WO2017115686A1 - Forecasting system, information processing device, forecasting method, and forecasting program - Google Patents

Forecasting system, information processing device, forecasting method, and forecasting program Download PDF

Info

Publication number
WO2017115686A1
WO2017115686A1 PCT/JP2016/087827 JP2016087827W WO2017115686A1 WO 2017115686 A1 WO2017115686 A1 WO 2017115686A1 JP 2016087827 W JP2016087827 W JP 2016087827W WO 2017115686 A1 WO2017115686 A1 WO 2017115686A1
Authority
WO
WIPO (PCT)
Prior art keywords
cloud amount
solar
point
cloud
cell
Prior art date
Application number
PCT/JP2016/087827
Other languages
French (fr)
Japanese (ja)
Inventor
龍 橋本
康将 本間
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017115686A1 publication Critical patent/WO2017115686A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/12Sunshine duration recorders

Definitions

  • the present invention relates to a prediction system, an information processing apparatus, a prediction method, and a prediction program for predicting values of items relating to solar energy.
  • Renewable energy is spreading.
  • solar energy is widely used as an energy source for obtaining heat and electric power. Accordingly, it is required to predict items related to renewable energy with high accuracy.
  • a power generation company that supplies power based on renewable energy predicts the amount of power generated based on renewable energy and makes a power generation plan.
  • the power generation company for example, has to receive power supply from another power generation company, resulting in an economic loss.
  • Patent Document 1 discloses a block through which a straight line connecting a predicted point and the sun passes at a shooting altitude when the amount of solar radiation is predicted using information on clouds extracted from a satellite image obtained by capturing a region including the predicted point. A method for assigning a weight that gives the largest weight to the cloud information is described.
  • the method described in Patent Document 1 applies to a block crossed by a straight line connecting a predicted point and the sun at a predetermined altitude (for example, 5000 m above sea level) that is a cloud image data position on three-dimensional coordinates.
  • a predetermined altitude for example, 5000 m above sea level
  • the technique described in Patent Document 1 does not take into consideration the influence of the cloud amount at an altitude other than a predetermined altitude on the amount of solar radiation at the predicted point. In the first place, it is difficult to determine whether a cloud in a captured image is a cloud located at a predetermined altitude only from the captured image.
  • the method described in Patent Document 1 has a problem that the influence of clouds in the solar direction cannot be correctly reflected in the predicted value.
  • FIG. 15 is an explanatory diagram showing the horizontal distance between a certain point (Tokyo: 139 degrees 45 minutes east longitude, 35 degrees 41 minutes north latitude) and a cloud located in the solar direction when viewed from the point, for each cloud altitude. .
  • FIG. 15 shows the horizontal distance between the point and clouds at each altitude when the elevation angle ⁇ in the sun direction as viewed from the point is 30 degrees, 45 degrees, 60 degrees, and 80 degrees. It is shown. According to FIG.
  • the elevation angle ⁇ in the solar direction refers to an angle in the height direction of the sun in a three-dimensional space when the reference point is the origin.
  • the horizontal angle ⁇ in the solar direction means that the angle of the solar position on the horizontal plane when viewed from the reference point is 0 degrees south.
  • Clouds of various altitudes can exist on the straight line connecting the predicted point and the sun.
  • height information is required as cloud information.
  • clouds at one altitude clouds amount, etc.
  • clouds at two or more altitudes that may exist on the straight line is necessary.
  • the method described in Patent Document 1 treats the height of the cloud at a predetermined one altitude, so that the influence of the cloud actually in the solar direction is not reflected in the predicted value.
  • the amount of solar radiation cannot be accurately predicted, such as being reflected in the predicted value as if there is a cloud not in the sun.
  • an object of the present invention is to provide a prediction system, an information processing apparatus, a prediction method, and a prediction program that can accurately predict items related to solar energy.
  • the prediction system according to the present invention is based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction.
  • the information processing apparatus is based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction.
  • the solar direction cloud amount calculation means for calculating the solar direction cloud amount is provided.
  • the prediction method according to the present invention is based on the cloud amount of each cell when the information processing apparatus divides the sky above a specific point so as to include two or more cells in the height direction.
  • a solar cloud amount that is a cloud amount in the solar direction at the point is calculated, and a prediction target value that is an item relating to solar energy at the first point is predicted using the solar cloud amount.
  • the prediction program causes the computer to perform the calculation at the designated first point based on the cloud amount of each cell when the sky above the specific point is divided so as to include two or more cells in the height direction.
  • a process of calculating a solar cloud amount that is a cloud amount in the solar direction and a process of predicting a prediction target value that is an item relating to solar energy at the first point using the solar cloud amount are performed. .
  • FIG. 3 is a block diagram illustrating a configuration example of a cloud amount calculation unit 4.
  • FIG. It is explanatory drawing which shows the example of the locus
  • the item related to solar energy is the amount of solar radiation and the prediction system of the present invention predicts the amount of solar radiation in the future
  • the prediction target is not limited to the amount of solar radiation, and may be an item relating to solar energy.
  • the prediction target may be the amount of power generated based on solar energy.
  • various things such as an increase in the temperature of a building and an influence on agricultural products can be considered.
  • FIG. FIG. 1 is a block diagram illustrating an example of a prediction system according to the first embodiment of this invention.
  • a prediction system 1 illustrated in FIG. 1 includes a prediction condition acquisition unit 2, a performance value acquisition unit 3, a cloud amount calculation unit 4, a learning unit 5, and a prediction unit 6.
  • the prediction condition acquisition unit 2 acquires information on a prediction point and a prediction time that is a time to be predicted as a prediction condition.
  • the prediction condition acquisition unit 2 includes, for example, a user interface and a network interface, and may acquire position information of the predicted point and information (time information) of the predicted time via these interfaces.
  • the predicted point and the predicted time are the point and time at which the prediction system 1 can acquire a cloud amount or a forecast value of an amount correlated with the cloud amount at the predicted time in a predetermined range including the predicted point. There is no particular limitation.
  • the predicted time may be one time point in the future, such as 12:00 on the year, month, day of the year, or a future time, such as from 12:00 to 13:00 on the day of the year, month, month, and day. It may be a period including a plurality of time points. In that case, an average value or a sum value of a plurality of time points included in the period may be a value in the period.
  • a time-series range that can be set as the predicted time may be determined in advance.
  • the actual value acquisition unit 3 acquires the actual value of the prediction target (in this example, the amount of solar radiation).
  • the actual value acquisition unit 3 may acquire, as the actual value, a prediction target value actually observed at a certain point at a plurality of past times corresponding to the predicted time, for example.
  • the plurality of past times corresponding to the predicted time may be, for example, the same time (hour) as the predicted time in each day for a predetermined period past the predicted time.
  • the time before and after the predicted time may be included.
  • the point from which the actual value is acquired may be, for example, a predicted point or any other point.
  • the cloud amount calculation unit 4 calculates the cloud amount in the solar direction (hereinafter referred to as solar direction cloud amount) at the specified point and at the specified time for learning and prediction. For example, the cloud amount calculation unit 4 may calculate the solar cloud amount at the point and time at which the actual value acquisition unit 3 acquired the actual value in accordance with an instruction from the prediction condition acquisition unit 2 as learning data. .
  • the cloud amount in the solar direction calculated by the cloud amount calculation unit 4 is associated with the actual measurement value of the prediction target at the same time at the same point, and provided to the learning unit 5 described later.
  • the cloud amount calculation unit 4 calculates the cloud amount in the solar direction (predicted value) at the prediction time of the prediction point as the prediction data.
  • the learning unit 5 uses the past prediction target actual value acquired by the actual value acquisition unit 3 and the past solar direction cloud amount correlated with the actual result value calculated by the cloud amount calculation unit 4 to determine whether the prediction target and the solar Learn the relationship with directional cloud cover.
  • the method of learning (machine learning) by the learning unit 5 is not particularly limited. For example, a support vector machine, a neural network, regression analysis, or the like can be used.
  • the prediction unit 6 is a learning result by the learning unit 5, which is information indicating the relationship between the prediction target and the solar direction cloud amount, and the solar direction cloud amount (predicted value) at the prediction time of the prediction point calculated by the cloud amount calculation unit 4. Based on this, the value of the prediction target (in this example, the amount of solar radiation) at the prediction time of the prediction point is predicted.
  • information for example, temperature, humidity, etc.
  • information other than the solar directional cloud amount that affects the prediction target can be further used as an explanatory variable.
  • FIG. 2 is a block diagram illustrating a configuration example of the cloud amount calculation unit 4. 2 includes a solar direction calculation unit 41, a three-dimensional cloud amount information acquisition unit 42, and a solar direction cloud amount calculation unit 43.
  • the solar direction calculation unit 41 calculates the angle information of the sun at the designated point and time.
  • the sun direction calculation unit 41 may calculate, for example, the elevation angle ⁇ and the horizontal angle ⁇ in the sun direction when the sun is viewed from a specified point at a specified time.
  • FIG. 3 is an explanatory diagram showing a one-day trajectory of the sun as seen from a reference point.
  • the X, Y, and Z axes in the upper graph in FIG. 3 correspond to the X, Y, and Z axes in FIG. 16.
  • the horizontal axis of each graph in the lower stage represents time [hour].
  • the vertical axis of the lower left graph represents the elevation angle ⁇ [degree] in the solar direction
  • the vertical axis of the lower right graph represents the horizontal angle ⁇ [degree] in the solar direction.
  • the three-dimensional cloud amount information acquisition unit 42 acquires three-dimensional GPV (Grid Point Value) data of forecast values related to weather.
  • the GPV data includes not only at least two divided regions in the horizontal direction but also at least two layers in the height direction as cells constituting the grid.
  • the GPV data includes at least a cloud amount at each grid point or an amount correlated with the cloud amount as a forecast value related to weather.
  • grid points in GPV data are points that represent values in each cell included in the grid when the area to be distributed is divided into a predetermined grid (two-dimensional or three-dimensional grid) (for example, the center) ).
  • the forecast value related to the weather at each grid point indicated by the GPV data is considered to be uniform within the cell to which the grid point corresponds.
  • the three-dimensional cloud amount information acquisition unit 42 converts a three-dimensional space including a predetermined range of the ground surface including a specified point and the sky thereof into two or more divided regions in the horizontal direction and two or more layers in the height direction.
  • Three-dimensional GPV data including at least a cloud amount at a specified time or a value having an amount correlated with the cloud amount at each lattice point of the grid when the grid is divided so as to have a grid may be acquired.
  • the upper limit of the sky may be set to a predetermined height at which clouds are generally generated (for example, 13 km above sea level).
  • the GPV data may be, for example, weather forecast data periodically distributed by a weather forecast data distribution company if the predicted location is Japan.
  • weather forecast data include, for example, upper cloud cover, middle cloud cover, and cloud cover at each grid point obtained by dividing the ground surface in the range of 22.4 to 47.6 degrees north latitude and 120 to 150 degrees east longitude into 5 km meshes.
  • GPV data called Meso ⁇ Spectral Model (MSM), which includes 39 hours of forecast values of hourly intervals of the lower cloud cover, can be mentioned.
  • MSM Meso ⁇ Spectral Model
  • you can also use GPV data such as a local numerical forecast model (LFM) or a global numerical forecast model (Global Spectral Model; GMS) depending on the location and time you want to predict. It is.
  • LFM local numerical forecast model
  • GMS global numerical forecast model
  • the lattice size is not limited to a 5 km mesh, and may be, for example, a 2 km mesh, a 1 km mesh, or a finer mesh.
  • the GPV data acquired by the three-dimensional cloud amount information acquisition unit 42 is not limited to existing weather forecast data.
  • the three-dimensional cloud amount information acquisition unit 42 may create the GPV data by calculation.
  • the solar direction cloud amount calculation unit 43 is designated based on the position information of the designated point, the sun angle information calculated by the solar direction calculation unit 41, and the GPV data acquired by the three-dimensional cloud amount information acquisition unit 42. Calculate the cloud amount in the solar direction at the point and time.
  • FIG. 4 is an explanatory diagram showing an example of lattice points to which GPV data corresponds, together with an example of the solar direction at the predicted point.
  • FIG. 4A shows an example of lattice points in the horizontal direction and an example of the sun direction (horizontal angle ⁇ ) at the predicted point.
  • FIG. 4B shows an example of lattice points in the height direction and an example of the sun direction (elevation angle ⁇ ) at the predicted point.
  • black circles represent points (lattice points) to which information (forecast values) of cloud amounts or amounts correlated with the cloud amounts are given.
  • FIG. 4 shows only some lattice points, but there is one lattice point per cell. That is, in this example, there is a cloud amount or a forecast value having an amount correlated with the cloud amount for each cell.
  • the cell through which a straight line representing the solar direction passes from the position information of the predicted point, the angle information of the sun, and the position information of each cell (including the width information in the horizontal direction and the height direction). Can be specified.
  • the solar direction cloud amount calculation unit 43 calculates a straight line representing the solar direction among the cells in the three-dimensional space corresponding to the GPV data from the position information of the designated point and the angle information of the sun at the designated time. Identify the cell that passes through.
  • the solar direction cloud amount calculation unit 43 specifies a cell through which the straight line passes, the solar direction cloud amount calculation unit 43 calculates the solar direction cloud amount based on the cloud amount in the specified cell.
  • the cloud amount in each cell is obtained, for example, by referring to a forecast value of the cloud amount at a lattice point in GPV data or by calculating from an amount correlated with the cloud amount.
  • the sun direction cloud amount calculation unit 43 may add the cloud amount in all cells through which the straight line passes to be the sun direction cloud amount at a specified time at a specified point. Moreover, the solar direction cloud amount calculation part 43 may calculate the solar direction cloud amount at the designated time of the designated point further using the passing distance of the straight line in the cell.
  • FIG. 5 is an explanatory diagram showing an example of the passage distance of the straight line in a certain cell. In FIG. 5, r i represents a passing distance in a straight cell i representing the sun direction.
  • the solar direction cloud amount calculation unit 43 calculates the cloud amount of the cell layer i passing through a straight line representing the solar direction at the time t at the designated point, c layer i (t), and the intra-cell passing distance of the cell r layer i (t ),
  • the solar cloud amount C layer (t) for each layer (lower layer, middle layer, upper layer) may be obtained using the following equation (1).
  • i is an identifier for identifying a cell through which a straight line representing the sun direction passes at a designated point in time t in a layer indicated by the layer.
  • equation (1) the weighted sum of the amount of cloud in the cell was obtained for each layer, with the passage distance in the cell of the straight line representing the sun direction as a weight, for each layer. Above, the result is divided by the sum of the passage distances of the straight lines in the layer to normalize the solar cloud amount for each layer, but the normalization process may be omitted. Moreover, in Formula (1), although the solar direction cloud amount was calculated
  • the prediction condition acquisition unit 2 and the actual value acquisition unit 3 are realized by, for example, a CPU that operates according to a program and various information input means.
  • the cloud amount calculation unit 4, the learning unit 5, and the prediction unit 6 are realized by a CPU or the like that operates according to a program, for example.
  • FIG. 1 shows an example in which the cloud amount calculation unit 4 calculates both the solar direction cloud amount at the past time as the learning data and the solar direction cloud amount at the future time as the prediction data.
  • the prediction system may separately include a processing unit that calculates a solar cloud amount at a past time as learning data and a processing unit that calculates a solar cloud amount at a future time as prediction data.
  • FIG. 6 is a flowchart showing an example of the operation of the present embodiment.
  • the prediction condition acquisition unit 2 acquires a prediction condition (step S ⁇ b> 101).
  • the prediction condition acquisition unit 2 acquires at least information on the position of the prediction point and the prediction time as the prediction condition.
  • the actual value acquisition unit 3 acquires a past predicted target actual value (irradiation amount) as learning data (step S102).
  • the actual value acquisition unit 3 may acquire, for example, the amount of solar radiation S (t) at a plurality of past times t corresponding to the predicted time at the predicted point.
  • the time t applied to the learning data may be the same time on each day for a predetermined number of days (for example, one month) past the predicted time. For example, when the predicted time is 10:00 on April 3, 2012, the above time t may be the following set of times.
  • the cloud amount calculation unit 4 calculates the solar direction cloud amount at the point and time at which the actual value acquisition unit 3 acquired the actual value (step S103).
  • the cloud amount calculation unit 4 uses, for example, the above formula (1), and the solar direction cloud amounts C u (t), C m (t), and C l (for each layer at a plurality of past times t of the prediction point. t) may be calculated.
  • the learning unit 5 determines the prediction target and the sun based on the past prediction target actual value obtained in step S102 and the solar cloud amount at the same point and time as the actual value obtained in step S103.
  • the relationship with the amount of directional clouds is learned (step S104: learning process).
  • the learning unit 5 calculates the solar cloud amounts C u (t), C m (t), and C l (t) for each layer at a plurality of past times t at the prediction point obtained by the cloud amount calculation unit 4.
  • Machine learning may be performed using the solar radiation amount S (t) at the predicted point at time t as the explanatory variable, and the function F as expressed by the following equation (2) may be obtained.
  • the cloud amount calculation unit 4 calculates (estimates) the cloud amount in the solar direction at the predicted time of the predicted point using the predicted value at the predicted time indicated by the GPV data (step S105).
  • the cloud amount calculation unit 4 uses the GPV data including the predicted value at the time t ′ and uses the solar direction cloud amount C u (t ′), for each layer at the predicted time point t ′.
  • C m (t ′) and C l (t ′) may be calculated using the above equation (1).
  • the prediction unit 6 calculates the prediction target value (predicted value of solar radiation amount) at the prediction time of the prediction point. Calculate (step S106: prediction process).
  • the prediction unit 6 uses the predicted point calculated by the cloud amount calculation unit 4 for the function F and the solar direction cloud amount C u () for each layer at the prediction time t ′.
  • the solar radiation amount S (t ′) at the prediction point and the prediction time may be obtained by substituting t ′), C m (t ′), and C l (t ′).
  • the prediction unit 6 outputs a prediction result (step S107).
  • the designation is made based on the cloud amount in each cell included in the three-dimensional grid divided so as to include at least two cells in the height direction as well as the horizontal direction. Since the cloud amount in the solar direction at the designated time at the designated point is calculated and used for learning and prediction, prediction with high accuracy can be performed.
  • FIG. 6 illustrates an example in which the learning unit 5 performs learning after acquiring the prediction condition.
  • the learning unit 5 performs learning at a plurality of times at predetermined points, for example. It is also possible to generate data for learning (a pair of the actual value and the cloud amount in the solar direction) and perform learning, and store the learning result.
  • the prediction unit 6 can perform prediction using the learning result of the closest condition after acquiring the prediction condition.
  • the learning unit 5 may perform learning by dividing learning data for each point, season, or time period, or may perform learning without dividing learning data.
  • the learning unit 5 adds the time t before and after the time t.
  • the times t ⁇ 1 and t + 1 may be set as the time of learning data.
  • the learning unit 5 may obtain a function F represented by the following expression (3) by opportunity learning. Even if the straight line representing the solar direction differs in the time zone and the total passing distance through the cell in the sky is different, if the cloud amount in the solar direction is standardized, learning is not affected by the difference. Can do.
  • the learning unit 5 may use the following data at time t for learning.
  • the upper, middle and lower cloud cover directly above the target point the temperature, humidity, theoretical solar radiation, extraneous solar radiation, maximum cloud top height, cloud base height, etc. May be added to
  • the “cloud amount” is not particularly limited as long as it is a cloud-related amount.
  • the cloud amount may be, for example, a cloud generation probability, a cloud thickness, a wet number, a cloud area, or the like in addition to the cloud amount [%] used for GPV data.
  • the cloud amount calculation unit 4 may correct the calculated solar cloud amount based on the state of eclipse and the presence or absence of shielding (buildings or trees) at each point. For example, it is possible to assume that the amount of clouds is infinite during a solar eclipse or when there is a shield.
  • Embodiment 2 a second embodiment will be described with reference to the drawings.
  • the GPV data does not include the cloud amount of each lattice point, and includes a correlated amount in the cloud amount of each lattice point.
  • the configuration of the prediction system of this embodiment may be the same as that of the first embodiment shown in FIG.
  • the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the cloud amount calculation unit 4 of the present embodiment calculates the solar direction cloud amount at a specified time at a specified point using information correlated with the cloud amount of each lattice point included in the GPV data.
  • the cloud amount calculation unit 4 of the present embodiment uses a three-dimensional grid whose height direction is divided by the atmospheric pressure surface. Then, the cloud amount calculation unit 4 calculates the temperature and humidity of each lattice point in the grid (two-dimensional grid) on the ground surface as the amount corresponding to the cloud amount in each cell included in such a three-dimensional grid, and the target region. Using the relative humidity at each atmospheric pressure surface in the sky, the humidity number at an altitude corresponding to each atmospheric pressure surface at each lattice point of the two-dimensional grid is obtained.
  • FIG. 7 is an explanatory diagram showing a correspondence between lattice points in the GPV data of the present embodiment and straight lines representing the sun direction at the predicted points.
  • pseudo lattice points in the height direction are set by using the air pressure surface indicated by the GPV data as a cell division (division standard) in the height direction.
  • the horizontal cell division may be the same as in the first embodiment. That is, it may be determined by the value of latitude and longitude.
  • FIG. 7 is an explanatory diagram showing a correspondence between lattice points in the GPV data of the present embodiment and straight lines representing the sun direction at the predicted points.
  • pseudo lattice points in the height direction are set by using the air pressure surface indicated by the GPV data as a cell division (division standard) in the height direction.
  • the horizontal cell division may be the same as in the first embodiment. That is, it may be determined by the value of latitude and longitude.
  • the width of the height direction of the cell which points to the same atmospheric pressure surface shows the example which does not change with points
  • the width of the height direction of the cell which points to the same atmospheric pressure surface is on the ground surface It may be different for each point (lattice point in a two-dimensional grid defined on the ground surface). Also, for example, within the range through which the straight line representing the solar direction passes, assuming that the height of the air pressure surface does not change much depending on the point, the amount of calculation is reduced by applying the height of each air pressure surface at the predicted point to other points. May be. In that case, as shown in FIG. 7, the width in the height direction of the cells pointing to the same atmospheric pressure surface does not change depending on the point.
  • the height of the air pressure surface for each point it is also possible to obtain the height of the air pressure surface for each point and use it as a cell division in the height direction above the point.
  • the width in the height direction of the cell pointing to the same atmospheric pressure surface may vary depending on the point. Even if the height direction width of cells pointing to the same barometric surface is different depending on the point, if the three-dimensional space is divided into cells without exception and the three-dimensional grid is configured, the position information of the predicted point and From the angle information of the sun and the position information of each cell (including information on the width in the horizontal direction and the height direction), the cell through which the straight line representing the solar direction passes can be specified.
  • the three-dimensional cloud amount information acquisition unit 42 divides the ground surface including the designated point so as to include two or more divided regions, and the temperature, humidity, and GPV data including at least the atmospheric pressure and the relative humidity on each atmospheric pressure surface at a specified time above the ground surface is acquired.
  • the GPV data of this embodiment does not have to be exact three-dimensional GPV data. That is, the three-dimensional cloud amount information acquisition unit 42 adds the forecast value (at least temperature, humidity, and atmospheric pressure) related to the weather at each lattice point of the two-dimensional grid obtained by dividing the ground surface including the designated point in the horizontal direction. What is necessary is just to acquire the GPV data containing the predicted value of the relative humidity in two or more different atmospheric pressure surfaces above the ground surface.
  • the air temperature, humidity, and air pressure on the ground surface at each lattice point on the ground surface and the relative humidity on each air pressure surface correspond to an amount correlated with the cloud amount at each lattice point in the three-dimensional space.
  • the solar direction cloud amount calculation unit 43 uses the altitude information to determine the position of each cell in the height direction above the target area. It may be determined. As an example, the solar direction cloud amount calculation unit 43 sets the sky above the target region so that the height corresponding to the altitude of each atmospheric pressure surface where relative humidity is indicated in the GPV data is located at the center of each cell in the height direction. You may divide into the above layers.
  • tg is the ground temperature at the designated point
  • pg is the ground pressure at the designated point.
  • Equation (5) is an example of a method for obtaining the cell width th i in the height direction using the obtained altitude of the atmospheric pressure surface.
  • the solar direction cloud amount calculation unit 43 can divide the three-dimensional space including the ground surface including the designated point and the space above it so as to include two or more layers in the height direction. Then, the solar direction cloud amount calculation unit 43 uses the ground surface temperature (air temperature), the humidity, the atmospheric pressure, and the relative humidity at each atmospheric pressure surface, which are correlated with the cloud amount at each lattice point, to specify the cloud amount. The cloud amount in the solar direction at the designated time of the designated point may be obtained.
  • the solar direction cloud amount calculation unit 43 for example, for each cell through which a straight line representing the solar direction passes based on the temperature T and the relative humidity RH at the designated time t in each cell (each point and each atmospheric pressure surface).
  • the dew point temperature Td in the cell may be obtained, and the wet number H corresponding to the cloud amount in the cell may be obtained from the obtained dew point temperature Td.
  • the following equation (6) can be used.
  • the wet number H from the temperature T and the dew point temperature Td for example, the following equation (7) can be used.
  • the solar direction cloud amount calculation unit 43 may obtain the wet number H j i (t) of the cell through which the straight line passes as the cloud amount c j i (t) in the cell, using, for example, the equation (7).
  • j represents an identifier for identifying a pressure surface
  • i represents an identifier for identifying a cell on the pressure surface.
  • the solar cloud amount calculation unit 43 may further calculate the cloud amount c j i (t) in the cell by performing the following calculation from the obtained wet number H j i (t).
  • Formula (8) is a calculation formula for excluding the influence of a wet number (a value greater than 3) that is generally considered to be free of clouds.
  • the solar direction cloud amount calculation unit 43 uses the same method as in the first embodiment, The solar cloud amount may be calculated based on the cloud amount.
  • the solar direction cloud amount calculation unit 43 may use, for example, the sum of the cloud amounts of cells passing through a straight line representing the solar direction as the solar direction cloud amount, and further, the passage distance of the straight line in each cell
  • the cloud amount may be weighted, and the sum of the weights may be used to calculate the solar direction cloud amount.
  • the solar cloud amount calculation unit 43 may normalize the solar cloud amount by dividing by the sum of the passing distances.
  • FIG. 8 is an explanatory diagram illustrating an example of a passing distance in a straight cell representing the sun direction in the present embodiment.
  • the solar direction cloud amount calculation unit 43 uses the following formula (9) to calculate the sun for each layer.
  • the directional cloud amount may be obtained.
  • layer is an identifier for identifying the atmospheric pressure surface, and corresponds to the above j.
  • C layer (t) is a cloud amount in the solar direction on the atmospheric pressure surface indicated by layer at time t of the designated point.
  • c layer i (t) is a cloud amount at time t in the cell indicated by i on the atmospheric pressure surface indicated by layer.
  • r layer i (t) is a passing distance of the straight line at time t in the cell indicated by i on the atmospheric pressure surface indicated by layer.
  • the learning unit 5 of the present embodiment for example, the solar cloud amounts C 1 (t), C 2 (t),... For each layer (for each atmospheric pressure surface) at a plurality of past times t obtained by the cloud amount calculation unit 4. .. , C j_max (t) is an explanatory variable, and the solar radiation amount S (t) at the predicted point at time t is machined to be an explanatory variable, and a function F as expressed by the following equation (10) is performed. You may get Note that j_max is the number of air pressure surfaces (number of divisions).
  • the prediction unit 6 uses the predicted point calculated by the cloud amount calculation unit 4 for the function F and the solar cloud amount C for each layer at the prediction time t ′. Substituting 1 (t ′), C 2 (t ′),..., C j_max (t ′), the solar radiation amount S (t ′) at the predicted point and the predicted time t ′ may be obtained.
  • the height direction is determined using the amount correlated with the cloud amount included in the GPV data.
  • the cloud amount in each cell divided so as to include two or more cells can be obtained.
  • cells in the height direction can be subdivided based on the atmospheric pressure that has a high correlation with the cloud amount, so that more accurate learning is possible. And can make predictions.
  • Other points are the same as in the first embodiment.
  • Embodiment 3 calculates the solar directional cloud amount at the predicted time of the predicted point based on the cloud amount in the cell through which the straight line representing the solar direction at the predicted time of the predicted point passes without using the learning data.
  • the value of the prediction target (in this example, the amount of solar radiation) at the predicted time of the point is predicted.
  • FIG. 9 is a block diagram illustrating an example of the prediction system of the third embodiment.
  • the prediction system 1 of this embodiment includes a prediction condition acquisition unit 2, a cloud amount calculation unit 4a, and a prediction unit 6a.
  • symbol is attached
  • the cloud amount calculation unit 4a calculates the cloud amount in the solar direction at a specified point and at a specified time for prediction.
  • the cloud amount calculation unit 4a calculates, for example, the solar direction cloud amount (prediction value) at the prediction time of the prediction point as the prediction data.
  • the solar cloud amount information calculated in the present embodiment includes the cloud amount in each cell through which a straight line representing the solar direction passes or the solar cloud amount for each layer.
  • the prediction unit 6a determines the value of the prediction target (in this example, the amount of solar radiation) at the prediction time of the prediction point based on the solar cloud amount (prediction value) at the prediction time of the prediction point calculated by the cloud amount calculation unit 4a. Predict.
  • the prediction unit 6a may predict the value of the prediction target at the prediction time of the prediction point, for example, by weighting the solar cloud amount for each layer calculated by the cloud amount calculation unit 4a. For example, the prediction unit 6a calculates the cloud amount in each cell through which a straight line representing the solar direction included in the solar direction cloud amount (predicted value) at the prediction time of the prediction point passes, in the height direction position of the cell in the three-dimensional grid ( In other words, weighting may be performed based on the height of the grid to predict the value of the prediction target at the prediction time of the prediction point. At this time, the prediction unit 6a may give a smaller weight to the cloud amount of a cell having a higher height in the three-dimensional grid. This is because the high-rise clouds are thin and the low-rise clouds are dark, so that clouds at higher positions are more likely to transmit sunlight than clouds at lower positions.
  • the prediction unit 6a calculates, for example, a weighted sum of the sun direction cloud amount for each layer according to the assigned weight, and represents a relationship between a predetermined weighted sum of the sun direction cloud amount for each layer and a prediction target, The value of the prediction target at the prediction time of the prediction point may be calculated by substituting the calculated weighted sum.
  • a predetermined weight is applied to the solar cloud amount, and then the prediction target value at the prediction time of the prediction point is calculated. Therefore, it is possible to appropriately reflect the influence on the predicted value of clouds in different solar directions depending on the height. Therefore, the item regarding solar energy can be accurately predicted.
  • all the cells that pass through the straight line representing the solar direction are used for calculating the amount of cloud.
  • the maximum cloud top height a buoyancy zero altitude (Level of Neutral bouyancy; LNB) can be used.
  • LNB Level of Neutral bouyancy
  • LCL lifted solidification point height
  • LCL and LNB As a calculation method of LCL and LNB, for example, a generally known method of obtaining from an equivalent temperature level, or a method of obtaining from the ground temperature T and dew point temperature Td may be used.
  • FIG. 11 is an explanatory diagram showing an outline of an LNB calculation method.
  • the solar direction cloud amount calculation unit 43 may calculate the LNB by a method as shown in FIG. 11, for example.
  • the state of the temperature at each altitude is plotted on an emagram and a state curve is created. Then, using the altitude indicated by the ground surface pressure (the ground surface height) as a starting altitude, the plot point of the pressure and temperature is raised on the dry insulation line, and when reaching the altitude (atmosphere) corresponding to the LCL, it is raised on the wet insulation line. The intersection point where the state curve finally exceeds the wet heat insulation line is defined as LNB.
  • FIG. 12 is an explanatory diagram showing a comparison between the actual solar radiation amount, the predicted value of the solar radiation amount according to the first embodiment, and the solar radiation amount predicted using the cloud amount directly above.
  • the horizontal axis represents the elapsed time when 0:00 of a certain date and time is set to 0, and the vertical axis represents the amount of sunlight.
  • the data shown in FIG. 12 is data when the predicted time is set at one hour intervals in a period of three days in mid-January. From FIG. 12, it can be seen that the method according to the first embodiment can obtain a predicted value closer to the actual value than the method using the cloud amount directly above.
  • the cloud amount calculation method used for learning and prediction may be switched according to the season and the elevation angle in the sun direction. In other words, when the predicted time is a predetermined season such as summer, or when the elevation angle in the solar direction at the predicted time is greater than or equal to a predetermined angle, calculation is performed using the cloud amount directly above as the cloud amount used for learning and prediction.
  • the cloud amount in the solar direction may be used as the cloud amount used for learning and prediction.
  • FIG. 13 is a block diagram showing an outline of a prediction system according to the present invention.
  • the prediction system according to the present invention includes solar direction cloud amount calculation means 101 and prediction means 102.
  • the solar direction cloud amount calculation means 101 calculates the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction. Based on this, the solar cloud amount that is the cloud amount in the solar direction at the designated first point is calculated.
  • the specific point may be, for example, predetermined grid points on the ground surface including the designated first point.
  • the prediction unit 102 (for example, the prediction unit 6) predicts the value of the prediction target, which is an item related to solar energy at the first point, using the solar direction cloud amount calculated by the solar direction cloud amount calculation unit 101.
  • FIG. 14 is a block diagram showing a configuration example of the information processing apparatus according to the present invention.
  • the information processing apparatus according to the present invention includes the solar cloud amount calculation unit 101 described above.
  • the amount of cloud in the solar direction that has a particularly large impact on items related to solar energy can be determined in consideration of the altitude information of the cloud, so it is effective for all applications that require such cloud amount. Information can be provided.
  • Solar direction cloud amount calculating means for calculating a solar direction cloud amount that is a cloud amount in the solar direction at the first point, based on the cloud amount in the cell through which a straight line connecting the first point and the sun of the cell passes.
  • a prediction system comprising: a prediction unit that predicts a value of a prediction target that is an item related to solar energy at the first point using the amount of cloud in the solar direction.
  • the solar direction cloud amount calculation unit calculates, as learning data, the solar direction cloud amount at a plurality of past times corresponding to the predicted time of the first point that is the predicted point. At the same time, as the prediction data, the solar cloud amount at the prediction time of the first point which is the prediction point is calculated, and the prediction unit converts the learning result by the learning unit and the solar cloud amount calculated as the prediction data.
  • the prediction system according to supplementary note 1, wherein the prediction target value at the prediction time of the first point that is the prediction point is predicted based on the prediction point.
  • 3D cloud amount information acquisition means for acquiring GPV data including a forecast value of a cloud amount at a specified time or an amount correlated with the cloud amount at each grid point of the grid, and the solar direction cloud amount calculation means uses GPV data
  • the prediction system according to Supplementary Note 1 or Supplementary Note 2, wherein a solar cloud amount that is a cloud amount in the solar direction at a specified time at a first point is calculated.
  • the GPV data includes temperature, humidity and atmospheric pressure at each of the lattice points on the ground surface, and relative humidity at two or more atmospheric pressure planes above the ground surface as quantities correlated with the cloud amount.
  • the solar cloud amount calculation means is based on the temperature, humidity, and atmospheric pressure at each of predetermined lattice points on the ground surface included in the GPV data, and relative humidity at two or more atmospheric pressure surfaces above the ground surface.
  • the 3D grid is set by dividing the ground surface including the first point and the sky above it by a grid point on the ground surface and two or more air pressure surfaces above the ground surface, and setting the 3D grid.
  • the wet number in the cell is calculated as the amount of cloud in the cell through which the straight line connecting the first point and the sun passes, and the sun at the first point is calculated based on the calculated wet number
  • Solar direction cloud amount calculation means for calculating a solar direction cloud amount that is a cloud amount in the solar direction at the first point based on a cloud amount in a cell through which a straight line connecting the first point and the sun passes
  • the information processing apparatus divides the ground surface including the designated first point and the sky so as to include two or more cells in the horizontal direction and two or more cells in the height direction. Based on the cloud amount in the cell through which the straight line connecting the first point and the sun passes among each cell included in the three-dimensional grid, the solar direction cloud amount that is the cloud amount in the solar direction at the first point is calculated.
  • a prediction method characterized by predicting a prediction target value, which is an item relating to solar energy at the first point, using the calculated cloud amount in the solar direction.
  • the present invention is not limited to the use of predicting items related to solar energy, but can be suitably applied to a use of performing some calculation using the cloud amount in the solar direction.

