JP2013242279A - Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method - Google Patents

Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method Download PDF

Info

Publication number
JP2013242279A
JP2013242279A JP2012117130A JP2012117130A JP2013242279A JP 2013242279 A JP2013242279 A JP 2013242279A JP 2012117130 A JP2012117130 A JP 2012117130A JP 2012117130 A JP2012117130 A JP 2012117130A JP 2013242279 A JP2013242279 A JP 2013242279A
Authority
JP
Japan
Prior art keywords
shielding
humidity
altitude
coefficient calculation
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012117130A
Other languages
Japanese (ja)
Inventor
Fumiha Kato
史葉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneres Co Ltd
Original Assignee
Eneres Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eneres Co Ltd filed Critical Eneres Co Ltd
Priority to JP2012117130A priority Critical patent/JP2013242279A/en
Publication of JP2013242279A publication Critical patent/JP2013242279A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve accuracy in calculating solar radiation and determining whether or not an observation object can be viewed from a target point.SOLUTION: A shade coefficient calculation device includes: a humidity information acquisition unit for acquiring plural humidities corresponding to plural altitudes, respectively, at an observation point; a shade rate retention unit for retaining a shade rate indicating a rate of light blocked by atmosphere having one humidity at one altitude in association with each of plural combinations of plural altitude ranges and plural humidity ranges; and a shade coefficient calculation unit for using the shade rate retained by the shade rate retention unit to calculate a shade coefficient indicating a rate of light blocked by atmosphere at a target point. The shade rate retention unit retains one shade rate in association with a combination of one humidity range and one altitude range, and retains another shade rate lower than the one shade rate in association with a combination of the one humidity range and another altitude range higher than the one altitude range.

Description

本発明は、遮蔽係数算出装置、日射量予測装置、プログラム、および遮蔽係数算出方法
に関する。
The present invention relates to a shielding coefficient calculation device, a solar radiation amount prediction device, a program, and a shielding coefficient calculation method.

特許文献1には、太陽光発電設備の設置箇所の領域の雲量と、当該設置箇所の領域の日射量と相関が強い複数の特定箇所の複数の領域の雲量とに基づいて、当該設置箇所の将来の日射量を算出することが記載されている。特許文献2には、予報地点と観測目標とを結ぶ直線が通過する各立体格子の雲の水量または雲量を加算し、加算値が判定しきい値以下の場合に、予報地点から観測目標をみることができると判定することが記載されている。
特許文献1 特開2012−53582号公報
特許文献2 特開2010−32383号公報
In Patent Literature 1, based on the cloud amount of the area of the installation location of the photovoltaic power generation facility and the cloud amount of the plurality of areas of the plurality of specific locations having a strong correlation with the amount of solar radiation of the area of the installation location, It describes the calculation of future solar radiation. In Patent Document 2, the water amount or the cloud amount of the clouds of each three-dimensional lattice through which a straight line connecting the prediction point and the observation target passes is added, and the observation target is viewed from the prediction point when the addition value is equal to or less than the determination threshold value. It is described that it can be determined.
Patent Document 1 JP 2012-53582 JP Patent Document 2 JP 2010-32383 A

日射量の算出または対象地点から観測目標をみることができるか否かの判定などの精度を向上させることが望まれている。   It is desired to improve the accuracy of calculating the amount of solar radiation or determining whether or not the observation target can be seen from the target point.

本発明の一態様に係る遮蔽係数算出装置は、対象地点における複数の高度のそれぞれに対応する複数の湿度を取得する湿度情報取得部と、複数の高度範囲および複数の湿度範囲の複数の組み合わせのそれぞれに対応づけて、一の高度に存在する一の湿度を有する大気によって遮蔽される光の割合を示す遮蔽率を保持する遮蔽率保持部と、遮蔽率保持部が保持する遮蔽率を用いて、対象地点上の大気によって遮蔽される光の割合を示す遮蔽係数を算出する遮蔽係数算出部とを備え、遮蔽率保持部は、一の湿度範囲と一の高度範囲との組み合わせに対応づけて、一の遮蔽率を保持し、一の湿度範囲と一の高度範囲より高い他の高度範囲との組み合わせに対応づけて、一の遮蔽率より低い他の遮蔽率を保持する。   A shielding coefficient calculation apparatus according to an aspect of the present invention includes a humidity information acquisition unit that acquires a plurality of humidity corresponding to each of a plurality of altitudes at a target point, and a plurality of combinations of a plurality of altitude ranges and a plurality of humidity ranges. Corresponding to each, using a shielding rate holding unit that holds a shielding rate indicating a ratio of light shielded by an atmosphere having one humidity existing at one altitude, and a shielding rate held by the shielding rate holding unit A shielding coefficient calculating unit that calculates a shielding coefficient indicating a ratio of light shielded by the atmosphere above the target point, and the shielding rate holding unit is associated with a combination of one humidity range and one altitude range. One shielding rate is maintained, and another shielding rate lower than one shielding rate is retained in association with a combination of one humidity range and another altitude range higher than one altitude range.

上記遮蔽係数算出装置において、湿度情報取得部は、予め定められた複数の気圧のそれぞれの複数の高度に対応する複数の湿度を取得してもよい。湿度情報取得部は、気圧が低いほど気圧高度の間隔が広い複数の気圧のそれぞれの複数の高度に対応する複数の湿度を取得してもよい。湿度情報取得部は、過去の気象データに基づいて予測された複数の湿度を取得してもよい。   In the shielding coefficient calculation apparatus, the humidity information acquisition unit may acquire a plurality of humidity corresponding to a plurality of altitudes of a plurality of predetermined atmospheric pressures. The humidity information acquisition unit may acquire a plurality of humidity levels corresponding to a plurality of altitudes of a plurality of atmospheric pressures having a wider interval between atmospheric pressure altitudes as the atmospheric pressure is lower. The humidity information acquisition unit may acquire a plurality of humidity predicted based on past weather data.

上記遮蔽係数算出装置において、遮蔽係数算出部は、対象地点上の大気の複数の層のそれぞれの高度および湿度に対応する高度範囲および湿度範囲に対応付けて遮蔽率保持部に保持されている複数の遮蔽率を用いて遮蔽係数を算出してもよい。   In the shielding coefficient calculation device, the shielding coefficient calculation unit includes a plurality of pieces held in the shielding rate holding unit in association with altitude ranges and humidity ranges corresponding to altitudes and humidity ranges of a plurality of layers of the atmosphere on the target point. The shielding coefficient may be calculated using the shielding rate.

