位を合計16.9モル%含有していた。共重合体D中に含まれる前記式(a1)~(a3)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、81.3モル%であった。
 また、硬化物のDMA測定の結果、Tgは136℃であった。一方、硬化物のTMA測定の結果、軟化温度は125℃であった。TGA測定の結果、350℃における重量減少は7.31wt%、耐熱変色性は△であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Dはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer D was 1024, Mw was 7820, and Mw / Mn was 7.64. When GC analysis, GPC measurement, FT-IR, 13 C-NMR and 1 H-NMR analysis were performed, the above formulas (a1), (a2), (a3), (ta1), (b1) and (tb1) The structural unit derived from the divinyl aromatic compound (a) and the ethyl vinyl aromatic compound (b) represented by From the results, the copolymer D has the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) calculated by the formula (1) was 0.04. Moreover, from content of the terminal structural unit of the copolymer B derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.05. The copolymer D contained 83.1 mol% of structural units derived from divinylbenzene and 16.9 mol% in total of structural units derived from monovinylbenzene. The unsaturated hydrocarbon group content derived from the divinyl aromatic compounds (a) and monovinyl aromatic compounds (b) represented by the above formulas (a1) to (a3) contained in the copolymer D is 81.3. Mol%.
Moreover, Tg was 136 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 125 ° C. As a result of TGA measurement, the weight loss at 350 ° C. was 7.31 wt%, and the heat discoloration property was Δ. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer D was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
実施例3
 ジビニルビフェニル 1.80モル(324.4g)、エチルビニルビフェニル 0.45モル(81.1g)、酢酸n-ブチル 0.28モル(36.9mL)、及びトルエン 140mLを1.0Lの反応器内に投入し、70℃で40ミリモルのメタンスルホン酸を酢酸n-ブチル 0.12モル(15.7mL)に溶解させた溶液を添加し、6時間反応させた。重合溶液を水酸化カルシウムで停止させた後、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体E 259.5gが得られたことを確認した。
Example 3
Divinyl biphenyl 1.80 mol (324.4 g), ethyl vinyl biphenyl 0.45 mol (81.1 g), n-butyl acetate 0.28 mol (36.9 mL), and 140 mL of toluene in a 1.0 L reactor Then, a solution of 40 mmol of methanesulfonic acid dissolved in 0.12 mol (15.7 mL) of n-butyl acetate at 70 ° C. was added and reacted for 6 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 259.5 g of copolymer E was obtained.
 得られた共重合体EのMnは1342、Mwは13960、Mw/Mnは10.4であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行うことにより、共重合体Eは前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.60であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Eの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.57であった。そして、共重合体Eはジビニル芳香族化合物(a)由来の構造単位を82.6モル%及びモノビニル芳香族化合物(b)由来の構造単位を合計17.4モル%含有していた。共重合体E中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、68.2モル%であった。
 また、硬化物のDMA測定の結果、Tgは271℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.36wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Eはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer E was 1342, Mw was 13960, and Mw / Mn was 10.4. By performing GC analysis, GPC measurement, FT-IR, 13 C-NMR and 1 H-NMR analysis, the copolymer E is converted into the above formulas (a1), (a2), (a3), (ta1), (b1 ) And structural units derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) were quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.60. Moreover, from content of the terminal structural unit of the copolymer E derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.57. The copolymer E contained 82.6 mol% of the structural units derived from the divinyl aromatic compound (a) and 17.4 mol% in total of the structural units derived from the monovinyl aromatic compound (b). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer E The group content was 68.2 mol%.
Moreover, Tg was 271 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.36 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer E was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
実施例4
 ジビニルベンゼン 1.82モル(259.6mL)、エチルビニルベンゼン 0.43モル(60.9mL)、酢酸n-ブチル 0.28モル(36.9mL)、及びトルエン 140mLを1.0Lの反応器内に投入し、60℃で60ミリモルのメタンスルホン酸を酢酸n-ブチル 0.12モル(15.7mL)に溶解させた溶液を添加し、12時間反応させた。重合溶液を水酸化カルシウムで停止させた後、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体F 167.8gが得られたことを確認した。
Example 4
In a 1.0 L reactor, 1.82 mol (259.6 mL) of divinylbenzene, 0.43 mol (60.9 mL) of ethyl vinylbenzene, 0.28 mol (36.9 mL) of n-butyl acetate, and 140 mL of toluene were added. Then, a solution prepared by dissolving 60 mmol of methanesulfonic acid in 0.12 mol (15.7 mL) of n-butyl acetate at 60 ° C. was added and reacted for 12 hours. After the polymerization solution was stopped with calcium hydroxide, filtration was performed using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 167.8 g of copolymer F was obtained.
 得られた共重合体FのMnは1450、Mwは19700、Mw/Mnは13.6であった。GC分析、GPC測定、FT-IR、13C‐NMR及びH‐NMR分析を行うことにより、共重合体Aは前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)由来の構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.74であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Fの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.61であった。そして、共重合体Fはジビニル芳香族化合物(a)由来の構造単位を83.6モル%及びモノビニル芳香族化合物(a)由来の構造単位を合計16.4モル%含有していた。共重合体F中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びエチルビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、58.6モル%であった。
 また、硬化物のDMA測定の結果、Tgは271℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.12wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Fはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer F was 1450, Mw was 19700, and Mw / Mn was 13.6. By performing GC analysis, GPC measurement, FT-IR, 13 C-NMR and 1 H-NMR analysis, the copolymer A is obtained by the above formulas (a1), (a2), (a3), (ta1), (b1 ) And (tb1) and the structural units derived from the divinyl aromatic compound (a) and the ethyl vinyl aromatic compound (b) were quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The mole fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the aromatic compound (a) and the ethyl vinyl aromatic compound (b) was 0.74. Moreover, from content of the terminal structural unit of the copolymer F derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.61. The copolymer F contained 83.6 mol% of structural units derived from the divinyl aromatic compound (a) and 16.4 mol% in total of structural units derived from the monovinyl aromatic compound (a). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and ethylvinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer F The group content was 58.6 mol%.
Moreover, Tg was 271 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.12 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer F was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
 実施例1~4及び比較例1~2で得られた共重合体A~Fを使用して、これらの樹脂を用いた硬化性樹脂組成物のワニス及び硬化物の特性の評価を下記方法により行った。 Using the copolymers A to F obtained in Examples 1 to 4 and Comparative Examples 1 to 2, evaluation of the properties of varnishes and cured products of the curable resin compositions using these resins was performed by the following method. went.
7)溶液粘度
 硬化性樹脂組成物の溶液粘度は、E型粘度計を使用して、測定温度:25℃で測定を行った。
7) Solution viscosity The solution viscosity of the curable resin composition was measured using an E-type viscometer at a measurement temperature of 25 ° C.