Landscapes

  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A forecasting system is provided with: a sun-direction-cloudiness calculation means 101 for calculating sun-direction cloudiness on the basis of the degree of cloudiness of cells when the sky above a specified location is divided so as to include two or more cells along the height direction, the sun-direction cloudiness being the degree of cloudiness in the direction of the sun at a designated first location; and a forecasting means 102 for forecasting a forecasted value using the sun-direction cloudiness, the forecasted value being a category pertaining to solar energy. The degree of cloudiness of the cells may be the degree of cloudiness of the cells when the surface of the ground including the first location, together with the sky above said surface, is divided so as to include two or more cells along the horizontal direction in addition to including two or more cells along the height direction. It is permissible for the sun-direction-cloudiness calculation means 101 to calculate the sun-direction cloudiness on the basis of the degree of cloudiness of a cell, from among cells of such description, through which a straight line connecting the first location and the sun passes.

Description

予測システム、情報処理装置、予測方法および予測プログラムPrediction system, information processing apparatus, prediction method, and prediction program
 本発明は、太陽エネルギーに関する項目の値を予測する予測システム、情報処理装置、予測方法および予測プログラムに関する。 The present invention relates to a prediction system, an information processing apparatus, a prediction method, and a prediction program for predicting values of items relating to solar energy.
 再生可能エネルギーの普及が進んでいる。特に、太陽エネルギーは、熱や電力等を得るエネルギー源として幅広く利用されている。これに伴い、再生可能エネルギーに関する項目を高い精度で予測することが要求されている。 Renewable energy is spreading. In particular, solar energy is widely used as an energy source for obtaining heat and electric power. Accordingly, it is required to predict items related to renewable energy with high accuracy.
 例えば、再生可能エネルギーに基づく電力を供給する発電事業者(例えば、特定規模電気事業者や独立発電事業者)は、再生可能エネルギーに基づく電力の発電量を予測し、発電計画を立てる。しかし、実際の発電量が予測値よりも低くなった場合、その発電事業者は、例えば、他の発電事業者から電力の供給を受けなければならなくなり、経済的な損失が生じる。 For example, a power generation company that supplies power based on renewable energy (for example, a specific-scale electric power company or an independent power generation company) predicts the amount of power generated based on renewable energy and makes a power generation plan. However, when the actual power generation amount becomes lower than the predicted value, the power generation company, for example, has to receive power supply from another power generation company, resulting in an economic loss.
 ところで、太陽エネルギーは天候に大きく影響される。このため、太陽エネルギーに関する項目を高い精度で予測することは難しい。なお、太陽エネルギーに関する項目として、太陽エネルギーに基づく電力の発電量、日射量等が挙げられるが、該項目はこれらに限定されない。 By the way, solar energy is greatly affected by the weather. For this reason, it is difficult to predict items related to solar energy with high accuracy. In addition, although the amount of electric power generation based on solar energy, the amount of solar radiation, etc. are mentioned as an item regarding solar energy, This item is not limited to these.
 太陽エネルギーに関する項目の一つである日射量を予測する方法として、予測したい地点の直上の雲量を利用して日照量を予測する方法がある。しかし、日射量に影響を与える雲は、直上に位置するものに限られない。このように、直上の雲量を利用する方法は、精度の高い予測値が得られないという問題がある。 As a method for predicting the amount of solar radiation, which is one of the items related to solar energy, there is a method for predicting the amount of sunlight using the cloud amount directly above the point to be predicted. However, the clouds that affect the amount of solar radiation are not limited to those located directly above. Thus, the method using the cloud amount directly above has a problem that a highly accurate predicted value cannot be obtained.
 そこで、特許文献1には、予測地点を含む領域を撮影した衛星画像から抽出される雲の情報を用いて日射量を予測する際に、撮影高度において予測地点と太陽とを結ぶ直線が通るブロックの雲の情報に対する重みが最も大きくなるような重みを付与する方法が記載されている。 Therefore, Patent Document 1 discloses a block through which a straight line connecting a predicted point and the sun passes at a shooting altitude when the amount of solar radiation is predicted using information on clouds extracted from a satellite image obtained by capturing a region including the predicted point. A method for assigning a weight that gives the largest weight to the cloud information is described.
 より具体的には、特許文献1に記載の方法は、三次元座標上の雲画像データ位置とされる所定の高度(例えば、海抜5000m)において予測地点と太陽を結ぶ直線が横切るブロックに対して最も大きい重みを付与することにより、その高度のいて予測地点から見て太陽方向にある雲の情報が最も予測値に反映されるようにしている。しかし、特許文献1に記載の技術は、所定の高度以外の高度にある雲量が予測地点の日射量に与える影響について何ら考慮していない。そもそも、撮影画像に写っている雲が所定の高度に位置する雲であるかどうかの判別を撮影画像だけで行うのは困難である。このように特許文献1に記載の方法は、太陽方向にある雲の影響を正しく予測値に反映できないという問題がある。 More specifically, the method described in Patent Document 1 applies to a block crossed by a straight line connecting a predicted point and the sun at a predetermined altitude (for example, 5000 m above sea level) that is a cloud image data position on three-dimensional coordinates. By assigning the largest weight, the information on the cloud at the altitude and in the sun direction as viewed from the predicted point is reflected in the predicted value most. However, the technique described in Patent Document 1 does not take into consideration the influence of the cloud amount at an altitude other than a predetermined altitude on the amount of solar radiation at the predicted point. In the first place, it is difficult to determine whether a cloud in a captured image is a cloud located at a predetermined altitude only from the captured image. As described above, the method described in Patent Document 1 has a problem that the influence of clouds in the solar direction cannot be correctly reflected in the predicted value.
 図15は、ある地点(東京:東経139度45分、北緯35度41分)と、該地点から見て太陽方向に位置する雲との水平距離を、雲の高度ごとに示す説明図である。なお、図15には、太陽高度として該地点から見た太陽方向の仰角φが30度、45度、60度、80度のときの、該地点と各高度の雲との間の水平距離が示されている。図15によれば、冬至の12時のように太陽方向の仰角φが比較的低い(例えば、30度)とき、下層(例えば、高度0.2km)にある雲と、上層(例えば、高度15.85km)にある雲とでは、水平距離にして27km以上離れていることがわかる。ここで、太陽方向の仰角φは、図16に示すように、基準とする地点を原点とした場合の三次元空間における太陽の高さ方向の角度をいう。また、以下、太陽方向の水平角度θといった場合には、基準とする地点から見たときの太陽位置の水平面上での角度を、南を0度として示したものをいう。 FIG. 15 is an explanatory diagram showing the horizontal distance between a certain point (Tokyo: 139 degrees 45 minutes east longitude, 35 degrees 41 minutes north latitude) and a cloud located in the solar direction when viewed from the point, for each cloud altitude. . FIG. 15 shows the horizontal distance between the point and clouds at each altitude when the elevation angle φ in the sun direction as viewed from the point is 30 degrees, 45 degrees, 60 degrees, and 80 degrees. It is shown. According to FIG. 15, when the elevation angle φ in the solar direction is relatively low (for example, 30 degrees) as at 12:00 of the winter solstice, the cloud in the lower layer (for example, altitude 0.2 km) and the upper layer (for example, altitude 15) It can be seen that the cloud at a distance of .85 km) is separated by 27 km or more in horizontal distance. Here, as shown in FIG. 16, the elevation angle φ in the sun direction refers to an angle in the height direction of the sun in a three-dimensional space when the reference point is the origin. Further, hereinafter, the horizontal angle θ in the solar direction means that the angle of the solar position on the horizontal plane when viewed from the reference point is 0 degrees south.
特開2013-253851号公報JP 2013-253851 A
 予測地点と太陽を結ぶ直線上には様々な高度の雲が存在しうる。該直線上の雲の影響を正しく予測値に反映するには、雲の情報として高さの情報が必要である。また、1つの高度における雲の情報(雲量等)だけでなく、該直線上に存在する可能性のある2以上の高度における雲の情報が必要である。特許文献1に記載の方法は、雲の高さを、所定の1つの高度で扱っている点で、実際に太陽方向にある雲の影響が予測値に反映されなかったり、逆に、太陽方向にない雲が太陽方向にあるかのように予測値に反映されるなど、日射量を精度よく予測することができないという問題がある。 雲 Clouds of various altitudes can exist on the straight line connecting the predicted point and the sun. In order to correctly reflect the influence of the cloud on the straight line in the predicted value, height information is required as cloud information. Further, not only information on clouds at one altitude (cloud amount, etc.) but also information on clouds at two or more altitudes that may exist on the straight line is necessary. The method described in Patent Document 1 treats the height of the cloud at a predetermined one altitude, so that the influence of the cloud actually in the solar direction is not reflected in the predicted value. There is a problem that the amount of solar radiation cannot be accurately predicted, such as being reflected in the predicted value as if there is a cloud not in the sun.
 そこで、本発明は、太陽エネルギーに関する項目を精度よく予測することが可能な予測システム、情報処理装置、予測方法および予測プログラムを提供することを目的とする。 Therefore, an object of the present invention is to provide a prediction system, an information processing apparatus, a prediction method, and a prediction program that can accurately predict items related to solar energy.
 本発明による予測システムは、特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段と、太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する予測手段とを備えた
 ことを特徴とする。
The prediction system according to the present invention is based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction. A solar direction cloud amount calculating means for calculating a certain solar direction cloud amount, and a predicting means for predicting a value of a prediction target, which is an item relating to solar energy at the first point, using the solar direction cloud amount. .
 本発明による情報処理装置は、特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段を備えたことを特徴とする。 The information processing apparatus according to the present invention is based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction. The solar direction cloud amount calculation means for calculating the solar direction cloud amount is provided.
 また、本発明による予測方法は、情報処理装置が、特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出し、太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測することを特徴とする。 In addition, the prediction method according to the present invention is based on the cloud amount of each cell when the information processing apparatus divides the sky above a specific point so as to include two or more cells in the height direction. A solar cloud amount that is a cloud amount in the solar direction at the point is calculated, and a prediction target value that is an item relating to solar energy at the first point is predicted using the solar cloud amount.
 また、本発明による予測プログラムは、コンピュータに、特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する処理と、太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する処理とを実行させることを特徴とする。 In addition, the prediction program according to the present invention causes the computer to perform the calculation at the designated first point based on the cloud amount of each cell when the sky above the specific point is divided so as to include two or more cells in the height direction. A process of calculating a solar cloud amount that is a cloud amount in the solar direction and a process of predicting a prediction target value that is an item relating to solar energy at the first point using the solar cloud amount are performed. .
 本発明によれば、太陽エネルギーに関する項目を精度よく予測することができる。 According to the present invention, items related to solar energy can be accurately predicted.
第1の実施形態の予測システムの例を示すブロック図である。It is a block diagram which shows the example of the prediction system of 1st Embodiment. 雲量算出部4の構成例を示すブロック図である。3 is a block diagram illustrating a configuration example of a cloud amount calculation unit 4. FIG. ある地点から見た太陽の軌跡の例を示す説明図である。It is explanatory drawing which shows the example of the locus | trajectory of the sun seen from a certain point. GPVデータにおける格子点と予測地点における太陽方向を表す直線との対応を示す説明図である。It is explanatory drawing which shows a response | compatibility with the lattice point in GPV data, and the straight line showing the sun direction in an estimated point. 太陽方向を表す直線のセル内の通過距離の例を示す説明図である。It is explanatory drawing which shows the example of the passage distance in the cell of the straight line showing the sun direction. 第1の実施形態の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of 1st Embodiment. 第2の実施形態のGPVデータにおける格子点と予測地点における太陽方向を表す直線との対応を示す説明図である。It is explanatory drawing which shows a response | compatibility with the lattice point in the GPV data of 2nd Embodiment, and the straight line showing the sun direction in an estimated point. 太陽方向を表す直線のセル内の通過距離の例を示す説明図である。It is explanatory drawing which shows the example of the passage distance in the cell of the straight line showing the sun direction. 第3の実施形態の予測システムの例を示すブロック図である。It is a block diagram which shows the example of the prediction system of 3rd Embodiment. 太陽方向雲量の算出対象とするセルの例を示す説明図である。It is explanatory drawing which shows the example of the cell used as the calculation object of solar direction cloudiness. LNBの算出方法の概略を示す説明図である。It is explanatory drawing which shows the outline of the calculation method of LNB. 実際の日射量と、第1の実施形態による日射量の予測値と、直上の雲量を用いて予測された日射量とを比較して示す説明図である。It is explanatory drawing which compares and compares the actual solar radiation amount, the predicted value of the solar radiation amount by 1st Embodiment, and the solar radiation amount estimated using the cloud amount right above. 本発明による予測システムの概要を示すブロックである。It is a block which shows the outline | summary of the prediction system by this invention. 本発明による情報処理装置の構成例を示すブロック図である。It is a block diagram which shows the structural example of the information processing apparatus by this invention. ある地点と太陽方向に位置する雲との水平距離を、雲の高度ごとに示す説明図である。It is explanatory drawing which shows the horizontal distance of a certain point and the cloud located in a solar direction for every altitude of a cloud. 太陽方向の仰角φおよび水平角度θの例を示す説明図である。It is explanatory drawing which shows the example of the elevation angle (phi) of the sun direction, and horizontal angle (theta).
 以下、本発明の実施形態を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 以下に示す各実施形態では、太陽エネルギーに関する項目が日射量であり、本発明の予測システムが将来の日射量を予測する場合を例にして説明する。すなわち、予測対象が日射量である場合を例にして説明する。ただし、予測対象は、日射量に限定されず、太陽エネルギーに関する項目であればよい。例えば、予測対象は、太陽エネルギーに基づく電力の発電量等であってもよい。また、予測対象の他の例としては、例えば、建物の温度上昇や、農作物への影響など様々なものが考えられる。 In the following embodiments, an example in which the item related to solar energy is the amount of solar radiation and the prediction system of the present invention predicts the amount of solar radiation in the future will be described as an example. That is, the case where the prediction target is the amount of solar radiation will be described as an example. However, the prediction target is not limited to the amount of solar radiation, and may be an item relating to solar energy. For example, the prediction target may be the amount of power generated based on solar energy. In addition, as other examples of the prediction target, for example, various things such as an increase in the temperature of a building and an influence on agricultural products can be considered.
実施形態1.
 図1は、本発明の第1の実施形態の予測システムの例を示すブロック図である。図1に示す予測システム1は、予測条件取得部2と、実績値取得部3と、雲量算出部4と、学習部5と、予測部6とを備える。
Embodiment 1. FIG.
FIG. 1 is a block diagram illustrating an example of a prediction system according to the first embodiment of this invention. A prediction system 1 illustrated in FIG. 1 includes a prediction condition acquisition unit 2, a performance value acquisition unit 3, a cloud amount calculation unit 4, a learning unit 5, and a prediction unit 6.
 予測条件取得部2は、予測条件として、予測地点および予測したい時刻である予測時刻の情報を取得する。予測条件取得部2は、例えば、ユーザインタフェースやネットワークインタフェースを備え、それらインタフェースを介して、予測地点の位置情報および予測時刻の情報(時間情報)を取得してもよい。なお、予測地点および予測時刻は、予測システム1がその予測地点を含む所定範囲の領域の、その予測時刻における、雲量または雲量に相関のある量の予報値を取得可能な地点および時刻であれば、特に限定されない。予測時刻は、例えば、○年○月○日の12時といったように、将来のある1つの時点であってもよいし、○年○月○日の12時~13時といったように、将来のある複数の時点を含む期間であってもよい。その場合、該期間に含まれる複数の時点の平均値や合算値などを、当該期間における値としてもよい。なお、予測時刻として設定可能な時系列上の範囲を予め定めておいてもよい。 The prediction condition acquisition unit 2 acquires information on a prediction point and a prediction time that is a time to be predicted as a prediction condition. The prediction condition acquisition unit 2 includes, for example, a user interface and a network interface, and may acquire position information of the predicted point and information (time information) of the predicted time via these interfaces. Note that the predicted point and the predicted time are the point and time at which the prediction system 1 can acquire a cloud amount or a forecast value of an amount correlated with the cloud amount at the predicted time in a predetermined range including the predicted point. There is no particular limitation. The predicted time may be one time point in the future, such as 12:00 on the year, month, day of the year, or a future time, such as from 12:00 to 13:00 on the day of the year, month, month, and day. It may be a period including a plurality of time points. In that case, an average value or a sum value of a plurality of time points included in the period may be a value in the period. A time-series range that can be set as the predicted time may be determined in advance.