上記遮蔽係数算出装置は、複数の高度のうちの一の層の高度より一段高い高度と、複数の高度のうちの一の層の高度より一段低い高度との差の略半分を、一の層の厚さとして算出することにより、複数の層のそれぞれの厚さを算出する層厚算出部をさらに備え、遮蔽係数算出部は、複数の層の厚さのそれぞれに、複数の遮蔽率のそれぞれを乗じることによって、遮蔽係数を算出してもよい。   The shielding coefficient calculating device calculates substantially half of the difference between the altitude one level higher than the altitude of one layer of the plurality of altitudes and the altitude one level lower than the altitude of the one layer among the plurality of altitudes. By further calculating a thickness of each of the plurality of layers by calculating the thickness of each of the plurality of layers, and the shielding coefficient calculation unit includes a plurality of shielding rates for each of the plurality of layer thicknesses. The shielding factor may be calculated by multiplying.

上記遮蔽係数算出装置は、対象地点における複数の高度範囲に対応する複数の雲量を取得する雲量情報取得部をさらに備え、遮蔽係数算出部は、複数の雲量をさらに用いて、遮蔽係数を算出してもよい。   The shielding coefficient calculation device further includes a cloud amount information acquisition unit that acquires a plurality of cloud amounts corresponding to a plurality of altitude ranges at the target point, and the shielding coefficient calculation unit further calculates the shielding coefficient using the plurality of cloud amounts. May be.

本発明の一態様に係る日射量予測装置は、上記遮蔽係数算出装置と、遮蔽係数算出装置から取得した遮蔽係数と、対象地点について予め定められた大気外全天日射量と、対象地点について予め定められた大気透過率とに基づいて日射量を予測する日射量予測部とを備える。   A solar radiation amount predicting apparatus according to an aspect of the present invention provides the above-described shielding coefficient calculating apparatus, the shielding coefficient acquired from the shielding coefficient calculating apparatus, the total global solar radiation amount determined in advance for the target point, and the target point in advance. A solar radiation amount predicting unit that predicts the solar radiation amount based on the determined atmospheric transmittance.

本発明の一態様に係る遮蔽係数算出方法は、対象地点における複数の高度のそれぞれに対応する複数の湿度を取得する湿度情報取得工程と、遮蔽率保持部が複数の高度範囲および複数の湿度範囲の複数の組み合わせのそれぞれに対応づけて保持している、一の高度に存在する一の湿度を有する大気によって遮蔽される光の割合を示す遮蔽率を用いて、対象地点上の大気によって遮蔽される光の割合を示す遮蔽係数を算出する遮蔽係数算出工程とを含み、遮蔽率保持部は、一の湿度範囲と一の高度範囲との組み合わせに対応づけて、一の遮蔽率を保持し、一の湿度範囲と一の高度範囲より高い他の高度範囲との組み合わせに対応づけて、一の遮蔽率より低い他の遮蔽率を保持する。   The shielding coefficient calculation method according to an aspect of the present invention includes a humidity information acquisition step of acquiring a plurality of humidity corresponding to each of a plurality of altitudes at a target point, a shielding rate holding unit having a plurality of altitude ranges and a plurality of humidity ranges. Shielded by the atmosphere above the target point using a shielding rate indicating the proportion of light shielded by the atmosphere with one humidity present at one altitude that is held in association with each of a plurality of combinations of A shielding coefficient calculating step for calculating a shielding coefficient indicating a ratio of light to be obtained, and a shielding rate holding unit holds one shielding rate in association with a combination of one humidity range and one altitude range, Corresponding to a combination of one humidity range and another altitude range higher than one altitude range, another shielding rate lower than one shielding rate is maintained.

なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。   It should be noted that the above summary of the invention does not enumerate all the necessary features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.

日射量予測装置の機能ブロックを示す図である。It is a figure which shows the functional block of a solar radiation amount prediction apparatus. 日射量予測装置による日射量の予測手順を示すフローチャートである。It is a flowchart which shows the prediction procedure of the solar radiation amount by the solar radiation amount prediction apparatus. 日射量予測装置が遮蔽係数を算出する場合の実際の数値例を示す図である。It is a figure which shows the actual numerical example in case a solar radiation amount prediction apparatus calculates a shielding coefficient.

以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.

図1は、本実施形態に係る日射量予測装置100の機能ブロックを示す。日射量予測装置100は、湿度情報取得部10、雲量情報取得部12、層厚算出部14、遮蔽係数算出部16、遮蔽率保持部18、日射量予測部20、および日射量パラメータ保持部22を備える。日射量予測装置100は、気象庁などの情報提供機関から提供される気象予報データに基づいて対象地点における日射量を予測する。なお、日射量予測装置100は、遮蔽係数算出装置の一例である。   FIG. 1 shows functional blocks of a solar radiation amount prediction apparatus 100 according to the present embodiment. The solar radiation amount prediction apparatus 100 includes a humidity information acquisition unit 10, a cloud amount information acquisition unit 12, a layer thickness calculation unit 14, a shielding coefficient calculation unit 16, a shielding rate holding unit 18, a solar radiation amount prediction unit 20, and a solar radiation amount parameter holding unit 22. Is provided. The solar radiation amount prediction apparatus 100 predicts the solar radiation amount at the target point based on weather forecast data provided from an information provider such as the Japan Meteorological Agency. The solar radiation amount prediction device 100 is an example of a shielding coefficient calculation device.

湿度情報取得部10は、対象地点における複数の高度のそれぞれに対応する複数の湿度を取得する。湿度情報取得部10は、予め定められた複数の気圧のそれぞれの複数の高度に対応する複数の湿度を取得してもよい。湿度情報取得部10は、気圧が低いほど気圧高度の間隔が広い複数の気圧のそれぞれの複数の高度に対応する複数の湿度を取得してもよい。湿度情報取得部10は、過去の気象データに基づいて予測された複数の湿度を取得してもよい。   The humidity information acquisition unit 10 acquires a plurality of humidity corresponding to each of a plurality of altitudes at the target point. The humidity information acquisition unit 10 may acquire a plurality of humidity levels corresponding to a plurality of altitudes of a plurality of predetermined atmospheric pressures. The humidity information acquisition unit 10 may acquire a plurality of humidity levels corresponding to a plurality of altitudes of a plurality of atmospheric pressures having a wider interval between the atmospheric pressure altitudes as the atmospheric pressure is lower. The humidity information acquisition unit 10 may acquire a plurality of humidity predicted based on past weather data.