8)曲げ強度及び曲げ破断伸び
 曲げ試験に使用する試験片は、硬化性樹脂組成物を真空プレス成形機の下の金型上に硬化性樹脂組成物のワニスを乗せ、加熱真空下、溶剤を脱揮させた。その後、上型を乗せ、真空下、加熱プレスを行い、200℃で1時間保持することによって、厚さ:1.0mmの平板を成形した。成形して得られた平板より、幅:5.0mm、厚さ:1.0mm、長さ、120mmの試験片を作製し、曲げ試験を行った。作製した曲げ試験片の曲げ強度及び曲げ破断伸びは万能試験装置を用いて測定を行った。そして、曲げ強度及び曲げ破断伸びは、基準となる配合の測定値に対して±10%未満の値となるものを○、10%以上の値となるものを◎、-10~-20%の範囲の値となるものを△、-20%以下の値となるものを×として評価を行った。
8) Bending strength and bending elongation at break The test piece used for the bending test was prepared by placing the curable resin composition on a mold under a vacuum press molding machine and placing the solvent under a heating vacuum. Volatilized. Thereafter, an upper mold was placed, heated and pressed under vacuum, and held at 200 ° C. for 1 hour to form a flat plate having a thickness of 1.0 mm. A test piece having a width of 5.0 mm, a thickness of 1.0 mm, a length of 120 mm was prepared from a flat plate obtained by molding, and a bending test was performed. The bending strength and bending elongation at break of the produced bending test pieces were measured using a universal testing apparatus. The bending strength and the bending elongation at break are ◯ when the value is less than ± 10% with respect to the measurement value of the reference blend, ◎ when the value is 10% or more, and −10 to −20%. The evaluation was made with Δ for the range value and x for the value of −20% or less.
9)線膨張係数及びガラス転移温度
 硬化性樹脂組成物の線膨張係数及びガラス転移温度の試験に使用する試験片は、硬化性樹脂組成物を真空プレス成形機の下の平板形状の金型上に硬化性樹脂組成物のワニスを乗せ、加熱真空下、溶剤を脱揮させた。その後、0.2mmのスペーサーを挟んで、上型を乗せ、真空下、加熱プレスを行い、200℃で1時間保持することによって、厚さ:0.2mmの平板を成形した。成形して得られた平板より、幅:3.0mm、厚さ:0.2mm、長さ、40mmの試験片を作製し、TMA(熱機械分析装置)の上方のチャックのみにセットし、窒素気流下、昇温速度10℃/分で220℃まで昇温し、更に220℃で20分間加熱処理することにより残存する溶媒を除去するとともに、試験片中の成形歪みの除去を行った。TMAを室温まで放冷した後、TMA測定装置中の試験片の下側についても、分析用プローブにセットさせ、窒素気流下、昇温速度10℃/分で30℃から360℃までスキャン測定を行い、0~40℃に於ける寸法変化より、線膨張係数を算出した。
 また、ガラス転移温度については、上記の試験片を、DMA(動的粘弾性装置)測定装置にセットし、窒素気流下、昇温速度3℃/分で30℃から320℃までスキャンさせることにより測定を行い、tanδ曲線のピークトップによりTgを求めた。
9) Linear expansion coefficient and glass transition temperature The test piece used for the test of the linear expansion coefficient and glass transition temperature of the curable resin composition was obtained by using the curable resin composition on a plate-shaped mold under a vacuum press molding machine. The varnish of the curable resin composition was placed on the substrate, and the solvent was devolatilized under heating vacuum. Thereafter, an upper mold was placed with a 0.2 mm spacer in between, a heat press was performed under vacuum, and the plate was held at 200 ° C. for 1 hour to form a flat plate having a thickness of 0.2 mm. A test piece having a width of 3.0 mm, a thickness of 0.2 mm, a length of 40 mm is prepared from the flat plate obtained by molding, and is set only on the chuck above the TMA (thermomechanical analyzer). Under an air stream, the temperature was raised to 220 ° C. at a heating rate of 10 ° C./min, and the remaining solvent was removed by heat treatment at 220 ° C. for 20 minutes, and the molding distortion in the test piece was removed. After allowing the TMA to cool to room temperature, the lower part of the test piece in the TMA measuring device is also set on the probe for analysis, and scan measurement is performed from 30 ° C. to 360 ° C. at a heating rate of 10 ° C./min in a nitrogen stream. The linear expansion coefficient was calculated from the dimensional change at 0 to 40 ° C.
Regarding the glass transition temperature, the above test piece is set in a DMA (dynamic viscoelasticity device) measuring device and scanned from 30 ° C. to 320 ° C. at a temperature rising rate of 3 ° C./min under a nitrogen stream. Measurement was performed and Tg was obtained from the peak top of the tan δ curve.
10)誘電率及び誘電正接
 JIS C2565規格に準拠し、株式会社エーイーティー製、空洞共振器法誘電率測定装置により、絶乾後23℃、湿度50%の室内に24時間保管した後の硬化物平板試験片を使用して、18GHzでの誘電率及び誘電正接を測定した。
 また、硬化物平板試験片を85℃、相対湿度85%で2週間放置した後、誘電率及び誘電正接の測定を行い、耐湿熱試験後の誘電率及び誘電正接を測定した。
10) Dielectric constant and dielectric loss tangent In accordance with JIS C2565 standard, cured after storing for 24 hours in a room at 23 ° C and 50% humidity after dry-drying using a cavity resonator method dielectric constant measuring device manufactured by AET Co., Ltd. Using a flat plate test piece, the dielectric constant and dielectric loss tangent at 18 GHz were measured.
Moreover, after leaving the hardened | cured material flat test piece to stand at 85 degreeC and 85% of relative humidity for 2 weeks, the dielectric constant and dielectric loss tangent were measured, and the dielectric constant and dielectric loss tangent after a heat-and-moisture resistance test were measured.
11)銅箔引き剥し強さ
 熱硬化性樹脂組成物のワニスにガラスクロス(Eガラス、目付71g/m)を浸漬して含浸を行い、80℃のエアーオーブン中で10分間乾燥させた。その際、得られるプリプレグのレジンコンテンツ(R.C)が50wt%となるように調整した。
 このプリプレグを使用して、成形後の厚みが約0.6mm~1.0mmになるように、上記の硬化性複合材料を必要に応じて複数枚重ね合わせ、その両面に厚さ18μmの銅箔(商品名F2-WS銅箔、Rz:2.0μm、Ra:0.3μm)を置いて真空プレス成形機により成形硬化させて評価用積層体を得た。硬化条件は、3℃/分で昇温し、圧力3MPaで、200℃で60分間保持し、評価用銅張積層板を得た。
11) Copper foil peel strength A glass cloth (E glass, weight per unit area: 71 g / m 2 ) was immersed in a varnish of a thermosetting resin composition, impregnated, and dried in an air oven at 80 ° C. for 10 minutes. At that time, the resin content (RC) of the obtained prepreg was adjusted to 50 wt%.
Using this prepreg, a plurality of the above curable composite materials are stacked as necessary so that the thickness after molding becomes about 0.6 mm to 1.0 mm, and a copper foil having a thickness of 18 μm on both sides thereof (Product name: F2-WS copper foil, Rz: 2.0 μm, Ra: 0.3 μm) was placed and molded and cured by a vacuum press molding machine to obtain a laminate for evaluation. Curing conditions were as follows: the temperature was increased at 3 ° C./min, the pressure was 3 MPa, and the temperature was maintained at 200 ° C. for 60 minutes to obtain a copper clad laminate for evaluation.
 このようにして得られた積層体硬化物から幅20mm、長さ100mmの試験片を切り出し、銅箔面に幅10mmの平行な切り込みを入れた後、面に対して90°の方向に50mm/分の速さで連続的に銅箔を引き剥し、その時の応力を引張り試験機にて測定し、その応力の最低値を銅箔引き剥し強さとして記録した。(JIS C 6481に準拠)。 耐湿熱性試験後の銅箔引き剥がし強さの試験は、上記の試験片を85℃、相対湿度85%で2週間放置した後、上記と同様にして測定した。 A test piece having a width of 20 mm and a length of 100 mm was cut out from the cured laminate thus obtained, and a parallel cut having a width of 10 mm was made on the copper foil surface, and then 50 mm / 90 ° in the direction of 90 ° with respect to the surface. The copper foil was continuously peeled off at a speed of minutes, the stress at that time was measured with a tensile tester, and the minimum value of the stress was recorded as the copper foil peel strength. (Conforms to JIS C 6481). The copper foil peel strength test after the wet heat resistance test was measured in the same manner as described above after the test piece was left at 85 ° C. and a relative humidity of 85% for 2 weeks.
12)銅めっき引き剥がし強さ
 めっき銅付き積層板の作製
 前項で作製した銅張り積層板を過硫酸アンモニウム150g/Lの水溶液に40℃で20分間浸漬して銅箔をエッチング除去した。
12) Copper plating peeling strength Production of laminated plate with plated copper The copper-clad laminate produced in the previous section was immersed in an aqueous solution of 150 g / L ammonium persulfate at 40 ° C. for 20 minutes to remove the copper foil by etching.
 次いで、試料の抜き取りをしていない積層板を膨潤水溶液のサーキュポジットMLBコンディショナー211(ローム&ハースジャパン株式会社製、商品名)にディップ法で、80℃で5分間浸漬処理した。さらに、流水洗の室温で3分間処理後、過マンガン酸強アルカリ水溶液としてサーキュポジットMLBプロモーター213(ローム&ハースジャパン株式会社製、商品名)を用いて、同じくディップ法にて80℃で10分間浸漬処理した。 Next, the laminate from which the sample was not removed was immersed in a swelling aqueous Circposite MLB conditioner 211 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) at 80 ° C. for 5 minutes by the dipping method. Further, after 3 minutes of treatment at room temperature in running water, Circoposit MLB promoter 213 (trade name, manufactured by Rohm & Haas Japan Co., Ltd.) is used as a strongly alkaline aqueous solution of permanganate, and similarly at 80 ° C. for 10 minutes by the dip method. Immersion treatment.
 次いで、中和液としてMLBニュートライザー216(ローム&ハースジャパン株式会社製、商品名)を用いて、ディップ法で、40℃で5分間浸漬処理した。流水洗の室温-3分間処理後、コンディショナー液のCLC-501(商品名、日立化成工業株式会社製)を用いて60℃で5分間処理し、流水洗し、プリディップ液PD-201(商品名、日立化成工業株式会社製)水溶液中室温-3分間処理し、金属パラジウム液HS-202B(商品名、日立化成工業株式会社製)を含んだ水溶液中、室温で10分間処理し、水洗し、活性化処理液ADP-501(商品名、日立化成工業株式会社製)水溶液中で室温-5分間処理した。そして、無電解銅めっき液として、Cust-201を用いて、ディップ法にて室温―15分間浸漬処理により無電解銅厚0.5μmの下地銅を積層板の両面に形成し、さらに電解銅にて銅厚み20μmまでめっきアップした。 Next, immersion treatment was performed at 40 ° C. for 5 minutes by a dip method using MLB Neutralizer 216 (Rohm & Haas Japan Co., Ltd., trade name) as a neutralizing solution. After washing with running water at room temperature for 3 minutes, using conditioner solution CLC-501 (trade name, manufactured by Hitachi Chemical Co., Ltd.) for 5 minutes at 60 ° C., washing with running water, pre-dip solution PD-201 (product) Name, manufactured by Hitachi Chemical Co., Ltd.) in aqueous solution at room temperature for 3 minutes, treated in aqueous solution containing metallic palladium solution HS-202B (trade name, manufactured by Hitachi Chemical Co., Ltd.) for 10 minutes at room temperature, and washed with water Then, it was treated at room temperature for 5 minutes in an aqueous solution of activation treatment liquid ADP-501 (trade name, manufactured by Hitachi Chemical Co., Ltd.). Then, by using Cust-201 as an electroless copper plating solution, a base copper having a thickness of 0.5 μm is formed on both sides of the laminate by dipping at room temperature for 15 minutes, and further on the electrolytic copper. Then, the copper was plated up to a thickness of 20 μm.
 そして、上記のめっき付き試験用積層板硬化物から銅幅10mm、長さ100mmのラインにエッチングで加工し、この一端を剥がしてつかみ具でつかみ、JIS-C-6421に準拠して垂直方向に約50mm室温中で引き剥がした時の荷重の最低値を銅めっき引き剥し強さとして記録した。 Then, the above cured test laminate with plating is etched into a line having a copper width of 10 mm and a length of 100 mm, and one end thereof is peeled off and is gripped with a gripper, and is vertically aligned in accordance with JIS-C-6421. The minimum value of the load when peeled off at room temperature of about 50 mm was recorded as the copper plating peel strength.
13)成形性
 前項で成形を行った評価用銅張積層板を用いて、格子状に線幅(L)が0.5mm、線間隔(S)が1.0mm(L/S=0.5/1.0mm)にパターニングしたコア材を作製した。このコア材を黒化処理し、次いで、その上に、さらにプリプレグを積層し、2次成形することで、内層が格子状パターンの評価用積層基板を作製した。その作製した評価用積層基板について、例えば、樹脂ワニスの流動性不足によるボイド等の欠陥が生じていないかを確認した。その後、この評価用積層基板を沸騰水に4時間浸漬した後、280℃のはんだ槽に浸漬させた。その際、ボイドの存在が確認できず、はんだ槽に浸漬した後も膨れ、層間剥離、ミーズリング(白斑)などの不良現象の発生が見られないものを「○」、前記不良現象の発生は見られないが、反り又はブリードアウト(配合物の分離)が発生したものを「△」、前記不良現象が発生したものを「×」と評価した。
13) Formability Using the copper clad laminate for evaluation formed in the previous section, the line width (L) is 0.5 mm and the line interval (S) is 1.0 mm (L / S = 0.5) in a lattice shape. /1.0 mm) core material patterned. This core material was subjected to blackening treatment, and then a prepreg was further laminated thereon, followed by secondary molding to produce a laminated substrate for evaluation having an inner layer of a lattice pattern. About the produced laminated substrate for evaluation, for example, it was confirmed whether defects such as voids due to insufficient fluidity of the resin varnish occurred. Thereafter, the laminated substrate for evaluation was immersed in boiling water for 4 hours and then immersed in a solder bath at 280 ° C. At that time, the presence of voids could not be confirmed, and even when immersed in a solder bath, it was swollen, and there was no occurrence of defective phenomena such as delamination and measling (white spots). Although not seen, the case where warpage or bleedout (separation of the compound) occurred was evaluated as “Δ”, and the case where the defect phenomenon occurred was evaluated as “x”.
実施例5
 実施例1で得られた共重合体-A20gと、重合開始剤としてパークミルP 0.2g、硬化促進剤として、酸化防止剤としてAO-60 0.2gをトルエン8.6gに溶解し硬化性樹脂組成物(ワニスA)を得た。
Example 5
A curable resin obtained by dissolving 20 g of the copolymer-A obtained in Example 1, 0.2 g of Parkmill P as a polymerization initiator, 0.2 g of AO-60 as an antioxidant, and 8.6 g of toluene as a curing accelerator. A composition (varnish A) was obtained.