 実績値取得部3は、予測対象(本例では日射量)の実績値を取得する。実績値取得部3は、例えば、ある地点の、予測時刻に対応した過去の複数の時刻において実際に観測された予測対象の値を実績値として取得してもよい。ここで、予測時刻に対応した過去の複数の時刻は、例えば、予測時刻より過去の所定期間分の各日における予測時刻と同じ時刻(hour)であってもよいし、そのような各日における、予測時刻と同じ時刻に加えてその前後の時刻を含んでいてもよい。また、実績値を取得する地点は、例えば、予測地点であってもよいし、それ以外の任意の地点であってもよい。 The actual value acquisition unit 3 acquires the actual value of the prediction target (in this example, the amount of solar radiation). The actual value acquisition unit 3 may acquire, as the actual value, a prediction target value actually observed at a certain point at a plurality of past times corresponding to the predicted time, for example. Here, the plurality of past times corresponding to the predicted time may be, for example, the same time (hour) as the predicted time in each day for a predetermined period past the predicted time. In addition to the same time as the predicted time, the time before and after the predicted time may be included. Further, the point from which the actual value is acquired may be, for example, a predicted point or any other point.
 雲量算出部4は、学習用および予測用に、指定された地点および指定された時刻における、太陽方向にある雲量(以下、太陽方向雲量という)を算出する。雲量算出部4は、例えば、学習用データとして、予測条件取得部2からの指示に応じて、実績値取得部3が実績値を取得した地点および時刻における太陽方向雲量を各々算出してもよい。雲量算出部4が算出した太陽方向雲量は、同じ地点の同じ時刻における予測対象の実測値と対応づけられて、後述する学習部5に提供される。 The cloud amount calculation unit 4 calculates the cloud amount in the solar direction (hereinafter referred to as solar direction cloud amount) at the specified point and at the specified time for learning and prediction. For example, the cloud amount calculation unit 4 may calculate the solar cloud amount at the point and time at which the actual value acquisition unit 3 acquired the actual value in accordance with an instruction from the prediction condition acquisition unit 2 as learning data. . The cloud amount in the solar direction calculated by the cloud amount calculation unit 4 is associated with the actual measurement value of the prediction target at the same time at the same point, and provided to the learning unit 5 described later.
 また、雲量算出部4は、予測用データとして、予測地点の予測時刻における太陽方向雲量(予測値)を算出する。 Also, the cloud amount calculation unit 4 calculates the cloud amount in the solar direction (predicted value) at the prediction time of the prediction point as the prediction data.
 学習部5は、実績値取得部3が取得した過去の予測対象の実績値と、雲量算出部4が算出した該実績値と相関のある過去の太陽方向雲量とに基づいて、予測対象と太陽方向雲量との関係を学習する。学習部5による学習(機械学習)の方法は特に限定されないが、例えば、サポートベクターマシン、ニューラルネットワーク、回帰分析などを用いることができる。 The learning unit 5 uses the past prediction target actual value acquired by the actual value acquisition unit 3 and the past solar direction cloud amount correlated with the actual result value calculated by the cloud amount calculation unit 4 to determine whether the prediction target and the solar Learn the relationship with directional cloud cover. The method of learning (machine learning) by the learning unit 5 is not particularly limited. For example, a support vector machine, a neural network, regression analysis, or the like can be used.
 予測部6は、学習部5による学習結果である、予測対象と太陽方向雲量との関係を示す情報と、雲量算出部4が算出した予測地点の予測時刻における太陽方向雲量(予測値)とに基づいて、予測地点の予測時刻における予測対象(本例では、日射量)の値を予測する。 The prediction unit 6 is a learning result by the learning unit 5, which is information indicating the relationship between the prediction target and the solar direction cloud amount, and the solar direction cloud amount (predicted value) at the prediction time of the prediction point calculated by the cloud amount calculation unit 4. Based on this, the value of the prediction target (in this example, the amount of solar radiation) at the prediction time of the prediction point is predicted.
 なお、上記の学習および予測を行う際に、予測対象に影響を与える、太陽方向雲量以外の情報(例えば、気温や湿度等)をさらに説明変数として用いることも可能である。 In addition, when performing the learning and prediction described above, information (for example, temperature, humidity, etc.) other than the solar directional cloud amount that affects the prediction target can be further used as an explanatory variable.
 次に、本実施形態の太陽方向雲量の算出方法について説明する。図2は、雲量算出部4の構成例を示すブロック図である。図2に示す雲量算出部4は、太陽方向計算部41と、三次元雲量情報取得部42と、太陽方向雲量算出部43とを含む。 Next, the solar direction cloud amount calculation method of this embodiment will be described. FIG. 2 is a block diagram illustrating a configuration example of the cloud amount calculation unit 4. 2 includes a solar direction calculation unit 41, a three-dimensional cloud amount information acquisition unit 42, and a solar direction cloud amount calculation unit 43.
 太陽方向計算部41は、指定された地点および時刻における太陽の角度情報を計算する。太陽方向計算部41は、太陽の角度情報として、例えば、指定された時刻に指定された地点から太陽を見たときの太陽方向の仰角φと水平角度θとを計算してもよい。 The solar direction calculation unit 41 calculates the angle information of the sun at the designated point and time. As the sun angle information, the sun direction calculation unit 41 may calculate, for example, the elevation angle φ and the horizontal angle θ in the sun direction when the sun is viewed from a specified point at a specified time.
 図3は、基準とされる地点から見た太陽のある1日の軌跡を示す説明図である。なお、図3の上段のグラフにおけるX,Y,Z軸は、図16のX、Y,Z軸に対応している。また、下段の各グラフの横軸は時刻[hour]を表している。また、下段の左グラフの縦軸は太陽方向の仰角φ[度]を表し、下段の右グラフの縦軸は太陽方向の水平角度θ[度]を表している。 FIG. 3 is an explanatory diagram showing a one-day trajectory of the sun as seen from a reference point. Note that the X, Y, and Z axes in the upper graph in FIG. 3 correspond to the X, Y, and Z axes in FIG. 16. In addition, the horizontal axis of each graph in the lower stage represents time [hour]. The vertical axis of the lower left graph represents the elevation angle φ [degree] in the solar direction, and the vertical axis of the lower right graph represents the horizontal angle θ [degree] in the solar direction.
 三次元雲量情報取得部42は、気象に関する予報値の三次元のGPV(Grid Point Value)データを取得する。ここで、該GPVデータは、グリッドを構成するセルとして、水平方向に少なくとも2以上の分割領域を含むだけでなく、高さ方向に少なくとも2以上の層を有するものとする。また、該GPVデータは、気象に関する予報値として、各格子点における雲量または雲量に相関のある量を少なくとも含む。一般に、GPVデータにおける格子点は、配信対象とされる領域を所定のグリッド(二次元もしくは三次元グリッド)に分割したときの該グリッドに含まれる各セル内の値を代表する点(例えば、中心)である。GPVデータの予報値の算出方法にもよるが、一般にGPVデータによって示される各格子点における気象に関する予報値は、当該格子点が対応しているセル内において一様であるとみなされる。 The three-dimensional cloud amount information acquisition unit 42 acquires three-dimensional GPV (Grid Point Value) data of forecast values related to weather. Here, the GPV data includes not only at least two divided regions in the horizontal direction but also at least two layers in the height direction as cells constituting the grid. Further, the GPV data includes at least a cloud amount at each grid point or an amount correlated with the cloud amount as a forecast value related to weather. In general, grid points in GPV data are points that represent values in each cell included in the grid when the area to be distributed is divided into a predetermined grid (two-dimensional or three-dimensional grid) (for example, the center) ). Although depending on the calculation method of the forecast value of GPV data, generally, the forecast value related to the weather at each grid point indicated by the GPV data is considered to be uniform within the cell to which the grid point corresponds.
 三次元雲量情報取得部42は、例えば、指定された地点を含む所定範囲の地表面およびその上空を含む三次元空間を、水平方向に2以上の分割領域と高さ方向に2以上の層とを持つグリッドとなるように分割したときの該グリッドの各格子点における、指定された時刻の雲量または雲量に相関のある量の値を少なくとも含む三次元GPVデータを取得してもよい。ここで、上空の上限を、一般に雲が発生するとされる所定の高さ(例えば、海抜13km)としてもよい。 The three-dimensional cloud amount information acquisition unit 42, for example, converts a three-dimensional space including a predetermined range of the ground surface including a specified point and the sky thereof into two or more divided regions in the horizontal direction and two or more layers in the height direction. Three-dimensional GPV data including at least a cloud amount at a specified time or a value having an amount correlated with the cloud amount at each lattice point of the grid when the grid is divided so as to have a grid may be acquired. Here, the upper limit of the sky may be set to a predetermined height at which clouds are generally generated (for example, 13 km above sea level).
 該GPVデータは、例えば、予測地点が日本であれば、気象予報データ配信会社によって定期的に配信される気象予報データであってもよい。気象予報データの具体例として、例えば、北緯22.4度~47.6度および東経120度~150度の範囲の地表面を5kmメッシュに分割した各格子点における、上層雲量、中層雲量および下層雲量の1時間間隔の予報値を39時間分含むメソ数値予報モデル(Meso Spectral Model;MSM)と呼ばれるGPVデータが挙げられる。なお、MSM以外にも、予測したい場所と時刻に応じて、局地数値予報モデル(Local Forecast Model;LFM)や全球数値予報モデル(Global Spectral Model;GMS)等のGPVデータを利用することも可能である。格子サイズは、5kmメッシュに限定されず、例えば、2kmメッシュや1kmメッシュやそれよりも細かなメッシュであってもよい。また、三次元雲量情報取得部42が取得するGPVデータは、既存の気象予報データに限定されない。なお、三次元雲量情報取得部42において、計算により該GPVデータを作成してもよい。 The GPV data may be, for example, weather forecast data periodically distributed by a weather forecast data distribution company if the predicted location is Japan. Specific examples of weather forecast data include, for example, upper cloud cover, middle cloud cover, and cloud cover at each grid point obtained by dividing the ground surface in the range of 22.4 to 47.6 degrees north latitude and 120 to 150 degrees east longitude into 5 km meshes. GPV data called Meso ソ Spectral Model (MSM), which includes 39 hours of forecast values of hourly intervals of the lower cloud cover, can be mentioned. In addition to MSM, you can also use GPV data such as a local numerical forecast model (LFM) or a global numerical forecast model (Global Spectral Model; GMS) depending on the location and time you want to predict. It is. The lattice size is not limited to a 5 km mesh, and may be, for example, a 2 km mesh, a 1 km mesh, or a finer mesh. Further, the GPV data acquired by the three-dimensional cloud amount information acquisition unit 42 is not limited to existing weather forecast data. The three-dimensional cloud amount information acquisition unit 42 may create the GPV data by calculation.
 太陽方向雲量算出部43は、指定された地点の位置情報と、太陽方向計算部41が計算した太陽の角度情報と、三次元雲量情報取得部42が取得したGPVデータとに基づき、指定された地点および時刻における太陽方向雲量を算出する。 The solar direction cloud amount calculation unit 43 is designated based on the position information of the designated point, the sun angle information calculated by the solar direction calculation unit 41, and the GPV data acquired by the three-dimensional cloud amount information acquisition unit 42. Calculate the cloud amount in the solar direction at the point and time.
 図4は、GPVデータが対応している格子点の例を、予測地点における太陽方向の例とともに示す説明図である。図4(a)には、水平方向での格子点の例と、予測地点における太陽方向(水平角度θ)の例が示されている。また、図4(b)には、高さ方向での格子点の例と、予測地点における太陽方向(仰角φ)の例が示されている。図4において、黒丸は、雲量または雲量と相関のある量の情報(予報値)が付与されている点(格子点)を表している。なお、図4には、一部の格子点しか示されていないが、セル1つにつき1つの格子点が存在する。すなわち、本例ではセルの各々に対して雲量または雲量に相関のある量の予報値が存在する。 FIG. 4 is an explanatory diagram showing an example of lattice points to which GPV data corresponds, together with an example of the solar direction at the predicted point. FIG. 4A shows an example of lattice points in the horizontal direction and an example of the sun direction (horizontal angle θ) at the predicted point. FIG. 4B shows an example of lattice points in the height direction and an example of the sun direction (elevation angle φ) at the predicted point. In FIG. 4, black circles represent points (lattice points) to which information (forecast values) of cloud amounts or amounts correlated with the cloud amounts are given. FIG. 4 shows only some lattice points, but there is one lattice point per cell. That is, in this example, there is a cloud amount or a forecast value having an amount correlated with the cloud amount for each cell.
 図4に示すように、予測地点の位置情報と、太陽の角度情報と、各セルの位置情報(水平方向と高さ方向の幅の情報を含む)とから、太陽方向を表す直線が通るセルを特定することができる。 As shown in FIG. 4, the cell through which a straight line representing the solar direction passes from the position information of the predicted point, the angle information of the sun, and the position information of each cell (including the width information in the horizontal direction and the height direction). Can be specified.
 なお、緯度・経度を二次元平面上に展開した際、角度や距離にひずみが生じる。図4では、雲が確認できる程度の十分狭い範囲ではひずみが小さいと仮定し、正距円筒図法を用いて直交座標系を作成している。太陽方向を表す直線を算出する際の座標系としては、この他にも、一般的な地図投影法を用いた様々な表現が可能である。緯線と経線とが直角にならない投影法であっても、グリッドを地図投影法にあった非直交格子とすることで、予測地点の位置情報と、太陽の角度情報と、各セルの位置情報(水平方向と高さ方向の幅の情報を含む)とから、太陽方向を表す直線が通るセルを特定することができる。 Note that when latitude and longitude are developed on a two-dimensional plane, distortion occurs in the angle and distance. In FIG. 4, it is assumed that the distortion is small in a sufficiently narrow range where a cloud can be confirmed, and an orthogonal coordinate system is created using equirectangular projection. In addition to this, various representations using a general map projection method are possible as a coordinate system for calculating a straight line representing the sun direction. Even if the projection is not perpendicular to the parallels and meridians, the position of the predicted point, the angle information of the sun, and the position information of each cell ( Cell including a straight line representing the solar direction can be specified.
 太陽方向雲量算出部43は、まず、指定された地点の位置情報と、指定された時刻の太陽の角度情報とから、GPVデータが対応する三次元空間上のセルのうち太陽方向を表す直線が通るセルを特定する。太陽方向雲量算出部43は、該直線が通るセルを特定すると、特定されたセル内の雲量に基づいて、太陽方向雲量を算出する。各セル内の雲量は、例えば、GPVデータにおける格子点の雲量の予報値を参照する、該雲量に相関のある量から計算する等により得られる。 First, the solar direction cloud amount calculation unit 43 calculates a straight line representing the solar direction among the cells in the three-dimensional space corresponding to the GPV data from the position information of the designated point and the angle information of the sun at the designated time. Identify the cell that passes through. When the solar direction cloud amount calculation unit 43 specifies a cell through which the straight line passes, the solar direction cloud amount calculation unit 43 calculates the solar direction cloud amount based on the cloud amount in the specified cell. The cloud amount in each cell is obtained, for example, by referring to a forecast value of the cloud amount at a lattice point in GPV data or by calculating from an amount correlated with the cloud amount.
 太陽方向雲量算出部43は、例えば、該直線が通る全てのセル内の雲量を足し合わせたものを、指定された地点の指定された時刻における太陽方向雲量としてもよい。また、太陽方向雲量算出部43は、さらに、セル内の該直線の通過距離を用いて、指定された地点の指定された時刻における太陽方向雲量を算出してもよい。図5は、あるセル内の該直線の通過距離の例を示す説明図である。図5において、rが、太陽方向を表す直線のセルi内の通過距離を表している。 For example, the sun direction cloud amount calculation unit 43 may add the cloud amount in all cells through which the straight line passes to be the sun direction cloud amount at a specified time at a specified point. Moreover, the solar direction cloud amount calculation part 43 may calculate the solar direction cloud amount at the designated time of the designated point further using the passing distance of the straight line in the cell. FIG. 5 is an explanatory diagram showing an example of the passage distance of the straight line in a certain cell. In FIG. 5, r i represents a passing distance in a straight cell i representing the sun direction.
 太陽方向雲量算出部43は、指定された地点の、時刻tにおける太陽方向を表す直線が通るセルlayeriの雲量をclayer (t)、該セルのセル内通過距離をrlayer (t)とした場合に、層ごと(下層,中層,上層)の太陽方向雲量Clayer(t)を次の式(1)を用いて求めてもよい。ここで、layerは、層を識別する識別子であり、式(1)では、u=上層、m=中層、l=上層である。また、iは、指定された地点の時刻tにおいて太陽方向を表す直線が通るセルをlayerが示す層内で識別するための識別子である。 The solar direction cloud amount calculation unit 43 calculates the cloud amount of the cell layer i passing through a straight line representing the solar direction at the time t at the designated point, c layer i (t), and the intra-cell passing distance of the cell r layer i (t ), The solar cloud amount C layer (t) for each layer (lower layer, middle layer, upper layer) may be obtained using the following equation (1). Here, layer is an identifier for identifying a layer, and in equation (1), u = upper layer, m = middle layer, and l = upper layer. In addition, i is an identifier for identifying a cell through which a straight line representing the sun direction passes at a designated point in time t in a layer indicated by the layer.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)では、太陽方向を表す直線のセル内の通過距離を重みとし、層ごとに、太陽方向を表す直線が通るセルを対象に、セル内の雲量の重みづけ和を求めた上で、その結果を、層内における該直線の通過距離の総和で除算することにより、層ごとの太陽方向雲量を規格化しているが、規格化処理は省略してもよい。また、式(1)では、層ごとに太陽方向雲量を求めたが、これらを足し合わせたものを最終的な太陽方向雲量としてもよい。ただし、層ごとに雲量を求めた方が学習処理において層ごとに雲量に対する重みを付与できるため、好ましい。 In equation (1), the weighted sum of the amount of cloud in the cell was obtained for each layer, with the passage distance in the cell of the straight line representing the sun direction as a weight, for each layer. Above, the result is divided by the sum of the passage distances of the straight lines in the layer to normalize the solar cloud amount for each layer, but the normalization process may be omitted. Moreover, in Formula (1), although the solar direction cloud amount was calculated | required for every layer, what added these is good also as final solar direction cloud amount. However, it is preferable to obtain the cloud amount for each layer because the weight for the cloud amount can be given to each layer in the learning process.