湿度情報取得部10は、気象庁などの情報提供機関から提供されるいわゆる気圧面データと称される気象予報データから予め定められた複数の気圧のそれぞれの複数の高度と、複数の高度に対応する複数の湿度とを取得してもよい。気圧面データは、例えば、3時間ごとに33時間先までの気象予報に関する数値データを有する。数値データは、指定気圧面における気圧高度情報、相対湿度情報、風向風速情報、気温などを含む。なお、気圧高度はジオポテンシャル高度とも言われ、高度の一例であり、静力学平衡の式より算出されてもよい。相対湿度は、湿度の一例であり、ある気温で大気中に含まれる水蒸気の量を、その温度の飽和水蒸気量で割った値を示す。例えば日本の気象庁は、気圧面データを指定気圧面ごとに提供する。湿度情報取得部10は、指定気圧面である1000hPa、975hPa、950hPa、925hPa、900hPa、850hPa、800hPa、700hPa、600hPa、500hPa、400hPa、300hPa、250hPa、200hPa、150hPa、および100hPaのそれぞれの気圧面データを取得する。   The humidity information acquisition unit 10 corresponds to a plurality of altitudes of a plurality of barometric pressures determined in advance from weather forecast data called so-called barometric surface data provided from an information provider such as the Japan Meteorological Agency, and a plurality of altitudes. You may acquire several humidity. The barometric surface data includes, for example, numerical data related to weather forecasts up to 33 hours ahead every 3 hours. The numerical data includes atmospheric pressure altitude information, relative humidity information, wind direction and wind speed information, temperature, and the like on the designated atmospheric pressure surface. The barometric altitude is also called a geopotential altitude and is an example of the altitude, and may be calculated from a static equilibrium equation. Relative humidity is an example of humidity, and indicates a value obtained by dividing the amount of water vapor contained in the atmosphere at a certain temperature by the amount of saturated water vapor at that temperature. For example, the Japan Meteorological Agency provides barometric surface data for each specified barometric surface. The humidity information acquisition unit 10 has the specified atmospheric pressure plane data of 1000 hPa, 975 hPa, 950 hPa, 925 hPa, 900 hPa, 850 hPa, 800 hPa, 700 hPa, 600 hPa, 500 hPa, 400 hPa, 300 hPa, 250 hPa, 200 hPa, 150 hPa, and 100 hPa. To get.

表1は、湿度情報取得部10が取得した850hPaにおける3時間ごとに予測された気圧高度および相対湿度を示す。なお、予測対象時刻は、例えば、世界標準時(UTC)により表される。

Figure 2013242279
Table 1 shows the atmospheric pressure altitude and the relative humidity predicted every 3 hours at 850 hPa acquired by the humidity information acquisition unit 10. Note that the prediction target time is represented by, for example, universal time (UTC).
Figure 2013242279

雲量情報取得部12は、対象地点における複数の高度範囲を示す下層、中層、および上層に対応する複数の雲量を取得する。下層は、例えば地面付近から高度2000m付近の高度範囲を示す。中層は、例えば高度2000m付近から5500m付近の高度範囲を示す。上層は、例えば高度5500m付近以上の高度範囲を示す。雲量は、空の全天に占める雲の割合を示す。雲量情報取得部12は、気象庁などの情報提供機関から提供されるいわゆる地表面データと称される気象予報データから下層、中層、および上層の雲量を取得する。地表面データは、例えば、1時間ごとに33時間先までの気象予報に関する数値データを有する。数値データは、下層、中層、および上層の雲量情報、地表面における相対湿度情報、降水量情報などを含む。   The cloud amount information acquisition unit 12 acquires a plurality of cloud amounts corresponding to the lower layer, the middle layer, and the upper layer indicating a plurality of altitude ranges at the target point. The lower layer indicates an altitude range, for example, from the vicinity of the ground to an altitude of about 2000 m. The middle layer shows an altitude range from about 2000 m to about 5500 m, for example. The upper layer shows an altitude range of, for example, an altitude of about 5500 m or higher. The amount of clouds indicates the ratio of clouds in the sky. The cloud amount information acquisition unit 12 acquires the cloud amounts of the lower layer, the middle layer, and the upper layer from weather forecast data called so-called ground surface data provided from an information provider such as the Japan Meteorological Agency. The ground surface data includes, for example, numerical data related to weather forecasts up to 33 hours ahead every hour. The numerical data includes cloud information on the lower layer, middle layer, and upper layer, relative humidity information on the ground surface, precipitation information, and the like.

表2は、雲量情報取得部12がある時刻に取得した下層、中層、および上層に対応する複数の雲量を示す。

Figure 2013242279
Table 2 shows a plurality of cloud amounts corresponding to the lower layer, the middle layer, and the upper layer acquired at a certain time by the cloud amount information acquisition unit 12.
Figure 2013242279

遮蔽率保持部18は、複数の高度範囲および複数の湿度範囲の複数の組み合わせのそれぞれに対応づけて、一の高度に存在する一の湿度を有する大気によって遮蔽される光の割合を示す遮蔽率を保持する。遮蔽率保持部18は、一の湿度範囲と一の高度範囲との組み合わせに対応づけて、一の遮蔽率を保持し、一の湿度範囲と一の高度範囲より高い他の高度範囲との組み合わせに対応づけて、一の遮蔽率より低い他の遮蔽率を保持する。   The shielding rate holding unit 18 corresponds to each of a plurality of combinations of a plurality of altitude ranges and a plurality of humidity ranges, and shows a shielding rate indicating a ratio of light shielded by the atmosphere having one humidity existing at one altitude. Hold. The shielding rate holding unit 18 holds one shielding rate in association with a combination of one humidity range and one altitude range, and combines one humidity range and another altitude range higher than the one altitude range. In correspondence with, another shielding rate lower than one shielding rate is maintained.

表3は、遮蔽率保持部18が保持する遮蔽率の一例を示す。表3において、高度範囲は、下層、中層、および上層に分かれている。また、湿度範囲は、相対湿度が90%以上、相対湿度が80%以上90%未満、および相対湿度が70%以上80%未満に分かれている。そして、遮蔽率保持部18は、複数の高度範囲および複数の湿度範囲の組み合わせのそれぞれに対応付けて、遮蔽率として、高度係数および湿度係数を保持する。遮蔽率保持部18は、高度係数および湿度係数を乗算した値を遮蔽率として保持してもよい。

Figure 2013242279
Table 3 shows an example of the shielding rate held by the shielding rate holding unit 18. In Table 3, the altitude range is divided into a lower layer, a middle layer, and an upper layer. The humidity range is divided into a relative humidity of 90% or more, a relative humidity of 80% or more and less than 90%, and a relative humidity of 70% or more and less than 80%. The shielding rate holding unit 18 holds the altitude coefficient and the humidity coefficient as the shielding rate in association with each of the combinations of the plurality of altitude ranges and the plurality of humidity ranges. The shielding rate holding unit 18 may hold a value obtained by multiplying the altitude coefficient and the humidity coefficient as the shielding rate.
Figure 2013242279

遮蔽率は、下層に含まれる高度における湿度90%以上の大気によって遮蔽される光の割合を「1」と評価した場合の、それぞれの高度および湿度の大気によって遮蔽される相対的な光の割合を示す。言い換えれば、遮蔽率は、下層に含まれる高度における湿度90%以上の雲の厚みを「1」と評価した場合に、それぞれの高度および湿度の雲の相対的な厚さを示す。   The shielding ratio is the ratio of the relative light shielded by the atmosphere of each altitude and humidity when the ratio of the light shielded by the atmosphere of 90% or higher humidity at the altitude included in the lower layer is evaluated as “1”. Indicates. In other words, the shielding ratio indicates the relative thickness of clouds of each altitude and humidity when the thickness of a cloud having a humidity of 90% or higher at the altitude included in the lower layer is evaluated as “1”.

