WO2017115630A1 - Overcurrent cutoff system - Google Patents

Overcurrent cutoff system Download PDF

Info

Publication number
WO2017115630A1
WO2017115630A1 PCT/JP2016/086549 JP2016086549W WO2017115630A1 WO 2017115630 A1 WO2017115630 A1 WO 2017115630A1 JP 2016086549 W JP2016086549 W JP 2016086549W WO 2017115630 A1 WO2017115630 A1 WO 2017115630A1
Authority
WO
WIPO (PCT)
Prior art keywords
mosfet
overcurrent
control unit
power source
cutoff
Prior art date
Application number
PCT/JP2016/086549
Other languages
French (fr)
Japanese (ja)
Inventor
正直 島▲崎▼
Original Assignee
カルソニックカンセイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015256112A external-priority patent/JP2017121114A/en
Priority claimed from JP2016136894A external-priority patent/JP2018011383A/en
Application filed by カルソニックカンセイ株式会社 filed Critical カルソニックカンセイ株式会社
Publication of WO2017115630A1 publication Critical patent/WO2017115630A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage

Definitions

  • the present invention relates to an overcurrent interruption system.
  • an overcurrent cutoff circuit that has one battery and shuts off the overcurrent by turning off a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) when an overcurrent flows through a shunt resistor (for example, a patent) Reference 1).
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • overcurrent cutoff circuit Since the overcurrent cutoff circuit has only one battery, current can only flow in one direction. Therefore, overcurrent can be interrupted simply by switching on or off the MOSFET. However, when the overcurrent interrupt circuit has two batteries and an overcurrent in the direction opposite to the one direction flows, the overcurrent cannot be interrupted. For this reason, the MOSFET cannot be protected.
  • An object of the present invention made in view of such circumstances is to provide an overcurrent interruption system capable of interrupting overcurrent and protecting a MOSFET regardless of the direction in which the current flows.
  • an overcurrent interruption system includes: A first MOSFET; A current value detection unit for detecting a value of a current flowing through the first MOSFET; A first cut-off unit that can be switched between an on-off state and cuts off an overcurrent flowing in a forward direction of the parasitic diode of the first MOSFET in the off-state; A second shut-off unit that can be switched between an on-off state and shuts off an overcurrent that flows in the reverse direction of the parasitic diode of the first MOSFET in the off-state; A control unit capable of switching and controlling the first blocking unit and the second blocking unit; When the controller determines that an overcurrent is flowing in the forward direction of the parasitic diode of the first MOSFET based on the current detected by the current value detector, the controller turns off the first interrupter. Then, when it is determined that an overcurrent flows in the opposite direction of the parasitic diode of the first MOSFET, the second cutoff unit
  • the first cutoff unit includes a relay connected to the source side of the first MOSFET, It is preferable that the second blocking unit includes the first MOSFET.
  • the control unit determines that an overcurrent flows in the reverse direction of the parasitic diode of the first MOSFET, the control unit preferably maintains the state of the relay.
  • a first power source is connected to the source side of the first MOSFET, and a second power source is connected to the drain side.
  • the first power source is a lithium ion battery
  • the second power source is a lead acid battery
  • the first MOSFET is connected in series with a second MOSFET,
  • the forward direction of the parasitic diode of the first MOSFET is opposite to the forward direction of the parasitic diode of the second MOSFET,
  • the first blocking unit includes at least the second MOSFET, It is preferable that the second blocking unit includes at least the first MOSFET.
  • the control unit When it is determined that an overcurrent flows through the first MOSFET and the second MOSFET, the control unit preferably turns off both the first MOSFET and the second MOSFET.
  • a lead storage battery is connected to the source side of the first MOSFET, and a lithium ion battery is connected to the source side of the second MOSFET.
  • the overcurrent interruption system it is possible to protect the first MOSFET by interrupting the overcurrent regardless of the direction in which the current flows.
  • the first MOSFET can be protected while using the relay and the first MOSFET.
  • the overcurrent interruption system according to the third aspect of the present invention, it is possible to prevent the noise of the relay and extend the life.
  • the overcurrent is interrupted while securing bidirectional power supply from the first power source and the second power source to the overcurrent interruption system.
  • the MOSFET can be protected.
  • the charging power can be kept long and the power can be used effectively. Moreover, the production cost of an overcurrent interruption system can be suppressed.
  • the overcurrent cutoff system it is possible to protect the first MOSFET while using the first MOSFET and the second MOSFET.
  • the overcurrent interruption system according to the seventh aspect of the present invention, it is possible to reliably protect the first MOSFET without having to determine in which direction the overcurrent flows.
  • the charging power can be kept long and the power can be used effectively. Moreover, the production cost of an overcurrent interruption system can be suppressed.
  • FIG. 5 is a sequence diagram illustrating an operation flow of a current value detection unit and a control unit in FIG. 4. It is a functional block diagram which shows schematic structure of the overcurrent interruption
  • FIG. 1 A solid line in FIG. 1 indicates a power line, and a broken line indicates an information transmission line.
  • the overcurrent interruption system 90 is mounted on a vehicle such as a hybrid vehicle (HEV vehicle), for example. It should be noted that the general configuration of the overcurrent interruption system 90 will be described, but other functions of the overcurrent interruption system 90 are not excluded.
  • HEV vehicle hybrid vehicle
  • the overcurrent interruption system 90 includes at least a MOSFET 3, a relay 4, a current value detection unit 5, and a control unit 6.
  • the overcurrent cutoff system 90 further includes, for example, a first power source 1, a second power source 2, an ECU 7 (Engine Control Unit), a switch control unit 8, a notification unit 9, a load 10, a rectifying element 11, an alternator 12, a starter 13, and the like. May be.
  • the MOSFET 3 corresponds to the first MOSFET of the present invention.
  • the first power source 1 is, for example, a lithium ion battery. By using a lithium ion battery, the charging power can be maintained longer than when other batteries are used, and the power can be used effectively.
  • the first power supply 1 may also be configured by connecting in series one or more secondary batteries (cells) other than lead storage batteries, such as lithium ion batteries and nickel metal hydride batteries. The positive terminal of the first power supply 1 is connected to the relay 4 and the negative terminal is connected to the ground.
  • the first power supply 1 supplies power to the overcurrent interruption system 90.
  • the first power supply 1 can supply power to the load 10 when the MOSFET 3 is on.
  • the first power supply 1 can also supply power to the auxiliary equipment, the ECU 7 and the like while the engine drive (idling) is stopped.
  • the first power supply 1 is connected in parallel with the second power supply 2.
  • the second power source 2 is, for example, a lead storage battery. By using a lead storage battery, the production cost of the overcurrent interruption system 90 can be suppressed compared to when other batteries are used.
  • the second power supply 2 may be the same voltage as the first power supply 1 or a different voltage, but if it is a different voltage, a DC / DC converter is used.
  • the positive terminal of the second power supply 2 is connected to the current value detector 5 and the like, and the negative terminal is connected to the ground.
  • the second power supply 2 supplies power to the overcurrent cutoff system 90.
  • the second power supply 2 can supply power to the load 10.
  • the second power supply 2 is connected in parallel with the first power supply 1.
  • the MOSFET 3 is a switching element that is electrically driven, and can be switched on and off under the control of the switch control unit 8.
  • a first power supply 1 is connected to the source side of the MOSFET 3, and a second power supply 2 is connected to the drain side.
  • a current flows between the relay 4 and the current value detector 5, and when the MOSFET 3 is off, no current flows between the relay 4 and the current value detector 5.
  • the number of MOSFETs 3 is not limited. A plurality of MOSFETs 3 may be connected in parallel. As the number of MOSFETs 3 increases, the power load can be distributed.
  • the MOSFET 3 also corresponds to the second blocking part of the present invention.
  • a resistor Ra is connected between the source and gate of the MOSFET 3. For this reason, the potential difference between the source and the gate can be suppressed. Further, a pre-gate resistor Rb is connected to the gate of the MOSFET 3. Thereby, the inrush current due to the parasitic capacitor can be prevented from flowing as a large current to the gate of the MOSFET 3.
  • the MOSFET 3 may be switched on and off as follows, for example. That is, the MOSFET 3 is turned on when the voltage of the second power source 2 falls below a predetermined value, thereby charging the second power source 2 from the alternator 12 or the first power source 1, and overdischarging the second power source 2. Provide protection. Further, the MOSFET 3 is turned off when the voltage of the second power source 2 exceeds another predetermined value, thereby preventing charging from the alternator 12 or the first power source 1 to the second power source 2. 2 overcharge protection.
  • the relay 4 can be switched on and off under the control of the control unit 6 via the ECU 7.
  • the relay 4 is connected to the source side of the MOSFET 3.
  • the relay 4 When the relay 4 is on, a current flows between the first power source 1 and the MOSFET 3, and when the relay 4 is off, no current flows between the first power source 1 and the MOSFET 3.
  • the relay 4 corresponds to the 1st interruption
  • the current value detection unit 5 includes, for example, a shunt resistor, a current sense amplifier, a voltage regulator, and the like. In FIG. 1, the current value detection unit 5 is connected to the drain side of the MOSFET 3, but the current value detection unit 5 may be connected to the source side of the MOSFET 3. The current value detection unit 5 detects the value of the current flowing through the MOSFET 3 by converting the potential difference of the shunt resistor into a current value by a current sense amplifier.
  • FIG. 2 is a graph showing the relationship between the current (horizontal axis) flowing through the MOSFET 3 in FIG. 1 and the voltage (vertical axis) applied to the current value detection unit 5.
  • a, b, c and d are positive constants.
  • the forward direction of the parasitic diode 31 of the MOSFET 3 in FIG. 1 (the direction from the MOSFET 3 to the second power supply 2) is the positive direction on the horizontal axis, and the opposite is the negative direction on the horizontal axis.
  • the current value detection unit 5 detects the current value, it outputs the detected current value to the control unit 6.
  • the control unit 6 is a processor such as a CPU (Central Processing Unit) that controls the overall operation of the overcurrent interruption system 90.
  • the control unit 6 can control the MOSFET 3 through the switch control unit 8 and can control the relay 4 through the ECU 7.
  • the control unit 6 compares the current value with an overcurrent threshold (the following first reference value and second reference value). Referring to FIG. 2, when the current value falls below the first reference value (-a [A] in the present embodiment) (current value ⁇ -a [A]), or the second reference value (present embodiment a [ A]) is exceeded (current value> a [A]), the controller 6 determines that an overcurrent has occurred.
  • a process executed by the control unit 6 when it is determined that an overcurrent has occurred will be described later.
  • the first transistor T1 and the second transistor T2 are switched on and off under the control of the control unit 6.
  • the first transistor T1 is a PNP transistor
  • the second transistor T2 is an NPN transistor.
  • the third transistor T3 is controlled by the ECU 7 by switching it on and off.
  • the third transistor T3 is a PNP transistor.
  • the ECU 7 can obtain a notification that the overcurrent has been detected from the control unit 6 and can output the notification to the notification unit 9 in order to notify the driver of the vehicle. Further, the ECU 7 can control ON / OFF of the relay 4.
  • the switch control unit 8 is supplied with power from at least one of the first power source 1 and the second power source 2 and can control the on / off of the MOSFET 3 under the control of the control unit 6. That is, even if the power supply from the second power supply 2 is interrupted for some reason, the switch control unit 8 can continue the control of turning on and off the MOSFET 3 by receiving the power supply from the first power supply 1.
  • the notification unit 9 When the notification unit 9 acquires a notification that an overcurrent has been detected from the control unit 6 via the ECU 7, the notification unit 9 notifies the driver of the vehicle to that effect. Specifically, the notification unit 9 notifies by turning on the lamp. As an alternative example, the notification unit 9 notifies that an overcurrent is detected and an abnormality has occurred in the system as a sound or as an image and outputs it to a vehicle-mounted monitor.
  • the load 10 is, for example, an audio, an air conditioner, a navigation system, or the like provided in the vehicle. One end of the load 10 is connected to the current value detection unit 5 and the second power supply 2, and the other end is connected to the ground.
  • the load 10 operates by receiving power supply from the first power supply 1 and the second power supply 2 while the engine drive is stopped, and receives power supply from the alternator 12, the first power supply 1 and the second power supply 2 while the engine is driven. Operate.
  • the rectifying element 11 is a diode and includes a first rectifying element 11a and a second rectifying element 11b.
  • the first rectifying element 11 a is provided between the first power supply 1 and the switch control unit 8 in a direction in which power is supplied from the first power supply 1 to the switch control unit 8.
  • the second rectifying element 11 b is provided between the second power supply 2 and the switch control unit 8 in a direction in which power is supplied from the second power supply 2 to the switch control unit 8.
  • each of the first rectifying element 11a and the second rectifying element 11b includes two elements, but the number thereof is not limited. The greater the number of elements, the higher the breakdown voltage. Further, for example, no current flows from the first power supply 1 to the second power supply 2 or from the second power supply 2 to the first power supply 1 from the rectifying element 11.
  • the alternator 12 is a generator and is mechanically connected to a vehicle engine.
  • the alternator 12 can generate electric power by driving the engine.
  • the power generated by the alternator 12 by driving the engine can be supplied to the first power source 1, the second power source 2, and the load 10 by adjusting the output voltage with a regulator.