 なお、本実施形態において、予測条件取得部2および実績値取得部3は、例えば、プログラムに従って動作するCPU等と、各種情報入力手段とによって実現される。また、雲量算出部4、学習部5および予測部6は、例えば、プログラムに従って動作するCPU等によって実現される。なお、図1には、雲量算出部4が、学習用データである過去の時刻における太陽方向雲量と、予測用データである将来の時刻における太陽方向雲量の両方を算出する例を示したが、予測システムは、学習用データである過去の時刻における太陽方向雲量を算出する処理部と、予測用データである将来の時刻における太陽方向雲量を算出する処理部とを別々に備えていてもよい。 In the present embodiment, the prediction condition acquisition unit 2 and the actual value acquisition unit 3 are realized by, for example, a CPU that operates according to a program and various information input means. The cloud amount calculation unit 4, the learning unit 5, and the prediction unit 6 are realized by a CPU or the like that operates according to a program, for example. FIG. 1 shows an example in which the cloud amount calculation unit 4 calculates both the solar direction cloud amount at the past time as the learning data and the solar direction cloud amount at the future time as the prediction data. The prediction system may separately include a processing unit that calculates a solar cloud amount at a past time as learning data and a processing unit that calculates a solar cloud amount at a future time as prediction data.
 次に、本実施形態の動作について図6を参照して説明する。図6は、本実施形態の動作の一例を示すフローチャートである。図6に示す例では、まず、予測条件取得部2が、予測条件を取得する(ステップS101)。予測条件取得部2は、予測条件として、少なくとも予測地点の位置および予測時刻の情報を取得する。 Next, the operation of this embodiment will be described with reference to FIG. FIG. 6 is a flowchart showing an example of the operation of the present embodiment. In the example illustrated in FIG. 6, first, the prediction condition acquisition unit 2 acquires a prediction condition (step S <b> 101). The prediction condition acquisition unit 2 acquires at least information on the position of the prediction point and the prediction time as the prediction condition.
 次に、実績値取得部3は、学習用データとして、過去の予測対象の実績値(日射量)を取得する(ステップS102)。実績値取得部3は、例えば、予測地点の、予測時刻に対応して定められる過去の複数の時刻tにおける日射量S(t)を取得してもよい。 Next, the actual value acquisition unit 3 acquires a past predicted target actual value (irradiation amount) as learning data (step S102). The actual value acquisition unit 3 may acquire, for example, the amount of solar radiation S (t) at a plurality of past times t corresponding to the predicted time at the predicted point.
 ここで、学習用データに適用される時刻tは、予測時刻より過去の所定日数(例えば、1ヶ月)分の各日における同時刻であってもよい。例えば、予測時刻が2012年4月3日10時であった場合、上記の時刻tは、次のような時刻のセットであってもよい。 Here, the time t applied to the learning data may be the same time on each day for a predetermined number of days (for example, one month) past the predicted time. For example, when the predicted time is 10:00 on April 3, 2012, the above time t may be the following set of times.
t=[2012-03-03 10:00,
   2012-03-04 10:00,
   ...,
   2012-04-02 10:00]
t = [2012-03-03 10:00,
2012-03-04 10:00,
. . . ,
2012-04-02 10:00]
 次に、雲量算出部4が、実績値取得部3が実績値を取得した地点および時刻における、太陽方向雲量を算出する(ステップS103)。 Next, the cloud amount calculation unit 4 calculates the solar direction cloud amount at the point and time at which the actual value acquisition unit 3 acquired the actual value (step S103).
 雲量算出部4は、例えば、上記の式(1)を用いて、予測地点の過去の複数の時刻tにおける、層ごとの太陽方向雲量C(t),C(t),C(t)を算出してもよい。 The cloud amount calculation unit 4 uses, for example, the above formula (1), and the solar direction cloud amounts C u (t), C m (t), and C l (for each layer at a plurality of past times t of the prediction point. t) may be calculated.
 次に、学習部5は、ステップS102で得られた過去の予測対象の実績値と、ステップS103で得られた該実績値と同じ地点および時刻における太陽方向雲量とに基づいて、予測対象と太陽方向雲量との関係を学習する(ステップS104:学習処理)。 Next, the learning unit 5 determines the prediction target and the sun based on the past prediction target actual value obtained in step S102 and the solar cloud amount at the same point and time as the actual value obtained in step S103. The relationship with the amount of directional clouds is learned (step S104: learning process).
 学習部5は、例えば、雲量算出部4が求めた予測地点における過去の複数の時刻tの、層ごとの太陽方向雲量C(t),C(t),C(t)を各々説明変数とし、時刻tの予測地点の日射量S(t)を各々被説明変数として機械学習を行い、以下の式(2)で表されるような関数Fを得てもよい。 The learning unit 5, for example, calculates the solar cloud amounts C u (t), C m (t), and C l (t) for each layer at a plurality of past times t at the prediction point obtained by the cloud amount calculation unit 4. Machine learning may be performed using the solar radiation amount S (t) at the predicted point at time t as the explanatory variable, and the function F as expressed by the following equation (2) may be obtained.
 S(t)=F(C(t),C(t),C(t)) ・・・(2) S (t) = F (C u (t), C m (t), C l (t)) (2)
 次に、雲量算出部4は、GPVデータによって示される予測時刻における予報値を用いて、予測地点の予測時刻における太陽方向雲量を算出(推定)する(ステップS105)。 Next, the cloud amount calculation unit 4 calculates (estimates) the cloud amount in the solar direction at the predicted time of the predicted point using the predicted value at the predicted time indicated by the GPV data (step S105).
 雲量算出部4は、例えば、予測時刻をt’とすると、時刻t’の予報値を含むGPVデータを用いて、予測地点の時刻t’における層ごとの太陽方向雲量C(t’),C(t’),C(t’)を、上記の式(1)を用いて算出してもよい。 For example, when the predicted time is t ′, the cloud amount calculation unit 4 uses the GPV data including the predicted value at the time t ′ and uses the solar direction cloud amount C u (t ′), for each layer at the predicted time point t ′. C m (t ′) and C l (t ′) may be calculated using the above equation (1).
 次に、予測部6は、ステップS104で得られた学習結果と、ステップS105で算出された太陽方向雲量とに基づいて、予測地点の予測時刻における予測対象の値(日射量の予測値)を算出する(ステップS106:予測処理)。 Next, based on the learning result obtained in step S104 and the solar directional cloud amount calculated in step S105, the prediction unit 6 calculates the prediction target value (predicted value of solar radiation amount) at the prediction time of the prediction point. Calculate (step S106: prediction process).
 予測部6は、例えば、学習結果として上記の関数Fが得られている場合に、当該関数Fに雲量算出部4が算出した予測地点および予測時刻t’における層ごとの太陽方向雲量C(t’),C(t’),C(t’)を代入して、予測地点および予測時刻における日射量S(t’)を求めてもよい。 For example, when the above function F is obtained as a learning result, the prediction unit 6 uses the predicted point calculated by the cloud amount calculation unit 4 for the function F and the solar direction cloud amount C u () for each layer at the prediction time t ′. The solar radiation amount S (t ′) at the prediction point and the prediction time may be obtained by substituting t ′), C m (t ′), and C l (t ′).
 最後に、予測部6は、予測結果を出力する(ステップS107)。 Finally, the prediction unit 6 outputs a prediction result (step S107).
 以上のように、本実施形態によれば、水平方向だけでなく高さ方向に少なくとも2つ以上のセルを含むように分割された三次元グリッドに含まれる各セル内の雲量を基に、指定された地点の指定された時刻における太陽方向雲量を算出し、それを用いて学習および予測を行うため、精度の高い予測を行うことができる。 As described above, according to the present embodiment, the designation is made based on the cloud amount in each cell included in the three-dimensional grid divided so as to include at least two cells in the height direction as well as the horizontal direction. Since the cloud amount in the solar direction at the designated time at the designated point is calculated and used for learning and prediction, prediction with high accuracy can be performed.
 なお、図6には、学習部5が、予測条件を取得した後に学習を行う例を示したが、学習部5が、は、例えば、予め定めておいた複数の地点における複数の時刻における学習用データ(実績値と太陽方向雲量のペア)を生成して学習を行い、その学習結果を記憶しておいてもよい。そのような場合、予測部6は、予測条件を取得した後で最も近い条件の学習結果を利用して予測を行うといったことも可能である。なお、学習部5は、地点ごとや季節ごとや時間帯ごとに学習用データを分けて学習を行ってもよいし、学習用データを分けずに学習を行ってもよい。 FIG. 6 illustrates an example in which the learning unit 5 performs learning after acquiring the prediction condition. However, the learning unit 5 performs learning at a plurality of times at predetermined points, for example. It is also possible to generate data for learning (a pair of the actual value and the cloud amount in the solar direction) and perform learning, and store the learning result. In such a case, the prediction unit 6 can perform prediction using the learning result of the closest condition after acquiring the prediction condition. Note that the learning unit 5 may perform learning by dividing learning data for each point, season, or time period, or may perform learning without dividing learning data.
 また、上記では、予測時刻と同じ時刻(hour)のセットを学習用データの時刻tとする例を示したが、学習部5は、そのような時刻tに加えて、該時刻tの前後の時刻t-1、t+1を、学習用データの時刻のセットとしてもよい。学習部5は、例えば、以下の式(3)で表されるような関数Fを機会学習によって得てもよい。時間帯が異なることで太陽方向を表す直線が上空のセルを通る全通過距離が異なる場合であっても、太陽方向雲量が規格化されていれば、その違いによる影響を受けずに学習することができる。 Further, in the above, an example in which the set of the same time (hour) as the predicted time is set as the time t of the learning data has been shown, but the learning unit 5 adds the time t before and after the time t. The times t−1 and t + 1 may be set as the time of learning data. For example, the learning unit 5 may obtain a function F represented by the following expression (3) by opportunity learning. Even if the straight line representing the solar direction differs in the time zone and the total passing distance through the cell in the sky is different, if the cloud amount in the solar direction is standardized, learning is not affected by the difference. Can do.
S(t)=F(C(t-1),C(t-1),C(t-1),
       C(t),C(t),C(t),
       C(t+1),C(t+1),C(t+1)) ・・・(3)
S (t) = F (C u (t−1), C m (t−1), C l (t−1),
C u (t), C m (t), C l (t),
C u (t + 1), C m (t + 1), C l (t + 1)) (3)
 例えば、2012年4月3日の10時の予測を行いたい場合、学習部5は、次のような時刻tのデータを学習に用いてもよい。 For example, when it is desired to perform prediction at 10:00 on April 3, 2012, the learning unit 5 may use the following data at time t for learning.
t=[2012-03-03 9:00,同日10:00,同日11:00,
   2012-03-04 9:00,同日10:00,同日11:00,
   ...,
   2012-04-02 9:00,同日10:00,同日11:00]
t = [2012-03-03 9:00, same day 10:00, same day 11:00,
2012-03-04 9:00, same day 10:00, same day 11:00,
. . . ,
2012-04-02 9:00, same day 10:00, same day 11:00]
 この他にも、例えば、対象地点の直上の上層,中層および下層の雲量や、対象地点の気温、湿度、理論日射量や、大気外日射量、最大雲頂高度、雲底高度等を、説明変数に追加してもよい。 In addition to this, for example, the upper, middle and lower cloud cover directly above the target point, the temperature, humidity, theoretical solar radiation, extraneous solar radiation, maximum cloud top height, cloud base height, etc. May be added to
 なお、本発明において「雲量」は、雲に関わる量であれば特に限定されない。雲量は、例えば、GPVデータに用いられる雲量[%]以外にも、雲の発生確率、雲の厚さ、湿数、雲の面積等であってもよい。 In the present invention, the “cloud amount” is not particularly limited as long as it is a cloud-related amount. The cloud amount may be, for example, a cloud generation probability, a cloud thickness, a wet number, a cloud area, or the like in addition to the cloud amount [%] used for GPV data.
 また、雲量算出部4は、日食の状態や、各地点の遮蔽物(ビルや木)などの有無に基づいて、算出した太陽方向雲量を補正してもよい。例えば、日食時や、遮蔽物がある場合は、雲量が無限にあると仮定することも可能である。 Further, the cloud amount calculation unit 4 may correct the calculated solar cloud amount based on the state of eclipse and the presence or absence of shielding (buildings or trees) at each point. For example, it is possible to assume that the amount of clouds is infinite during a solar eclipse or when there is a shield.
実施形態2.
 次に、第2の実施形態について図面を参照して説明する。第2の実施形態は、GPVデータに、各格子点の雲量が含まれておらず、各格子点の雲量に相関のある量が含まれている場合を想定している。
Embodiment 2. FIG.
Next, a second embodiment will be described with reference to the drawings. In the second embodiment, it is assumed that the GPV data does not include the cloud amount of each lattice point, and includes a correlated amount in the cloud amount of each lattice point.
 本実施形態の予測システムの構成は、図1に示した第1の実施形態の構成と同様でよい。以下、第1の実施形態と同様の部分については同一の符号を付し、記載を省略する。 The configuration of the prediction system of this embodiment may be the same as that of the first embodiment shown in FIG. Hereinafter, the same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 次に、本実施形態の雲量の算出方法について説明する。本実施形態の雲量算出部4は、GPVデータに含まれる各格子点の雲量に相関のある情報を用いて、指定された地点の指定された時刻における太陽方向雲量を算出する。本実施形態の雲量算出部4は、気圧面によって高さ方向が分割される三次元グリッドを用いる。そして、雲量算出部4は、そのような三次元グリッドに含まれる各セル内の雲量に相当する量として、地表面上のグリッド(二次元グリッド)における各格子点の気温および湿度と、対象領域上空の各気圧面における相対湿度とを用いて、二次元グリッドの各格子点の各気圧面に相当する高度における湿数を求める。 Next, a cloud amount calculation method according to this embodiment will be described. The cloud amount calculation unit 4 of the present embodiment calculates the solar direction cloud amount at a specified time at a specified point using information correlated with the cloud amount of each lattice point included in the GPV data. The cloud amount calculation unit 4 of the present embodiment uses a three-dimensional grid whose height direction is divided by the atmospheric pressure surface. Then, the cloud amount calculation unit 4 calculates the temperature and humidity of each lattice point in the grid (two-dimensional grid) on the ground surface as the amount corresponding to the cloud amount in each cell included in such a three-dimensional grid, and the target region. Using the relative humidity at each atmospheric pressure surface in the sky, the humidity number at an altitude corresponding to each atmospheric pressure surface at each lattice point of the two-dimensional grid is obtained.
 なお、本実施形態でも、雲量算出部4の構成例として、図2に示した雲量算出部4を用いて説明する。 In the present embodiment, a configuration example of the cloud amount calculation unit 4 will be described using the cloud amount calculation unit 4 shown in FIG.
 図7は、本実施形態のGPVデータにおける格子点と予測地点における太陽方向を表す直線との対応を示す説明図である。図7に示すように、本実施形態では、GPVデータによって示される気圧面を、高さ方向のセルの区分(分割基準)として用いることにより、高さ方向における疑似的な格子点を設定する。なお、水平方向のセルの区分は第1の実施形態と同様でよい。すなわち、緯度経度の値によって定められればよい。なお、図7では、同一の気圧面を指すセルの高さ方向の幅が地点によって変わらない例を示しているが、同一の気圧面を指すセルの高さ方向の幅は、地表面上の地点(地表面上に規定される二次元グリッドにおける格子点)ごとに異なっていてもよい。また、例えば、太陽方向を表す直線が通る範囲内では、地点によって気圧面の高さがそれほど変わらないとして、予測地点における各気圧面の高さを他の地点に適用して計算量を削減してもよい。その場合、図7に示すように同一の気圧面を指すセルの高さ方向の幅が地点によって変わらない。一方、地点ごとに気圧面の高さを求め、当該地点上空の高さ方向のセルの区分として用いることも可能である。その場合、同一の気圧面を指すセルの高さ方向の幅が地点によって変化する場合がある。同一の気圧面を指すセルの高さ方向の幅が地点によって異なる場合であっても、三次元空間がもれなくセルに分割されて三次元グリッドを構成していれば、予測地点の位置情報と、太陽の角度情報と、各セルの位置情報(水平方向および高さ方向の幅の情報を含む)とから、太陽方向を表す直線が通るセルを特定することができる。 FIG. 7 is an explanatory diagram showing a correspondence between lattice points in the GPV data of the present embodiment and straight lines representing the sun direction at the predicted points. As shown in FIG. 7, in this embodiment, pseudo lattice points in the height direction are set by using the air pressure surface indicated by the GPV data as a cell division (division standard) in the height direction. The horizontal cell division may be the same as in the first embodiment. That is, it may be determined by the value of latitude and longitude. In addition, in FIG. 7, although the width | variety of the height direction of the cell which points to the same atmospheric pressure surface shows the example which does not change with points, the width of the height direction of the cell which points to the same atmospheric pressure surface is on the ground surface It may be different for each point (lattice point in a two-dimensional grid defined on the ground surface). Also, for example, within the range through which the straight line representing the solar direction passes, assuming that the height of the air pressure surface does not change much depending on the point, the amount of calculation is reduced by applying the height of each air pressure surface at the predicted point to other points. May be. In that case, as shown in FIG. 7, the width in the height direction of the cells pointing to the same atmospheric pressure surface does not change depending on the point. On the other hand, it is also possible to obtain the height of the air pressure surface for each point and use it as a cell division in the height direction above the point. In that case, the width in the height direction of the cell pointing to the same atmospheric pressure surface may vary depending on the point. Even if the height direction width of cells pointing to the same barometric surface is different depending on the point, if the three-dimensional space is divided into cells without exception and the three-dimensional grid is configured, the position information of the predicted point and From the angle information of the sun and the position information of each cell (including information on the width in the horizontal direction and the height direction), the cell through which the straight line representing the solar direction passes can be specified.
 本実施形態において、三次元雲量情報取得部42は、指定された地点を含む地表面を2以上の分割領域を含むように分割したときの各格子点の、指定された時刻における気温、湿度および気圧と、該地表面の上空の、指定された時刻における各気圧面における相対湿度とを少なくとも含むGPVデータを取得する。本実施形態のGPVデータは、厳密な三次元のGPVデータでなくてもよい。すなわち、三次元雲量情報取得部42は、指定された地点を含む地表面を水平方向で分割した二次元グリッドの各格子点における気象に関する予報値(少なくとも気温と湿度と気圧)に加えて、該地表面の上空の2以上の異なる気圧面における相対湿度の予報値を含むGPVデータを取得すればよい。ここで、地表面上の各格子点における地表面の気温、湿度および気圧と、各気圧面における相対湿度とが、三次元空間における各格子点の雲量に相関のある量に相当する。 In the present embodiment, the three-dimensional cloud amount information acquisition unit 42 divides the ground surface including the designated point so as to include two or more divided regions, and the temperature, humidity, and GPV data including at least the atmospheric pressure and the relative humidity on each atmospheric pressure surface at a specified time above the ground surface is acquired. The GPV data of this embodiment does not have to be exact three-dimensional GPV data. That is, the three-dimensional cloud amount information acquisition unit 42 adds the forecast value (at least temperature, humidity, and atmospheric pressure) related to the weather at each lattice point of the two-dimensional grid obtained by dividing the ground surface including the designated point in the horizontal direction. What is necessary is just to acquire the GPV data containing the predicted value of the relative humidity in two or more different atmospheric pressure surfaces above the ground surface. Here, the air temperature, humidity, and air pressure on the ground surface at each lattice point on the ground surface and the relative humidity on each air pressure surface correspond to an amount correlated with the cloud amount at each lattice point in the three-dimensional space.