ここで、高度が高いほど遮蔽される光の割合が小さい。例えば、上層における大気によって遮蔽される光の割合は、下層における大気によって遮蔽される光の割合より小さい。したがって、遮蔽率のうち高度に起因する係数である高度係数は、高度が高いほど小さい値を有する。   Here, the higher the altitude, the smaller the proportion of light that is shielded. For example, the ratio of light shielded by the atmosphere in the upper layer is smaller than the ratio of light shielded by the atmosphere in the lower layer. Therefore, the altitude coefficient that is a coefficient due to the altitude of the shielding rate has a smaller value as the altitude is higher.

また、湿度が高いほど遮蔽される光の割合が大きい。したがって、遮蔽率のうち湿度に起因する係数である湿度係数は、湿度が高いほど大きい値を有する。   Also, the higher the humidity, the greater the percentage of light that is shielded. Therefore, the humidity coefficient, which is a coefficient due to humidity, of the shielding rate has a larger value as the humidity is higher.

層厚算出部14は、複数の高度のうちの一の層の高度より一段高い高度と、複数の高度のうちの一の層(気圧面)の高度より一段低い高度との差の略半分を、一の層の厚さとして算出することにより、複数の層のそれぞれの厚さを算出する。本実施形態では、層の厚さをその層(気圧面)付近に存在する雲の厚さとみなし、層の厚さを日射量を予測するためのパラメータとして用いる遮蔽係数に反映する。なお、略半分は、一段高い高度と一段低い高度との丁度半分の値、および半分の値から小数点以下の予め定められた桁数の値を四捨五入または切り捨てた値を含む。   The layer thickness calculation unit 14 calculates approximately half of the difference between the altitude one level higher than the altitude of one layer among the plural altitudes and the altitude one level lower than the altitude of one layer (barometric surface) among the plural altitudes. By calculating as the thickness of one layer, the thickness of each of the plurality of layers is calculated. In the present embodiment, the thickness of the layer is regarded as the thickness of the cloud existing in the vicinity of the layer (atmospheric pressure surface), and the thickness of the layer is reflected in the shielding coefficient used as a parameter for predicting the amount of solar radiation. Note that approximately half includes a value that is just half of the higher altitude and the lower altitude, and a value obtained by rounding or rounding off a predetermined number of digits after the decimal point from the half value.

遮蔽係数算出部16は、遮蔽率保持部18が保持する遮蔽率および雲量を用いて、対象地点上の大気によって遮蔽される光の割合を示す遮蔽係数を算出する。遮蔽係数は、対象地点上の湿潤大気を上空の雲と想定し、想定された雲によって光を遮蔽する雲の状態を評価する係数ともいえる。遮蔽係数算出部16は、対象地点上の大気の複数の層(複数の気圧面)のそれぞれの高度および湿度に対応する高度範囲および湿度範囲に対応付けて遮蔽率保持部18に保持されている複数の遮蔽率を用いて遮蔽係数を算出する。遮蔽係数算出部16は、複数の層の厚さのそれぞれに、複数の遮蔽率のそれぞれを乗じることによって、遮蔽係数を算出する。遮蔽係数算出部16は、複数の層の厚さのそれぞれに、複数の遮蔽率のそれぞれを乗算する。遮蔽係数算出部16は、乗算された後の複数の層の厚さを下層、中層、および上層ごとに加算する。さらに、遮蔽係数算出部16は、下層、中層、および上層ごとに加算された層の厚さに下層、中層、および上層のそれぞれの雲量を乗算する。加えて、遮蔽係数算出部16は、それぞれの雲量が乗算された層の厚さを加算することで、遮蔽係数を算出する。   The shielding coefficient calculation unit 16 calculates a shielding coefficient indicating the ratio of light shielded by the atmosphere above the target point, using the shielding rate and the cloud amount held by the shielding rate holding unit 18. It can be said that the shielding coefficient is a coefficient for evaluating the state of the cloud that shields light by the assumed cloud, assuming that the humid atmosphere above the target point is a cloud in the sky. The shielding coefficient calculation unit 16 is held in the shielding rate holding unit 18 in association with the altitude range and humidity range corresponding to the altitude and humidity of each of a plurality of layers (a plurality of atmospheric pressure surfaces) of the atmosphere above the target point. A shielding coefficient is calculated using a plurality of shielding rates. The shielding coefficient calculation unit 16 calculates the shielding coefficient by multiplying each of the thicknesses of the plurality of layers by each of the plurality of shielding ratios. The shielding coefficient calculation unit 16 multiplies each of the thicknesses of the plurality of layers by each of the plurality of shielding rates. The shielding coefficient calculation unit 16 adds the thicknesses of the plurality of layers after multiplication for each of the lower layer, the middle layer, and the upper layer. Further, the shielding coefficient calculation unit 16 multiplies the layer thickness added for each of the lower layer, the middle layer, and the upper layer by the cloud amount of each of the lower layer, the middle layer, and the upper layer. In addition, the shielding coefficient calculation unit 16 calculates the shielding coefficient by adding the thicknesses of the layers multiplied by the respective cloud amounts.

上記の通り、高度が高いほど遮蔽される光の割合が小さい。したがって、層厚算出部14により算出された上層における各層の厚さをそのまま遮蔽係数に反映すると、上層における各層の大気によって遮蔽される光の割合が実際よりも大きくなってしまう。そこで、高度が高いほど各層の厚さが薄くなるように調整すべく、遮蔽係数算出部16は、遮蔽率に含まれる高度係数を、層厚算出部14により算出された各層の厚さに乗算する。   As described above, the higher the altitude, the smaller the proportion of light that is shielded. Therefore, if the thickness of each layer in the upper layer calculated by the layer thickness calculation unit 14 is reflected in the shielding coefficient as it is, the ratio of light shielded by the atmosphere in each layer in the upper layer becomes larger than actual. Therefore, in order to adjust so that the thickness of each layer becomes thinner as the altitude is higher, the shielding coefficient calculation unit 16 multiplies the thickness of each layer calculated by the layer thickness calculation unit 14 by the altitude coefficient included in the shielding rate. To do.