  • the alternator 12 can generate power by regeneration when the vehicle is decelerated.
  • the electric power regenerated by the alternator 12 can be used for charging the first power supply 1 and the second power supply 2.
  • the starter 13 includes a cell motor, for example, and receives power supply from at least one of the first power source 1 and the second power source 2 to start the engine of the vehicle.
  • the overcurrent interruption system 90 of the present embodiment interrupts the overcurrent and protects the MOSFET 3.
  • the current value detection unit 5 detects the current value flowing through the MOSFET 3.
  • the current value detection unit 5 outputs the current value to the control unit 6.
  • the control unit 6 protects the MOSFET 3 from overcurrent as follows. That is, based on the current value, the control unit 6 determines whether or not an overcurrent is flowing and in which direction the overcurrent is flowing. When it is determined that the overcurrent is flowing in the forward direction of the parasitic diode 31 of the MOSFET 3, the control unit 6 turns off the relay 4. As a result, the overcurrent is cut off and does not flow through the MOSFET 3, so that the MOSFET 3 can be protected. In addition, the control unit 6 notifies the ECU 7 that an overcurrent is flowing. ECU7 which acquired the said notification notifies the alerting
  • the control unit 6 stops the output from the switch control unit 8 and turns off the MOSFET 3.
  • the control unit 6 may additionally disconnect the MOSFET 3 and the switch control unit 8 by turning off the first transistor T1 and the second transistor T2. As a result, the MOSFET 3 can be protected.
  • the control unit 6 maintains the state of the relay 4. That is, the control unit 6 remains on when the relay 4 is on, and remains off when the relay 4 is off. For this reason, the operation frequency of the relay 4 is lowered, so that the noise of the relay 4 can be prevented and the life of the relay 4 can be extended.
  • control unit 6 notifies the ECU 7 that an overcurrent is flowing.
  • ECU7 which acquired the said notification notifies the alerting
  • the notification unit 9 notifies warning information notifying the driver of the vehicle provided with the overcurrent cutoff system 90 of the abnormality.
  • control unit 6 When it is determined that no overcurrent is flowing (when it is determined that there is no abnormality), the control unit 6 turns on the MOSFET 3 and the relay 4 and continuously monitors (monitors) the current flowing through the MOSFET 3.
  • FIG. 3 is a sequence diagram showing an operation that the current value detection unit 5 and the control unit 6 in FIG. 1 execute regularly or irregularly.
  • the current value detection unit 5 detects the current value (step S1), and outputs the detected current value to the control unit 6 (step S2).
  • the control unit 6 that has acquired the current value determines whether or not the current value exceeds the second reference value (step S3).
  • the control unit 6 turns off the relay 4 (step S4) and notifies the ECU 7 that an overcurrent is flowing (step S5). Further, the control unit 6 notifies the driver of the vehicle via the notification unit 9 of warning information that informs that an overcurrent flows and an abnormality has occurred (step S6).
  • step S7 the control unit 6 determines whether or not the current value is lower than the first reference value.
  • step S7 the control unit 6 stops the output of the switch control unit 8 to turn off the MOSFET 3 (step S8), turns off the first transistor T1 and the second transistor T2, and removes the MOSFET 3 from the switch control unit 8. Disconnect (step S9).
  • step S5 the control unit 6 executes Step S5.
  • step S7 the controller 6 determines that no overcurrent is flowing, and turns on the MOSFET 3 and the relay 4 (step S10).
  • the controller 6 continuously monitors the current (Step S11).
  • the control unit 6 detects the overcurrent in the forward direction of the parasitic diode 31 of the MOSFET 3 based on the current detected by the current value detection unit 5. When it is determined that the current flows, the relay 4 is turned off. On the other hand, when it is determined that the overcurrent flows in the reverse direction of the parasitic diode 31 of the MOSFET 3, the MOSFET 3 is turned off. For this reason, it is possible to protect the MOSFET 3 by interrupting the overcurrent regardless of the direction in which the current flows.
  • the control unit 6 determines that the overcurrent flows in the reverse direction of the parasitic diode 31 of the MOSFET 3, the state of the relay 4 is maintained. To do. For this reason, noise prevention and life extension of the relay 4 can be achieved.
  • the first power source 1 is connected to the source side of the MOSFET 3 and the second power source 2 is connected to the drain side. For this reason, it is possible to protect the MOSFET 3 by interrupting the overcurrent while ensuring bidirectional power supply from the first power supply 1 and the second power supply 2 to the overcurrent cutoff system 90.
  • the first power supply 1 is a lithium ion battery and the second power supply 2 is a lead storage battery. Since a lithium ion battery is used for the first power source 1, it is possible to effectively use the power while maintaining the charging power longer than when using other batteries. Moreover, since a lead storage battery is used, the production cost of the overcurrent interruption system 90 can be suppressed compared with the case where another battery is used.
  • the overcurrent cutoff system 90 mounted on the hybrid vehicle has been described, but the present invention is not limited to this.
  • the overcurrent interruption system 90 may be mounted on an electric vehicle (EV vehicle).
  • the overcurrent interruption system 90 includes one MOSFET.
  • the overcurrent cutoff system 90 includes two MOSFETs as follows.
  • the overcurrent interruption system 90 includes at least a first MOSFET 3a, a second MOSFET 3b, a relay 4, a current value detection unit 5, and a control unit 6.
  • the overcurrent interruption system 90 may further include, for example, a first power supply 1, a second power supply 2, an ECU 7, a switch control unit 8, a notification unit 9, a load 10, a rectifying element 11, an alternator 12, a starter 13, and the like.
  • the first power supply 1 can supply power to the load 10 when the first MOSFET 3a and the second MOSFET 3b are turned on.
  • the first MOSFET 3 a and the second MOSFET 3 b are electrically driven switching elements, and can be switched on and off under the control of the switch control unit 8.
  • the first MOSFET 3a and the second MOSFET 3b in this embodiment are n-type.
  • the forward direction of the parasitic diode 31a of the first MOSFET 3a is opposite to the forward direction of the parasitic diode 31b of the second MOSFET 3b.
  • the forward direction of the parasitic diode 31a is the direction from the second power supply 2 to the first power supply 1
  • the forward direction of the parasitic diode 31b is the direction from the first power supply 1 to the second power supply 2.
  • the second MOSFET 3b corresponds to the first cutoff part of the present invention.
  • the first power supply 1 is connected to the source side of the second MOSFET 3b, the drain of the second MOSFET 3b and the drain of the first MOSFET 3a are connected, and the source side of the first MOSFET 3a is connected to the source side of the first MOSFET 3a.
  • a second power supply 2 is connected.
  • FIG. 4 shows two MOSFETs, but the number of MOSFETs is not limited. For example, another one or more MOSFETs may be connected in parallel with the first MOSFET 3a, and another one or more MOSFETs may be connected in parallel with the second MOSFET 3b. As the number of MOSFETs increases, the power load can be distributed.
  • a resistor Ra is connected between the source and gate of each of the first MOSFET 3a and the second MOSFET 3b. For this reason, the potential difference between the source and the gate can be suppressed. Further, a pre-gate resistor Rb is connected to the gates of the first MOSFET 3a and the second MOSFET 3b. Thereby, the inrush current due to the parasitic capacitor can be prevented from flowing as a large current to the gate of the first MOSFET 3a or the second MOSFET 3b.
  • the relay 4 is arbitrarily connected and can be switched on and off under the control of the control unit 6 via the ECU 7.
  • the relay 4 is connected to the source of the second MOSFET 3b.
  • the relay 4 When the relay 4 is on, a current flows between the first power source 1 and the second MOSFET 3b.
  • the relay 4 is off, no current flows between the first power source 1 and the second MOSFET 3b.
  • the current value detection unit 5 includes, for example, a shunt resistor, a current sense amplifier, a voltage regulator, and the like. In FIG. 4, the current value detector 5 is connected to the source of the first MOSFET 3a. As an alternative example, the current value detection unit 5 may be connected between the first MOSFET 3a and the second MOSFET 3b or the source of the second MOSFET 3b.
  • the control unit 6 is a processor such as a CPU (Central Processing Unit) that controls the entire operation of the overcurrent interruption system 90.
  • the control unit 6 can control the first MOSFET 3 a and the second MOSFET 3 b through the switch control unit 8, and can control the relay 4 and the notification unit 9 through the ECU 7.
  • CPU Central Processing Unit
  • the switch control unit 8 is supplied with power from at least one of the first power supply 1 and the second power supply 2, and can control the on / off of the first MOSFET 3a and the second MOSFET 3b by the control of the control unit 6. .
  • the overcurrent cutoff system 90 of the present embodiment cuts off the overcurrent and protects the first MOSFET 3a and the second MOSFET 3b.
  • the current value detector 5 detects the current value flowing through the first MOSFET 3a and the second MOSFET 3b.
  • the current value detection unit 5 outputs the detected current value to the control unit 6.
  • the control unit 6 determines whether or not an overcurrent is flowing based on the current value. When it is determined that the overcurrent is flowing, the controller 6 turns off both the first MOSFET 3a and the second MOSFET 3b as follows.
  • the control unit 6 stops the output from the switch control unit 8 to the first transistor T1. As a result, both the first MOSFET 3a and the second MOSFET 3b are turned off. Further, the control unit 6 may turn off both the first MOSFET 3a and the second MOSFET 3b by turning off the first transistor T1 and the second transistor T2 to cut (cut) the gate signal line. Thus, the first MOSFET 3a and the second MOSFET 3b can be reliably protected without having to determine in which direction the overcurrent flows.
  • control unit 6 notifies the ECU 7 that an overcurrent is flowing.
  • ECU7 which acquired the said notification notifies the alerting
  • the notification unit 9 notifies the driver of the vehicle provided with the overcurrent interruption system 90 of warning information (warning) for notifying abnormality.
  • control unit 6 When it is determined that no overcurrent is flowing (when it is determined that there is no abnormality), the control unit 6 turns on the first MOSFET 3a and the second MOSFET 3b, and the current flowing through the first MOSFET 3a and the second MOSFET 3b. Continue monitoring (monitoring).
  • FIG. 5 is a sequence diagram showing an operation that the current value detection unit 5 and the control unit 6 of FIG. 3 execute regularly or irregularly.
  • the current value detection unit 5 detects the current value (step S21), and outputs the detected current value to the control unit 6 (step S22).
  • the controller 6 that has acquired the current value determines whether or not an overcurrent is flowing based on the current value (step S23).
  • the control unit 6 turns off the first MOSFET 3a and the second MOSFET 3b by stopping the output from the switch control unit 8 to the first transistor T1 (step S24). Further, the control unit 6 turns off the first transistor T1 and the second transistor T2, and disconnects the gate signal line from the first MOSFET 3a and the second MOSFET 3b to the switch control unit 8 (step S25). Thereby, the control unit 6 may turn off the first MOSFET 3a and the second MOSFET 3b.
  • the control unit 6 notifies the ECU 7 that an overcurrent is flowing (step S26). Moreover, the control part 6 notifies the warning information which notifies that the overcurrent flows and abnormality has generate
  • step S23 the control unit 6 determines that no overcurrent is flowing, and turns on the first MOSFET 3a and the second MOSFET 3b (step S28).
  • step S28 The controller 6 continuously monitors the current (Step S29).
  • the first MOSFET 3a and the second MOSFET 3b are connected in series.
  • the forward direction of the parasitic diode 31a of the first MOSFET 3a is opposite to the forward direction of the parasitic diode 31b of the second MOSFET 3b.
  • the control unit 6 turns off both the first MOSFET 3a and the second MOSFET 3b. For this reason, regardless of the direction in which the overcurrent flows, the overcurrent can be cut off, and the first MOSFET 3a and the second MOSFET 3b can be reliably protected. Further, there is no need to determine in which direction the overcurrent flows.
  • a lead storage battery is connected to the source side of the first MOSFET 3a. For this reason, the production cost of the overcurrent interruption system 90 can be suppressed compared with the case where another battery is used.
  • a lithium ion battery is connected to the source side of the second MOSFET 3b. For this reason, compared with the case where another battery is used, charging power can be kept longer and the power can be used effectively.
  • the first MOSFET 3a and the second MOSFET 3b are connected in this order in the direction from the first power supply 1 to the second power supply 2.
  • the order of the connection is reversed. Also good.
  • both the first MOSFET 3a and the second MOSFET 3b are n-type, but both may be p-type.
  • the control unit 6 when it is determined that the overcurrent is flowing, the control unit 6 turns off both the first MOSFET 3a and the second MOSFET 3b.
  • the control unit 6 controls the first MOSFET 3a and the second MOSFET 3b separately. Specifically, when it is determined that the overcurrent is flowing, the control unit 6 selects the MOSFET having the parasitic diode that is opposite to the overcurrent from the first MOSFET 3a and the second MOSFET 3b. Turn off at least to shut off overcurrent.
  • the third embodiment will be described in detail. In the third embodiment, the description overlapping that of the first or second embodiment is omitted.
  • a third transistor T3 and a fourth transistor T4 are further connected to the control unit 6 and the switch control unit 8.
  • the third transistor T3 and the fourth transistor T4 are a PNP transistor and an NPN transistor, respectively, but are not limited thereto.
  • the control unit 6 stops the output from the switch control unit 8 to the first transistor T1.
  • the first MOSFET 3a is turned off.
  • the control unit 6 may turn off at least the first MOSFET 3a by turning off the first transistor T1 and the second transistor T2 and disconnecting the gate signal line.
  • the control unit 6 stops the output from the switch control unit 8 to the third transistor T3. As a result, the second MOSFET 3b is turned off.
  • the control unit 6 may turn off at least the second MOSFET 3b by turning off the third transistor T3 and the fourth transistor T4 to cut off the gate signal line.
  • the control unit 6 turns off at least one of the first MOSFET 3a and the second MOSFET 3b that has a parasitic diode that is opposite to the overcurrent. Cut off the overcurrent. For this reason, the operation of the first MOSFET 3a or the second MOSFET 3b can be minimized.