 また、太陽方向雲量算出部43は、例えば、GPVデータに、各気圧面の高度の情報が含まれていれば、当該高度の情報を用いて対象領域上空の高さ方向における各セルの位置を定めてもよい。一例として、太陽方向雲量算出部43は、GPVデータにおいて相対湿度が示される各気圧面の高度に相当する高さが、高さ方向の各セルの中心に位置するように、対象領域上空を2以上の層に分割してもよい。 Further, for example, if the GPV data includes altitude information of each atmospheric pressure surface, the solar direction cloud amount calculation unit 43 uses the altitude information to determine the position of each cell in the height direction above the target area. It may be determined. As an example, the solar direction cloud amount calculation unit 43 sets the sky above the target region so that the height corresponding to the altitude of each atmospheric pressure surface where relative humidity is indicated in the GPV data is located at the center of each cell in the height direction. You may divide into the above layers.
 または、次に挙げる式(4)のように、GPVデータにおいて相対湿度が示される各気圧面の高度hを求めることも可能である。 Or, as in the following listed equation (4), it is also possible to determine the altitude h i of each pressure surface relative humidity is shown in GPV data.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、tは指定された地点における地上気温、pは指定された地点における地上気圧である。また、pには高度を求めたい気圧を入力すればよい。 Here, tg is the ground temperature at the designated point, and pg is the ground pressure at the designated point. Moreover, what is necessary is just to input the atmospheric pressure which wants to obtain the altitude for p.
 また、以下の式(5)は、求めた気圧面の高度を用いて、高さ方向のセルの幅thを求める方法の一例である。 Further, the following equation (5) is an example of a method for obtaining the cell width th i in the height direction using the obtained altitude of the atmospheric pressure surface.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 このようにして太陽方向雲量算出部43は、指定された地点を含む地表面およびその上空の空間を含む三次元空間を、高さ方向に2以上の層を含むように分割できる。その上で、太陽方向雲量算出部43は、各格子点における雲量に相関のある量である地表面の温度(気温)と湿度と気圧と上空の各気圧面における相対湿度とを用いて、指定された地点の指定された時刻における太陽方向雲量を求めてもよい。 In this way, the solar direction cloud amount calculation unit 43 can divide the three-dimensional space including the ground surface including the designated point and the space above it so as to include two or more layers in the height direction. Then, the solar direction cloud amount calculation unit 43 uses the ground surface temperature (air temperature), the humidity, the atmospheric pressure, and the relative humidity at each atmospheric pressure surface, which are correlated with the cloud amount at each lattice point, to specify the cloud amount. The cloud amount in the solar direction at the designated time of the designated point may be obtained.
 太陽方向雲量算出部43は、例えば、各セル(各地点・各気圧面)における指定された時刻tの気温Tおよび相対湿度RHを基に、太陽方向を表す直線が通るセルの各々について、当該セルでの露点温度Tdを求め、求めた露点温度Tdから、セル内の雲量に相当する湿数Hを求めてもよい。気温Tおよび相対湿度RHから露点温度Tdを求める方法としては、例えば、以下の式(6)を用いることができる。また、気温Tおよび露点温度Tdから湿数Hを求める方法としては、例えば、以下の式(7)を用いることができる。 The solar direction cloud amount calculation unit 43, for example, for each cell through which a straight line representing the solar direction passes based on the temperature T and the relative humidity RH at the designated time t in each cell (each point and each atmospheric pressure surface). The dew point temperature Td in the cell may be obtained, and the wet number H corresponding to the cloud amount in the cell may be obtained from the obtained dew point temperature Td. As a method for obtaining the dew point temperature Td from the temperature T and the relative humidity RH, for example, the following equation (6) can be used. Further, as a method for obtaining the wet number H from the temperature T and the dew point temperature Td, for example, the following equation (7) can be used.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
湿数H=T-Td ・・・(7) Wet number H = T-Td (7)
 太陽方向雲量算出部43は、例えば、式(7)を用いて、該直線が通るセルの湿数H (t)を、当該セル内の雲量c (t)として求めてもよい。ここで、jは気圧面を識別する識別子を表し、iは当該気圧面におけるセルを識別する識別子を表している。また、太陽方向雲量算出部43は、求めた湿数H (t)からさらに、次に示す計算を行ったものを、当該セル内の雲量c (t)としてもよい。 The solar direction cloud amount calculation unit 43 may obtain the wet number H j i (t) of the cell through which the straight line passes as the cloud amount c j i (t) in the cell, using, for example, the equation (7). . Here, j represents an identifier for identifying a pressure surface, and i represents an identifier for identifying a cell on the pressure surface. Further, the solar cloud amount calculation unit 43 may further calculate the cloud amount c j i (t) in the cell by performing the following calculation from the obtained wet number H j i (t).
 c (t)=max(3-H (t),0) ・・・(8) c j i (t) = max (3-H j i (t), 0) (8)
 式(8)は、一般的に雲が発生しないとされる湿数(3より大きい値)の影響を除外するための計算式である。 Formula (8) is a calculation formula for excluding the influence of a wet number (a value greater than 3) that is generally considered to be free of clouds.
 太陽方向を表す直線が通る各セルについて当該セル内の雲量(本例では湿数)が求まると、太陽方向雲量算出部43は、第1の実施形態と同様の方法で、それら各セル内の雲量に基づいて、太陽方向雲量を算出すればよい。 When the cloud amount in this cell (wet number in this example) is obtained for each cell through which the straight line representing the solar direction passes, the solar direction cloud amount calculation unit 43 uses the same method as in the first embodiment, The solar cloud amount may be calculated based on the cloud amount.
 太陽方向雲量算出部43は、例えば、太陽方向を表す直線が通るセルの各々の雲量の総和を、太陽方向雲量としてもよいし、さらに、各セル内における該直線の通過距離で当該セル内の雲量を重みづけし、その重みづけ和を太陽方向雲量を算出してもよい。太陽方向雲量算出部43は、第1の実施形態と同様に、通過距離の総和で除算することで太陽方向雲量を規格化してもよい。図8は、本実施形態での太陽方向を表す直線のセル内の通過距離の例を示す説明図である。例えば、三次元雲量情報取得部42が取得したGPVデータから各地点および各気圧面の雲量が求まる場合に、太陽方向雲量算出部43は、以下の式(9)を用いて、層ごとの太陽方向雲量を求めてもよい。 The solar direction cloud amount calculation unit 43 may use, for example, the sum of the cloud amounts of cells passing through a straight line representing the solar direction as the solar direction cloud amount, and further, the passage distance of the straight line in each cell The cloud amount may be weighted, and the sum of the weights may be used to calculate the solar direction cloud amount. Similarly to the first embodiment, the solar cloud amount calculation unit 43 may normalize the solar cloud amount by dividing by the sum of the passing distances. FIG. 8 is an explanatory diagram illustrating an example of a passing distance in a straight cell representing the sun direction in the present embodiment. For example, when the cloud amount at each point and each atmospheric pressure surface is obtained from the GPV data acquired by the three-dimensional cloud amount information acquisition unit 42, the solar direction cloud amount calculation unit 43 uses the following formula (9) to calculate the sun for each layer. The directional cloud amount may be obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、layerは、気圧面を識別する識別子であり、上記のjに相当する。また、Clayer(t)は、指定された地点の時刻tにおける、layerで示される気圧面での太陽方向雲量である。また、clayer (t)は、layerで示される気圧面の、iが示すセル内の時刻tにおける雲量である。また、rlayer (t)は、layerで示される気圧面の、iが示すセル内の時刻tにおける該直線の通過距離である。 Here, layer is an identifier for identifying the atmospheric pressure surface, and corresponds to the above j. C layer (t) is a cloud amount in the solar direction on the atmospheric pressure surface indicated by layer at time t of the designated point. Further, c layer i (t) is a cloud amount at time t in the cell indicated by i on the atmospheric pressure surface indicated by layer. Further, r layer i (t) is a passing distance of the straight line at time t in the cell indicated by i on the atmospheric pressure surface indicated by layer.
 本実施形態の学習部5は、例えば、雲量算出部4が求めた過去の複数の時刻tの層ごと(気圧面ごと)の太陽方向雲量C(t),C(t),・・・,Cj_max(t)を各々説明変数とし、時刻tの予測地点の日射量S(t)を各々被説明変数として機械学習を行い、以下の式(10)で表されるような関数Fを得てもよい。なお、j_maxは、気圧面の数(分割数)である。 The learning unit 5 of the present embodiment, for example, the solar cloud amounts C 1 (t), C 2 (t),... For each layer (for each atmospheric pressure surface) at a plurality of past times t obtained by the cloud amount calculation unit 4. .. , C j_max (t) is an explanatory variable, and the solar radiation amount S (t) at the predicted point at time t is machined to be an explanatory variable, and a function F as expressed by the following equation (10) is performed. You may get Note that j_max is the number of air pressure surfaces (number of divisions).
 S(t)=F(C(t),C(t),・・・,Cj_max(t)) ・・・(10) S (t) = F (C 1 (t), C 2 (t),..., C j_max (t)) (10)
 また、予測部6は、例えば、学習結果として上記の関数Fが得られている場合に、当該関数Fに雲量算出部4が算出した予測地点および予測時刻t’における層ごとの太陽方向雲量C(t’),C(t’),・・・,Cj_max(t’)を代入して、予測地点および予測時刻t’における日射量S(t’)を得てもよい。 In addition, for example, when the function F is obtained as a learning result, the prediction unit 6 uses the predicted point calculated by the cloud amount calculation unit 4 for the function F and the solar cloud amount C for each layer at the prediction time t ′. Substituting 1 (t ′), C 2 (t ′),..., C j_max (t ′), the solar radiation amount S (t ′) at the predicted point and the predicted time t ′ may be obtained.
 以上のように、本実施形態によれば、GPVデータに層ごとの雲量が明示的に含まれない場合であっても、GPVデータに含まれる雲量に相関のある量を用いて、高さ方向に2以上のセルが含まれるように分割された各セル内の雲量を求めることができる。特に、気圧面に基づいて高さ方向を分割する本実施形態の方法によれば、雲量と相関が高い気圧を基に高さ方向のセルを細分化することができるため、より高精度の学習および予測を行うことができる。なお、他の点については第1の実施形態と同様である。 As described above, according to the present embodiment, even when the cloud amount for each layer is not explicitly included in the GPV data, the height direction is determined using the amount correlated with the cloud amount included in the GPV data. The cloud amount in each cell divided so as to include two or more cells can be obtained. In particular, according to the method of this embodiment that divides the height direction based on the atmospheric pressure surface, cells in the height direction can be subdivided based on the atmospheric pressure that has a high correlation with the cloud amount, so that more accurate learning is possible. And can make predictions. Other points are the same as in the first embodiment.
実施形態3.
 次に、第3の実施形態について図面を参照して説明する。第3の実施形態は、学習データを用いずに、予測地点の予測時刻における太陽方向を表す直線が通るセル内の雲量に基づいて、予測地点の予測時刻における太陽方向雲量を算出して、予測地点の予測時刻における予測対象(本例では、日射量)の値を予測する。
Embodiment 3. FIG.
Next, a third embodiment will be described with reference to the drawings. The third embodiment calculates the solar directional cloud amount at the predicted time of the predicted point based on the cloud amount in the cell through which the straight line representing the solar direction at the predicted time of the predicted point passes without using the learning data. The value of the prediction target (in this example, the amount of solar radiation) at the predicted time of the point is predicted.
 図9は、第3の実施形態の予測システムの例を示すブロック図である。図9に示すように、本実施形態の予測システム1は、予測条件取得部2と、雲量算出部4aと、予測部6aとを備える。なお、上記の実施形態と同様の構成要素については同じ符号を付し、説明を省略する。 FIG. 9 is a block diagram illustrating an example of the prediction system of the third embodiment. As shown in FIG. 9, the prediction system 1 of this embodiment includes a prediction condition acquisition unit 2, a cloud amount calculation unit 4a, and a prediction unit 6a. In addition, the same code | symbol is attached | subjected about the component similar to said embodiment, and description is abbreviate | omitted.
 本実施形態において、雲量算出部4aは、予測用に、指定された地点および指定された時刻における太陽方向雲量を算出する。雲量算出部4aは、例えば、予測用データとして、予測地点の予測時刻における太陽方向雲量(予測値)を算出する。本実施形態で算出される太陽方向雲量の情報には、太陽方向を表す直線が通る各セル内の雲量または層ごとの太陽方向雲量が含まれる。 In this embodiment, the cloud amount calculation unit 4a calculates the cloud amount in the solar direction at a specified point and at a specified time for prediction. The cloud amount calculation unit 4a calculates, for example, the solar direction cloud amount (prediction value) at the prediction time of the prediction point as the prediction data. The solar cloud amount information calculated in the present embodiment includes the cloud amount in each cell through which a straight line representing the solar direction passes or the solar cloud amount for each layer.
 また、予測部6aは、雲量算出部4aが算出した予測地点の予測時刻における太陽方向雲量(予測値)に基づいて、予測地点の予測時刻における予測対象(本例では、日射量)の値を予測する。 Further, the prediction unit 6a determines the value of the prediction target (in this example, the amount of solar radiation) at the prediction time of the prediction point based on the solar cloud amount (prediction value) at the prediction time of the prediction point calculated by the cloud amount calculation unit 4a. Predict.
 予測部6aは、例えば、雲量算出部4aが算出した層ごとの太陽方向雲量に対して重み付けを行って、予測地点の予測時刻における予測対象の値を予測してもよい。例えば、予測部6aは、予測地点の予測時刻における太陽方向雲量(予測値)に含まれる太陽方向を表す直線が通る各セル内の雲量を、当該セルの三次元グリッドにおける高さ方向の位置(すなわちグリッドの高さ)に基づいて重みづけを行って、予測地点の予測時刻における予測対象の値を予測してもよい。このとき、予測部6aは、三次元グリッドにおける高さが高いセルの雲量ほど小さな重みを付与してもよい。これは、高層の雲は薄く低層の雲は濃いため、高い位置の雲は低い位置の雲より太陽光を透過しやすいことを考慮したものである。 The prediction unit 6a may predict the value of the prediction target at the prediction time of the prediction point, for example, by weighting the solar cloud amount for each layer calculated by the cloud amount calculation unit 4a. For example, the prediction unit 6a calculates the cloud amount in each cell through which a straight line representing the solar direction included in the solar direction cloud amount (predicted value) at the prediction time of the prediction point passes, in the height direction position of the cell in the three-dimensional grid ( In other words, weighting may be performed based on the height of the grid to predict the value of the prediction target at the prediction time of the prediction point. At this time, the prediction unit 6a may give a smaller weight to the cloud amount of a cell having a higher height in the three-dimensional grid. This is because the high-rise clouds are thin and the low-rise clouds are dark, so that clouds at higher positions are more likely to transmit sunlight than clouds at lower positions.
 予測部6aは、例えば、付与した重みに従い、層ごとの太陽方向雲量の重みづけ和を算出し、予め定められた層ごとの太陽方向雲量の重み付け和と予測対象との関係を表す式に、算出された重みづけ和を代入する等により、予測地点の予測時刻における予測対象の値を算出してもよい。 The prediction unit 6a calculates, for example, a weighted sum of the sun direction cloud amount for each layer according to the assigned weight, and represents a relationship between a predetermined weighted sum of the sun direction cloud amount for each layer and a prediction target, The value of the prediction target at the prediction time of the prediction point may be calculated by substituting the calculated weighted sum.
 このように、本実施形態によれば、層ごとに求められる太陽方向雲量に基づいて、該太陽方向雲量に所定の重み付けを行った上で、予測地点の予測時刻における予測対象の値を算出するので、高さによって異なる太陽方向にある雲の予測値に対する影響を適切に反映できる。したがって、太陽エネルギーに関する項目を精度よく予測することができる。 As described above, according to the present embodiment, based on the solar cloud amount obtained for each layer, a predetermined weight is applied to the solar cloud amount, and then the prediction target value at the prediction time of the prediction point is calculated. Therefore, it is possible to appropriately reflect the influence on the predicted value of clouds in different solar directions depending on the height. Therefore, the item regarding solar energy can be accurately predicted.
 なお、上記の各実施形態では、太陽方向を表す直線が通るすべてのセルを、雲量の算出対象に用いたが、例えば、図10に示すように、最大雲頂高度と雲底高度との間に含まれない高度のセル(網掛け部分参照)を雲量の算出対象から除外してもよい。なお、最大雲頂高度としては、浮力ゼロ高度(Level of Neutral bouyancy;LNB)を用いることができる。また、雲底高度としては、持ち上げ凝固点高度(Lifted Condensation Level;LCL)を用いることができる。 In each of the above embodiments, all the cells that pass through the straight line representing the solar direction are used for calculating the amount of cloud. For example, as shown in FIG. 10, between the maximum cloud top height and the cloud bottom height, You may exclude the cell of the altitude which is not included (refer to the shaded part) from the calculation target of the cloud amount. In addition, as the maximum cloud top altitude, a buoyancy zero altitude (Level of Neutral bouyancy; LNB) can be used. Further, as the cloud bottom height, a lifted solidification point height (LiftedftCondensation Level; LCL) can be used.
 LCLおよびLNBの算出方法として、例えば、一般に知られている、相当温位から求める方法や、地上の気温Tおよび露点温度Tdから求める方法を用いてもよい。 As a calculation method of LCL and LNB, for example, a generally known method of obtaining from an equivalent temperature level, or a method of obtaining from the ground temperature T and dew point temperature Td may be used.
 例えば、LCL=125+(T-Td)としてもよい。また、そのようにして求めたLCLを基に、エマグラム図を用いてLNBを求めてもよい。図11は、LNBの算出方法の概略を示す説明図である。太陽方向雲量算出部43は、LNBを、例えば図11に示すような方法により算出してもよい。 For example, LCL = 125 + (T−Td) may be set. Further, based on the LCL obtained in this way, LNB may be obtained using an emmagram. FIG. 11 is an explanatory diagram showing an outline of an LNB calculation method. The solar direction cloud amount calculation unit 43 may calculate the LNB by a method as shown in FIG. 11, for example.