また、上記の通り、層厚算出部14は、複数の高度のうちの一の層の高度より一段高い高度と、複数の高度のうちの一の層の高度より一段低い高度との差の略半分を、一の層の厚さとして算出する。ここで、湿度情報取得部10が取得する気圧面データは、気圧が低いほど気圧高度の間隔が広い指定気圧面データである。したがって、層厚算出部14により算出される上層における各層の厚さは、下層における各層の厚さより厚く算出されてしまう。そこで、取得可能な気圧面データの特性を考慮して、高度が高いほど各層の厚さが薄くなるように調整すべく、遮蔽係数算出部16は、遮蔽率に含まれる高度係数を、層厚算出部14により算出された各層の厚さに乗算する。   In addition, as described above, the layer thickness calculation unit 14 is an abbreviation for the difference between the height that is one step higher than the height of one layer of the plurality of heights and the height that is one step lower than the height of one layer of the plurality of heights. Half is calculated as the thickness of one layer. Here, the atmospheric pressure surface data acquired by the humidity information acquisition unit 10 is specified atmospheric pressure surface data having a wider interval between atmospheric pressure altitudes as the atmospheric pressure is lower. Therefore, the thickness of each layer in the upper layer calculated by the layer thickness calculation unit 14 is calculated to be thicker than the thickness of each layer in the lower layer. Therefore, in consideration of the characteristics of the atmospheric pressure surface data that can be acquired, the shielding coefficient calculation unit 16 determines the altitude coefficient included in the shielding ratio as the layer thickness in order to adjust the thickness so that the thickness of each layer is reduced as the altitude is higher. The thickness of each layer calculated by the calculation unit 14 is multiplied.

さらに、上記の通り、湿度が高いほど上空で雲として存在している可能性が高く、遮蔽される光の割合が大きい。したがって、層厚算出部14により算出されたある湿度の層の厚さと、ある湿度より高い湿度の層の厚さとを同一の割合で、遮蔽係数に反映すると、湿度が低い層の大気によって遮蔽される光の割合が実際よりも大きくなってしまう。そこで、湿度が小さいほど各層の厚さが薄くなるように調整すべく、遮蔽係数算出部16は、遮蔽率に含まれる湿度係数を、層厚算出部14により算出された各層の厚さに乗算する。以上のように、遮蔽係数算出部16は、層厚算出部14により算出される各層の厚さに、高度係数および湿度係数を乗算することで、高度および湿度の大きさの違いに起因する遮蔽される光の割合の誤差を低減する。   Furthermore, as described above, the higher the humidity, the higher the possibility that the cloud exists in the sky, and the greater the proportion of light that is shielded. Therefore, if the thickness of the layer having a certain humidity calculated by the layer thickness calculation unit 14 and the thickness of the layer having a higher humidity than the certain humidity are reflected in the shielding coefficient at the same rate, the layer is shielded by the atmosphere of the layer having a low humidity. The ratio of light to be increased will be larger than actual. Therefore, the shielding coefficient calculation unit 16 multiplies the thickness of each layer calculated by the layer thickness calculation unit 14 by the humidity coefficient included in the shielding rate in order to adjust the thickness so that the thickness of each layer becomes thinner as the humidity decreases. To do. As described above, the shielding coefficient calculation unit 16 multiplies the thickness of each layer calculated by the layer thickness calculation unit 14 by the altitude coefficient and the humidity coefficient, thereby shielding the difference due to the difference in altitude and humidity. Reduce the error in the proportion of light being emitted.

日射量パラメータ保持部22は、日射量予測部20が日射量を予測する場合に用いる日射量パラメータを保持する。日射量パラメータ保持部22は、大気外全天日射量および大気透過率を保持する。大気外全天日射量は、大気上端に届く日射量であり、経度、緯度および日時によって決定される理論値である。透過率は、大気中のエアロゾルなどによって散乱、反射、または吸収されることにより減衰された太陽光が地表面に届く割合を示す。   The solar radiation amount parameter holding unit 22 stores a solar radiation amount parameter used when the solar radiation amount prediction unit 20 predicts the solar radiation amount. The solar radiation amount parameter holding unit 22 holds the amount of solar radiation outside the atmosphere and the atmospheric transmittance. The amount of solar radiation outside the atmosphere is the amount of solar radiation reaching the upper end of the atmosphere, and is a theoretical value determined by longitude, latitude, and date / time. The transmittance indicates the rate at which sunlight attenuated by being scattered, reflected, or absorbed by atmospheric aerosol or the like reaches the ground surface.

日射量予測部20は、遮蔽係数と、対象地点について予め定められた大気外全天日射量と、対象地点について予め定められた大気透過率とに基づいて日射量を予測する。遮蔽係数をhとした場合、日射量予測部20は、大気外全天日射量×大気透過率×f(h)という式により日射量を算出してもよい。ここで、f(h)は、f(h)=−α×h+βで表される。αおよびβは、予測される日射量と日射量の実測値とに基づいて実験などにより決定される定数である。例えば、αは、0.0001、βは、0.7456である。なお、αおよびβは、予測された日射量が実測された日射量と一致するように適宜更新されてもよい。   The solar radiation amount prediction unit 20 predicts the solar radiation amount based on the shielding coefficient, the total atmospheric solar radiation amount determined in advance for the target point, and the atmospheric transmittance predetermined for the target point. When the shielding coefficient is h, the solar radiation amount predicting unit 20 may calculate the solar radiation amount according to an expression of the total atmospheric solar radiation amount × atmospheric transmittance × f (h). Here, f (h) is represented by f (h) = − α × h + β. α and β are constants determined by experiments or the like based on the predicted solar radiation amount and the actual measurement value of the solar radiation amount. For example, α is 0.0001 and β is 0.7456. Α and β may be appropriately updated so that the predicted amount of solar radiation matches the actually measured amount of solar radiation.

図2は、日射量予測装置100が日射量を予測する手順を示すフローチャートである。図3は、日射量予測装置100が遮蔽係数を算出する場合の実際の数値例を示す。以下、図2および図3を参照して、日射量の予測手順について説明する。   FIG. 2 is a flowchart showing a procedure in which the solar radiation amount predicting apparatus 100 predicts the solar radiation amount. FIG. 3 shows an actual numerical example when the solar radiation amount predicting apparatus 100 calculates the shielding coefficient. Hereinafter, the solar radiation amount prediction procedure will be described with reference to FIGS. 2 and 3.

湿度情報取得部10は、対象地点における予め定められた予測対象時刻における予め定められた各気圧の高度および湿度を取得する。また、雲量情報取得部12は、対象地点における予め定められた予測対象時刻における下層、中層、および上層のそれぞれの雲量を取得する。(S100)。湿度情報取得部10は、各気圧における気圧面データから予め定められた予測対象時刻、例えば33時間先「2011年7月2日12時(2011070212)」の気圧高度および相対湿度を取得する。   The humidity information acquisition unit 10 acquires the altitude and humidity of each atmospheric pressure determined in advance at a predetermined prediction target time at the target point. Moreover, the cloud amount information acquisition unit 12 acquires the cloud amounts of the lower layer, the middle layer, and the upper layer at a predetermined prediction target time at the target point. (S100). The humidity information acquisition unit 10 acquires a predetermined prediction target time, for example, a barometric altitude and a relative humidity at “12:00 on July 2, 2011 (20110702212)” 33 hours ahead from the atmospheric pressure surface data at each atmospheric pressure.