Abstract

In order to protect a MOSFET by cutting off overcurrent regardless of the direction in which the current flows, this overcurrent cutoff system (90) is configured to have: a first MOSFET (3, 3a); a current value detection unit (5) that detects a value for a current that flows through the first MOSFET; a first cutoff unit (3b, 4) that cuts off an overcurrent flowing in the forward direction of parasitic diodes (31, 31a) of the first MOSFET in an off state; a second cutoff unit (3, 3a) that cuts off an overcurrent flowing in the reverse direction of the parasitic diodes of the first MOSFET in an off state, and a control unit (6) with which switching between the first cutoff unit and the second cutoff unit can be controlled. On the basis of the detected current, the control unit switches the first cutoff unit off when an overcurrent is determined to be flowing in the forward direction of the parasitic diodes of the first MOSFET, and switches the second cutoff unit off when an overcurrent is determined to be flowing in the reverse direction of the parasitic diodes of the first MOSFET.

Description

過電流遮断システムOvercurrent interrupt system 関連出願へのクロスリファレンスCross-reference to related applications
 本出願は、日本国特許出願2015-256112号(2015年12月28日出願)及び日本国特許出願2016-136894号(2016年7月11日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。 This application claims priority of Japanese Patent Application No. 2015-256112 (filed on Dec. 28, 2015) and Japanese Patent Application No. 2016-136894 (filed on Jul. 11, 2016). The entire disclosure of the application is hereby incorporated by reference.
 本発明は過電流遮断システムに関する。 The present invention relates to an overcurrent interruption system.
 従来から、1つのバッテリを有し、シャント抵抗に過電流が流れたときにMOSFET(Metal Oxide Semiconductor Field Effect Transistor)をオフにして過電流を遮断する過電流遮断回路が知られている(例えば特許文献1)。 2. Description of the Related Art Conventionally, an overcurrent cutoff circuit is known that has one battery and shuts off the overcurrent by turning off a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) when an overcurrent flows through a shunt resistor (for example, a patent) Reference 1).
特開平10-336886号公報Japanese Patent Laid-Open No. 10-336886
 上記過電流遮断回路は1つのバッテリのみを有するため、電流は片方向にしか流れ得ない。そのため、MOSFETのオン又はオフを切り替えるだけで過電流を遮断することができる。しかしながら、上記過電流遮断回路が2つのバッテリを有し、上記片方向とは逆方向の過電流が流れたとき、過電流を遮断することができない。このためMOSFETを保護することができない。 ∙ Since the overcurrent cutoff circuit has only one battery, current can only flow in one direction. Therefore, overcurrent can be interrupted simply by switching on or off the MOSFET. However, when the overcurrent interrupt circuit has two batteries and an overcurrent in the direction opposite to the one direction flows, the overcurrent cannot be interrupted. For this reason, the MOSFET cannot be protected.
 かかる事情に鑑みてなされた本発明の目的は、電流が流れる方向にかかわらず過電流を遮断しMOSFETを保護することができる過電流遮断システムを提供する。 An object of the present invention made in view of such circumstances is to provide an overcurrent interruption system capable of interrupting overcurrent and protecting a MOSFET regardless of the direction in which the current flows.
 上記課題を解決するために本発明の第1の観点に係る過電流遮断システムは、
 第1のMOSFETと、
 前記第1のMOSFETを流れる電流の値を検出する電流値検出部と、
 オンオフ状態を切替可能であり、オフ状態において前記第1のMOSFETの寄生ダイオードの順方向に流れる過電流を遮断する第1の遮断部と、
 オンオフ状態を切替可能であり、オフ状態において前記第1のMOSFETの寄生ダイオードの逆方向に流れる過電流を遮断する第2の遮断部と、
 前記第1の遮断部と前記第2の遮断部とを切替制御可能な制御部とを有し、
 前記制御部は、前記電流値検出部によって検出された電流に基づいて、前記第1のMOSFETの寄生ダイオードの順方向に過電流が流れていると判定したとき、前記第1の遮断部をオフにし、前記第1のMOSFETの前記寄生ダイオードの逆方向に過電流が流れていると判定したとき、前記第2の遮断部をオフにする。
In order to solve the above-mentioned problem, an overcurrent interruption system according to the first aspect of the present invention includes:
A first MOSFET;
A current value detection unit for detecting a value of a current flowing through the first MOSFET;
A first cut-off unit that can be switched between an on-off state and cuts off an overcurrent flowing in a forward direction of the parasitic diode of the first MOSFET in the off-state;
A second shut-off unit that can be switched between an on-off state and shuts off an overcurrent that flows in the reverse direction of the parasitic diode of the first MOSFET in the off-state;
A control unit capable of switching and controlling the first blocking unit and the second blocking unit;
When the controller determines that an overcurrent is flowing in the forward direction of the parasitic diode of the first MOSFET based on the current detected by the current value detector, the controller turns off the first interrupter. Then, when it is determined that an overcurrent flows in the opposite direction of the parasitic diode of the first MOSFET, the second cutoff unit is turned off.
 上記課題を解決するために本発明の第2の観点に係る過電流遮断システムにおいて、
 前記第1の遮断部は、前記第1のMOSFETのソース側に接続されたリレーを含み、
 前記第2の遮断部は、前記第1のMOSFETを含むことが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the second aspect of the present invention,
The first cutoff unit includes a relay connected to the source side of the first MOSFET,
It is preferable that the second blocking unit includes the first MOSFET.
 上記課題を解決するために本発明の第3の観点に係る過電流遮断システムにおいて、
 前記制御部は、前記第1のMOSFETの前記寄生ダイオードの逆方向に過電流が流れていると判定したとき、前記リレーの状態を維持することが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the third aspect of the present invention,
When the control unit determines that an overcurrent flows in the reverse direction of the parasitic diode of the first MOSFET, the control unit preferably maintains the state of the relay.
 上記課題を解決するために本発明の第4の観点に係る過電流遮断システムにおいて、
 前記第1のMOSFETのソース側には第1電源が接続され、ドレイン側には第2電源が接続されることが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the fourth aspect of the present invention,
Preferably, a first power source is connected to the source side of the first MOSFET, and a second power source is connected to the drain side.
 上記課題を解決するために本発明の第5の観点に係る過電流遮断システムにおいて、
 前記第1電源はリチウムイオン電池であり、前記第2電源は鉛蓄電池であることが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the fifth aspect of the present invention,
Preferably, the first power source is a lithium ion battery, and the second power source is a lead acid battery.
 上記課題を解決するために本発明の第6の観点に係る過電流遮断システムにおいて、
 前記第1のMOSFETは、第2のMOSFETと直列に接続され、
 前記第1のMOSFETの寄生ダイオードの順方向は、前記第2のMOSFETの寄生ダイオードの順方向とは逆方向であり、
 前記第1の遮断部は、少なくとも前記第2のMOSFETを含み、
 前記第2の遮断部は、少なくとも前記第1のMOSFETを含むことが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the sixth aspect of the present invention,
The first MOSFET is connected in series with a second MOSFET,
The forward direction of the parasitic diode of the first MOSFET is opposite to the forward direction of the parasitic diode of the second MOSFET,
The first blocking unit includes at least the second MOSFET,
It is preferable that the second blocking unit includes at least the first MOSFET.
 上記課題を解決するために本発明の第7の観点に係る過電流遮断システムにおいて、
 前記制御部は、前記第1のMOSFET及び前記第2のMOSFETに過電流が流れていると判定したとき、前記第1のMOSFET及び前記第2のMOSFETの両方をオフにすることが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the seventh aspect of the present invention,
When it is determined that an overcurrent flows through the first MOSFET and the second MOSFET, the control unit preferably turns off both the first MOSFET and the second MOSFET.
 上記課題を解決するために本発明の第8の観点に係る過電流遮断システムにおいて、
 前記第1のMOSFETのソース側には鉛蓄電池が接続され、前記第2のMOSFETのソース側にはリチウムイオン電池が接続されることが好ましい。
In order to solve the above problem, in the overcurrent interruption system according to the eighth aspect of the present invention,
Preferably, a lead storage battery is connected to the source side of the first MOSFET, and a lithium ion battery is connected to the source side of the second MOSFET.
 本発明の第1の観点に係る過電流遮断システムによれば、電流が流れる方向にかかわらず過電流を遮断し第1のMOSFETを保護することができる。 According to the overcurrent interruption system according to the first aspect of the present invention, it is possible to protect the first MOSFET by interrupting the overcurrent regardless of the direction in which the current flows.
 本発明の第2の観点に係る過電流遮断システムによれば、リレー及び第1のMOSFETを利用しつつ、第1のMOSFETを保護することができる。 According to the overcurrent cutoff system according to the second aspect of the present invention, the first MOSFET can be protected while using the relay and the first MOSFET.
 本発明の第3の観点に係る過電流遮断システムによれば、リレーの騒音防止及び長寿命化を図ることができる。 According to the overcurrent interruption system according to the third aspect of the present invention, it is possible to prevent the noise of the relay and extend the life.
 本発明の第4の観点に係る過電流遮断システムによれば、第1電源及び第2電源から過電流遮断システムへの双方向の電力供給を確保しつつも過電流を遮断して第1のMOSFETを保護することができる。 According to the overcurrent interruption system according to the fourth aspect of the present invention, the overcurrent is interrupted while securing bidirectional power supply from the first power source and the second power source to the overcurrent interruption system. The MOSFET can be protected.
 本発明の第5の観点に係る過電流遮断システムによれば、充電電力を長く保持して電力を有効利用することができる。また、過電流遮断システムの生産コストを抑制することができる。 According to the overcurrent interruption system according to the fifth aspect of the present invention, the charging power can be kept long and the power can be used effectively. Moreover, the production cost of an overcurrent interruption system can be suppressed.
 本発明の第6の観点に係る過電流遮断システムによれば、第1のMOSFET及び第2のMOSFETを利用しつつ、第1のMOSFETを保護することができる。 According to the overcurrent cutoff system according to the sixth aspect of the present invention, it is possible to protect the first MOSFET while using the first MOSFET and the second MOSFET.
 本発明の第7の観点に係る過電流遮断システムによれば、過電流がどちらの方向に流れているかを判定する必要無く、確実に第1のMOSFETを保護することができる。 According to the overcurrent interruption system according to the seventh aspect of the present invention, it is possible to reliably protect the first MOSFET without having to determine in which direction the overcurrent flows.
 本発明の第8の観点に係る過電流遮断システムによれば、充電電力を長く保持して電力を有効利用することができる。また、過電流遮断システムの生産コストを抑制することができる。 According to the overcurrent interruption system according to the eighth aspect of the present invention, the charging power can be kept long and the power can be used effectively. Moreover, the production cost of an overcurrent interruption system can be suppressed.
本発明の実施形態1に係る過電流遮断システムの概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the overcurrent interruption | blocking system which concerns on Embodiment 1 of this invention. 図1のMOSFETを流れる電流と電圧との関係を示すグラフである。It is a graph which shows the relationship between the electric current and voltage which flow through MOSFET of FIG. 図1の電流値検出部及び制御部の動作フローを示すシーケンス図である。It is a sequence diagram which shows the operation | movement flow of the electric current value detection part and control part of FIG. 本発明の実施形態2に係る過電流遮断システムの概略構成を示す機能ブロッ図である。It is a functional block diagram which shows schematic structure of the overcurrent interruption | blocking system which concerns on Embodiment 2 of this invention. 図4の電流値検出部及び制御部の動作フローを示すシーケンス図である。FIG. 5 is a sequence diagram illustrating an operation flow of a current value detection unit and a control unit in FIG. 4. 本発明の実施形態3に係る過電流遮断システムの概略構成を示す機能ブロック図である。It is a functional block diagram which shows schematic structure of the overcurrent interruption | blocking system which concerns on Embodiment 3 of this invention.
[実施形態1]
 はじめに図1を参照して、本発明の実施形態1に係る過電流遮断システム90の概略構成を説明する。図1の実線は電力ラインを示し、破線は情報伝達ラインを示す。過電流遮断システム90は、例えばハイブリッド車(HEV車)等の車両に搭載される。過電流遮断システム90の概略構成を説明するが、過電流遮断システム90の他の機能を排除したものではないことに留意されたい。
[Embodiment 1]
First, a schematic configuration of an overcurrent interruption system 90 according to Embodiment 1 of the present invention will be described with reference to FIG. A solid line in FIG. 1 indicates a power line, and a broken line indicates an information transmission line. The overcurrent interruption system 90 is mounted on a vehicle such as a hybrid vehicle (HEV vehicle), for example. It should be noted that the general configuration of the overcurrent interruption system 90 will be described, but other functions of the overcurrent interruption system 90 are not excluded.
 過電流遮断システム90は、少なくともMOSFET3、リレー4、電流値検出部5及び制御部6を有する。過電流遮断システム90は例えば、第1電源1、第2電源2、ECU7(Engine Control Unit)、スイッチ制御部8、報知部9、負荷10、整流素子11、オルタネータ12及びスタータ13等をさらに有してもよい。なお、MOSFET3は、本発明の第1のMOSFETに対応する。 The overcurrent interruption system 90 includes at least a MOSFET 3, a relay 4, a current value detection unit 5, and a control unit 6. The overcurrent cutoff system 90 further includes, for example, a first power source 1, a second power source 2, an ECU 7 (Engine Control Unit), a switch control unit 8, a notification unit 9, a load 10, a rectifying element 11, an alternator 12, a starter 13, and the like. May be. The MOSFET 3 corresponds to the first MOSFET of the present invention.
 第1電源1は例えばリチウムイオン電池である。リチウムイオン電池を用いることで、それ以外の電池を用いるときに比べて充電電力を長く保持して電力を有効利用することができる。第1電源1はまた、リチウムイオン電池やニッケル水素電池等、鉛蓄電池以外の1以上の二次電池(セル)が直列に接続されて構成されてもよい。第1電源1のプラス端子はリレー4と接続され、マイナス端子はグランドに接続される。 The first power source 1 is, for example, a lithium ion battery. By using a lithium ion battery, the charging power can be maintained longer than when other batteries are used, and the power can be used effectively. The first power supply 1 may also be configured by connecting in series one or more secondary batteries (cells) other than lead storage batteries, such as lithium ion batteries and nickel metal hydride batteries. The positive terminal of the first power supply 1 is connected to the relay 4 and the negative terminal is connected to the ground.