 すなわち、まず、各高度(気圧)での気温の状態をエマグラム図にプロットし、状態曲線を作成する。そして、地上面気圧が示す高度(地上面高度)を出発高度として、その気圧および温度のプロット点を乾燥断熱線上に持ち上げ、LCLと対応する高度(気圧)まで到達したら、湿潤断熱線上に持ち上げる。最終的に湿潤断熱線よりも状態曲線が上回る交点を、LNBとする。 That is, first, the state of the temperature at each altitude (atmospheric pressure) is plotted on an emagram and a state curve is created. Then, using the altitude indicated by the ground surface pressure (the ground surface height) as a starting altitude, the plot point of the pressure and temperature is raised on the dry insulation line, and when reaching the altitude (atmosphere) corresponding to the LCL, it is raised on the wet insulation line. The intersection point where the state curve finally exceeds the wet heat insulation line is defined as LNB.
 また、図12は、実際の日射量と、第1の実施形態による日射量の予測値と、直上の雲量を用いて予測された日射量とを比較して示す説明図である。図12において横軸はある日時の0時を0としたときの経過時間を表し、縦軸は日照量を表している。なお、図12に示すデータは、1月中旬のある3日間の期間において予測時刻を1時間間隔で設定したときのデータである。図12から、第1の実施形態の方法が、直上の雲量を用いた方法に比べて、より実際の値に近い予測値が得られることがわかる。また、第1日目の11時付近において実際の日射量の急峻な変化が見られるが、それまで太陽方向になかった雲が早い速度で移動するなどして11時付近に太陽方向と重なって、予測地点に日陰を作ったことが理由として想定される。このように、予測地点に影響を与える雲は刻々と変化しうるが、本発明のように最も影響の大きい太陽方向上の雲の量に基づいて日射量を予測する方法によれば、そのような変化にも精度良く追従できることがわかる。 FIG. 12 is an explanatory diagram showing a comparison between the actual solar radiation amount, the predicted value of the solar radiation amount according to the first embodiment, and the solar radiation amount predicted using the cloud amount directly above. In FIG. 12, the horizontal axis represents the elapsed time when 0:00 of a certain date and time is set to 0, and the vertical axis represents the amount of sunlight. The data shown in FIG. 12 is data when the predicted time is set at one hour intervals in a period of three days in mid-January. From FIG. 12, it can be seen that the method according to the first embodiment can obtain a predicted value closer to the actual value than the method using the cloud amount directly above. In addition, there is a steep change in the actual amount of solar radiation around 11:00 on the first day, but the cloud that was not in the sun direction moved at a high speed so that it overlapped with the sun at around 11:00. It is assumed that the reason is that a shade was created at the predicted point. Thus, although the clouds that affect the prediction point can change every moment, according to the method of predicting the amount of solar radiation based on the amount of clouds in the solar direction having the greatest influence as in the present invention, such a It can be seen that it is possible to accurately follow any change.
 なお、図15に示したように、日本では、太陽方向の仰角が小さい冬の方が、直上と太陽方向との間の距離が大きくなる傾向にある。一方で、太陽方向の仰角が大きい夏の場合、直上と太陽方向との間の距離は小さく、南中時刻では高度15kmであってもわずか3km弱である。このため、季節や太陽方向の仰角に応じて、学習および予測に用いる雲量の算出方法を切り替えてもよい。すなわち、予測時刻が夏などの所定の季節である場合や予測時刻における太陽方向の仰角が所定の角度以上となる場合には、学習および予測に用いる雲量として、直上の雲量を用いるなどして計算にかかる時間を短縮してもよい。一方で、予測時刻が冬などの所定の季節である場合や予測時刻における太陽方向の仰角が所定の角度未満となる場合には、学習および予測に用いる雲量として、太陽方向雲量を用いてもよい。 As shown in FIG. 15, in Japan, the distance between the immediately above and the solar direction tends to increase in winter when the elevation angle in the solar direction is smaller. On the other hand, in the summer when the elevation angle in the solar direction is large, the distance between directly above and the solar direction is small, and even at an altitude of 15 km at the time of south-central time, it is only less than 3 km. For this reason, the cloud amount calculation method used for learning and prediction may be switched according to the season and the elevation angle in the sun direction. In other words, when the predicted time is a predetermined season such as summer, or when the elevation angle in the solar direction at the predicted time is greater than or equal to a predetermined angle, calculation is performed using the cloud amount directly above as the cloud amount used for learning and prediction. You may shorten the time which takes. On the other hand, when the predicted time is a predetermined season such as winter or when the elevation angle in the solar direction at the predicted time is less than a predetermined angle, the cloud amount in the solar direction may be used as the cloud amount used for learning and prediction. .
 次に、本発明の概要を説明する。図13は、本発明による予測システムの概要を示すブロックである。図13に示すように、本発明による予測システムは、太陽方向雲量算出手段101と、予測手段102とを備える。 Next, the outline of the present invention will be described. FIG. 13 is a block diagram showing an outline of a prediction system according to the present invention. As shown in FIG. 13, the prediction system according to the present invention includes solar direction cloud amount calculation means 101 and prediction means 102.
 太陽方向雲量算出手段101(例えば、雲量算出部4、太陽方向雲量算出部43)は、特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する。特定の地点は、例えば、指定された第1の地点を含む地表面の所定の格子点であってもよい。 The solar direction cloud amount calculation means 101 (for example, the cloud amount calculation unit 4, the solar direction cloud amount calculation unit 43) calculates the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction. Based on this, the solar cloud amount that is the cloud amount in the solar direction at the designated first point is calculated. The specific point may be, for example, predetermined grid points on the ground surface including the designated first point.
 予測手段102(例えば、予測部6)は、太陽方向雲量算出手段101が算出した太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する。 The prediction unit 102 (for example, the prediction unit 6) predicts the value of the prediction target, which is an item related to solar energy at the first point, using the solar direction cloud amount calculated by the solar direction cloud amount calculation unit 101.
 このような構成を備えることにより、雲の高度の情報を考慮して、太陽エネルギーに関する項目への影響が特に大きい太陽方向にある雲量を算出できるので、該項目の値を精度よく予測することができる。 By providing such a configuration, it is possible to calculate the amount of cloud in the solar direction that has a particularly large impact on items related to solar energy in consideration of the information on the altitude of the cloud, so that the value of the item can be accurately predicted. it can.
 また、図14は、本発明による情報処理装置の構成例を示すブロック図である。図14に示すように、本発明による情報処理装置は、上記の太陽方向雲量算出手段101を備える。既に説明したように、太陽エネルギーに関する項目への影響が特に大きい太陽方向にある雲量を、雲の高度の情報を考慮して求めることができるので、そのような雲量が必要なすべての用途に有効な情報を提供できる。 FIG. 14 is a block diagram showing a configuration example of the information processing apparatus according to the present invention. As shown in FIG. 14, the information processing apparatus according to the present invention includes the solar cloud amount calculation unit 101 described above. As already explained, the amount of cloud in the solar direction that has a particularly large impact on items related to solar energy can be determined in consideration of the altitude information of the cloud, so it is effective for all applications that require such cloud amount. Information can be provided.
 なお、上記の各実施形態は以下の付記のようにも記載できる。 In addition, each said embodiment can be described also as the following additional remarks.
 (付記1)第1の地点を含む地表面およびその上空を、水平方向に2以上のセルを含むとともに高さ方向に2以上のセルを含むように分割したときの三次元グリッドに含まれる各セルのうち、第1の地点と太陽とを結ぶ直線が通るセル内の雲量に基づいて、第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段と、算出された太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する予測手段とを備えたことを特徴とする予測システム。 (Supplementary note 1) Each of the three-dimensional grids when the ground surface including the first point and the sky above are divided so as to include two or more cells in the horizontal direction and two or more cells in the height direction. Solar direction cloud amount calculating means for calculating a solar direction cloud amount that is a cloud amount in the solar direction at the first point, based on the cloud amount in the cell through which a straight line connecting the first point and the sun of the cell passes. A prediction system comprising: a prediction unit that predicts a value of a prediction target that is an item related to solar energy at the first point using the amount of cloud in the solar direction.
 (付記2)学習用データとして算出された太陽方向雲量と、学習用データとしての太陽方向雲量を算出したときと同じ地点および時刻における予測対象の実績値とに基づいて、予測対象と太陽方向雲量との関係を学習する学習手段を備え、太陽方向雲量算出手段は、学習用データとして、予測地点である第1の地点の、予測時刻に対応する過去の複数の時刻における太陽方向雲量を算出するとともに、予測用データとして、予測地点である第1の地点の、予測時刻における太陽方向雲量を算出し、予測手段は、学習手段による学習結果と、予測用データとして算出された太陽方向雲量とに基づいて、予測地点である第1の地点の、予測時刻における予測対象の値を予測する付記1に記載の予測システム。 (Supplementary Note 2) Based on the solar direction cloud amount calculated as the learning data and the actual value of the prediction target at the same point and time as when the solar direction cloud amount as the learning data was calculated, the prediction target and the solar direction cloud amount The solar direction cloud amount calculation unit calculates, as learning data, the solar direction cloud amount at a plurality of past times corresponding to the predicted time of the first point that is the predicted point. At the same time, as the prediction data, the solar cloud amount at the prediction time of the first point which is the prediction point is calculated, and the prediction unit converts the learning result by the learning unit and the solar cloud amount calculated as the prediction data. The prediction system according to supplementary note 1, wherein the prediction target value at the prediction time of the first point that is the prediction point is predicted based on the prediction point.
 (付記3)第1の地点を含む地表面およびその上空を含む三次元空間を、水平方向に2以上のセルを含むとともに高さ方向に2以上のセルを含むように分割したときの三次元グリッドの各格子点における、指定された時刻の雲量または雲量に相関のある量の予報値を含むGPVデータを取得する三次元雲量情報取得手段を備え、太陽方向雲量算出手段は、GPVデータを用いて、第1の地点の、指定された時刻における太陽方向の雲量である太陽方向雲量を算出する付記1または付記2に記載の予測システム。 (Supplementary Note 3) Three-dimensional when a three-dimensional space including the ground surface including the first point and the sky above is divided so as to include two or more cells in the horizontal direction and two or more cells in the height direction. 3D cloud amount information acquisition means for acquiring GPV data including a forecast value of a cloud amount at a specified time or an amount correlated with the cloud amount at each grid point of the grid, and the solar direction cloud amount calculation means uses GPV data The prediction system according to Supplementary Note 1 or Supplementary Note 2, wherein a solar cloud amount that is a cloud amount in the solar direction at a specified time at a first point is calculated.
 (付記4)GPVデータは、地表面上の格子点の各々について、上空の雲量であって、上層、中層および下層の雲量を含む付記3に記載の予測システム。 (Supplementary note 4) The prediction system according to supplementary note 3, wherein the GPV data is the amount of cloud in the sky for each lattice point on the ground surface and includes the amount of clouds in the upper, middle, and lower layers.
 (付記5)GPVデータは、雲量に相関のある量として、地表面上の格子点の各々における温度、湿度および気圧と、地表面の上空の2以上の気圧面における相対湿度とを含む付記3に記載の予測システム。 (Supplementary note 5) The GPV data includes temperature, humidity and atmospheric pressure at each of the lattice points on the ground surface, and relative humidity at two or more atmospheric pressure planes above the ground surface as quantities correlated with the cloud amount. The prediction system described in.
 (付記6)太陽方向雲量算出手段は、GPVデータに含まれる地表面上の所定の格子点の各々における温度、湿度および気圧と、地表面の上空の2以上の気圧面における相対湿度とに基づいて、第1の地点を含む地表面およびその上空を、地表面上の格子点と地表面の上空の2以上の気圧面とによって分割して三次元グリッドを設定し、設定された三次元グリッドに含まれる各セルのうち、第1の地点と太陽とを結ぶ直線が通るセル内の雲量として該セル内の湿数を算出し、算出された湿数に基づいて、第1の地点における太陽方向の雲量である太陽方向雲量を算出する付記5に記載の予測システム。 (Supplementary Note 6) The solar cloud amount calculation means is based on the temperature, humidity, and atmospheric pressure at each of predetermined lattice points on the ground surface included in the GPV data, and relative humidity at two or more atmospheric pressure surfaces above the ground surface. The 3D grid is set by dividing the ground surface including the first point and the sky above it by a grid point on the ground surface and two or more air pressure surfaces above the ground surface, and setting the 3D grid. Among the cells included in the cell, the wet number in the cell is calculated as the amount of cloud in the cell through which the straight line connecting the first point and the sun passes, and the sun at the first point is calculated based on the calculated wet number The prediction system according to appendix 5, which calculates a solar cloud amount that is a cloud amount in the direction.
 (付記7)指定された第1の地点を含む地表面およびその上空を、水平方向に2以上のセルを含むとともに、高さ方向に2以上のセルを含むように分割したときの三次元グリッドに含まれる各セルのうち、第1の地点と太陽とを結ぶ直線が通るセル内の雲量に基づいて、第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段を備えたことを特徴とする情報処理装置。 (Supplementary note 7) A three-dimensional grid obtained by dividing the ground surface including the designated first point and the sky above it so as to include two or more cells in the horizontal direction and two or more cells in the height direction. Solar direction cloud amount calculation means for calculating a solar direction cloud amount that is a cloud amount in the solar direction at the first point based on a cloud amount in a cell through which a straight line connecting the first point and the sun passes An information processing apparatus comprising:
 (付記8)三次元グリッドは、高さ方向が、距離の長さまたは気圧の大きさに基づいて分割されている付記7に記載の情報処理装置。 (Supplementary note 8) The information processing apparatus according to supplementary note 7, wherein the three-dimensional grid has a height direction divided based on a length of distance or a magnitude of atmospheric pressure.
 (付記9)情報処理装置が、指定された第1の地点を含む地表面およびその上空を、水平方向に2以上のセルを含むとともに、高さ方向に2以上のセルを含むように分割したときの三次元グリッドに含まれる各セルのうち、第1の地点と太陽とを結ぶ直線が通るセル内の雲量に基づいて、第1の地点における太陽方向の雲量である太陽方向雲量を算出し、算出された太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測することを特徴とする予測方法。 (Supplementary Note 9) The information processing apparatus divides the ground surface including the designated first point and the sky so as to include two or more cells in the horizontal direction and two or more cells in the height direction. Based on the cloud amount in the cell through which the straight line connecting the first point and the sun passes among each cell included in the three-dimensional grid, the solar direction cloud amount that is the cloud amount in the solar direction at the first point is calculated. A prediction method characterized by predicting a prediction target value, which is an item relating to solar energy at the first point, using the calculated cloud amount in the solar direction.
 (付記10)三次元グリッドは、高さ方向が、距離の長さまたは気圧の大きさに基づいて分割されている付記9に記載の予測方法。 (Supplementary note 10) The prediction method according to supplementary note 9, wherein the three-dimensional grid is divided in the height direction based on the length of the distance or the magnitude of the atmospheric pressure.
 (付記11)コンピュータに、指定された第1の地点を含む地表面およびその上空を、水平方向に2以上のセルを含むとともに、高さ方向に2以上のセルを含むように分割したときの三次元グリッドに含まれる各セルのうち、第1の地点と太陽とを結ぶ直線が通るセル内の雲量に基づいて、第1の地点における太陽方向の雲量である太陽方向雲量を算出する処理と、算出された太陽方向雲量を用いて、第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する処理とを実行させるための予測プログラム。 (Supplementary Note 11) When the computer divides the ground surface including the designated first point and the sky above it so as to include two or more cells in the horizontal direction and two or more cells in the height direction. A process of calculating a solar cloud amount that is a cloud amount in the solar direction at the first point based on a cloud amount in a cell through which a straight line connecting the first point and the sun passes among the cells included in the three-dimensional grid; The prediction program for performing the process which estimates the value of the prediction object which is an item regarding the solar energy in a 1st point using the calculated solar direction cloud amount.
 (付記12)三次元グリッドは、高さ方向が、距離の長さまたは気圧の大きさに基づいて分割されている付記11に記載の予測プログラム。 (Supplementary note 12) The prediction program according to supplementary note 11, wherein the three-dimensional grid is divided in the height direction based on the length of the distance or the magnitude of the atmospheric pressure.
 以上、本実施形態および実施例を参照して本願発明を説明したが、本願発明は上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 Although the present invention has been described with reference to the present embodiment and examples, the present invention is not limited to the above-described embodiment and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年12月28日に出願された日本特許出願2015-256402を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-256402 filed on Dec. 28, 2015, the entire disclosure of which is incorporated herein.
 本発明は、太陽エネルギーに関する項目を予測する用途に限らず、太陽方向の雲量を用いて何らかの計算を行う用途に好適に適用可能である。 The present invention is not limited to the use of predicting items related to solar energy, but can be suitably applied to a use of performing some calculation using the cloud amount in the solar direction.
 1 予測システム
 2 予測条件取得部
 3 実績値取得部
 4、4a 雲量算出部
 41 太陽方向計算部
 42 三次元雲量情報取得部
 43 太陽方向雲量算出部
 5 学習部
 6、6a 予測部
 101 太陽方向雲量算出手段
 102 予測手段
DESCRIPTION OF SYMBOLS 1 Prediction system 2 Prediction condition acquisition part 3 Actual value acquisition part 4, 4a Cloud cover calculation part 41 Solar direction calculation part 42 Three-dimensional cloud cover information acquisition part 43 Solar direction cloud cover calculation part 5 Learning part 6, 6a Prediction part 101 Solar direction cloud cover calculation Means 102 Prediction means