 調製したワニスAを下金型の上に滴下し、130℃で溶媒を減圧下、脱揮した後、金型を組上げ、200℃、3MPaの条件で1時間真空加圧プレスを行い、熱硬化させた。得られた厚さ:0.2mmの硬化物平板試験片について、18GHzの誘電率と誘電正接を始めとする諸特性を測定した。また、硬化物平板試験片を85℃、相対湿度85%で2週間放置した後、誘電率及び誘電正接の測定を行い、耐湿熱試験後の誘電率及び誘電正接を測定した。これら測定により得られた結果を表1に示した。 The prepared varnish A was dropped on the lower mold, the solvent was devolatilized at 130 ° C. under reduced pressure, the mold was assembled, and vacuum pressing was performed at 200 ° C. and 3 MPa for 1 hour to perform thermosetting. I let you. About the obtained thickness: 0.2 mm hardened | cured material flat plate test piece, various characteristics including the dielectric constant of 18 GHz and a dielectric loss tangent were measured. Moreover, after leaving the hardened | cured material flat test piece to stand at 85 degreeC and 85% of relative humidity for 2 weeks, the dielectric constant and dielectric loss tangent were measured, and the dielectric constant and dielectric loss tangent after a heat-and-moisture resistance test were measured. The results obtained from these measurements are shown in Table 1.
実施例6~8、比較例3~4
 表1に示した配合処方としたこと以外は、実施例5と同じ方法で硬化性樹脂組成物(ワニス)を得た。そして、実施例5と同様にして硬化物平板試験片を作製し、実施例5と同じ項目について、試験・評価を行った。これらの試験により得られた結果を表1に示した。
Examples 6-8, Comparative Examples 3-4
A curable resin composition (varnish) was obtained in the same manner as in Example 5 except that the formulation shown in Table 1 was used. And the hardened | cured material flat plate test piece was produced like Example 5, and it tested and evaluated about the same item as Example 5. FIG. The results obtained by these tests are shown in Table 1.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
実施例9~23、比較例5~7
 表2及び表3に示した配合処方としたこと以外は、実施例5と類似の方法で硬化性樹脂組成物(ワニス)を得た。そして、実施例5と同様にして硬化物平板試験片を作製し、実施例5と同じ項目について、試験・評価を行った。これらの試験により得られた結果を表1に示した。さらに、これらの実施例及び比較例で示したワニスを使用して、前述の11)~13)に記載の方法に従って、プリプレグ、試験用銅張積層板、及び、試験用めっき付き積層板を作製し、銅箔引き剥し強さ、銅めっき引き剥し強さ、並びに、成形性の評価を行った。試験結果を表2及び表3に示した。
Examples 9 to 23, Comparative Examples 5 to 7
A curable resin composition (varnish) was obtained in the same manner as in Example 5 except that the formulation shown in Tables 2 and 3 was used. And the hardened | cured material flat plate test piece was produced like Example 5, and it tested and evaluated about the same item as Example 5. FIG. The results obtained by these tests are shown in Table 1. Furthermore, using the varnishes shown in these Examples and Comparative Examples, a prepreg, a test copper clad laminate, and a test plated laminate were produced according to the methods described in 11) to 13) above. Then, copper foil peel strength, copper plating peel strength, and formability were evaluated. The test results are shown in Tables 2 and 3.
実施例24
 ジビニルベンゼン 8.91モル(1269.1mL)、エチルビニルベンゼン 2.09モル(297.7mL)、メチルエチルケトン 0.40モル(36.3mL)、トルエン 1100mLを3.0Lの反応器内に投入し、70℃で0.50ミリモルのトリフルオロメタンスルホン酸をメチルエチルケトン 0.10モル(9.0mL)に溶解させた溶液を添加し、6時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、水洗を行い、活性アルミナをろ過助剤として、ろ過を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体G 1698.7gが得られたことを確認した。
Example 24
Divinylbenzene 8.91 mol (1269.1 mL), ethyl vinylbenzene 2.09 mol (297.7 mL), methyl ethyl ketone 0.40 mol (36.3 mL), toluene 1100 mL were charged into a 3.0 L reactor, A solution prepared by dissolving 0.50 mmol of trifluoromethanesulfonic acid in 0.10 mol (9.0 mL) of methyl ethyl ketone at 70 ° C. was added and reacted for 6 hours. The polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, washed with water, and filtered using activated alumina as a filter aid. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 1698.7 g of copolymer G was obtained.
 得られた共重合体GのMnは884、Mwは11800、Mw/Mnは13.4であった。GC分析、GPC測定、FT-IR、13C‐NMR及び1H‐NMR分析を行うことにより、共重合体Gは前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の繰り返し構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.54であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Aの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.71であった。そして、共重合体Gはジビニル芳香族化合物(a)由来の構造単位を82.4モル%及びモノビニル芳香族化合物(b)由来の構造単位を合計17.6モル%含有していた。共重合体G中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、64.7モル%であった。
 また、硬化物のDMA測定の結果、Tgは264℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.35wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Gはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer G was 884, Mw was 11800, and Mw / Mn was 13.4. By performing GC analysis, GPC measurement, FT-IR, 13C-NMR and 1H-NMR analysis, the copolymer G is converted into the above formulas (a1), (a2), (a3), (ta1), (b1) and The repeating structural unit derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) was quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.54. Moreover, from content of the terminal structural unit of the copolymer A derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.71. Copolymer G contained 82.4 mol% of structural units derived from divinyl aromatic compound (a) and 17.6 mol% in total of structural units derived from monovinyl aromatic compound (b). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer G The group content was 64.7 mol%.
Moreover, Tg was 264 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.35 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer G was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was observed.
実施例25
 ジビニルベンゼン 8.91モル(1269.1mL)、エチルビニルベンゼン 2.09モル(297.7mL)、スチレン 1.00モル(115.0mL)、酢酸プロピル 0.40モル(46.0mL)、トルエン 1000mLを3.0Lの反応器内に投入し、50℃で0.70ミリモルのトリフルオロメタンスルホン酸を酢酸プロピル 0.10モル(11.5mL)に溶解させた溶液を添加し、7時間反応させた。重合溶液を炭酸水素ナトリウム水溶液で停止させた後、水洗を行った。それから、60℃で減圧脱揮し、重合体を回収した。得られた重合体を秤量して、共重合体H 1643.5gが得られたことを確認した。
Example 25
Divinylbenzene 8.91 mol (1269.1 mL), Ethylvinylbenzene 2.09 mol (297.7 mL), Styrene 1.00 mol (115.0 mL), Propyl acetate 0.40 mol (46.0 mL), Toluene 1000 mL Was added to a 3.0 L reactor, and a solution prepared by dissolving 0.70 mmol of trifluoromethanesulfonic acid in 0.10 mol (11.5 mL) of propyl acetate at 50 ° C. was added and reacted for 7 hours. . The polymerization solution was stopped with an aqueous sodium hydrogen carbonate solution, and then washed with water. Then, it was devolatilized at 60 ° C. under reduced pressure to recover the polymer. The obtained polymer was weighed to confirm that 1643.5 g of copolymer H was obtained.
 得られた共重合体HのMnは947、Mwは13800、Mw/Mnは14.6であった。GC分析、GPC測定、FT-IR、13C‐NMR及び1H‐NMR分析を行うことにより、共重合体Hは前記式(a1)、(a2)、(a3)、(ta1)、(b1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の繰り返し構造単位の定量を行った。その結果から、式[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]によって算出されるジビニル芳香族化合物(a)由来の特定の不飽和炭化水素基を含有する構造単位のモル分率は0.51であった。また、式(ta1)及び式(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の共重合体Hの末端構造単位の含有量から、式(ta1)/[(ta1)+(tb1)]によって算出されるビニル基を含有する末端構造単位のモル分率は0.65であった。そして、共重合体Hはジビニル芳香族化合物(a)由来の構造単位を83.1モル%及びモノビニル芳香族化合物(b)由来の構造単位を合計16.9モル%含有していた。共重合体H中に含まれる前記式(a1)、(a2)、(ta1)及び(tb1)で表されるジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)由来の不飽和炭化水素基含有量は、61.3モル%であった。
 また、硬化物のDMA測定の結果、Tgは217℃であった。一方、硬化物のTMA測定の結果、軟化温度は300℃以上であった。TGA測定の結果、350℃における重量減少は1.42wt%、耐熱変色性は○であった。一方、エポキシ樹脂との相溶性は○であった。
 共重合体Hはトルエン、キシレン、THF、ジクロロエタン、ジクロロメタン、クロロホルムに可溶であり、ゲルの生成は認められなかった。
Mn of the obtained copolymer H was 947, Mw was 13800, and Mw / Mn was 14.6. By performing GC analysis, GPC measurement, FT-IR, 13C-NMR and 1H-NMR analysis, the copolymer H is converted into the above formulas (a1), (a2), (a3), (ta1), (b1) and The repeating structural unit derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by (tb1) was quantified. From the result, the divinyl aroma calculated by the formula [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] The molar fraction of the structural unit containing the specific unsaturated hydrocarbon group derived from the group compound (a) was 0.51. Moreover, from content of the terminal structural unit of the copolymer H derived from the divinyl aromatic compound (a) and the monovinyl aromatic compound (b) represented by the formula (ta1) and the formula (tb1), the formula (ta1) / The molar fraction of the terminal structural unit containing a vinyl group calculated by [(ta1) + (tb1)] was 0.65. The copolymer H contained 83.1 mol% of structural units derived from the divinyl aromatic compound (a) and 16.9 mol% in total of structural units derived from the monovinyl aromatic compound (b). Unsaturated hydrocarbon derived from divinyl aromatic compound (a) and monovinyl aromatic compound (b) represented by the above formulas (a1), (a2), (ta1) and (tb1) contained in copolymer H The group content was 61.3 mol%.
Moreover, Tg was 217 degreeC as a result of DMA measurement of hardened | cured material. On the other hand, as a result of TMA measurement of the cured product, the softening temperature was 300 ° C. or higher. As a result of TGA measurement, the weight loss at 350 ° C. was 1.42 wt%, and the heat discoloration resistance was ◯. On the other hand, the compatibility with the epoxy resin was ○.
Copolymer H was soluble in toluene, xylene, THF, dichloroethane, dichloromethane, and chloroform, and no gel was formed.
実施例26、27
 実施例24、25で得られた共重合体G、Hを使用して、表4に示した配合処方としたこと以外は、実施例5と同じ方法で硬化性樹脂組成物(ワニス)を得た。そして、実施例5と同様にして硬化物平板試験片を作製し、実施例5と同じ項目について、試験・評価を行った。これらの試験により得られた結果を表4に示した。
Examples 26 and 27
A curable resin composition (varnish) was obtained in the same manner as in Example 5 except that the copolymers G and H obtained in Examples 24 and 25 were used to obtain the compounding formulations shown in Table 4. It was. And the hardened | cured material flat plate test piece was produced like Example 5, and it tested and evaluated about the same item as Example 5. FIG. The results obtained by these tests are shown in Table 4.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 なお、表1~表4において、使用した成分は、以下のとおり。
変性PPE-A:両末端にビニル基を有するポリフェニレンオリゴマー(Mn=1160、三菱瓦斯化学(株)製、2,2',3,3',5,5'-ヘキサメチルビフェニル-4,4'-ジオール・2,6-ジメチルフェノール重縮合物とクロロメチルスチレンとの反応生成物)
変性PPE-B:両末端にビニル基を有するポリフェニレンオリゴマー(Mn=2270、三菱瓦斯化学(株)製、2,2',3,3',5,5'-ヘキサメチルビフェニル-4,4'-ジオール・2,6-ジメチルフェノール重縮合物とクロロメチルスチレンとの反応生成物)
変性PPE-C:片末端にビニル基を有するポリフェニレンオリゴマー(Mn=2340、ポリフェニレンエーテル(SABICイノベーティブプラスチックス社製のSA120)とクロロメチルスチレンとの反応生成物)
TAIC:トリアリルイソシアヌレート(日本化成株式会社製)
DCP:トリシクロデカンジメタノールジメタクリレート(新中村化学工業株式会社製)
A-DCP:トリシクロデカンジメタノールジアクリレート (新中村化学工業株式会社製)
o-クレゾールノボラック型エポキシ樹脂:エポトートYDCN-700-3(低粘度タイプ、新日鉄住金化学株式会社製)
ビスフェノールF型液状エポキシ樹脂:エピコート806L、Mw=370(ジャパンエポキシレジン社製)
ナフタレン骨格液状エポキシ樹脂:EPICLON HP-4032D、Mw=304(DIC社製)
ナフトール型エポキシ樹脂:ESN-475V、エポキシ当量:340(新日鉄住金化学社製)
ビスフェノールA型液状エポキシ樹脂:エピコート828US、Mw=370(ジャパンエポキシレジン社製)
フルオレン骨格エポキシ樹脂:大阪ガスケミカル社製、商品名:オンコートEX1011、Mw=486
変性PPE-D:両末端にエポキシ基を有するポリフェニレンオリゴマー(Mn=1180、三菱瓦斯化学(株)製、2,2',3,3',5,5'-ヘキサメチルビフェニル-4,4'-ジオール・2,6-ジメチルフェノール重縮合物とエピクロルヒドリンとの反応生成物)
ビフェニル骨格フェノール樹脂:明和化成社製、MEH-7851-S
メラミン骨格系フェノール樹脂:群栄化学工業社製、PS-6492
アリル基含有骨格フェノール樹脂:ジャパンエポキシレジン社製、YLH-903
脂環式骨格酸無水物:新日本理化社製、MH-700
芳香族骨格酸無水物:サートマー・ジャパン社製、SMAレジンEF60
スチレン系共重合体:KRATON A1535(Kraton Polymers LLC製)
フェノキシ樹脂:重量平均分子量37000、三菱化学(株)製「YL7553BH30」(不揮発分30質量%のMEKとシクロヘキサノンの1:1溶液)
アモルファス球状シリカ:アドマテックス社製、SE2050 SPE、平均粒子径0.5μm(フェニルシランカップリング剤により処理)
ラジカル重合開始剤:パークミルD、パークミルP、日油製、ノフマーBC-90(2,3-ジメチル-2,3-ジフェニルブタン)
硬化促進剤:トリフェニルホスフィン
安定剤:アデカスタブAO-60
In Tables 1 to 4, the components used are as follows.
Modified PPE-A: Polyphenylene oligomer having vinyl groups at both ends (Mn = 1160, manufactured by Mitsubishi Gas Chemical Co., Inc., 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4 ′ -Reaction product of diol, 2,6-dimethylphenol polycondensate and chloromethylstyrene)
Modified PPE-B: Polyphenylene oligomer having vinyl groups at both ends (Mn = 2270, manufactured by Mitsubishi Gas Chemical Co., Inc., 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4 ′ -Reaction product of diol, 2,6-dimethylphenol polycondensate and chloromethylstyrene)
Modified PPE-C: polyphenylene oligomer having vinyl group at one end (Mn = 2340, reaction product of polyphenylene ether (SA120 manufactured by SABIC Innovative Plastics) and chloromethylstyrene)
TAIC: triallyl isocyanurate (manufactured by Nippon Kasei Co., Ltd.)
DCP: Tricyclodecane dimethanol dimethacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
A-DCP: Tricyclodecane dimethanol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
o-Cresol novolac type epoxy resin: Epototo YDCN-700-3 (low viscosity type, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
Bisphenol F type liquid epoxy resin: Epicoat 806L, Mw = 370 (manufactured by Japan Epoxy Resin Co., Ltd.)
Naphthalene skeleton liquid epoxy resin: EPICLON HP-4032D, Mw = 304 (manufactured by DIC)
Naphthol type epoxy resin: ESN-475V, epoxy equivalent: 340 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.)
Bisphenol A type liquid epoxy resin: Epicoat 828US, Mw = 370 (manufactured by Japan Epoxy Resin Co., Ltd.)
Fluorene skeleton epoxy resin: manufactured by Osaka Gas Chemical Co., Ltd., trade name: Oncoat EX1011, Mw = 486
Modified PPE-D: Polyphenylene oligomer having epoxy groups at both ends (Mn = 1180, manufactured by Mitsubishi Gas Chemical Co., Inc., 2,2 ′, 3,3 ′, 5,5′-hexamethylbiphenyl-4,4 ′ -Reaction product of 2-diol, 2,6-dimethylphenol polycondensate and epichlorohydrin)
Biphenyl skeleton phenol resin: MEH-7851-S manufactured by Meiwa Kasei Co., Ltd.
Melamine skeleton phenolic resin: manufactured by Gunei Chemical Industry Co., Ltd., PS-6492
Allyl group-containing skeleton phenol resin: YLH-903, manufactured by Japan Epoxy Resin Co., Ltd.
Alicyclic skeleton acid anhydride: manufactured by Shin Nippon Rika Co., Ltd., MH-700
Aromatic skeleton acid anhydride: SMA Resin EF60, manufactured by Sartomer Japan
Styrene copolymer: KRATON A1535 (manufactured by Kraton Polymers LLC)
Phenoxy resin: weight average molecular weight 37000, “YL7553BH30” manufactured by Mitsubishi Chemical Corporation (a 1: 1 solution of MEK and cyclohexanone having a nonvolatile content of 30% by mass)
Amorphous spherical silica: manufactured by Admatechs, SE2050 SPE, average particle size 0.5 μm (treated with phenylsilane coupling agent)
Radical polymerization initiator: Park Mill D, Park Mill P, manufactured by NOF Corporation, NOFMER BC-90 (2,3-dimethyl-2,3-diphenylbutane)
Curing accelerator: Triphenylphosphine Stabilizer: ADK STAB AO-60
 本発明の可溶性多官能ビニル芳香族共重合体は、成形材、シート又はフィルムに加工することができ、電気電子産業、宇宙・航空機産業等の分野において低誘電材料、絶縁材料、耐熱材料、構造材料等に用いることができる。また、半導体関連材料、光学用材料、塗料、感光性材料、接着剤、汚水処理剤、重金属捕集剤、イオン交換樹脂、帯電防止剤、酸化防止剤、防曇剤、防錆剤、防染剤、殺菌剤、防虫剤、医用材料、凝集剤、界面活性剤、潤滑剤、固体燃料用バインダー、導電処理剤等への適用が可能である。
 
The soluble polyfunctional vinyl aromatic copolymer of the present invention can be processed into a molding material, a sheet or a film. In the fields of electrical and electronic industry, space / aircraft industry, etc., low dielectric materials, insulating materials, heat resistant materials, structures It can be used for materials. In addition, semiconductor-related materials, optical materials, paints, photosensitive materials, adhesives, sewage treatment agents, heavy metal scavengers, ion exchange resins, antistatic agents, antioxidants, antifogging agents, rustproofing agents, and antifouling It can be applied to agents, fungicides, insect repellents, medical materials, flocculants, surfactants, lubricants, binders for solid fuels, conductive treatment agents, and the like.

Claims (17)

  1.  ジビニル芳香族化合物(a)に由来する構造単位及びモノビニル芳香族化合物(b)に由来する構造単位を含有する多官能ビニル芳香族共重合体であって、ジビニル芳香族化合物(a)に由来する構造単位が、下記式(a1)で表されるビニル基含有単位、下記式(a2)で表されるビニレン基含有単位、及び下記式(a3)で表される架橋構造単位及び下記式(ta1)で表されるビニレン基含有末端単位を有し、かつ、モノビニル芳香族化合物(b)に由来する構造単位が、下記式(b1)で表される構造単位及び下記式(tb1)で表されるビニレン基含有末端単位を有し、溶剤可溶性で重合性を有することを特徴とする可溶性多官能ビニル芳香族共重合体。
    Figure JPOXMLDOC01-appb-C000001
     (式中、R1は炭素数6~30の芳香族炭化水素基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1は式(a1)と同意である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1は式(a1)と同意である。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R1は式(a1)と同意である。)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R2は炭素数6~30の芳香族炭化水素基を示し、R3は水素又は炭素数6~30の炭化水素基を示す。)
    Figure JPOXMLDOC01-appb-C000006
    (式中、R2、R3は式(b1)と同意である。)
    A polyfunctional vinyl aromatic copolymer containing a structural unit derived from a divinyl aromatic compound (a) and a structural unit derived from a monovinyl aromatic compound (b), which is derived from a divinyl aromatic compound (a) The structural unit is a vinyl group-containing unit represented by the following formula (a1), a vinylene group-containing unit represented by the following formula (a2), a crosslinked structural unit represented by the following formula (a3), and the following formula (ta1 And the structural unit derived from the monovinyl aromatic compound (b) is represented by the structural unit represented by the following formula (b1) and the following formula (tb1). A soluble polyfunctional vinyl aromatic copolymer having a vinylene group-containing terminal unit, solvent-soluble and polymerizable.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 is the same as in formula (a1).)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 1 is the same as in formula (a1).)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, R 1 is the same as in formula (a1).)
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, R 2 represents an aromatic hydrocarbon group having 6 to 30 carbon atoms, and R 3 represents hydrogen or a hydrocarbon group having 6 to 30 carbon atoms.)
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, R 2 and R 3 are the same as those in the formula (b1).)
  2.  ジビニル芳香族化合物(a)に由来する構造単位を20モル%~95モル%含有し、前記式(a1)、式(a2)、式(a3)、式(ta1)、式(b1)及び式(tb1)で表される構造単位のモル分率が、下記式(1)及び下記式(2)を満足し、
     0.2≦[(a1)+(a3)+(ta1)]/[(a1)+(a2)+(a3)+(b1)+(ta1)+(tb1)]≦0.9      ・・・(1)
     (ta1)/[(ta1)+(tb1)]>0.2     ・・・(2)
    数平均分子量Mnが300~100,000で、分子量分布(Mw/Mn)が100.0以下であり、トルエン、キシレン、テトラヒドロフラン、ジクロロエタン又はクロロホルムに可溶である請求項1に記載の可溶性多官能ビニル芳香族共重合体。
    Containing 20 mol% to 95 mol% of the structural unit derived from the divinyl aromatic compound (a), the formula (a1), the formula (a2), the formula (a3), the formula (ta1), the formula (b1) and the formula The molar fraction of the structural unit represented by (tb1) satisfies the following formula (1) and the following formula (2),
    0.2 ≦ [(a1) + (a3) + (ta1)] / [(a1) + (a2) + (a3) + (b1) + (ta1) + (tb1)] ≦ 0.9 (1)
    (ta1) / [(ta1) + (tb1)]> 0.2 (2)
    The soluble polyfunctional group according to claim 1, having a number average molecular weight Mn of 300 to 100,000, a molecular weight distribution (Mw / Mn) of 100.0 or less, and being soluble in toluene, xylene, tetrahydrofuran, dichloroethane or chloroform. Vinyl aromatic copolymer.
  3.  ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を、助触媒成分であるルイス塩基化合物(c)の存在下で、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、重合させて多官能ビニル芳香族共重合体を製造する方法であって、ジビニル芳香族化合物(a)とモノビニル芳香族化合物(b)の合計100モル%に対し、ジビニル芳香族化合物(a)を5~95モル%、モノビニル芳香族化合物(b)を95~5モル%使用し、かつ、全単量体の合計100モルに対し、ルイス塩基化合物(c)を0.005~500モル使用し、これらを含む重合原料を誘電率2.0~15.0の溶媒に溶解させて均一溶液とし、20~120℃の温度で重合させて得られることを特徴とする可溶性多官能ビニル芳香族共重合体。 The divinyl aromatic compound (a) and the monovinyl aromatic compound (b) are selected from the group consisting of inorganic acids, organic sulfonic acids and perchloric acid compounds in the presence of the Lewis base compound (c) as the promoter component. In which a polyfunctional vinyl aromatic copolymer is produced by polymerization using at least one catalyst (d), which is a total of 100 of divinyl aromatic compound (a) and monovinyl aromatic compound (b). The divinyl aromatic compound (a) is used in an amount of 5 to 95 mol% and the monovinyl aromatic compound (b) is used in an amount of 95 to 5 mol% with respect to mol%. The compound (c) is used in an amount of 0.005 to 500 mol, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to obtain a uniform solution, and polymerized at a temperature of 20 to 120 ° C. Characterized by Soluble polyfunctional vinyl aromatic copolymer.
  4.  ジビニル芳香族化合物(a)及びモノビニル芳香族化合物(b)を、助触媒成分であるルイス塩基化合物(c)の存在下で、無機酸、有機スルホン酸及び過塩素酸系化合物からなる群から選ばれる一種以上の触媒(d)を使用して、重合させて多官能ビニル芳香族共重合体を製造する方法であって、ジビニル芳香族化合物(a)とモノビニル芳香族化合物(b)の合計100モル%に対し、ジビニル芳香族化合物(a)を5~95モル%、モノビニル芳香族化合物(b)を95~5モル%使用し、かつ、全単量体の合計100モルに対し、ルイス塩基化合物(c)を0.005~500モル使用し、これらを含む重合原料を誘電率2.0~15.0の溶媒に溶解させて均一溶液とし、20~120℃の温度で重合させることを特徴とする請求項1に記載の多官能ビニル芳香族共重合体の製造方法。 The divinyl aromatic compound (a) and the monovinyl aromatic compound (b) are selected from the group consisting of inorganic acids, organic sulfonic acids and perchloric acid compounds in the presence of the Lewis base compound (c) as the promoter component. In which a polyfunctional vinyl aromatic copolymer is produced by polymerization using at least one catalyst (d), which is a total of 100 of divinyl aromatic compound (a) and monovinyl aromatic compound (b). The divinyl aromatic compound (a) is used in an amount of 5 to 95 mol% and the monovinyl aromatic compound (b) is used in an amount of 95 to 5 mol% with respect to mol%. The compound (c) is used in an amount of 0.005 to 500 mol, and a polymerization raw material containing them is dissolved in a solvent having a dielectric constant of 2.0 to 15.0 to form a uniform solution, and polymerization is performed at a temperature of 20 to 120 ° C. Special features Method for producing a polyfunctional vinyl aromatic copolymer according to claim 1.
  5.  ルイス塩基化合物(c)1モルに対し、触媒(d)を0.001~10モルの範囲内で使用することを特徴とする請求項4に記載の可溶性多官能ビニル芳香族共重合体の製造方法。 The production of the soluble polyfunctional vinyl aromatic copolymer according to claim 4, wherein the catalyst (d) is used in an amount of 0.001 to 10 mol per 1 mol of the Lewis base compound (c). Method.
  6.  請求項1に記載の可溶性多官能ビニル芳香族共重合体と、ラジカル重合開始剤とを含有することを特徴とする硬化性組成物。 A curable composition comprising the soluble polyfunctional vinyl aromatic copolymer according to claim 1 and a radical polymerization initiator.
  7.  更に熱硬化性樹脂又は熱可塑性樹脂を含有することを特徴とする請求項6に記載の硬化性組成物。 The curable composition according to claim 6, further comprising a thermosetting resin or a thermoplastic resin.
  8.  前記熱硬化性樹脂が、変性ポリフェニレンエーテル(XC)であることを特徴とする請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the thermosetting resin is a modified polyphenylene ether (XC).
  9.  前記熱硬化性樹脂が、1分子中に2以上のエポキシ基と芳香族構造を有するエポキシ樹脂、1分子中に2以上のエポキシ基とシアヌレート構造を有するエポキシ樹脂及び/又は1分子中に2以上のエポキシ基と脂環構造を有するエポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂(XD)であることを特徴とする請求項7に記載の硬化性組成物。 The thermosetting resin is an epoxy resin having two or more epoxy groups and an aromatic structure in one molecule, an epoxy resin having two or more epoxy groups and a cyanurate structure in one molecule, and / or two or more in one molecule. The curable composition according to claim 7, wherein the curable composition is one or more epoxy resins (XD) selected from the group consisting of an epoxy resin having an epoxy group and an alicyclic structure.
  10.  前記熱硬化性樹脂が、分子中に1個以上の不飽和炭化水素基を有する1種以上のビニル化合物(XF)であることを特徴とする請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the thermosetting resin is one or more vinyl compounds (XF) having one or more unsaturated hydrocarbon groups in a molecule.
  11.  請求項6~10のいずれかに記載の硬化性組成物を硬化してなる硬化物。 A cured product obtained by curing the curable composition according to any one of claims 6 to 10.
  12.  請求項6~10のいずれかに記載の硬化性組成物をフィルム状に成形してなるフィルム。 A film obtained by forming the curable composition according to any one of claims 6 to 10 into a film shape.
  13.  請求項6~10のいずれかに記載の硬化性組成物と基材からなる硬化性複合材料であって、基材を5~90重量%の割合で含有することを特徴とする硬化性複合材料。 A curable composite material comprising the curable composition according to any one of claims 6 to 10 and a base material, wherein the base material is contained in a proportion of 5 to 90% by weight. .
  14.  請求項13に記載の硬化性複合材料を硬化して得られたことを特徴とする硬化複合材料。 A cured composite material obtained by curing the curable composite material according to claim 13.
  15.  請求項14に記載の硬化複合材料の層と金属箔層とを有することを特徴とする積層体。 A laminate comprising the cured composite material layer according to claim 14 and a metal foil layer.
  16.  請求項6~10のいずれかに記載の硬化性組成物から形成された膜を金属箔の片面に有することを特徴とする樹脂付き金属箔。 A resin-coated metal foil comprising a film formed from the curable composition according to any one of claims 6 to 10 on one side of the metal foil.
  17.  請求項6~10のいずれかに記載の硬化性組成物を有機溶剤に溶解させてなる回路基板材料用ワニス。  A circuit board material varnish obtained by dissolving the curable composition according to any one of claims 6 to 10 in an organic solvent.
PCT/JP2016/088966 2015-12-28 2016-12-27 Soluble polyfunctional vinyl aromatic copolymer, method for producing same and curable composition WO2017115813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017559221A JP6833723B2 (en) 2015-12-28 2016-12-27 Soluble polyfunctional vinyl aromatic copolymer, its production method and curable composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256924 2015-12-28
JP2015-256924 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115813A1 true WO2017115813A1 (en) 2017-07-06

Family

ID=59225270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088966 WO2017115813A1 (en) 2015-12-28 2016-12-27 Soluble polyfunctional vinyl aromatic copolymer, method for producing same and curable composition

Country Status (3)

Country Link
JP (1) JP6833723B2 (en)
TW (1) TWI706963B (en)
WO (1) WO2017115813A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
CN109385021A (en) * 2017-08-04 2019-02-26 广东生益科技股份有限公司 A kind of compositions of thermosetting resin and prepreg and metal-clad laminate using its production
WO2020175537A1 (en) * 2019-02-28 2020-09-03 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board
EP3663351A4 (en) * 2017-08-04 2021-04-28 Shengyi Technology Co., Ltd. Thermosetting resin composition, and prepreg and metal foil clad laminate prepared from same
WO2023026829A1 (en) 2021-08-25 2023-03-02 三菱瓦斯化学株式会社 Resin composition, cured object, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700332B (en) * 2018-12-06 2020-08-01 台燿科技股份有限公司 Halogen-free low dielectric resin composition, and pre-preg, metal-clad laminate, and printed circuit board prepared using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123873A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Soluble, multifunctional vinyl aromatic copolymer and its polymerization process
JP2007332273A (en) * 2006-06-15 2007-12-27 Nippon Steel Chem Co Ltd Soluble polyfunctional vinyl aromatic copolymer and its manufacturing method
JP2008239781A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method for producing soluble polyfunctional vinyl aromatic copolymer, and the copolymer
JP2010209279A (en) * 2009-03-12 2010-09-24 Nippon Steel Chem Co Ltd Terminal end-modified soluble polyfunctional vinyl aromatic copolymer, manufacturing method therefor, curable resin composition, and cured product

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404797B2 (en) * 2008-03-04 2013-03-26 Nippon Steel Chemical Co., Ltd. Polyfunctional vinyl aromatic copolymer, process for producing the same, and resin composition
WO2014157131A1 (en) * 2013-03-25 2014-10-02 新日鉄住金化学株式会社 Curable resin composition, cured product, and optical article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123873A (en) * 2002-10-01 2004-04-22 Nippon Steel Chem Co Ltd Soluble, multifunctional vinyl aromatic copolymer and its polymerization process
JP2007332273A (en) * 2006-06-15 2007-12-27 Nippon Steel Chem Co Ltd Soluble polyfunctional vinyl aromatic copolymer and its manufacturing method
JP2008239781A (en) * 2007-03-27 2008-10-09 Nippon Steel Chem Co Ltd Method for producing soluble polyfunctional vinyl aromatic copolymer, and the copolymer
JP2010209279A (en) * 2009-03-12 2010-09-24 Nippon Steel Chem Co Ltd Terminal end-modified soluble polyfunctional vinyl aromatic copolymer, manufacturing method therefor, curable resin composition, and cured product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181842A1 (en) * 2017-03-30 2018-10-04 新日鉄住金化学株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
JPWO2018181842A1 (en) * 2017-03-30 2020-02-20 日鉄ケミカル&マテリアル株式会社 Soluble polyfunctional vinyl aromatic copolymer, method for producing the same, curable resin composition and cured product thereof
US11130861B2 (en) 2017-03-30 2021-09-28 Nippon Steel Chemical & Material Co., Ltd. Soluble polyfunctional vinyl aromatic copolymer, method for producing same, curable resin composition and cured product thereof
JP7126493B2 (en) 2017-03-30 2022-08-26 日鉄ケミカル&マテリアル株式会社 Soluble polyfunctional vinyl aromatic copolymer, production method thereof, curable resin composition and cured product thereof
CN109385021A (en) * 2017-08-04 2019-02-26 广东生益科技股份有限公司 A kind of compositions of thermosetting resin and prepreg and metal-clad laminate using its production
TWI658083B (en) * 2017-08-04 2019-05-01 廣東生益科技股份有限公司 Thermosetting resin composition and prepreg and metal foil-clad laminate produced by using same
EP3663351A4 (en) * 2017-08-04 2021-04-28 Shengyi Technology Co., Ltd. Thermosetting resin composition, and prepreg and metal foil clad laminate prepared from same
WO2020175537A1 (en) * 2019-02-28 2020-09-03 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate board, resin composite sheet, and, printed circuit board
JP7409369B2 (en) 2019-02-28 2024-01-09 三菱瓦斯化学株式会社 Resin compositions, prepregs, metal foil laminates, resin composite sheets, and printed wiring boards
WO2023026829A1 (en) 2021-08-25 2023-03-02 三菱瓦斯化学株式会社 Resin composition, cured object, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board

Also Published As

Publication number Publication date
TWI706963B (en) 2020-10-11
TW201736413A (en) 2017-10-16
JP6833723B2 (en) 2021-02-24
JPWO2017115813A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
JP6995534B2 (en) Soluble polyfunctional vinyl aromatic copolymer, its production method, curable resin composition and its cured product
JP7126493B2 (en) Soluble polyfunctional vinyl aromatic copolymer, production method thereof, curable resin composition and cured product thereof
JP6580849B2 (en) Terminal-modified soluble polyfunctional vinyl aromatic copolymer and process for producing the same
JP6833723B2 (en) Soluble polyfunctional vinyl aromatic copolymer, its production method and curable composition
KR102498471B1 (en) Terminal-modified soluble polyfunctional vinyl aromatic copolymer, and curable resin composition and optical waveguide produced using same
JP2018168347A (en) Curable resin composition, cured product of the same, curable composite material, metal foil with resin, and varnish for circuit board material
JP7363781B2 (en) Resin compositions and their applications
JP2009161725A (en) Curable resin composition, curable film, and cured materials of these
JP6216179B2 (en) Curable resin composition and cured product
WO2019130735A1 (en) Polyphenylene ether resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate and wiring board
JP2019178310A (en) Curable resin composition, cured article thereof, curable composite material, metal foil with resin, and resin material for circuit board material
JP2009040934A (en) Curable resin composition
JP2022161968A (en) Resin material and multilayer printed wiring board
JP5797147B2 (en) Aromatic dihydroxy compound, vinyl benzyl ether compound, and curable composition containing the same
TWI830741B (en) Resin compositions and their applications
CN113677761B (en) Resin material and multilayer printed wiring board
WO2023171553A1 (en) Resin composition, cured product, prepreg, metal-foil-clad laminate, resin composite sheet, printed circuit board, and semiconductor device
WO2023048026A1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, printed circuit board, and semiconductor device
WO2023171554A1 (en) Resin composition, cured product, prepreg, metal-foil-clad laminate, resin composite sheet, printed circuit board, and semiconductor device
JP2022134490A (en) Resin material and multilayer printed wiring board
CN117321093A (en) Resin composition, and prepreg, resin-equipped film, resin-equipped metal foil, metal-clad laminate and wiring board using the same
TW202323427A (en) Resin composition, prepreg, metal foil-clad laminated sheet, composite resin sheet, printed wiring board, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559221

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881787

Country of ref document: EP

Kind code of ref document: A1