 第1電源1は過電流遮断システム90に電力を供給する。第1電源1はMOSFET3がオンになっているとき、負荷10に対して電力を供給可能である。第1電源1はまた、エンジン駆動(アイドリング)の停止中に、補機及びECU7等に対して電力を供給可能である。第1電源1は第2電源2と並列接続される。 The first power supply 1 supplies power to the overcurrent interruption system 90. The first power supply 1 can supply power to the load 10 when the MOSFET 3 is on. The first power supply 1 can also supply power to the auxiliary equipment, the ECU 7 and the like while the engine drive (idling) is stopped. The first power supply 1 is connected in parallel with the second power supply 2.
 第2電源2は、例えば鉛蓄電池である。鉛蓄電池を用いることで、それ以外の電池を用いるときに比べて過電流遮断システム90の生産コストを抑制することができる。第2電源2は第1電源1と同じ電圧であっても異なる電圧であってもよいが、異なる電圧である場合はDC/DCコンバータを用いる。第2電源2のプラス端子は電流値検出部5等に接続され、マイナス端子はグランドに接続される。 The second power source 2 is, for example, a lead storage battery. By using a lead storage battery, the production cost of the overcurrent interruption system 90 can be suppressed compared to when other batteries are used. The second power supply 2 may be the same voltage as the first power supply 1 or a different voltage, but if it is a different voltage, a DC / DC converter is used. The positive terminal of the second power supply 2 is connected to the current value detector 5 and the like, and the negative terminal is connected to the ground.
 第2電源2は過電流遮断システム90に電力を供給する。第2電源2は、負荷10に対して電力を供給可能である。第2電源2は第1電源1と並列接続される。 The second power supply 2 supplies power to the overcurrent cutoff system 90. The second power supply 2 can supply power to the load 10. The second power supply 2 is connected in parallel with the first power supply 1.
 MOSFET3は、電気駆動するスイッチング素子であり、スイッチ制御部8の制御によってオンとオフとを切替可能である。MOSFET3のソース側には第1電源1が接続され、ドレイン側には第2電源2が接続される。MOSFET3がオンのときリレー4と電流値検出部5との間には電流が流れ、MOSFET3がオフのときリレー4と電流値検出部5との間には電流が流れない。MOSFET3の数は限定されない。MOSFET3は並列に複数接続されてもよい。MOSFET3の数が多いほど、電力負荷を分散することが可能である。なお、MOSFET3は、本発明の第2の遮断部にも対応する。 The MOSFET 3 is a switching element that is electrically driven, and can be switched on and off under the control of the switch control unit 8. A first power supply 1 is connected to the source side of the MOSFET 3, and a second power supply 2 is connected to the drain side. When the MOSFET 3 is on, a current flows between the relay 4 and the current value detector 5, and when the MOSFET 3 is off, no current flows between the relay 4 and the current value detector 5. The number of MOSFETs 3 is not limited. A plurality of MOSFETs 3 may be connected in parallel. As the number of MOSFETs 3 increases, the power load can be distributed. The MOSFET 3 also corresponds to the second blocking part of the present invention.
 MOSFET3のソースとゲートとの間には抵抗Raが接続される。このためソースとゲートとの間の電位差を抑制することができる。また、MOSFET3のゲートには、ゲート前抵抗Rbが接続される。これにより、寄生キャパシタによる突入電流がMOSFET3のゲートに大電流として流れることを防ぐことができる。 A resistor Ra is connected between the source and gate of the MOSFET 3. For this reason, the potential difference between the source and the gate can be suppressed. Further, a pre-gate resistor Rb is connected to the gate of the MOSFET 3. Thereby, the inrush current due to the parasitic capacitor can be prevented from flowing as a large current to the gate of the MOSFET 3.
 MOSFET3は、例えば以下のようにオンとオフとを切り替えられてもよい。すなわち、MOSFET3は、第2電源2の電圧が所定値を下回ったときにオンになることによって、オルタネータ12又は第1電源1から第2電源2への充電を行い、第2電源2の過放電保護を行う。またMOSFET3は、第2電源2の電圧が別の所定値を上回ったときにオフになることによって、オルタネータ12又は第1電源1から第2電源2へ充電が行われることを防ぎ、第2電源2の過充電保護を行う。 The MOSFET 3 may be switched on and off as follows, for example. That is, the MOSFET 3 is turned on when the voltage of the second power source 2 falls below a predetermined value, thereby charging the second power source 2 from the alternator 12 or the first power source 1, and overdischarging the second power source 2. Provide protection. Further, the MOSFET 3 is turned off when the voltage of the second power source 2 exceeds another predetermined value, thereby preventing charging from the alternator 12 or the first power source 1 to the second power source 2. 2 overcharge protection.
 MOSFET3は、スイッチ制御部8の制御によってオンになるため、このときオルタネータ12又は第1電源1等から負荷10への電力供給を確保することができる。 Since the MOSFET 3 is turned on by the control of the switch control unit 8, at this time, it is possible to ensure power supply from the alternator 12 or the first power source 1 to the load 10.
 リレー4は、ECU7を介した制御部6の制御によってオンとオフとを切替可能である。本実施形態においてリレー4はMOSFET3のソース側に接続される。リレー4がオンのとき第1電源1とMOSFET3との間には電流が流れ、リレー4がオフのとき第1電源1とMOSFET3との間には電流が流れない。なお、リレー4は、本発明の第1の遮断部に対応する。 The relay 4 can be switched on and off under the control of the control unit 6 via the ECU 7. In the present embodiment, the relay 4 is connected to the source side of the MOSFET 3. When the relay 4 is on, a current flows between the first power source 1 and the MOSFET 3, and when the relay 4 is off, no current flows between the first power source 1 and the MOSFET 3. In addition, the relay 4 corresponds to the 1st interruption | blocking part of this invention.
 電流値検出部5は、例えばシャント抵抗、電流センスアンプ、電圧レギュレータ等により構成される。図1において電流値検出部5はMOSFET3のドレイン側に接続されているが、電流値検出部5はMOSFET3のソース側に接続されていてもよい。電流値検出部5はシャント抵抗の電位差を電流センスアンプにて電流値に変換することによって、MOSFET3を流れる電流の値を検出する。 The current value detection unit 5 includes, for example, a shunt resistor, a current sense amplifier, a voltage regulator, and the like. In FIG. 1, the current value detection unit 5 is connected to the drain side of the MOSFET 3, but the current value detection unit 5 may be connected to the source side of the MOSFET 3. The current value detection unit 5 detects the value of the current flowing through the MOSFET 3 by converting the potential difference of the shunt resistor into a current value by a current sense amplifier.
 図2は図1のMOSFET3を流れる電流(横軸)と、電流値検出部5にかかる電圧(縦軸)との関係を示すグラフである。図2に示すa、b、c及びdは正の定数である。図1のMOSFET3の寄生ダイオード31の順方向(MOSFET3から第2電源2への方向)を横軸のプラス方向とし、その逆を横軸のマイナス方向とする。図2に示すように、電圧がd[V]のとき寄生ダイオード31の順方向にa[A]の電流が流れ、電圧がb[V]のとき寄生ダイオード31の逆方向に-a[A]の電流が流れる。電流値検出部5は電流値を検出すると、検出した電流値を制御部6に出力する。 FIG. 2 is a graph showing the relationship between the current (horizontal axis) flowing through the MOSFET 3 in FIG. 1 and the voltage (vertical axis) applied to the current value detection unit 5. In FIG. 2, a, b, c and d are positive constants. The forward direction of the parasitic diode 31 of the MOSFET 3 in FIG. 1 (the direction from the MOSFET 3 to the second power supply 2) is the positive direction on the horizontal axis, and the opposite is the negative direction on the horizontal axis. As shown in FIG. 2, when the voltage is d [V], a current [A] flows in the forward direction of the parasitic diode 31, and when the voltage is b [V], -a [A] ] Current flows. When the current value detection unit 5 detects the current value, it outputs the detected current value to the control unit 6.
 図1の説明に戻る。制御部6は過電流遮断システム90の動作全体を制御するCPU(Central Processing Unit)等のプロセッサである。制御部6はスイッチ制御部8を介してMOSFET3を制御可能であり、ECU7を介してリレー4を制御可能である。制御部6は電流値を電流値検出部5から取得すると、当該電流値と過電流閾値(以下の第1基準値及び第2基準値)とを比較する。図2を参照するに、電流値が第1基準値(本実施形態では-a[A])を下回る(電流値<-a[A])とき、又は第2基準値(本実施形態a[A])を上回る(電流値>a[A])ときに過電流が発生していると制御部6は判定する。過電流が発生していると判定したときに制御部6が実行する処理は後述する。 Returning to the explanation of FIG. The control unit 6 is a processor such as a CPU (Central Processing Unit) that controls the overall operation of the overcurrent interruption system 90. The control unit 6 can control the MOSFET 3 through the switch control unit 8 and can control the relay 4 through the ECU 7. When the control unit 6 acquires the current value from the current value detection unit 5, the control unit 6 compares the current value with an overcurrent threshold (the following first reference value and second reference value). Referring to FIG. 2, when the current value falls below the first reference value (-a [A] in the present embodiment) (current value <-a [A]), or the second reference value (present embodiment a [ A]) is exceeded (current value> a [A]), the controller 6 determines that an overcurrent has occurred. A process executed by the control unit 6 when it is determined that an overcurrent has occurred will be described later.
 第1トランジスタT1及び第2トランジスタT2は制御部6の制御によりオンとオフとを切替制御される。第1トランジスタT1はPNP型トランジスタであり、第2トランジスタT2はNPN型トランジスタである。また、第3トランジスタT3はECU7によりオンとオフとを切り替えて制御される。第3トランジスタT3はPNP型トランジスタである。 The first transistor T1 and the second transistor T2 are switched on and off under the control of the control unit 6. The first transistor T1 is a PNP transistor, and the second transistor T2 is an NPN transistor. The third transistor T3 is controlled by the ECU 7 by switching it on and off. The third transistor T3 is a PNP transistor.
 ECU7は、過電流を検出したことの通知を制御部6から取得し、車両のドライバに通知するために当該通知を報知部9に出力可能である。またECU7は、リレー4のオンとオフとを制御可能である。 The ECU 7 can obtain a notification that the overcurrent has been detected from the control unit 6 and can output the notification to the notification unit 9 in order to notify the driver of the vehicle. Further, the ECU 7 can control ON / OFF of the relay 4.
 スイッチ制御部8は、第1電源1と第2電源2との少なくとも一方から電力供給を受け、制御部6の制御によりMOSFET3のオンとオフとを制御可能である。すなわち、第2電源2からの電力供給が何らかの理由で途絶えたとしても、スイッチ制御部8は第1電源1から電力供給を受けることでMOSFET3のオンとオフとの制御を継続することができる。 The switch control unit 8 is supplied with power from at least one of the first power source 1 and the second power source 2 and can control the on / off of the MOSFET 3 under the control of the control unit 6. That is, even if the power supply from the second power supply 2 is interrupted for some reason, the switch control unit 8 can continue the control of turning on and off the MOSFET 3 by receiving the power supply from the first power supply 1.
 報知部9は、過電流を検出したことの通知を制御部6からECU7を介して取得すると、その旨を車両のドライバに通知する。具体的には報知部9は、ランプを点灯させることで通知する。代替例として報知部9は、過電流が検出されシステムに異常が生じていることを、音声として通知し又は画像として車載のモニタに出力して通知する。 When the notification unit 9 acquires a notification that an overcurrent has been detected from the control unit 6 via the ECU 7, the notification unit 9 notifies the driver of the vehicle to that effect. Specifically, the notification unit 9 notifies by turning on the lamp. As an alternative example, the notification unit 9 notifies that an overcurrent is detected and an abnormality has occurred in the system as a sound or as an image and outputs it to a vehicle-mounted monitor.
 負荷10は、例えば車両に備えられたオーディオ、エアコン及びナビゲーションシステム等である。負荷10の一端は電流値検出部5及び第2電源2に接続され、もう一端はグランドに接続される。負荷10は、エンジン駆動の停止中に第1電源1及び第2電源2から電力供給を受けて動作し、エンジン駆動中にオルタネータ12、第1電源1及び第2電源2から電力供給を受けて動作する。 The load 10 is, for example, an audio, an air conditioner, a navigation system, or the like provided in the vehicle. One end of the load 10 is connected to the current value detection unit 5 and the second power supply 2, and the other end is connected to the ground. The load 10 operates by receiving power supply from the first power supply 1 and the second power supply 2 while the engine drive is stopped, and receives power supply from the alternator 12, the first power supply 1 and the second power supply 2 while the engine is driven. Operate.
 整流素子11はダイオードであり第1整流素子11aと第2整流素子11bとを有する。第1整流素子11aは第1電源1からスイッチ制御部8に電力が供給される向きで第1電源1とスイッチ制御部8との間に設けられる。第2整流素子11bは、第2電源2からスイッチ制御部8に電力が供給される向きで第2電源2とスイッチ制御部8との間に設けられる。図1において第1整流素子11a及び第2整流素子11bはいずれも2つの素子からなっているが、その数は限定されない。素子の数が多いほど、耐圧を上げることが可能である。また整流素子11より、例えば第1電源1から第2電源2に、又は第2電源2から第1電源1に電流が流れ込むことがない。 The rectifying element 11 is a diode and includes a first rectifying element 11a and a second rectifying element 11b. The first rectifying element 11 a is provided between the first power supply 1 and the switch control unit 8 in a direction in which power is supplied from the first power supply 1 to the switch control unit 8. The second rectifying element 11 b is provided between the second power supply 2 and the switch control unit 8 in a direction in which power is supplied from the second power supply 2 to the switch control unit 8. In FIG. 1, each of the first rectifying element 11a and the second rectifying element 11b includes two elements, but the number thereof is not limited. The greater the number of elements, the higher the breakdown voltage. Further, for example, no current flows from the first power supply 1 to the second power supply 2 or from the second power supply 2 to the first power supply 1 from the rectifying element 11.
 オルタネータ12は、発電機であって、車両のエンジンに機械的に接続される。オルタネータ12は、エンジンの駆動によって発電可能である。オルタネータ12がエンジンの駆動によって発電した電力は、レギュレータで出力電圧を調整されて、第1電源1、第2電源2及び負荷10に供給され得る。またオルタネータ12は、車両の減速時等に回生によって発電可能である。オルタネータ12が回生発電した電力は、第1電源1及び第2電源2の充電に使用され得る。 The alternator 12 is a generator and is mechanically connected to a vehicle engine. The alternator 12 can generate electric power by driving the engine. The power generated by the alternator 12 by driving the engine can be supplied to the first power source 1, the second power source 2, and the load 10 by adjusting the output voltage with a regulator. The alternator 12 can generate power by regeneration when the vehicle is decelerated. The electric power regenerated by the alternator 12 can be used for charging the first power supply 1 and the second power supply 2.
 スタータ13は、例えばセルモータを含んで構成され、第1電源1及び第2電源2の少なくとも一方からの電力供給を受けて、車両のエンジンを始動させる。 The starter 13 includes a cell motor, for example, and receives power supply from at least one of the first power source 1 and the second power source 2 to start the engine of the vehicle.
 以下、本実施形態の過電流遮断システム90がどのように過電流を遮断してMOSFET3を保護するかを詳細に説明する。 Hereinafter, it will be described in detail how the overcurrent interruption system 90 of the present embodiment interrupts the overcurrent and protects the MOSFET 3.
 電流値検出部5は、MOSFET3を流れる電流値を検出する。電流値検出部5は電流値を制御部6に出力する。制御部6は次のようにして過電流からMOSFET3を保護する。すなわち、制御部6は当該電流値に基づいて、過電流が流れているか否か、及び当該過電流がどちらの方向に流れているかを判定する。過電流がMOSFET3の寄生ダイオード31の順方向に流れていると判定したとき、制御部6はリレー4をオフにする。これにより過電流は遮断されMOSFET3を流れないのでMOSFET3を保護することができる。また制御部6はECU7に、過電流が流れていることを通知する。当該通知を取得したECU7は、過電流が流れていることを報知部9に通知する。報知部9は過電流遮断システム90が設けられた車両のドライバに異常を知らせる警告情報(ワーニング)を通知する。 The current value detection unit 5 detects the current value flowing through the MOSFET 3. The current value detection unit 5 outputs the current value to the control unit 6. The control unit 6 protects the MOSFET 3 from overcurrent as follows. That is, based on the current value, the control unit 6 determines whether or not an overcurrent is flowing and in which direction the overcurrent is flowing. When it is determined that the overcurrent is flowing in the forward direction of the parasitic diode 31 of the MOSFET 3, the control unit 6 turns off the relay 4. As a result, the overcurrent is cut off and does not flow through the MOSFET 3, so that the MOSFET 3 can be protected. In addition, the control unit 6 notifies the ECU 7 that an overcurrent is flowing. ECU7 which acquired the said notification notifies the alerting | reporting part 9 that overcurrent is flowing. The notification unit 9 notifies warning information (warning) that notifies the driver of the vehicle provided with the overcurrent interruption system 90 of the abnormality.
 一方、過電流がMOSFET3の寄生ダイオード31の逆方向に流れていると判定したとき、制御部6はスイッチ制御部8からの出力を止めてMOSFET3をオフにする。また制御部6は追加的に、第1トランジスタT1及び第2トランジスタT2をオフにしてMOSFET3とスイッチ制御部8とを切り離してもよい。これによりMOSFET3を保護することができる。また、このとき制御部6はリレー4の状態を維持する。すなわち、制御部6はリレー4がオンのときにはオンのままにし、リレー4がオフのときにはオフのままにする。このためリレー4の作動頻度は下がり、もってリレー4の騒音防止及び長寿命化を図ることができる。また制御部6は、過電流が流れていることをECU7に通知する。当該通知を取得したECU7は、過電流が流れていることを報知部9に通知する。報知部9は過電流遮断システム90が設けられた車両のドライバに異常を知らせる警告情報を通知する。 On the other hand, when it is determined that the overcurrent flows in the reverse direction of the parasitic diode 31 of the MOSFET 3, the control unit 6 stops the output from the switch control unit 8 and turns off the MOSFET 3. The control unit 6 may additionally disconnect the MOSFET 3 and the switch control unit 8 by turning off the first transistor T1 and the second transistor T2. As a result, the MOSFET 3 can be protected. At this time, the control unit 6 maintains the state of the relay 4. That is, the control unit 6 remains on when the relay 4 is on, and remains off when the relay 4 is off. For this reason, the operation frequency of the relay 4 is lowered, so that the noise of the relay 4 can be prevented and the life of the relay 4 can be extended. Further, the control unit 6 notifies the ECU 7 that an overcurrent is flowing. ECU7 which acquired the said notification notifies the alerting | reporting part 9 that overcurrent is flowing. The notification unit 9 notifies warning information notifying the driver of the vehicle provided with the overcurrent cutoff system 90 of the abnormality.
 制御部6は過電流が流れていないと判定したとき(異常がないと判定したとき)、MOSFET3及びリレー4をオンにして、MOSFET3を流れる電流を継続して監視(モニタリング)する。 When it is determined that no overcurrent is flowing (when it is determined that there is no abnormality), the control unit 6 turns on the MOSFET 3 and the relay 4 and continuously monitors (monitors) the current flowing through the MOSFET 3.
 図3は図1の電流値検出部5及び制御部6が定期的又は不定期的に実行する動作を示すシーケンス図である。 FIG. 3 is a sequence diagram showing an operation that the current value detection unit 5 and the control unit 6 in FIG. 1 execute regularly or irregularly.
 電流値検出部5は電流値を検出し(ステップS1)、検出した電流値を制御部6に出力する(ステップS2)。 The current value detection unit 5 detects the current value (step S1), and outputs the detected current value to the control unit 6 (step S2).
 電流値を取得した制御部6は、当該電流値が第2基準値を上回るか否かを判定する(ステップS3)。ステップS3でYesのとき、制御部6はリレー4をオフにし(ステップS4)、過電流が流れていることをECU7に通知する(ステップS5)。また制御部6は過電流が流れ異常が発生している知らせる警告情報を、報知部9を介して車両のドライバに通知する(ステップS6)。 The control unit 6 that has acquired the current value determines whether or not the current value exceeds the second reference value (step S3). When Yes in step S3, the control unit 6 turns off the relay 4 (step S4) and notifies the ECU 7 that an overcurrent is flowing (step S5). Further, the control unit 6 notifies the driver of the vehicle via the notification unit 9 of warning information that informs that an overcurrent flows and an abnormality has occurred (step S6).
 ステップS3でNoのとき、制御部6は電流値が第1基準値を下回るか否かを判定する(ステップS7)。ステップS7でYesのとき、制御部6はスイッチ制御部8の出力を止めてMOSFET3をオフにし(ステップS8)、第1トランジスタT1及び第2トランジスタT2をオフにして、MOSFET3をスイッチ制御部8から切り離す(ステップS9)。次いで制御部6はステップS5を実行する。 When No in step S3, the control unit 6 determines whether or not the current value is lower than the first reference value (step S7). When Yes in step S7, the control unit 6 stops the output of the switch control unit 8 to turn off the MOSFET 3 (step S8), turns off the first transistor T1 and the second transistor T2, and removes the MOSFET 3 from the switch control unit 8. Disconnect (step S9). Next, the control unit 6 executes Step S5.
 ステップS7でNoのとき制御部6は、過電流は流れていないと判定し、MOSFET3及びリレー4をオンにする(ステップS10)。制御部6は、継続して電流を監視する(ステップS11)。 When the answer is No in step S7, the controller 6 determines that no overcurrent is flowing, and turns on the MOSFET 3 and the relay 4 (step S10). The controller 6 continuously monitors the current (Step S11).
 このように、本発明の一実施形態による過電流遮断システム90によれば、制御部6は、電流値検出部5によって検出された電流に基づいて、MOSFET3の寄生ダイオード31の順方向に過電流が流れていると判定したとき、リレー4をオフにし、他方MOSFET3の寄生ダイオード31の逆方向に過電流が流れていると判定したとき、MOSFET3をオフにする。このため、電流の流れる方向にかかわらず過電流を遮断しMOSFET3を保護することができる。 As described above, according to the overcurrent interruption system 90 according to the embodiment of the present invention, the control unit 6 detects the overcurrent in the forward direction of the parasitic diode 31 of the MOSFET 3 based on the current detected by the current value detection unit 5. When it is determined that the current flows, the relay 4 is turned off. On the other hand, when it is determined that the overcurrent flows in the reverse direction of the parasitic diode 31 of the MOSFET 3, the MOSFET 3 is turned off. For this reason, it is possible to protect the MOSFET 3 by interrupting the overcurrent regardless of the direction in which the current flows.
 このように、本発明の一実施形態による過電流遮断システム90によれば、制御部6はMOSFET3の寄生ダイオード31の逆方向に過電流が流れていると判定したとき、リレー4の状態を維持する。このため、リレー4の騒音防止及び長寿命化を図ることができる。 As described above, according to the overcurrent cutoff system 90 according to the embodiment of the present invention, when the control unit 6 determines that the overcurrent flows in the reverse direction of the parasitic diode 31 of the MOSFET 3, the state of the relay 4 is maintained. To do. For this reason, noise prevention and life extension of the relay 4 can be achieved.
 このように、本発明の一実施形態による過電流遮断システム90によれば、MOSFET3のソース側には第1電源1が接続され、ドレイン側には第2電源2が接続される。このため、第1電源1及び第2電源2から過電流遮断システム90への双方向の電力供給を確保しつつも過電流を遮断してMOSFET3を保護することができる。 As described above, according to the overcurrent cutoff system 90 according to the embodiment of the present invention, the first power source 1 is connected to the source side of the MOSFET 3 and the second power source 2 is connected to the drain side. For this reason, it is possible to protect the MOSFET 3 by interrupting the overcurrent while ensuring bidirectional power supply from the first power supply 1 and the second power supply 2 to the overcurrent cutoff system 90.
 このように、本発明の一実施形態による過電流遮断システム90によれば、第1電源1はリチウムイオン電池であり、第2電源2は鉛蓄電池である。第1電源1にリチウムイオン電池を用いるため、他の電池を用いる場合に比べて充電電力を長く保持して電力を有効利用することができる。また、鉛蓄電池を用いるため、他の電池を用いる場合に比べて過電流遮断システム90の生産コストを抑制することができる。 Thus, according to the overcurrent interruption system 90 according to one embodiment of the present invention, the first power supply 1 is a lithium ion battery and the second power supply 2 is a lead storage battery. Since a lithium ion battery is used for the first power source 1, it is possible to effectively use the power while maintaining the charging power longer than when using other batteries. Moreover, since a lead storage battery is used, the production cost of the overcurrent interruption system 90 can be suppressed compared with the case where another battery is used.
 本発明を諸図面、実施形態、変形例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。したがって、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段やステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。 Although the present invention has been described based on the drawings, embodiments, and modifications, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure. Therefore, it should be noted that these variations and modifications are included in the scope of the present invention. For example, the functions included in each means, each step, etc. can be rearranged so that there is no logical contradiction, and a plurality of means, steps, etc. can be combined or divided into one. .
 また、上述した実施形態1において、ハイブリッド車に搭載される過電流遮断システム90について説明したが、これに限られない。例えば、過電流遮断システム90は電気自動車(EV車)に搭載されてもよい。 In the above-described first embodiment, the overcurrent cutoff system 90 mounted on the hybrid vehicle has been described, but the present invention is not limited to this. For example, the overcurrent interruption system 90 may be mounted on an electric vehicle (EV vehicle).
[実施形態2]
 実施形態1では、過電流遮断システム90はMOSFETを1つ含む。一方で実施形態2では、以下のように、過電流遮断システム90はMOSFETを2つ含む。
[Embodiment 2]
In the first embodiment, the overcurrent interruption system 90 includes one MOSFET. On the other hand, in the second embodiment, the overcurrent cutoff system 90 includes two MOSFETs as follows.
 はじめに、図4を参照して、実施形態2に係る過電流遮断システム90の概略構成を説明する。実施形態1と共通する説明は省略する。 First, a schematic configuration of an overcurrent interruption system 90 according to the second embodiment will be described with reference to FIG. Descriptions common to the first embodiment are omitted.
 過電流遮断システム90は、少なくとも第1のMOSFET3a、第2のMOSFET3b、リレー4、電流値検出部5及び制御部6を有する。過電流遮断システム90は例えば、第1電源1、第2電源2、ECU7、スイッチ制御部8、報知部9、負荷10、整流素子11、オルタネータ12及びスタータ13等をさらに有してもよい。 The overcurrent interruption system 90 includes at least a first MOSFET 3a, a second MOSFET 3b, a relay 4, a current value detection unit 5, and a control unit 6. The overcurrent interruption system 90 may further include, for example, a first power supply 1, a second power supply 2, an ECU 7, a switch control unit 8, a notification unit 9, a load 10, a rectifying element 11, an alternator 12, a starter 13, and the like.
 第1電源1は第1のMOSFET3a及び第2のMOSFET3bがオンになっているとき、負荷10に対して電力を供給可能である。 The first power supply 1 can supply power to the load 10 when the first MOSFET 3a and the second MOSFET 3b are turned on.
 第1のMOSFET3a及び第2のMOSFET3bは、電気駆動するスイッチング素子であり、スイッチ制御部8の制御によってオンとオフとを切替可能である。本実施形態における第1のMOSFET3a及び第2のMOSFET3bはn型である。第1のMOSFET3aの寄生ダイオード31aの順方向は、第2のMOSFET3bの寄生ダイオード31bの順方向とは逆方向である。本実施形態では、寄生ダイオード31aの順方向は第2電源2から第1電源1への方向であり、寄生ダイオード31bの順方向は第1電源1から第2電源2への方向である。なお、第2のMOSFET3bは、本発明の第1の遮断部に対応する。 The first MOSFET 3 a and the second MOSFET 3 b are electrically driven switching elements, and can be switched on and off under the control of the switch control unit 8. The first MOSFET 3a and the second MOSFET 3b in this embodiment are n-type. The forward direction of the parasitic diode 31a of the first MOSFET 3a is opposite to the forward direction of the parasitic diode 31b of the second MOSFET 3b. In this embodiment, the forward direction of the parasitic diode 31a is the direction from the second power supply 2 to the first power supply 1, and the forward direction of the parasitic diode 31b is the direction from the first power supply 1 to the second power supply 2. The second MOSFET 3b corresponds to the first cutoff part of the present invention.
 図4に示すように第2のMOSFET3bのソース側には第1電源1が接続され、第2のMOSFET3bのドレインと第1のMOSFET3aのドレインとが接続され、第1のMOSFET3aのソース側には第2電源2が接続される。 As shown in FIG. 4, the first power supply 1 is connected to the source side of the second MOSFET 3b, the drain of the second MOSFET 3b and the drain of the first MOSFET 3a are connected, and the source side of the first MOSFET 3a is connected to the source side of the first MOSFET 3a. A second power supply 2 is connected.
 図4には2つのMOSFETを示すが、MOSFETの数は限定されない。例えば第1のMOSFET3aと並列に別の1以上のMOSFETが接続され、第2のMOSFET3bと並列に別の1以上のMOSFETが接続されてもよい。MOSFETの数が多いほど、電力負荷を分散することが可能である。 FIG. 4 shows two MOSFETs, but the number of MOSFETs is not limited. For example, another one or more MOSFETs may be connected in parallel with the first MOSFET 3a, and another one or more MOSFETs may be connected in parallel with the second MOSFET 3b. As the number of MOSFETs increases, the power load can be distributed.
 第1のMOSFET3a及び第2のMOSFET3bのそれぞれのソースとゲートとの間には抵抗Raが接続される。このためソースとゲートとの間の電位差を抑制することができる。また、第1のMOSFET3a及び第2のMOSFET3bのゲートには、ゲート前抵抗Rbが接続される。これにより、寄生キャパシタによる突入電流が第1のMOSFET3a又は第2のMOSFET3bのゲートに大電流として流れることを防ぐことができる。 A resistor Ra is connected between the source and gate of each of the first MOSFET 3a and the second MOSFET 3b. For this reason, the potential difference between the source and the gate can be suppressed. Further, a pre-gate resistor Rb is connected to the gates of the first MOSFET 3a and the second MOSFET 3b. Thereby, the inrush current due to the parasitic capacitor can be prevented from flowing as a large current to the gate of the first MOSFET 3a or the second MOSFET 3b.
 リレー4は任意に接続され、ECU7を介した制御部6の制御によってオンとオフとを切替可能である。本実施形態においてリレー4は第2のMOSFET3bのソースに接続される。リレー4がオンのとき第1電源1と第2のMOSFET3bとの間には電流が流れ、リレー4がオフのとき第1電源1と第2のMOSFET3bとの間には電流が流れない。 The relay 4 is arbitrarily connected and can be switched on and off under the control of the control unit 6 via the ECU 7. In this embodiment, the relay 4 is connected to the source of the second MOSFET 3b. When the relay 4 is on, a current flows between the first power source 1 and the second MOSFET 3b. When the relay 4 is off, no current flows between the first power source 1 and the second MOSFET 3b.
 電流値検出部5は、例えばシャント抵抗、電流センスアンプ及び電圧レギュレータ等により構成される。図4において電流値検出部5は第1のMOSFET3aのソースに接続される。代替例として電流値検出部5は、第1のMOSFET3aと第2のMOSFET3bとの間、又は、第2のMOSFET3bのソースに接続されてもよい。 The current value detection unit 5 includes, for example, a shunt resistor, a current sense amplifier, a voltage regulator, and the like. In FIG. 4, the current value detector 5 is connected to the source of the first MOSFET 3a. As an alternative example, the current value detection unit 5 may be connected between the first MOSFET 3a and the second MOSFET 3b or the source of the second MOSFET 3b.
 制御部6は過電流遮断システム90の動作全体を制御するCPU(Central Processing Unit)等のプロセッサである。制御部6はスイッチ制御部8を介して第1のMOSFET3a及び第2のMOSFET3bを制御可能であり、ECU7を介してリレー4及び報知部9を制御可能である。 The control unit 6 is a processor such as a CPU (Central Processing Unit) that controls the entire operation of the overcurrent interruption system 90. The control unit 6 can control the first MOSFET 3 a and the second MOSFET 3 b through the switch control unit 8, and can control the relay 4 and the notification unit 9 through the ECU 7.
 スイッチ制御部8は、第1電源1と第2電源2との少なくとも一方から電力供給を受け、制御部6の制御により第1のMOSFET3a及び第2のMOSFET3bのオンとオフとを制御可能である。 The switch control unit 8 is supplied with power from at least one of the first power supply 1 and the second power supply 2, and can control the on / off of the first MOSFET 3a and the second MOSFET 3b by the control of the control unit 6. .
 以下、本実施形態の過電流遮断システム90がどのように過電流を遮断して第1のMOSFET3a及び第2のMOSFET3bを保護するかを詳細に説明する。 Hereinafter, it will be described in detail how the overcurrent cutoff system 90 of the present embodiment cuts off the overcurrent and protects the first MOSFET 3a and the second MOSFET 3b.
 電流値検出部5は、第1のMOSFET3a及び第2のMOSFET3bを流れる電流値を検出する。電流値検出部5は、検出した電流値を制御部6に出力する。制御部6は当該電流値に基づいて、過電流が流れているか否かを判定する。制御部6は、過電流が流れていると判定したとき、次のようにして第1のMOSFET3a及び第2のMOSFET3bの両方をオフにする。 The current value detector 5 detects the current value flowing through the first MOSFET 3a and the second MOSFET 3b. The current value detection unit 5 outputs the detected current value to the control unit 6. The control unit 6 determines whether or not an overcurrent is flowing based on the current value. When it is determined that the overcurrent is flowing, the controller 6 turns off both the first MOSFET 3a and the second MOSFET 3b as follows.
 すなわち、制御部6は、過電流が流れていると判定したとき、スイッチ制御部8から第1トランジスタT1への出力を止める。これにより、第1のMOSFET3aと第2のMOSFET3bとの両方はオフになる。また制御部6は、第1トランジスタT1及び第2トランジスタT2をオフにしてゲート信号ラインを切り離す(カットする)ことで、第1のMOSFET3aと第2のMOSFET3bとの両方をオフにしてもよい。これにより過電流がどちらの方向に流れているかを判定する必要無く、確実に第1のMOSFET3a及び第2のMOSFET3bを保護することができる。 That is, when it is determined that an overcurrent is flowing, the control unit 6 stops the output from the switch control unit 8 to the first transistor T1. As a result, both the first MOSFET 3a and the second MOSFET 3b are turned off. Further, the control unit 6 may turn off both the first MOSFET 3a and the second MOSFET 3b by turning off the first transistor T1 and the second transistor T2 to cut (cut) the gate signal line. Thus, the first MOSFET 3a and the second MOSFET 3b can be reliably protected without having to determine in which direction the overcurrent flows.
 続いて制御部6はECU7に、過電流が流れていることを通知する。当該通知を取得したECU7は、過電流が流れていることを報知部9に通知する。報知部9は過電流遮断システム90が設けられた車両のドライバに、異常を知らせる警告情報(ワーニング)を通知する。 Subsequently, the control unit 6 notifies the ECU 7 that an overcurrent is flowing. ECU7 which acquired the said notification notifies the alerting | reporting part 9 that overcurrent is flowing. The notification unit 9 notifies the driver of the vehicle provided with the overcurrent interruption system 90 of warning information (warning) for notifying abnormality.
 制御部6は過電流が流れていないと判定したとき(異常がないと判定したとき)、第1のMOSFET3a及び第2のMOSFET3bをオンにして、第1のMOSFET3a及び第2のMOSFET3bを流れる電流を継続して監視(モニタリング)する。 When it is determined that no overcurrent is flowing (when it is determined that there is no abnormality), the control unit 6 turns on the first MOSFET 3a and the second MOSFET 3b, and the current flowing through the first MOSFET 3a and the second MOSFET 3b. Continue monitoring (monitoring).
 図5は図3の電流値検出部5及び制御部6が定期的又は不定期的に実行する動作を示すシーケンス図である。 FIG. 5 is a sequence diagram showing an operation that the current value detection unit 5 and the control unit 6 of FIG. 3 execute regularly or irregularly.
 電流値検出部5は電流値を検出し(ステップS21)、検出した電流値を制御部6に出力する(ステップS22)。 The current value detection unit 5 detects the current value (step S21), and outputs the detected current value to the control unit 6 (step S22).
 電流値を取得した制御部6は、当該電流値に基づいて、過電流が流れているか否かを判定する(ステップS23)。ステップS23でYesのとき、制御部6はスイッチ制御部8から第1トランジスタT1への出力を止めることによって第1のMOSFET3a及び第2のMOSFET3bをオフにする(ステップS24)。また制御部6は、第1トランジスタT1及び第2トランジスタT2をオフにして、第1のMOSFET3a及び第2のMOSFET3bからスイッチ制御部8へのゲート信号ラインを切り離す(ステップS25)。これにより制御部6は、第1のMOSFET3a及び第2のMOSFET3bをオフにしてもよい。 The controller 6 that has acquired the current value determines whether or not an overcurrent is flowing based on the current value (step S23). When Yes in step S23, the control unit 6 turns off the first MOSFET 3a and the second MOSFET 3b by stopping the output from the switch control unit 8 to the first transistor T1 (step S24). Further, the control unit 6 turns off the first transistor T1 and the second transistor T2, and disconnects the gate signal line from the first MOSFET 3a and the second MOSFET 3b to the switch control unit 8 (step S25). Thereby, the control unit 6 may turn off the first MOSFET 3a and the second MOSFET 3b.
 制御部6は、過電流が流れていることをECU7に通知する(ステップS26)。また制御部6は、過電流が流れ異常が発生していることを知らせる警告情報を、報知部9を介して車両のドライバに通知する(ステップS27)。 The control unit 6 notifies the ECU 7 that an overcurrent is flowing (step S26). Moreover, the control part 6 notifies the warning information which notifies that the overcurrent flows and abnormality has generate | occur | produced to the driver of a vehicle via the alerting | reporting part 9 (step S27).
 ステップS23でNoのとき、制御部6は過電流が流れていないと判定し、第1のMOSFET3a及び第2のMOSFET3bをオンにする(ステップS28)。制御部6は、継続して電流を監視する(ステップS29)。 When No in step S23, the control unit 6 determines that no overcurrent is flowing, and turns on the first MOSFET 3a and the second MOSFET 3b (step S28). The controller 6 continuously monitors the current (Step S29).
 このように、実施形態2に係る過電流遮断システム90によれば、第1のMOSFET3aと第2のMOSFET3bとが直列に接続される。また第1のMOSFET3aの寄生ダイオード31aの順方向は、第2のMOSFET3bの寄生ダイオード31bの順方向とは逆方向である。制御部6は、過電流が流れていると判定したとき、第1のMOSFET3a及び第2のMOSFET3bの両方をオフにする。このため、過電流が流れる方向にかかわらず過電流を遮断し、第1のMOSFET3a及び第2のMOSFET3bを確実に保護することができる。また、過電流がどちらの方向に流れているかを判定する必要が無い。 Thus, according to the overcurrent cutoff system 90 according to the second embodiment, the first MOSFET 3a and the second MOSFET 3b are connected in series. The forward direction of the parasitic diode 31a of the first MOSFET 3a is opposite to the forward direction of the parasitic diode 31b of the second MOSFET 3b. When it is determined that the overcurrent is flowing, the control unit 6 turns off both the first MOSFET 3a and the second MOSFET 3b. For this reason, regardless of the direction in which the overcurrent flows, the overcurrent can be cut off, and the first MOSFET 3a and the second MOSFET 3b can be reliably protected. Further, there is no need to determine in which direction the overcurrent flows.
 また、実施形態2に係る過電流遮断システム90によれば、第1のMOSFET3aのソース側には鉛蓄電池が接続される。このため、他の電池を用いる場合に比べて過電流遮断システム90の生産コストを抑制することができる。また第2のMOSFET3bのソース側にはリチウムイオン電池が接続される。このため、他の電池を用いる場合に比べて充電電力を長く保持して電力を有効利用することができる。 Moreover, according to the overcurrent interruption system 90 according to the second embodiment, a lead storage battery is connected to the source side of the first MOSFET 3a. For this reason, the production cost of the overcurrent interruption system 90 can be suppressed compared with the case where another battery is used. A lithium ion battery is connected to the source side of the second MOSFET 3b. For this reason, compared with the case where another battery is used, charging power can be kept longer and the power can be used effectively.
 本発明の実施形態2を諸図面、実施形態、変形例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。 Although Embodiment 2 of the present invention has been described based on the drawings, embodiments, and modifications, it should be noted that those skilled in the art can easily make various modifications and corrections based on the present disclosure.
 例えば実施形態2においては、第1電源1から第2電源2への方向に、第1のMOSFET3aと第2のMOSFET3bとがこの順で接続されるが、それらの接続の順番は逆であってもよい。 For example, in the second embodiment, the first MOSFET 3a and the second MOSFET 3b are connected in this order in the direction from the first power supply 1 to the second power supply 2. However, the order of the connection is reversed. Also good.
 また、実施形態2において、第1のMOSFET3a及び第2のMOSFET3bは共にn型であるが、共にp型であってもよい。 In the second embodiment, both the first MOSFET 3a and the second MOSFET 3b are n-type, but both may be p-type.
[実施形態3]
 実施形態2では、制御部6は、過電流が流れていると判定したとき、第1のMOSFET3a及び第2のMOSFET3bの両方をオフにしている。一方で実施形態3では、制御部6が第1のMOSFET3aと第2のMOSFET3bとを別々に制御する。具体的には、制御部6は、過電流が流れていると判定したとき、第1のMOSFET3aと第2のMOSFET3bとのうち、過電流に対し逆方向である寄生ダイオードを有する方のMOSFETを少なくともオフにして過電流を遮断する。以下、実施形態3を詳細に説明する。実施形態3では、実施形態1又は2と重複する説明は省略する。
[Embodiment 3]
In the second embodiment, when it is determined that the overcurrent is flowing, the control unit 6 turns off both the first MOSFET 3a and the second MOSFET 3b. On the other hand, in the third embodiment, the control unit 6 controls the first MOSFET 3a and the second MOSFET 3b separately. Specifically, when it is determined that the overcurrent is flowing, the control unit 6 selects the MOSFET having the parasitic diode that is opposite to the overcurrent from the first MOSFET 3a and the second MOSFET 3b. Turn off at least to shut off overcurrent. Hereinafter, the third embodiment will be described in detail. In the third embodiment, the description overlapping that of the first or second embodiment is omitted.
 図6に示すように、制御部6及びスイッチ制御部8には更に、第3トランジスタT3及び第4トランジスタT4が接続される。第3トランジスタT3及び第4トランジスタT4はそれぞれPNP型トランジスタ及びNPN型トランジスタであるが、これに限られない。制御部6は、過電流が第1電源1から第2電源2への方向に流れていると判定したとき、スイッチ制御部8から第1トランジスタT1への出力を止める。これにより、第1のMOSFET3aはオフになる。また制御部6は、第1トランジスタT1及び第2トランジスタT2をオフにしてゲート信号ラインを切り離すことで、少なくとも第1のMOSFET3aをオフにしてもよい。 As shown in FIG. 6, a third transistor T3 and a fourth transistor T4 are further connected to the control unit 6 and the switch control unit 8. The third transistor T3 and the fourth transistor T4 are a PNP transistor and an NPN transistor, respectively, but are not limited thereto. When it is determined that the overcurrent is flowing in the direction from the first power source 1 to the second power source 2, the control unit 6 stops the output from the switch control unit 8 to the first transistor T1. As a result, the first MOSFET 3a is turned off. The control unit 6 may turn off at least the first MOSFET 3a by turning off the first transistor T1 and the second transistor T2 and disconnecting the gate signal line.
 他方で制御部6は、過電流が第2電源2から第1電源1への方向に流れていると判定したとき、スイッチ制御部8から第3トランジスタT3への出力を止める。これにより、第2のMOSFET3bはオフになる。また制御部6は、第3トランジスタT3及び第4トランジスタT4をオフにしてゲート信号ラインを切り離すことで、少なくとも第2のMOSFET3bをオフにしてもよい。 On the other hand, when it is determined that the overcurrent is flowing in the direction from the second power source 2 to the first power source 1, the control unit 6 stops the output from the switch control unit 8 to the third transistor T3. As a result, the second MOSFET 3b is turned off. The control unit 6 may turn off at least the second MOSFET 3b by turning off the third transistor T3 and the fourth transistor T4 to cut off the gate signal line.
 実施形態3による過電流遮断システム90によれば、制御部6は、第1のMOSFET3a及び第2のMOSFET3bのうち、過電流に対し逆方向である寄生ダイオードを有する方のMOSFETを少なくともオフにして過電流を遮断する。このため、第1のMOSFET3a又は第2のMOSFET3bの作動を最小限にすることができる。 According to the overcurrent cutoff system 90 according to the third embodiment, the control unit 6 turns off at least one of the first MOSFET 3a and the second MOSFET 3b that has a parasitic diode that is opposite to the overcurrent. Cut off the overcurrent. For this reason, the operation of the first MOSFET 3a or the second MOSFET 3b can be minimized.
1  第1電源
2  第2電源
3  MOSFET
3a 第1のMOSFET
3b 第2のMOSFET
31、31a、31b 寄生ダイオード
4  リレー
5  電流値検出部
6  制御部
7  ECU
8  スイッチ制御部
9  報知部
10 負荷
11 整流素子
11a 第1整流素子
11b 第2整流素子
12 オルタネータ
13 スタータ
90 過電流遮断システム
T1 第1トランジスタ
T2 第2トランジスタ
T3 第3トランジスタ
T4 第4トランジスタ
Ra 抵抗
Rb ゲート前抵抗
1 First power source 2 Second power source 3 MOSFET
3a First MOSFET
3b Second MOSFET
31, 31a, 31b Parasitic diode 4 Relay 5 Current value detection unit 6 Control unit 7 ECU
8 Switch control unit 9 Notification unit 10 Load 11 Rectifier element 11a First rectifier element 11b Second rectifier element 12 Alternator 13 Starter 90 Overcurrent cutoff system T1 First transistor T2 Second transistor T3 Third transistor T4 Fourth transistor Ra Resistance Rb Resistance before gate

Claims (13)

  1.  第1のMOSFETと、
     前記第1のMOSFETを流れる電流の値を検出する電流値検出部と、
     オンオフ状態を切替可能であり、オフ状態において前記第1のMOSFETの寄生ダイオードの順方向に流れる過電流を遮断する第1の遮断部と、
     オンオフ状態を切替可能であり、オフ状態において前記第1のMOSFETの寄生ダイオードの逆方向に流れる過電流を遮断する第2の遮断部と、
     前記第1の遮断部と前記第2の遮断部とを切替制御可能な制御部とを有し、
     前記制御部は、前記電流値検出部によって検出された電流に基づいて、前記第1のMOSFETの寄生ダイオードの順方向に過電流が流れていると判定したとき、前記第1の遮断部をオフにし、前記第1のMOSFETの前記寄生ダイオードの逆方向に過電流が流れていると判定したとき、前記第2の遮断部をオフにする、
     過電流遮断システム。
    A first MOSFET;
    A current value detection unit for detecting a value of a current flowing through the first MOSFET;
    A first cut-off unit that can be switched between an on-off state and cuts off an overcurrent flowing in a forward direction of the parasitic diode of the first MOSFET in the off-state;
    A second shut-off unit that can be switched between an on-off state and shuts off an overcurrent that flows in the reverse direction of the parasitic diode of the first MOSFET in the off-state;
    A control unit capable of switching and controlling the first blocking unit and the second blocking unit;
    When the controller determines that an overcurrent is flowing in the forward direction of the parasitic diode of the first MOSFET based on the current detected by the current value detector, the controller turns off the first interrupter. And when it is determined that an overcurrent is flowing in the reverse direction of the parasitic diode of the first MOSFET, the second cutoff unit is turned off.
    Overcurrent interrupt system.
  2.  前記第1の遮断部は、前記第1のMOSFETのソース側に接続されたリレーを含み、
     前記第2の遮断部は、前記第1のMOSFETを含むことを特徴とする請求項1に記載の過電流遮断システム。
    The first cutoff unit includes a relay connected to the source side of the first MOSFET,
    The overcurrent cutoff system according to claim 1, wherein the second cutoff unit includes the first MOSFET.
  3.  前記制御部は、前記第1のMOSFETの前記寄生ダイオードの逆方向に過電流が流れていると判定したとき、前記リレーの状態を維持することを特徴とする請求項2に記載の過電流遮断システム。 3. The overcurrent cutoff according to claim 2, wherein the control unit maintains the relay state when it is determined that an overcurrent flows in a reverse direction of the parasitic diode of the first MOSFET. 4. system.
  4.  前記第1のMOSFETのソース側には第1電源が接続され、ドレイン側には第2電源が接続されることを特徴とする請求項1に記載の過電流遮断システム。 The overcurrent cutoff system according to claim 1, wherein a first power source is connected to a source side of the first MOSFET, and a second power source is connected to a drain side.
  5.  前記第1のMOSFETのソース側には第1電源が接続され、ドレイン側には第2電源が接続されることを特徴とする請求項2に記載の過電流遮断システム。 3. The overcurrent cutoff system according to claim 2, wherein a first power source is connected to a source side of the first MOSFET, and a second power source is connected to a drain side.
  6.  前記第1のMOSFETのソース側には第1電源が接続され、ドレイン側には第2電源が接続されることを特徴とする請求項3に記載の過電流遮断システム。 4. The overcurrent cutoff system according to claim 3, wherein a first power source is connected to a source side of the first MOSFET, and a second power source is connected to a drain side.
  7.  前記第1電源はリチウムイオン電池であり、前記第2電源は鉛蓄電池であることを特徴とする請求項4に記載の過電流遮断システム。 5. The overcurrent interruption system according to claim 4, wherein the first power source is a lithium ion battery and the second power source is a lead acid battery.
  8.  前記第1電源はリチウムイオン電池であり、前記第2電源は鉛蓄電池であることを特徴とする請求項5に記載の過電流遮断システム。 6. The overcurrent interruption system according to claim 5, wherein the first power source is a lithium ion battery, and the second power source is a lead acid battery.
  9.  前記第1電源はリチウムイオン電池であり、前記第2電源は鉛蓄電池であることを特徴とする請求項6に記載の過電流遮断システム。 The overcurrent cutoff system according to claim 6, wherein the first power source is a lithium ion battery and the second power source is a lead acid battery.
  10.  前記第1のMOSFETは、第2のMOSFETと直列に接続され、
     前記第1のMOSFETの寄生ダイオードの順方向は、前記第2のMOSFETの寄生ダイオードの順方向とは逆方向であり、
     前記第1の遮断部は、少なくとも前記第2のMOSFETを含み、
     前記第2の遮断部は、少なくとも前記第1のMOSFETを含むことを特徴とする請求項1に記載の過電流遮断システム。
    The first MOSFET is connected in series with a second MOSFET,
    The forward direction of the parasitic diode of the first MOSFET is opposite to the forward direction of the parasitic diode of the second MOSFET,
    The first blocking unit includes at least the second MOSFET,
    The overcurrent cutoff system according to claim 1, wherein the second cutoff unit includes at least the first MOSFET.
  11.  前記制御部は、前記第1のMOSFET及び前記第2のMOSFETに過電流が流れていると判定したとき、前記第1のMOSFET及び前記第2のMOSFETの両方をオフにすることを特徴とする請求項10に記載の過電流遮断システム。 The control unit turns off both the first MOSFET and the second MOSFET when it is determined that an overcurrent flows in the first MOSFET and the second MOSFET. The overcurrent interruption system according to claim 10.
  12.  前記第1のMOSFETのソース側には鉛蓄電池が接続され、前記第2のMOSFETのソース側にはリチウムイオン電池が接続されることを特徴とする請求項10に記載の過電流遮断システム。 The overcurrent interruption system according to claim 10, wherein a lead storage battery is connected to the source side of the first MOSFET, and a lithium ion battery is connected to the source side of the second MOSFET.
  13.  前記第1のMOSFETのソース側には鉛蓄電池が接続され、前記第2のMOSFETのソース側にはリチウムイオン電池が接続されることを特徴とする請求項11に記載の過電流遮断システム。 The overcurrent cutoff system according to claim 11, wherein a lead storage battery is connected to the source side of the first MOSFET, and a lithium ion battery is connected to the source side of the second MOSFET.
PCT/JP2016/086549 2015-12-28 2016-12-08 Overcurrent cutoff system WO2017115630A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015256112A JP2017121114A (en) 2015-12-28 2015-12-28 Overcurrent interruption system
JP2015-256112 2015-12-28
JP2016-136894 2016-07-11
JP2016136894A JP2018011383A (en) 2016-07-11 2016-07-11 Overcurrent cutoff system

Publications (1)

Publication Number Publication Date
WO2017115630A1 true WO2017115630A1 (en) 2017-07-06

Family

ID=59224985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086549 WO2017115630A1 (en) 2015-12-28 2016-12-08 Overcurrent cutoff system

Country Status (1)

Country Link
WO (1) WO2017115630A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
JP7424543B2 (en) 2021-05-25 2024-01-30 株式会社オートネットワーク技術研究所 Automotive control device
US11936371B1 (en) 2022-10-04 2024-03-19 Psemi Corporation Accurate reduced gate-drive current limiter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088180A (en) * 2008-09-30 2010-04-15 Panasonic Corp Energy storage device
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088180A (en) * 2008-09-30 2010-04-15 Panasonic Corp Energy storage device
JP2011234479A (en) * 2010-04-27 2011-11-17 Denso Corp Power supply device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020145028A1 (en) * 2019-01-09 2020-07-16 株式会社デンソー Energization control device
JP2020114074A (en) * 2019-01-09 2020-07-27 株式会社デンソー Energization control device
JP7014191B2 (en) 2019-01-09 2022-02-01 株式会社デンソー Energization control device
JP7424543B2 (en) 2021-05-25 2024-01-30 株式会社オートネットワーク技術研究所 Automotive control device
US11936371B1 (en) 2022-10-04 2024-03-19 Psemi Corporation Accurate reduced gate-drive current limiter
WO2024076958A1 (en) * 2022-10-04 2024-04-11 Murata Manufacturing Co., Ltd. Accurate reduced gate-drive current limiter

Similar Documents

Publication Publication Date Title
JP6610439B2 (en) Power supply
JP4906890B2 (en) Bridge rectifier circuit
WO2018163751A1 (en) In-vehicle power supply unit control device and in-vehicle power supply device
JP4934628B2 (en) Dual system power supply
JP2015084631A (en) Abnormality diagnostic device and method for mosfet switch element
US10819099B2 (en) Relay device
US10998713B2 (en) Relay device
WO2017183400A1 (en) Relay device and vehicle-mounted system
US20180065723A1 (en) Electric Drive for a Vehicle
WO2017115630A1 (en) Overcurrent cutoff system
US20140203786A1 (en) Power supply apparatus and power supply control apparatus
WO2018110230A1 (en) Control device for semiconductor switch, and electrical power system
WO2020246415A1 (en) In-vehicle power supply system
JP2019195249A (en) Vehicle power supply system
US11476704B2 (en) Power supply control system
WO2016060009A1 (en) Relay control device and relay control method
JP2018011383A (en) Overcurrent cutoff system
JP2017121114A (en) Overcurrent interruption system
CN111357200B (en) Load driving circuit
JP2014143799A (en) Power supply control device and power supply device
WO2017110497A1 (en) Vehicle-mounted power supply system
WO2017110498A1 (en) Storage battery system
JP2017200338A (en) Battery protection device
JP2014143796A (en) Power supply device
JP2017118724A (en) Power supply distribution box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881609

Country of ref document: EP

Kind code of ref document: A1