Claims (12)

  1.  特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段と、
     前記太陽方向雲量を用いて、前記第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する予測手段とを備えた
     ことを特徴とする予測システム。
    Based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction, the cloud amount in the solar direction at the designated first point is calculated. Solar cloud amount calculation means;
    A prediction system comprising: prediction means for predicting a value to be predicted, which is an item relating to solar energy at the first point, using the solar cloud amount.
  2.  前記各セルの雲量は、前記第1の地点を含む地表面およびその上空を、水平方向に2以上のセルを含むとともに高さ方向に2以上のセルを含むように分割したときの各セルの雲量であり、
     前記太陽方向雲量算出手段は、前記各セルのうち前記第1の地点と太陽とを結ぶ直線が通るセルの雲量に基づいて、前記太陽方向雲量を算出する
     請求項1に記載の予測システム。
    The cloud amount of each cell is determined by dividing the ground surface including the first point and the sky above each cell so as to include two or more cells in the horizontal direction and two or more cells in the height direction. Cloud cover,
    The prediction system according to claim 1, wherein the solar direction cloud amount calculation unit calculates the solar direction cloud amount based on a cloud amount of a cell through which a straight line connecting the first point and the sun passes among the cells.
  3.  前記太陽方向雲量算出手段は、前記第1の地点と太陽とを結ぶ直線が通るセルの雲量と、前記直線の前記セル内の通過距離とに基づいて、前記太陽方向雲量を算出する
     請求項2に記載の予測システム。
    The solar cloud amount calculation unit calculates the solar cloud amount based on a cloud amount of a cell passing through a straight line connecting the first point and the sun and a passing distance of the straight line in the cell. The prediction system described in.
  4.  前記高さ方向の分割が、距離の長さに基づいて行われている
     請求項1から請求項3のうちのいずれかに記載の予測システム。
    The prediction system according to claim 1, wherein the division in the height direction is performed based on a distance length.
  5.  前記高さ方向の分割が、気圧の大きさに基づいて行われている
     請求項1から請求項3のうちのいずれかに記載の予測システム。
    The prediction system according to any one of claims 1 to 3, wherein the division in the height direction is performed based on a magnitude of atmospheric pressure.
  6.  前記各セルの雲量は、前記第1の地点を含む地表面およびその上空を、地表面上の所定の格子点と該地表面の上空の2以上の気圧面とによって分割したときの各セルの雲量であり、
     前記太陽方向雲量算出手段は、前記セルの雲量として、前記格子点の各々における温度、湿度および気圧と、前記気圧面の各々における相対湿度とに基づいて、該セルが対応する領域における湿度を算出し、算出された湿数に基づいて、前記太陽方向雲量を算出する
     請求項1から請求項5のうちのいずれかに記載の予測システム。
    The cloud amount of each cell is determined by dividing the ground surface including the first point and the sky above it by a predetermined lattice point on the ground surface and two or more atmospheric pressure surfaces above the ground surface. Cloud cover,
    The solar cloud amount calculation means calculates the humidity in the region corresponding to the cell based on the temperature, humidity, and atmospheric pressure at each of the lattice points and the relative humidity at each of the atmospheric pressure surfaces as the cloud amount of the cell. The prediction system according to any one of claims 1 to 5, wherein the solar cloud amount is calculated based on the calculated wet number.
  7.  前記各セルの雲量は、前記第1の地点を含む地表面およびその上空を、水平方向に2以上のセルに分割するとともに、高さ方向に2以上のセルに分割したときの各セルの雲量であり、
     前記太陽方向雲量算出手段は、前記各セルのうち、前記第1の地点と太陽とを結ぶ直線が通るセルであって最大雲頂高度と雲底高度の範囲内にあるセルの雲量に基づいて、前記太陽方向雲量を算出する
     請求項1から請求項6のうちのいずれかに記載の予測システム。
    The cloud amount of each cell is the cloud amount of each cell when the ground surface including the first point and the sky above are divided into two or more cells in the horizontal direction and divided into two or more cells in the height direction. And
    The solar direction cloud amount calculation means is a cell through which a straight line connecting the first point and the sun passes through each of the cells, and based on the cloud amount of a cell within the range of the maximum cloud top height and the cloud bottom height, The prediction system according to any one of claims 1 to 6, wherein the solar cloud amount is calculated.
  8.  前記太陽方向雲量算出手段は、前記各セルの雲量に対して、高さ方向の位置に基づいて重みを付与した上で、前記太陽方向雲量を算出する
     請求項1から請求項7のうちのいずれかに記載の予測システム。
    The solar direction cloud amount calculation means calculates the solar direction cloud amount after giving a weight to the cloud amount of each cell based on a position in a height direction. The prediction system described in Crab.
  9.  前記重みは、高さ方向の位置が高いほど小さい
     請求項8に記載の予測システム。
    The prediction system according to claim 8, wherein the weight is smaller as the position in the height direction is higher.
  10.  特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する太陽方向雲量算出手段を備えた
     ことを特徴とする情報処理装置。
    Based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction, the cloud amount in the solar direction at the designated first point is calculated. An information processing apparatus comprising solar direction cloud amount calculation means.
  11.  情報処理装置が、
     特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出し、
     前記太陽方向雲量を用いて、前記第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する
     ことを特徴とする予測方法。
    Information processing device
    Based on the cloud amount of each cell when the sky above a specific point is divided to include two or more cells in the height direction, the cloud amount in the solar direction at the designated first point is calculated. ,
    A prediction method that predicts a prediction target value, which is an item related to solar energy at the first point, using the cloud amount in the solar direction.
  12.  コンピュータに、
     特定の地点の上空を高さ方向に2以上のセルを含むように分割したときの各セルの雲量に基づいて、指定された第1の地点における太陽方向の雲量である太陽方向雲量を算出する処理と、
     前記太陽方向雲量を用いて、前記第1の地点における太陽エネルギーに関する項目である予測対象の値を予測する処理と
     を実行させるための予測プログラム。
    On the computer,
    Based on the cloud amount of each cell when the sky above a specific point is divided so as to include two or more cells in the height direction, the cloud amount in the solar direction at the designated first point is calculated. Processing,
    The prediction program for performing the process which estimates the value of the prediction object which is an item regarding the solar energy in the said 1st point using the said solar direction cloud amount.
PCT/JP2016/087827 2015-12-28 2016-12-19 Forecasting system, information processing device, forecasting method, and forecasting program WO2017115686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015256402 2015-12-28
JP2015-256402 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115686A1 true WO2017115686A1 (en) 2017-07-06