層厚算出部14は、相対湿度が70%以上の高度について、その高度の層の厚さとして高度差を算出する(S102)。層厚算出部14は、例えば、湿度が93%である850hPaの高度「1450.4」について、850hPaの高度より一段高い、800hPaの高度「1967.3」と、850hPaの高度より一段低い、900hPaの高度「958.3」との差の半分「504.5」を、850hPaの気圧面における高度差、つまり層の厚さとして算出する。   The layer thickness calculation unit 14 calculates an altitude difference as the layer thickness of the altitude having a relative humidity of 70% or more (S102). For example, for the altitude “1450.4” of 850 hPa where the humidity is 93%, the layer thickness calculation unit 14 has an altitude “1967.3” of 800 hPa, which is one step higher than the altitude of 850 hPa, and 900 hPa, which is one step lower than the altitude of 850 hPa. Half of the difference from the altitude “958.3” of “504.5” is calculated as the altitude difference on the atmospheric pressure surface of 850 hPa, that is, the layer thickness.

次いで、遮蔽係数算出部16は、遮蔽率保持部18が遮蔽率として保持する高度係数および湿度係数を参照して、各高度差に各高度に対応する高度係数および湿度係数を乗算する(S104)。遮蔽係数算出部16は、例えば、500hPaの高度「1586.45」の高度差「1586.45」に、その高度に対応する高度係数「0.4」および湿度係数「1」を乗算することにより、調整後の高度差「634.58」を算出する。   Next, the shielding coefficient calculation unit 16 refers to the altitude coefficient and the humidity coefficient held by the shielding rate holding unit 18 as the shielding rate, and multiplies each altitude difference by the altitude coefficient and the humidity coefficient corresponding to each altitude (S104). . For example, the shielding coefficient calculation unit 16 multiplies the altitude difference “1586.45” of the altitude “1586.45” at 500 hPa by the altitude coefficient “0.4” and the humidity coefficient “1” corresponding to the altitude. Then, the adjusted altitude difference “634.58” is calculated.

遮蔽係数算出部16は、下層、中層、下層ごとに調整後の高度差を加算する(S106)。遮蔽係数算出部16は、例えば、上層の調整後の各高度差「540.4」および「634.58」を加算することにより、上層の合計高度差「1174.98」を算出する。遮蔽係数算出部16は、各層の合計高度差に各層の雲量を乗算する(S108)。遮蔽係数算出部16は、例えば、上層の合計高度差「1174.98」に上層の雲量「85.5」を乗算し、上層の遮蔽係数「1004.61」を算出する。   The shielding coefficient calculation unit 16 adds the adjusted altitude difference for each of the lower layer, the middle layer, and the lower layer (S106). For example, the shielding coefficient calculation unit 16 adds the respective altitude differences “540.4” and “634.58” after adjusting the upper layer to calculate the total altitude difference “117.98” of the upper layer. The shielding coefficient calculation unit 16 multiplies the total altitude difference of each layer by the cloud amount of each layer (S108). For example, the shielding coefficient calculation unit 16 multiplies the total altitude difference “1174.98” of the upper layer by the cloud amount “85.5” of the upper layer to calculate the shielding coefficient “1004.61” of the upper layer.

さらに、遮蔽係数算出部16は、各層の各雲量を乗算後の値である各層の遮蔽係数を合計し、対象地点における遮蔽係数を算出する(S110)。そして、日射量予測部20は、対象地点における遮蔽係数、日射量パラメータ保持部22が保持している大気外全天日射量および大気透過率に基づいて対象地点における日射量を予測する(S112)。   Further, the shielding coefficient calculation unit 16 calculates the shielding coefficient at the target point by summing up the shielding coefficients of the respective layers, which are values obtained by multiplying the cloud amounts of the respective layers (S110). Then, the solar radiation amount predicting unit 20 predicts the solar radiation amount at the target point based on the shielding coefficient at the target point, the solar radiation amount outside the atmosphere held by the solar radiation amount parameter holding unit 22, and the atmospheric transmittance (S112). .

以上の通り、本実施形態によれば、気圧面データおよび地表面データを用いて比較的単純な計算により、日射量を予測できる。しかも、高度の高さおよび湿度の大きさの違いによって大気により遮蔽される光の割合が変化することを考慮した高度係数および湿度係数を含む遮蔽率を用いることで、より精度良く日射量を予測できる。   As described above, according to the present embodiment, the amount of solar radiation can be predicted by relatively simple calculation using the atmospheric pressure surface data and the ground surface data. Moreover, the amount of solar radiation can be predicted more accurately by using a shielding rate that includes an altitude coefficient and a humidity coefficient that takes into account the change in the proportion of light shielded by the atmosphere due to differences in altitude height and humidity. it can.

なお、本実施形態では、予測された湿度および高度に基づいて遮蔽係数を算出する形態について説明した。しかし、実測された湿度および高度に基づいて実測時点における遮蔽係数を算出してもよい。また、本実施形態では、日射量を予測するためのパラメータとして遮蔽係数を用いる形態について説明した。しかし、遮蔽係数は、対象地点から観測目標を見ることができるか否かを判定するための指標に用いてもよい。   In the present embodiment, the form in which the shielding coefficient is calculated based on the predicted humidity and altitude has been described. However, the shielding coefficient at the time of actual measurement may be calculated based on the actually measured humidity and altitude. Moreover, in this embodiment, the form which uses a shielding coefficient as a parameter for estimating the amount of solar radiation was demonstrated. However, the shielding coefficient may be used as an index for determining whether or not the observation target can be seen from the target point.

また、本実施形態に係る湿度情報取得部10、雲量情報取得部12、層厚算出部14、遮蔽係数算出部16、遮蔽率保持部18、日射量予測部20、および日射量パラメータ保持部22は、日射量を予測する各種処理を実行するプログラムをインストールし、このプログラムをコンピュータに実行させることで、構成してもよい。つまり、コンピュータに日射量を予測する各種処理を行うプログラムを実行させることにより、湿度情報取得部10、雲量情報取得部12、層厚算出部14、遮蔽係数算出部16、遮蔽率保持部18、日射量予測部20、および日射量パラメータ保持部22としてコンピュータを機能させることで、日射量予測装置を構成してもよい。   In addition, the humidity information acquisition unit 10, the cloud amount information acquisition unit 12, the layer thickness calculation unit 14, the shielding coefficient calculation unit 16, the shielding rate holding unit 18, the solar radiation amount prediction unit 20, and the solar radiation amount parameter holding unit 22 according to the present embodiment. May be configured by installing a program for executing various processes for predicting the amount of solar radiation and causing the computer to execute the program. That is, by causing the computer to execute a program for performing various processes for predicting the amount of solar radiation, the humidity information acquisition unit 10, the cloud amount information acquisition unit 12, the layer thickness calculation unit 14, the shielding coefficient calculation unit 16, the shielding rate holding unit 18, The solar radiation amount prediction device may be configured by causing a computer to function as the solar radiation amount prediction unit 20 and the solar radiation amount parameter holding unit 22.

コンピュータはCPU、ROM、RAM、EEPROM(登録商標)等の各種メモリ、通信バス及びインタフェースを有し、予めファームウェアとしてROMに格納された処理プログラムをCPUが読み出して順次実行することで、日射量予測装置として機能する。   The computer has various memories such as CPU, ROM, RAM, and EEPROM (registered trademark), a communication bus, and an interface. The CPU reads out a processing program stored in the ROM as firmware in advance and sequentially executes it to predict the amount of solar radiation. Functions as a device.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.

特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。   The order of execution of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior to”. It should be noted that the output can be realized in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for convenience, it means that it is essential to carry out in this order. It is not a thing.

10 湿度情報取得部
12 雲量情報取得部
14 層厚算出部
16 遮蔽係数算出部
18 遮蔽率保持部
20 日射量予測部
22 日射量パラメータ保持部
100 日射量予測装置
DESCRIPTION OF SYMBOLS 10 Humidity information acquisition part 12 Cloud cover information acquisition part 14 Layer thickness calculation part 16 Shielding coefficient calculation part 18 Shielding rate holding | maintenance part 20 Solar radiation amount prediction part 22 Solar radiation amount parameter holding part 100 Solar radiation amount prediction apparatus

Claims (11)

対象地点における複数の高度のそれぞれに対応する複数の湿度を取得する湿度情報取得部と、
複数の高度範囲および複数の湿度範囲の複数の組み合わせのそれぞれに対応づけて、一の高度に存在する一の湿度を有する大気によって遮蔽される光の割合を示す遮蔽率を保持する遮蔽率保持部と、
前記遮蔽率保持部が保持する遮蔽率を用いて、前記対象地点上の大気によって遮蔽される光の割合を示す遮蔽係数を算出する遮蔽係数算出部と
を備え、
前記遮蔽率保持部は、一の湿度範囲と一の高度範囲との組み合わせに対応づけて、一の遮蔽率を保持し、前記一の湿度範囲と前記一の高度範囲より高い他の高度範囲との組み合わせに対応づけて、前記一の遮蔽率より低い他の遮蔽率を保持する遮蔽係数算出装置。
A humidity information acquisition unit for acquiring a plurality of humidity corresponding to each of a plurality of altitudes at the target point;
A shielding rate holding unit that holds a shielding rate indicating a ratio of light shielded by the atmosphere having one humidity existing at one altitude corresponding to each of a plurality of combinations of a plurality of altitude ranges and a plurality of humidity ranges. When,
A shielding coefficient calculation unit that calculates a shielding coefficient indicating a ratio of light shielded by the atmosphere on the target point using the shielding rate held by the shielding rate holding unit;
The shielding rate holding unit holds one shielding rate in association with a combination of one humidity range and one altitude range, and includes the one humidity range and another altitude range higher than the one altitude range. A shielding coefficient calculation device that maintains another shielding rate lower than the one shielding rate in association with the combination of the above.
前記湿度情報取得部は、予め定められた複数の気圧のそれぞれの前記複数の高度に対応する前記複数の湿度を取得する請求項1に記載の遮蔽係数算出装置。   The shielding coefficient calculation apparatus according to claim 1, wherein the humidity information acquisition unit acquires the plurality of humidity corresponding to the plurality of altitudes of a plurality of predetermined atmospheric pressures. 前記湿度情報取得部は、気圧が低いほど気圧高度の間隔が広い前記複数の気圧のそれぞれの前記複数の高度に対応する前記複数の湿度を取得する請求項2に記載の遮蔽係数算出装置。   The shielding coefficient calculation device according to claim 2, wherein the humidity information acquisition unit acquires the plurality of humidity corresponding to each of the plurality of altitudes of the plurality of pressures having a wider interval between the pressure altitudes as the atmospheric pressure is lower. 前記湿度情報取得部は、過去の気象データに基づいて予測された前記複数の湿度を取得する請求項1から請求項3のいずれか1つに記載の遮蔽係数算出装置。   The said humidity information acquisition part is a shielding coefficient calculation apparatus as described in any one of Claims 1-3 which acquires these several humidity estimated based on the past weather data. 前記遮蔽係数算出部は、前記対象地点上の大気の複数の層のそれぞれの高度および湿度に対応する高度範囲および湿度範囲に対応付けて前記遮蔽率保持部に保持されている複数の遮蔽率を用いて前記遮蔽係数を算出する請求項1から請求項4のいずれか1つに記載の遮蔽係数算出装置。   The shielding coefficient calculating unit calculates a plurality of shielding rates held in the shielding rate holding unit in association with altitude ranges and humidity ranges corresponding to altitudes and humidity ranges of a plurality of layers of the atmosphere on the target point. The shielding coefficient calculation apparatus according to claim 1, wherein the shielding coefficient is calculated by using the shielding coefficient calculation apparatus. 前記複数の高度のうちの一の層の高度より一段高い高度と、前記複数の高度のうちの前記一の層の高度より一段低い高度との差の略半分を、前記一の層の厚さとして算出することにより、前記複数の層のそれぞれの厚さを算出する層厚算出部
をさらに備え、
前記遮蔽係数算出部は、前記複数の層の厚さのそれぞれに、前記複数の遮蔽率のそれぞれを乗じることによって、前記遮蔽係数を算出する請求項5に記載の遮蔽係数算出装置。
The thickness of the one layer is approximately half of the difference between the height one step higher than the height of one layer of the plurality of heights and the step height lower than the height of the one layer of the plurality of heights. Further comprising a layer thickness calculation unit for calculating the thickness of each of the plurality of layers,
The shielding coefficient calculation device according to claim 5, wherein the shielding coefficient calculation unit calculates the shielding coefficient by multiplying each of the plurality of layers by each of the plurality of shielding ratios.
前記対象地点における前記複数の高度範囲に対応する複数の雲量を取得する雲量情報取得部をさらに備え、
前記遮蔽係数算出部は、前記複数の雲量をさらに用いて、前記遮蔽係数を算出する請求項1から請求項6のいずれか1つに記載の遮蔽係数算出装置。
A cloud amount information acquisition unit that acquires a plurality of cloud amounts corresponding to the plurality of altitude ranges at the target point;
The shielding coefficient calculation apparatus according to claim 1, wherein the shielding coefficient calculation unit calculates the shielding coefficient by further using the plurality of cloud amounts.
請求項1から請求項7のいずれか1つに記載の遮蔽係数算出装置として、コンピュータを機能させるためのプログラム。   A program for causing a computer to function as the shielding coefficient calculation device according to any one of claims 1 to 7. 請求項1から請求項7のいずれか1つに記載の遮蔽係数算出装置と、
前記遮蔽係数算出装置から取得した前記遮蔽係数と、前記対象地点について予め定められた大気外全天日射量と、前記対象地点について予め定められた大気透過率とに基づいて日射量を予測する日射量予測部と
を備える日射量予測装置。
The shielding coefficient calculation device according to any one of claims 1 to 7,
Insolation for predicting solar radiation based on the shielding coefficient acquired from the shielding coefficient calculation device, the total amount of solar radiation outside the atmosphere determined in advance for the target point, and the atmospheric transmittance determined in advance for the target point A solar radiation amount prediction device comprising an amount prediction unit.
請求項9に記載の日射量予測装置として、コンピュータを機能させるためのプログラム。   The program for functioning a computer as a solar radiation amount prediction apparatus of Claim 9. 対象地点における複数の高度のそれぞれに対応する複数の湿度を取得する湿度情報取得工程と、
遮蔽率保持部が複数の高度範囲および複数の湿度範囲の複数の組み合わせのそれぞれに対応づけて保持している、一の高度に存在する一の湿度を有する大気によって遮蔽される光の割合を示す遮蔽率を用いて、前記対象地点上の大気によって遮蔽される光の割合を示す遮蔽係数を算出する遮蔽係数算出工程と
を含み、
前記遮蔽率保持部は、一の湿度範囲と一の高度範囲との組み合わせに対応づけて、一の遮蔽率を保持し、前記一の湿度範囲と前記一の高度範囲より高い他の高度範囲との組み合わせに対応づけて、前記一の遮蔽率より低い他の遮蔽率を保持する遮蔽係数算出方法。
A humidity information acquisition step of acquiring a plurality of humidity corresponding to each of a plurality of altitudes at the target point;
The ratio of light shielded by the atmosphere having one humidity existing at one altitude, which the shielding ratio holding unit holds corresponding to each of a plurality of combinations of a plurality of altitude ranges and a plurality of humidity ranges. A shielding coefficient calculation step of calculating a shielding coefficient indicating a ratio of light shielded by the atmosphere on the target point using a shielding ratio,
The shielding rate holding unit holds one shielding rate in association with a combination of one humidity range and one altitude range, and includes the one humidity range and another altitude range higher than the one altitude range. A shielding coefficient calculation method for holding another shielding rate lower than the one shielding rate in association with the combination of the above.
JP2012117130A 2012-05-23 2012-05-23 Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method Pending JP2013242279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117130A JP2013242279A (en) 2012-05-23 2012-05-23 Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117130A JP2013242279A (en) 2012-05-23 2012-05-23 Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method

Publications (1)

Publication Number Publication Date
JP2013242279A true JP2013242279A (en) 2013-12-05

Family

ID=49843284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117130A Pending JP2013242279A (en) 2012-05-23 2012-05-23 Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method

Country Status (1)

Country Link
JP (1) JP2013242279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115686A1 (en) * 2015-12-28 2017-07-06 日本電気株式会社 Forecasting system, information processing device, forecasting method, and forecasting program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108486A (en) * 1996-09-26 1998-04-24 Kansai Electric Power Co Inc:The Power generation predicting method for solar power generation system
JP2010217107A (en) * 2009-03-18 2010-09-30 Pasuko:Kk Method and device for evaluating of solar radiation intensity
JP2011053168A (en) * 2009-09-04 2011-03-17 Japan Weather Association Method, device, and program for prereading amount of solar radiation
JP2011159199A (en) * 2010-02-03 2011-08-18 Gifu Univ System and method for predicting generation amount of electricity of photovoltaic power generator
JP2011216604A (en) * 2010-03-31 2011-10-27 Ihi Scube:Kk Method and device for predicting power generation amount of photovoltaic power generation system
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10108486A (en) * 1996-09-26 1998-04-24 Kansai Electric Power Co Inc:The Power generation predicting method for solar power generation system
JP2010217107A (en) * 2009-03-18 2010-09-30 Pasuko:Kk Method and device for evaluating of solar radiation intensity
JP2011053168A (en) * 2009-09-04 2011-03-17 Japan Weather Association Method, device, and program for prereading amount of solar radiation
JP2011159199A (en) * 2010-02-03 2011-08-18 Gifu Univ System and method for predicting generation amount of electricity of photovoltaic power generator
JP2011216604A (en) * 2010-03-31 2011-10-27 Ihi Scube:Kk Method and device for predicting power generation amount of photovoltaic power generation system
JP2013152156A (en) * 2012-01-25 2013-08-08 Fuji Electric Co Ltd Device for calculating amount of solar radiation, and control method and program of device for calculating amount of solar radiation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Estimation of atmospheric transmittance from uper-air humidity", SOLAR ENERGY, vol. 62, no. 5, JPN6015005232, May 1998 (1998-05-01), pages 359 - 368, ISSN: 0003005519 *
赤坂裕,荒井良延: "世界の任意地点における設計および平均熱負荷計算のための気象データに関する研究 : 第2報-気象データ月統", 空気調和・衛生工学会論文集, vol. 第54巻, JPN6015005230, 25 February 1994 (1994-02-25), pages 11 - 21, ISSN: 0003005518 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017115686A1 (en) * 2015-12-28 2017-07-06 日本電気株式会社 Forecasting system, information processing device, forecasting method, and forecasting program

Similar Documents

Publication Publication Date Title
Besharat et al. Empirical models for estimating global solar radiation: A review and case study
JP5047245B2 (en) Solar radiation amount prediction method, apparatus and program
CN103994754A (en) Altitude measuring method and system
CN110399634B (en) Forecast area determination method and system based on weather system influence
CN102426674A (en) Power system load prediction method based on Markov chain
KR20190065107A (en) Apparatus and method for estimating solar power
JP6880841B2 (en) Photovoltaic power generation output prediction device considering snow cover
JP2019203727A (en) Weather prediction device, weather prediction method, and wind power generation output estimating device
JP2019203728A (en) Weather prediction device, weather prediction method, and wind power generation output estimating device
WO2014117659A1 (en) Predicting a generated power of a photovoltaic power generation device
Liu et al. Assessment of NeQuick and IRI-2016 models during different geomagnetic activities in global scale: Comparison with GPS-TEC, dSTEC, Jason-TEC and GIM
WO2019150721A1 (en) Weather prediction correction method and weather prediction system
JP6794878B2 (en) Photovoltaic power generation output prediction device considering the remaining snow
JP5344614B2 (en) Method and apparatus for predicting power generation amount of photovoltaic power generation system
JP2013242279A (en) Shade coefficient calculation device, solar radiation forecast device, program and shade coefficient calculation method
Agbo Evaluation of the regression parameters of the Angstrom-Page model for predicting global solar radiation
WO2017115686A1 (en) Forecasting system, information processing device, forecasting method, and forecasting program
JP6582418B2 (en) Power generation amount prediction device, power generation amount prediction method, and program
CN114691661B (en) Assimilation-based cloud air guide and temperature and humidity profile pretreatment analysis method and system
CN116247663A (en) Photovoltaic power mutation prediction method
JP7305462B2 (en) Solar radiation forecasting device, solar radiation forecasting method and solar radiation forecasting program
JP5941115B2 (en) Prediction device
KR20140058255A (en) Calculation system of surface temperature and method thereof
CN107608008B (en) Detection method for clear sky time period based on generalized atmospheric turbidity
KR20180023078A (en) Prediction method of generation quantity in solar energy generation using weather information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630