Family

ID=59225107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087827 WO2017115686A1 (en) 2015-12-28 2016-12-19 Forecasting system, information processing device, forecasting method, and forecasting program

Country Status (1)

Country Link
WO (1) WO2017115686A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987131A (en) * 2021-01-29 2021-06-18 重庆市气象台 Method and system for forecasting cloud sea landscape
CN113156546A (en) * 2021-03-12 2021-07-23 重庆市气象台 Sunrise and sunset landscape forecasting method and system
JP7127927B1 (en) * 2022-03-15 2022-08-30 日本電気株式会社 Water vapor observation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032383A (en) * 2008-07-29 2010-02-12 Fujitsu Ltd Apparatus and method for forecasting, and program
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation
JP2013238550A (en) * 2012-05-17 2013-11-28 Ntt Docomo Inc Ultraviolet ray information providing device, ultraviolet ray information providing system, ultraviolet ray information calculation method and program
JP2013242279A (en) * 2012-05-23 2013-12-05 Eneres Corp Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010032383A (en) * 2008-07-29 2010-02-12 Fujitsu Ltd Apparatus and method for forecasting, and program
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation
JP2013238550A (en) * 2012-05-17 2013-11-28 Ntt Docomo Inc Ultraviolet ray information providing device, ultraviolet ray information providing system, ultraviolet ray information calculation method and program
JP2013242279A (en) * 2012-05-23 2013-12-05 Eneres Corp Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112987131A (en) * 2021-01-29 2021-06-18 重庆市气象台 Method and system for forecasting cloud sea landscape
CN112987131B (en) * 2021-01-29 2023-08-08 重庆市气象台 Cloud sea landscape forecasting method and system
CN113156546A (en) * 2021-03-12 2021-07-23 重庆市气象台 Sunrise and sunset landscape forecasting method and system
CN113156546B (en) * 2021-03-12 2023-02-17 重庆市气象台 Sunrise and sunset landscape forecasting method and system
JP7127927B1 (en) * 2022-03-15 2022-08-30 日本電気株式会社 Water vapor observation method
WO2023175734A1 (en) * 2022-03-15 2023-09-21 日本電気株式会社 Water vapor observation method

Similar Documents

Publication Publication Date Title
Nguyen et al. Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale
Matzarakis et al. Sky view factor as a parameter in applied climatology-rapid estimation by the SkyHelios model
Heinemann et al. Forecasting of solar radiation
EP3629282A1 (en) Photovoltaic power generation facility design assistance device, design assistance method, design assistance program, and design assistance learned model creation device
WO2017115686A1 (en) Forecasting system, information processing device, forecasting method, and forecasting program
Araya-Muñoz et al. Assessing the solar potential of roofs in Valparaíso (Chile)
JP5200736B2 (en) Forecasting device, method and program
CN103971167A (en) Method and system for predicting generated power of photovoltaic power generation equipment
Díaz et al. An adaptive solar radiation numerical model
CA3123834A1 (en) Method and system for determining solar access of a structure
Park et al. Advanced view factor analysis method for radiation exchange
Herrmann et al. Modeling the soiling of glazing materials in arid regions with geographic information systems (GIS)
JP2015094596A (en) Solar-energy-utilization calculation system
Zhang et al. Evaluation of the photovoltaic potential in built environment using spatial data captured by unmanned aerial vehicles
Ozoroski et al. High altitude long endurance UAV analysis model development and application study comparing solar powered airplane and airship station-keeping capabilities
Díaz et al. A new predictive solar radiation numerical model
JP5181379B1 (en) Power generation potential evaluation device and power generation potential evaluation program
JP2006234591A (en) Method and apparatus for calculating solar radiation
KR102002593B1 (en) Method and apparatus for analyzing harmful gas diffusion in a specific space
CN116187807A (en) Photovoltaic power generation amount evaluation method, device, computer equipment, medium and product
Syafawati et al. Forecasting the potential of solar energy harvest in Kangar
Fara et al. New results in forecasting of photovoltaic systems output based on solar radiation forecasting
Murshed et al. Evaluation of Two Solar Radiation Algorithms on 3D City Models for Calculating Photovoltaic Potential.
Lee et al. An analytically based numerical method for computing view factors in real urban environments
Yun et al. Developing a three-dimensional urban surface model for spatiotemporal analysis of thermal comfort with respect to street direction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP