WO2017115027A1 - Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice - Google Patents

Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice Download PDF

Info

Publication number
WO2017115027A1
WO2017115027A1 PCT/FR2016/053468 FR2016053468W WO2017115027A1 WO 2017115027 A1 WO2017115027 A1 WO 2017115027A1 FR 2016053468 W FR2016053468 W FR 2016053468W WO 2017115027 A1 WO2017115027 A1 WO 2017115027A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
electronic
electronic components
voltage
leds
Prior art date
Application number
PCT/FR2016/053468
Other languages
English (en)
Inventor
Bertrand Chambion
Original Assignee
Commissariat à l'énergie atomique et aux énergies alternatives
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat à l'énergie atomique et aux énergies alternatives filed Critical Commissariat à l'énergie atomique et aux énergies alternatives
Priority to EP16826103.0A priority Critical patent/EP3398407A1/fr
Priority to US16/066,142 priority patent/US10845405B2/en
Publication of WO2017115027A1 publication Critical patent/WO2017115027A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2632Circuits therefor for testing diodes
    • G01R31/2635Testing light-emitting diodes, laser diodes or photodiodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2836Fault-finding or characterising
    • G01R31/2839Fault-finding or characterising using signal generators, power supplies or circuit analysers
    • G01R31/2841Signal generators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/52Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a parallel array of LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs

Definitions

  • the invention relates to electronic circuits comprising conductive reinforcements and, in particular, electronic circuits for detecting a malfunction by a lack of electrical insulation between an electronic component of the electronic circuit and a conductive reinforcement surrounding this component.
  • Electroluminescent diodes are experiencing a significant development, in particular because of reduced power consumption, a long life deemed high, and a good integration ability for electronic circuits.
  • the ability to integrate such LEDs has the reverse side to prevent the replacement of an LED cell in the matrix.
  • a complete failure of one LED cell may affect the operation of all other LED cells with which it can be connected in series.
  • Document US2015 / 0021629 describes the fixing of an array of LEDs on the substrate of a control module, and thus forming an electronic circuit.
  • the LEDs are soldered to a conductive and rectangular metal plate.
  • the LEDs are in electrical contact with this metal plate.
  • the voltage of the LEDs is measured to determine a progressive shifting of the voltage level to ensure a brightness level.
  • Document FR3009474 describes a matrix of LEDs in series / parallel. In order to avoid a malfunction of the lighting of a vehicle, a functional failure is detected for an LED, then it is short-circuited by a current source which guarantees a balance of current between different branches in parallel. Lighting of the remaining LEDs in the branch with a faulty LED is ensured. This document thus describes a detection of a fault by analyzing the voltage across an LED.
  • US2014 / 0084941 discloses a matrix of LEDs of a screen, provided with a device for testing dysfunction.
  • the document describes a DFL detection line offset laterally with respect to the LEDs.
  • An electrical insulator is interposed between the detection line and pixel feed tracks.
  • the invention aims to solve one or more of these disadvantages.
  • the invention thus relates to an electronic circuit, as defined in appended claim 1.
  • the invention also relates to the variants detailed in the dependent claims. It will be understood by those skilled in the art that each of the features of the variants of the dependent claims may be independently combined with the features of claim 1, without necessarily constituting an intermediate generalization.
  • the invention also relates to a method for determining a defect of an electrical insulator, as defined in the appended claims.
  • FIG 1 is a cross sectional view of an integrated circuit according to an exemplary embodiment of the invention.
  • FIG. 2 is a sectional view from above of the integrated circuit of FIG.
  • FIG 3 is a current / voltage diagram illustrating the aging of a multi-chip LED connected in series, partly related to a degradation of the insulation;
  • FIGS. 4a and 4b are equivalent electrical diagrams for the association of LEDs connected in series and of an armature, in the case of normal operation, and in the case of a short circuit to the armature;
  • FIG. 5 is an equivalent electrical diagram for the association of LEDs connected in parallel and of an armature;
  • FIG. 6 illustrates components of a matrix, tested sequentially;
  • FIG. 7 is a diagram illustrating different cases of leakage resistance;
  • FIG 8 is a cross sectional view of an integrated circuit according to another exemplary embodiment of the invention.
  • FIGS 1 and 2 are sectional views of an exemplary integrated circuit 1 according to an exemplary embodiment of the invention.
  • the integrated circuit 1 comprises several electronic components 1 1 to 16, in this case light-emitting diodes or LEDs with nanowires. Each of the LEDs 1 1 to 16 forms an emitting pixel.
  • the LEDs 1 1 to 16 are here formed in and on a semiconductor substrate 91.
  • the substrate 91 is delimited into different parts separated by vertical trenches.
  • the vertical trenches pass through the substrate 91 from one side to the other, so that the different parts of the substrate 91 are physically separated from each other.
  • the different parts of the substrate 91 correspond to LEDs 1 1 to 16 respectively.
  • the integrated circuit 1 further comprises a conductive armature 4 surrounding the LEDs 1 1 to 16.
  • the conductive armature 4 is at least partially housed in the separation trenches between the different parts of the substrate 91.
  • the integrated circuit 1 further comprises an electrical insulator 5.
  • the electrical insulator 5 is at least partially housed in the separation trenches between the different parts of the substrate 91.
  • the electrical insulation 5 covers in particular the lateral faces of the various parts of the substrate 91.
  • the electrical insulation 5 form on the one hand an electrical insulation between the armature 4 and the LEDs 1 1 to 16.
  • a side face 51 of the electrical insulation 5 forms in particular a separation between the LED 1 1 and the armature 4.
  • a side face 52 of the electrical insulation 5 forms a separation between the LED 12 and the armature 4.
  • the electrical insulation 5 forms on the other hand an electrical insulation between the various LEDs 1 1 to 16.
  • the LEDs 1 1 to 16 may have a structure known per se.
  • the LEDs 1 1 to 16 here comprise respective electrodes, positioned under the substrate 91.
  • the LEDs 1 1 to 13 respectively comprise lower electrodes 21 to 23 disposed under their respective portion of substrate 91, and typically made of metal.
  • the substrate 91 is made of semiconductor material.
  • the substrate 91 is for example sufficiently doped to be conductive.
  • the Substrate material 91 may be selected to promote the growth of LED nanowires in an organized manner.
  • the substrate 91 is surmounted by an insulating layer 92.
  • This insulating layer 92 is for example made of silicon oxide or silicon nitride. This layer 92 may typically comprise a thickness of between 25 nm and 25 ⁇ m.
  • Each of the LEDs 1 1 to 16 comprises several pins 1 1 1 passing through the thickness of the insulating layer 92.
  • the pads 1 1 1 are intended to conduct the respective polarizations of the lower electrodes to the son of the various LEDs 1 1 to 16.
  • the for example, studs 11 are made of a III-N alloy, for example GaN.
  • the pads 1 1 1 may for example be made of unintentionally doped GaN or GaN type doping.
  • a respective wire is formed in line with each of the pads 1 1 1.
  • the structure of the son will be described with reference to the LED 1 1, the LEDs 12 to 16 may have a similar structure.
  • a wire comprises an amount 1 12 in contact with a stud 1 1 1 at its lower part.
  • the amount 1 12 can be produced in a manner known per se in a III-N alloy, for example N-type doping GaN or unintentionally doped type.
  • the amount 1 12 is covered in a manner known per se by a quantum well structure 1 13.
  • the structure 1 13 here comprises an alternation of layers (for example alternating layers of undoped GaN and layers of InGaN). Most of the light radiation of the LED is generated in the quantum well structure 1 13.
  • the quantum well structure 1 13 is covered in a manner known in either by a layer 1 14, for example P-doped GaN, so as to form a PN or P-N junction with the upright 1 12 or the quantum well 1 13.
  • the son of the LED 1 1 are covered by a conductive layer 31 forming an upper electrode.
  • the layer 31 is conductive in order to be able to electrically polarize each P-N junction.
  • the conductive layer 31 is transparent for the emission wavelength of the LED 1 1.
  • the layer 31 can be made in a manner known per se indium tin oxide (usually designated by the acronym ITO) or aluminum doped zinc oxide.
  • a power supply circuit (not shown) makes it possible to selectively apply a potential difference of an appropriate amplitude between the lower electrode 21 and the layer 31 of the upper common electrode, in order to obtain a light emission by the LED. 1 1.
  • the electronic circuit 1 comprises a device 7 configured to measure the current flowing through the armature 4, the voltage on this armature 4 or on each of the LEDs 1 1 to 16.
  • the device 7 is for example implemented under the form of a microcontroller.
  • the electronic circuit 1 further comprises a device 8, connected to the device 7.
  • the device 8 is configured to determine a fault of the electrical insulator 5 as a function of the voltage or current measured by the device 7. As detailed more precisely in FIG. practical examples thereafter, the device 8 can anticipate or see a malfunction of the electronic circuit 1.
  • the device 8 is for example implemented in the form of a microcontroller.
  • the conductive reinforcement 4 is advantageously made of doped polysilicon.
  • the polysilicon may for example be doped with a concentration of at least than 10 19 CNRR 3, preferably at least 5 * 10 19 cm "3, to form an armature 4 with little residual thermomechanical stresses after fabrication.
  • a such doped polysilicon thus forms an inexpensive filling material for the reinforcement 4.
  • the doped polysilicon has mechanical properties similar to those of the doped silicon substrate 91 (having for example a dopant concentration of the same order of magnitude as the reinforcement 4), during a rise in temperature
  • the mechanical stresses in the armature 4 are reduced during a rise in temperature linked for example to the formation of silicon oxide layers by thermal oxidation or during annealing of a layer of the LEDs, or during any other step of a manufacturing process that may involve significant heating, and potentially mechanical constraints between frame 4 and substrate 91.
  • Figure 3 is a representative diagram of an example of aging of a multi-chip LED connected in series.
  • the diagram shows on the ordinate the current flowing through the LED, and on the abscissa the potential difference applied across the LEDs.
  • the voltage Vm corresponds to the minimum voltage for stimulating the spontaneous emission in the junction (light emission) of the LED.
  • the curve in solid line corresponds to a new LED, the curve in dashed line corresponds to an LED after 5000 hours of operation.
  • the potential difference Vm corresponds to the minimum voltage to obtain an ignition of the light emitting diode. It is generally found that the current flowing for a bias lower than Vm increases as a function of time. It can be seen that the leakage current flowing through the LED, powered by a potential difference of less than Vm, is much higher for the LED having undergone a certain period of use. An insulation fault with a conductive frame 4 surrounding the LED may be an important factor in such a leakage current.
  • the structure illustrated in FIGS. 1 and 2 can be used, for example, to connect the LEDs 1 1 to 16 in series, in parallel, or according to a time-multiplexed matrix, as a function of the interconnections made between the different electrodes of these LEDs 1 1 to 16 .
  • Figures 4a and 4b are equivalent electrical diagrams of several LEDs 1 1 to 14 connected in series.
  • the armature 4 is comparable to a first conductive plate of several capacities 45.
  • the insulation 5 of the armature 4 can be modeled as the insulation of these capacitors 45.
  • Each connection node between the LEDs can be likened to a second plate Conducting capabilities 45.
  • the armature 4 (and therefore the first conductive plates of the capacitors 45) is placed at a floating potential.
  • the first conductive plates of the capacitors 45 are thus isolated from the second conductive plates by means of the insulator 5.
  • FIG. 4b illustrates an example of a malfunction, materialized by a short circuit between the armature 4 and the connection node of the LEDs 12 and 13.
  • the armature 4 is then brought to the potential of this connection node.
  • the armature 4 must thus have a floating potential in normal operation. This floating potential must take a value corresponding to the average of the potentials applied across the LEDs.
  • the armature 4 then takes the potential of this LED.
  • the device 7 is connected to the armature 4 and measures the potential of the armature 4.
  • the device 7 supplies the potential measured to the device 8.
  • the device 8 can:
  • the armature 4 is at a floating potential V4 "Vin / 2. If the measured potential Vm takes this value V4, the device 8 determines that the armature 4 is at its normal potential and therefore that the insulator 5 has a priori no fault.
  • the device 8 determines a failure of the insulator 5.
  • the position of the faulty LED in the string of LEDs connected in series will be identified by an index k, this index position k being determined from the potential of mass up to the potential Vin.
  • the measured voltage Vm is V4
  • one can dynamically analyze the evolution of the voltage Vm during the application of a step of the voltage Vin on the chain of LEDs connected in series.
  • the amplitude of this current may be representative of the leakage impedance of the insulator 5, and therefore of the amplitude of the defect. insulation 5.
  • Figure 5 is an equivalent electrical diagram of several LEDs connected in parallel in a matrix, in the absence of malfunction.
  • the armature 4, a common electrode of the LEDs 1 1 to 14 and the insulator 5 can be modeled as a capacitor 45.
  • the armature 4 forms a conductive plate at a floating potential in normal operation.
  • the armature 4 must have a floating potential during normal operation.
  • This floating potential must take a value Vf / 2, corresponding to half the potential Vf applied across the LEDs.
  • Vf / 2 corresponding to half the potential Vf applied across the LEDs.
  • the device 7 is connected to the armature 4 and measures the potential of the armature 4.
  • the device 7 supplies the measured potential to the device 8.
  • the device 8 can determine an abnormal deviation of the floating potential, representative of a failure of the insulator 5.
  • a capacitor 45 is sequentially connected in parallel with each powered LED.
  • the test mode that will be described can also be used for an integrated circuit 1 provided with a set of LEDs connected in parallel, if this integrated circuit 1 is configured to sequentially supply each of the LEDs.
  • FIG. 6 illustrates a configuration of an integrated circuit 1 in which each LED 10 is connected to the intersection between a line track and a column track.
  • each LED 10 comprises an electrode connected to a line track and an electrode connected to a column track.
  • a line control circuit 61 is connected to lines 1 to m.
  • the control circuit 61 selectively applies a first supply potential (for example a ground potential) on one of the lines and keeps the other lines in a floating state.
  • Column control circuit 62 is connected to columns 1 to n.
  • the control circuit 62 selectively applies a second supply potential (the potential Vf) on one of the columns and keeps the other columns in a floating state.
  • the insulation between each of the LEDs 10 and the armature 4 can be sequentially tested.
  • the potential Vm can be measured.
  • Vf / 2 or Vf for each of the LEDs 10 it is possible to determine whether its insulation with respect to the armature 4 is deteriorated or not. Since the position of the LED during power supply is known, the location of a possible defect of the insulator 5 is known.
  • Figure 7 is a diagram illustrating different cases of leakage resistances that can be determined. For example, it is conceivable to determine the leakage resistance through the frame 4. By considering the frame 4 to its floating potential as a voltage source, it can be connected to the mass successively by means of several different calibrated resistors, in order to calculate its internal resistance. By measuring the drained currents of the armature 4 for these two resistance values and by measuring the potential on the armature 4, it is possible to extrapolate diagrams as illustrated, representing the potential Vm as a function of the drained current. The leakage resistance can be deduced as a function of the slope of these characteristics.
  • the solid line curve corresponds, for example, to a quasi-zero leakage resistance towards the armature 4, that is to say a free short-circuit between an LED and the armature 4.
  • the curve in dashed line corresponds to a higher leakage resistance to the frame 4.
  • Figure 8 is a cross-sectional view of an integrated circuit 1 according to another embodiment of the invention.
  • the integrated circuit 1 comprises several LEDs according to another design. Each of the LEDs 1 1 to 13 forms an emitting pixel.
  • the integrated circuit 1 further comprises a conductive reinforcement 4 surrounding the LEDs 1 1 to 13.
  • the integrated circuit 1 further comprises an electrical insulator 5.
  • the electrical insulator 5 on the one hand forms an electrical insulation between the armature 4 and the LEDs 1 1 to 13.
  • a side face 51 of the electrical insulation 5 forms in particular a separation between the LED 1 1 and the armature 4.
  • a side face 52 of the electrical insulation 5 forms a separation between the LED 12 and the armature 4.
  • the electrical insulation 5 on the other hand forms an electrical insulation between the various LEDs 1 1 to 13.
  • the LEDs 1 1 to 13 may have a structure known per se.
  • LEDs 1 1 to 13 here comprise respective electrodes.
  • the LEDs 1 1 to 13 respectively comprise lower electrodes 21 to 23 typically made of reflective metal.
  • the electrodes 21 to 23 are each covered with a P-doped semiconductor layer 1 16 (for example P-doped GaN) with which they are in contact.
  • the semiconductor layer 1 16 is covered with an N-type doped semiconductor layer 1 18 (for example N-type doped GaN).
  • An active layer 1 17 is formed at the interface between the layers 1 16 and 1 18.
  • the superposition of the layers 1 16 to 1 18 will here be assimilated to a substrate.
  • the superposition of the layers 116 to 18 forming a substrate is delimited into different parts separated by vertical trenches.
  • the vertical trenches pass through the superposition of layers from one side to the other, so that the different parts of the substrate are physically separated from each other.
  • the conductive reinforcement 4 is at least partially housed in the separation trenches between the different parts of the substrate.
  • the electrical insulation 5 is at least partially housed in the separation trenches between the different parts of the substrate.
  • the electrical insulation 5 covers in particular the lateral faces of the different parts of the superposition of layers 1 16 to 1 18.
  • the active layer 11 may in particular comprise one or more quantum wells.
  • the LEDs 1 1 to 13 comprise respective upper electrodes 31 1 to 313 formed in contact on the layer 1 18.
  • the LEDs 1 1 to 13 can thus be polarized via their respective lower and upper electrodes.
  • the electrodes 31 1 to 313 are transparent for the emission wavelength of their respective LEDs.
  • the electrodes 31 1 to 313 are for example made of tin indium oxide.
  • the electronic circuit 1 also comprises a device 7 configured to measure the current flowing through the armature 4, the voltage on this armature 4 or on each of the LEDs 1 1 to 13.
  • the device 7 is for example implemented. in the form of a microcontroller.
  • the electronic circuit 1 further comprises a device 8, connected to the device 7.
  • the device 8 is configured to determine a fault of the electrical insulator 5 as a function of the voltage or current measured by the device 7. As detailed more precisely in FIG. practical examples thereafter, the device 8 can anticipate or see a malfunction of the electronic circuit 1.
  • the device 8 is for example implemented in the form of a microcontroller. The mode of identifying and locating a malfunction may be similar to that described with reference to the first embodiment.
  • the armature 4 is at a floating potential. It is also possible to apply a potential on the armature 4 and determine the current flowing through it.
  • the measurements made can also be cross-checked with optical measurements in order to refine the diagnosis of the dysfunction.
  • the invention has been described for a particular application to LED-type electronic components, the invention is also applicable to any other type of segmented or pixelated electronic component containing a conductive reinforcement and electrically isolated from the pixel array.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Devices (AREA)

Abstract

L'invention concerne un circuit électronique (1), comprenant : -un composant électronique (11); -une armature conductrice (4) entourant le composant électronique; -un isolant électrique (5) entre le composant électronique (11) et l'armature conductrice (4); -un dispositif (7) configuré pour mesurer le courant traversant l'armature (4) ou la tension sur cette armature ou sur le composant électronique; -un dispositif de détermination (8) d'un défaut, configuré pour déterminer un défaut de l'isolant électrique (5) en fonction du courant ou de la tension mesurée.

Description

CIRCUIT INTEGRE POUR DETECTION D'UN DEFAUT D'ISOLATION AVEC UNE ARMATURE CONDUCTRICE
L'invention concerne les circuits électroniques comportant des armatures conductrices et, en particulier, les circuits électroniques permettant la détection d'un dysfonctionnement par un défaut d'isolation électrique entre un composant électronique du circuit électronique et une armature conductrice entourant ce composant.
Des circuits électroniques comportant des matrices de diodes électroluminescentes ou LEDs sont connus. Les diodes électroluminescentes connaissent un développement important, notamment du fait d'une consommation électrique réduite, d'une durée de vie réputée élevée, et d'une aptitude à l'intégration intéressante pour des circuits électroniques. L'aptitude à l'intégration de telles LEDs a pour revers d'empêcher le remplacement d'une cellule LED dans la matrice. Par ailleurs, une défaillance complète d'une cellule LED peut affecter le fonctionnement de toutes les autres cellules LED avec lesquelles elle peut être connectée en série.
Différents modes de dysfonctionnement sont connus pour des cellules LED, ces dysfonctionnements étant parfois spécifiques à la technologie de fabrication de ces cellules LED. Des dégradations progressives interviennent notamment avec l'augmentation des courants de fuite aux jonctions des diodes ou à travers des couches d'isolant. Ainsi, même si une cellule LED reste fonctionnelle, le flux lumineux qu'elle émet diminue progressivement pour un niveau de tension donné appliqué à ses bornes.
Pour répondre à ces problématiques, en particulier pour le respect de normes de sécurité, il existe un besoin pour une solution de surveillance préalable du fonctionnement des cellules LEDs. Par ailleurs, l'analyse du mode de dysfonctionnement est parfois assez incomplète.
Le document US2015/0021629 décrit la fixation d'une matrice de LEDs sur le substrat d'un module de contrôle, et formant ainsi un circuit électronique. Les LEDs sont soudées à une plaque métallique conductrice et rectangulaire. Les LEDs sont donc en contact électrique avec cette plaque métallique. La tension des LEDs est mesurée pour déterminer un décalage progressif de niveau de tension, pour garantir un niveau de luminosité.
Ce document ne permet pas de garantir une isolation optimale des LEDs, ni de détecter une défaillance d'isolation de ces LEDs.
Le document FR3009474 décrit une matrice de LEDs en série/parallèle. Afin d'éviter un dysfonctionnement de l'éclairage d'un véhicule, une défaillance fonctionnelle est détectée pour une LED, puis celle-ci est court-circuitée par une source de courant qui garantit un équilibre de courant entre différentes branches en parallèle. L'allumage des LEDs restantes dans la branche comportant une LED défaillante est assuré. Ce document décrit ainsi une détection d'une défaillance par analyse de la tension aux bornes d'une LED.
Ce document ne permet pas de garantir une isolation optimale des LEDs, ni de détecter une défaillance d'isolation de ces LEDs.
Le document US2014/0084941 décrit une matrice de LEDs d'un écran, munie d'un dispositif de tests de dysfonctionnement. Le document décrit une ligne de détection DFL déportée latéralement par rapport aux LEDs. Un isolant électrique est interposé entre la ligne de détection et des pistes d'alimentation des pixels.
Ce document ne permet ni de garantir une isolation optimale des LEDs, ni de détecter une défaillance d'isolation de ces LEDs ou entre ces LEDs.
L'invention vise à résoudre un ou plusieurs de ces inconvénients. L'invention porte ainsi sur un circuit électronique, tel que défini dans la revendication 1 annexée.
L'invention porte également sur les variantes détaillées dans les revendications dépendantes. L'homme du métier comprendra que chacune des caractéristiques des variantes des revendications dépendantes peut être combinée indépendamment aux caractéristiques de la revendication 1 , sans pour autant constituer une généralisation intermédiaire.
L'invention porte également sur un procédé de détermination d'un défaut d'un isolant électrique, tel que défini dans les revendications annexées.
D'autres caractéristiques et avantages de l'invention ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :
-la figure 1 est une vue en coupe transversale d'un circuit intégré selon un exemple de mode de réalisation de l'invention ;
-la figure 2 est une vue en coupe de dessus du circuit intégré de la figure
1 ;
-la figure 3 est un diagramme courant/tension illustrant le vieillissement d'une LED multi-puces connectées en série, en partie lié à une dégradation de l'isolant ;
-les figure 4a et 4b sont des schémas électriques équivalents pour l'association de LEDs connectées en série et d'une armature, dans le cas d'un fonctionnement normal, et dans le cas d'un court-circuit vers l'armature; -la figure 5 est un schéma électrique équivalent pour l'association de LEDs connectées en parallèle et d'une armature ;
-la figure 6 illustre des composants d'une matrice, testés séquentiellement ; -la figure 7 est un diagramme illustrant différents cas de résistance de fuite ;
-la figure 8 est une vue en coupe transversale d'un circuit intégré selon un autre exemple de mode de réalisation de l'invention.
Les figures 1 et 2 sont des vues en coupe d'un exemple de circuit intégré 1 selon un exemple de mode de réalisation de l'invention. Le circuit intégré 1 comprend plusieurs composants électroniques 1 1 à 16, en l'occurrence des diodes électroluminescentes ou LEDs à nanofils. Chacune des LEDs 1 1 à 16 forme un pixel émissif. Les LEDs 1 1 à 16 sont ici formées dans et sur un substrat semi-conducteur 91 . Le substrat 91 est délimité en différentes parties séparées par des tranchées verticales. Les tranchées verticales traversent ici le substrat 91 de part en part, de sorte que les différentes parties du substrat 91 sont séparées physiquement les unes des autres. Les différentes parties du substrat 91 correspondent à des LEDs 1 1 à 16 respectives.
Le circuit intégré 1 comprend en outre une armature conductrice 4 entourant les LEDs 1 1 à 16. L'armature conductrice 4 est au moins partiellement logée dans les tranchées de séparation entre les différentes parties du substrat 91 . Le circuit intégré 1 comprend en outre un isolant électrique 5. L'isolant électrique 5 est au moins partiellement logé dans les tranchées de séparation entre les différentes parties du substrat 91 . L'isolant électrique 5 recouvre notamment les faces latérales des différentes parties du substrat 91 . Ainsi, en coupe dans le plan du substrat 91 , entre deux parties du substrat 91 , on trouve une couche d'isolant électrique 5, l'armature 4, et une autre couche de l'isolant électrique 5. L'isolant électrique 5 forme d'une part une isolation électrique entre l'armature 4 et les LEDs 1 1 à 16. Une face latérale 51 de l'isolant électrique 5 forme notamment une séparation entre la LED 1 1 et l'armature 4. Une face latérale 52 de l'isolant électrique 5 forme une séparation entre la LED 12 et l'armature 4. L'isolant électrique 5 forme d'autre part une isolation électrique entre les différentes LEDs 1 1 à 16.
Les LEDs 1 1 à 16 peuvent présenter une structure connue en soi. Les LEDs 1 1 à 16 comportent ici des électrodes respectives, positionnées sous le substrat 91 . Les LEDs 1 1 à 13 comportent respectivement des électrodes inférieures 21 à 23 disposées sous leur partie respective de substrat 91 , et typiquement réalisées en métal. Le substrat 91 est en matériau semi-conducteur. Le substrat 91 est par exemple suffisamment dopé pour être conducteur. Le matériau du substrat 91 peut être sélectionné de façon à favoriser la croissance de nanofils de LEDs de façon organisée. Le substrat 91 est surmonté d'une couche isolante 92. Cette couche isolante 92 est par exemple réalisée en oxyde de Silicium ou en nitrure de Silicium. Cette couche 92 peut typiquement comprendre une épaisseur comprise entre 25 nm et 25 μιτι.
Chacune des LEDs 1 1 à 16 comporte plusieurs plots 1 1 1 traversant l'épaisseur de la couche isolante 92. Les plots 1 1 1 sont destinés à conduire les polarisations respectives des électrodes inférieures vers les fils des différentes LED 1 1 à 16. Les plots 1 1 1 sont par exemple réalisés dans un alliage lll-N, par exemple du GaN. Les plots 1 1 1 peuvent par exemple être réalisés en GaN non intentionnellement dopé ou en GaN à dopage de type N.
Un fil respectif est formé à l'aplomb de chacun des plots 1 1 1 . La structure des fils sera décrite en référence à la LED 1 1 , les LEDs 12 à 16 pouvant présenter une structure similaire. Un fil comprend un montant 1 12 en contact avec un plot 1 1 1 au niveau de sa partie inférieure. Le montant 1 12 peut être réalisé de façon connue en soi dans un alliage lll-N, par exemple du GaN à dopage de type N ou de type non intentionnellement dopé. Le montant 1 12 est recouvert de façon connue en soi par une structure à puits quantique 1 13. La structure 1 13 comporte ici une alternance de couches (par exemple une alternance de couches de GaN non dopé et de couches de InGaN). L'essentiel du rayonnement lumineux de la LED est généré dans la structure à puits quantique 1 13. La structure à puits quantique 1 13 est recouverte de façon connue en soit par une couche 1 14, par exemple en GaN à dopage de type P, de façon à former une jonction P-N ou P-l- N avec le montant 1 12 ou le puits quantique 1 13.
Les fils de la LED 1 1 sont recouverts par une couche conductrice 31 formant une électrode supérieure. La couche 31 est conductrice afin de pouvoir polariser électriquement chaque jonction P-N. La couche conductrice 31 est transparente pour la longueur d'onde d'émission de la LED 1 1 . La couche 31 peut être réalisée de façon connue en soi en oxyde d'indium étain (usuellement désigné par l'acronyme ITO) ou en oxyde de zinc dopé aluminium.
Un circuit d'alimentation (non représenté) permet d'appliquer sélectivement une différence de potentiel d'une amplitude appropriée entre l'électrode inférieure 21 et la couche 31 de l'électrode commune supérieure, afin d'obtenir une émission lumineuse par la LED 1 1 .
Le circuit électronique 1 selon l'invention comporte un dispositif 7 configuré pour mesurer le courant traversant l'armature 4, la tension sur cette armature 4 ou sur chacune des LEDs 1 1 à 16. Le dispositif 7 est par exemple mis en œuvre sous la forme d'un microcontrôleur. Le circuit électronique 1 comporte en outre un dispositif 8, connecté au dispositif 7. Le dispositif 8 est configuré pour déterminer un défaut de l'isolant électrique 5 en fonction de la tension ou du courant mesuré par le dispositif 7. Comme détaillé plus précisément dans des exemples pratiques par la suite, le dispositif 8 peut ainsi anticiper ou constater un dysfonctionnement du circuit électronique 1 . Le dispositif 8 est par exemple mis en œuvre sous la forme d'un microcontrôleur.
Dans l'exemple particulier illustré, l'armature conductrice 4 est avantageusement réalisée en polysilicium dopé. Le polysilicium peut par exemple être dopé avec une concentration au moins égale à 1019cnrr3, de préférence au moins égale à 5*1019cm"3, en vue de former une armature 4 avec peu de contraintes thermomécaniques résiduelles après fabrication. Un tel polysilicium dopé forme ainsi un matériau de remplissage peu coûteux pour l'armature 4. Le polysilicium dopé présente des propriétés mécaniques similaires à celles du substrat 91 en silicium dopé (ayant par exemple une concentration en dopant du même ordre de grandeur que l'armature 4), lors d'une montée en température. Dans une telle configuration, on réduit les contraintes mécaniques dans l'armature 4 lors d'une montée en température liée par exemple à la formation de couches d'oxyde de silicium par oxydation thermique ou lors d'un recuit d'une couche des LEDs, ou lors de toute autre étape d'un procédé de fabrication pouvant impliquer un chauffage important, et potentiellement des contraintes mécaniques entre l'armature 4 et le substrat 91 .
La figure 3 est un diagramme représentatif d'un exemple de vieillissement d'une LED multi-puces connectées en série. Le diagramme illustre en ordonnée le courant traversant la LED, et en abscisse la différence de potentiel appliquée aux bornes de la LED. La tension Vm correspond à la tension minimale permettant de stimuler l'émission spontanée dans la jonction (émission de lumière) de la LED. La courbe en trait plein correspond à une LED neuve, la courbe en trait discontinu correspond à une LED après 5000 heures de fonctionnement.
La différence de potentiel Vm correspond à la tension minimale pour obtenir un allumage de la diode électroluminescente. On constate de façon générale que le courant traversant pour une polarisation inférieure à Vm augmente en fonction du temps. On constate que le courant de fuite traversant la LED, alimentée par une différence de potentiel inférieure à Vm, est très supérieur pour la LED ayant subi une certaine durée d'utilisation. Un défaut d'isolation avec une armature conductrice 4 entourant la LED peut-être un facteur important d'un tel courant de fuite. La structure illustrée aux figures 1 et 2 peut être utilisée par exemple pour connecter les LEDs 1 1 à 16 en série, en parallèle, ou selon une matrice multiplexée temporellement, en fonction des interconnexions réalisées entre les différentes électrodes de ces LEDs 1 1 à 16.
Les figures 4a et 4b sont des schémas électriques équivalents de plusieurs LEDs 1 1 à 14 connectées en série. L'armature 4 est assimilable à une première plaque conductrice de plusieurs capacités 45. L'isolant 5 de l'armature 4 peut être modélisé comme l'isolant de ces capacités 45. Chaque nœud de connexion entre les LEDs est assimilable à une deuxième plaque conductrice des capacités 45.
Comme illustré à la figure 4a, en fonctionnement normal, l'armature 4 (et donc les premières plaques conductrices des capacités 45) est placée à un potentiel flottant. Les premières plaques conductrices des capacités 45 sont ainsi isolées des deuxièmes plaques conductrices par l'intermédiaire de l'isolant 5.
La figure 4b illustre un exemple de dysfonctionnement, matérialisé par un court-circuit entre l'armature 4 et le nœud de connexion des LEDs 12 et 13. L'armature 4 est alors portée au potentiel de ce nœud de connexion. L'armature 4 doit ainsi présenter un potentiel flottant en fonctionnement normal. Ce potentiel flottant doit prendre une valeur correspondant à la moyenne des potentiels appliqués aux bornes des LEDs. En cas de court-circuit franc à travers l'isolant 5, entre l'armature 4 et une LED (plus précisément son substrat ou une de ses électrodes), l'armature 4 prend alors le potentiel de cette LED. Le dispositif 7 est connecté à l'armature 4 et mesure le potentiel de l'armature 4. Le dispositif 7 fournit le potentiel mesuré au dispositif 8. En fonction de la valeur du potentiel mesuré par le dispositif 7, le dispositif 8 peut :
-déterminer une déviation anormale du potentiel flottant, représentative d'une défaillance de l'isolant 5 ;
-localiser avec quelle LED l'isolant 5 présente une défaillance induisant une connexion à l'armature 4.
La localisation de la LED pour laquelle l'isolant 5 présente un défaut peut être réalisée comme suit : soit p le nombre de LED connectées en série, et soit Vf la différence de potentiel d'allumage appliquée sur chaque LED, on en déduit que la différence de potentiel appliquée sur l'ensemble de la chaîne de LEDs en série est Vin=p*Vf. En fonctionnement normal, l'armature 4 est à un potentiel flottant V4 «Vin/2. Si le potentiel mesuré Vm prend cette valeur V4, le dispositif 8 détermine que l'armature 4 est à son potentiel normal et donc que l'isolant 5 ne présente a priori pas de défaut.
Si le potentiel mesuré Vm diffère significativement de V4, le dispositif 8 détermine une défaillance de l'isolant 5. La position de la LED défaillante dans la chaîne de LEDs connectées en série sera identifiée par un indice k, cette position d'indice k étant déterminée en partant du potentiel de masse jusqu'au potentiel Vin. L'indice k est défini par k= Vm/Vf, en arrondissant la valeur de k trouvé à l'entier le plus proche.
Avec le potentiel Vm mesuré pour l'application de la tension Vin sur la chaîne de LEDs en série, on peut réaliser la détermination d'un défaut pendant l'utilisation des LEDs. Un tel test peut également être réalisé en sortie de chaîne de fabrication, par application de la tension Vin, en vue d'éviter d'avoir à réaliser un contrôle optique du circuit intégré 1 .
Dans le cas où la tension Vm mesurée vaut V4, cette mesure peut soit correspondre à un potentiel flottant pour un fonctionnement normal, soit à un défaut d'isolation pour la LED d'indice k=p/2. Afin de discriminer ces deux cas de figure, on peut analyser dynamiquement l'évolution de la tension Vm lors de l'application d'un échelon de la tension Vin sur la chaîne de LEDs connectées en série.
On peut également envisager de mesurer un courant traversant l'armature 4 jusqu'au dispositif de mesure 7. L'amplitude de ce courant peut être représentative de l'impédance de fuite de l'isolant 5, et donc de l'amplitude du défaut de l'isolant 5.
La figure 5 est un schéma électrique équivalent de plusieurs LEDs connectées en parallèle dans une matrice, en l'absence de dysfonctionnement.
L'armature 4, une électrode commune des LEDs 1 1 à 14 et l'isolant 5 peuvent être modélisés comme une capacité 45. L'armature 4 forme une plaque conductrice à un potentiel flottant en fonctionnement normal.
L'armature 4 doit présenter un potentiel flottant en fonctionnement normal.
Ce potentiel flottant doit prendre une valeur Vf/2, correspondant à la moitié du potentiel Vf appliqué aux bornes des LEDs. En cas de de court-circuit franc à travers l'isolant 5, entre l'armature 4 et une LED (plus précisément son substrat ou une de ses électrodes), l'armature 4 prend alors le potentiel Vf ou la masse.
Le dispositif 7 est connecté à l'armature 4 et mesure le potentiel de l'armature 4.
Le dispositif 7 fournit le potentiel mesuré au dispositif 8. En fonction de la valeur du potentiel mesuré par le dispositif 7, le dispositif 8 peut déterminer une déviation anormale du potentiel flottant, représentative d'une défaillance de l'isolant 5.
Dans le cas d'une matrice de LEDs en matrice, alimentées avec un multiplexage temporel, une capacité 45 est connectée séquentiellement en parallèle de chaque LED alimentée. Le mode de test qui va être décrit peut aussi être utilisé pour un circuit intégré 1 muni d'un ensemble de LEDs connectées en parallèle, si ce circuit intégré 1 est configuré pour alimenter séquentiellement chacune des LEDs.
La figure 6 illustre une configuration d'un circuit intégré 1 dans lequel chaque LED 10 est connectée à l'intersection entre une piste de ligne et une piste de colonnes. Ainsi, chaque LED 10 comporte une électrode connectée à une piste de ligne et une électrode connectée à une piste de colonnes. Un circuit de commande de lignes 61 est connecté à des lignes 1 à m. Le circuit de commande 61 applique sélectivement un premier potentiel d'alimentation (par exemple un potentiel de masse) sur une des lignes et maintient les autres lignes à un état flottant. Un circuit de commande de colonnes 62 est connecté à des colonnes 1 à n. Le circuit de commande 62 applique sélectivement un deuxième potentiel d'alimentation (le potentiel Vf) sur une des colonnes et maintient les autres colonnes à un état flottant.
Par une commande appropriée des circuits de commande 61 et 62, on peut tester séquentiellement l'isolation entre chacune des LEDs 10 et l'armature 4. Ainsi, pour chacune des LEDs 10 alimentée, on peut mesurer le potentiel Vm. En identifiant si le potentiel Vm vaut Vf/2 ou Vf pour chacune des LEDs 10, on peut déterminer si son isolation par rapport à l'armature 4 est détériorée ou non. La position de la LED en cours d'alimentation étant connue, on connaît par conséquent la localisation d'un éventuel défaut de l'isolant 5.
On peut également réaliser une prédiction de dysfonctionnement, en mesurant par exemple un courant de fuite traversant l'armature 4. En fonction de l'amplitude du courant de fuite traversant l'armature 4, on peut anticiper une interruption de service d'une LED ou du circuit électronique 1 . Ainsi, si l'amplitude du courant de fuite dépasse un seuil, on peut déterminer que la durée de vie résiduelle d'une LED est réduite, et que le respect de normes de sécurité impose son remplacement ou des mesures préventives.
La figure 7 est un diagramme illustrant différents cas de résistances de fuite pouvant être déterminés. On peut envisager par exemple de déterminer la résistance de fuite à travers l'armature 4. En considérant l'armature 4 à son potentiel flottant comme une source de tension, on peut la connecter à la masse successivement par l'intermédiaire de plusieurs résistances calibrées différentes, afin de calculer sa résistance interne. En mesurant les courants drainés de l'armature 4 pour ces deux valeurs de résistance et en mesurant le potentiel sur l'armature 4, on peut extrapoler des diagrammes tels qu'illustrés, représentant le potentiel Vm en fonction du courant drainé. On peut déduire la résistance de fuite en fonction de la pente de ces caractéristiques. La courbe en trait plein correspond par exemple à une résistance de fuite quasi-nulle vers l'armature 4, c'est-à-dire un court-circuit franc entre une LED et l'armature 4. La courbe en trait discontinu correspond à une résistance de fuite plus élevée vers l'armature 4.
Le mode de réalisation précédent a été illustré en référence à des LEDS à nanofils. La figure 8 est une vue en coupe transversale d'un circuit intégré 1 selon un autre mode de réalisation de l'invention. Le circuit intégré 1 comprend plusieurs LEDs selon une autre conception. Chacune des LEDs 1 1 à 13 forme un pixel émissif.
Le circuit intégré 1 comprend en outre une armature conductrice 4 entourant les LEDs 1 1 à 13. Le circuit intégré 1 comprend en outre un isolant électrique 5. L'isolant électrique 5 forme d'une part une isolation électrique entre l'armature 4 et les LEDs 1 1 à 13. Une face latérale 51 de l'isolant électrique 5 forme notamment une séparation entre la LED 1 1 et l'armature 4. Une face latérale 52 de l'isolant électrique 5 forme une séparation entre la LED 12 et l'armature 4. L'isolant électrique 5 forme d'autre part une isolation électrique entre les différentes LEDs 1 1 à 13.
Les LEDs 1 1 à 13 peuvent présenter une structure connue en soi. Les
LEDs 1 1 à 13 comportent ici des électrodes respectives. Les LEDs 1 1 à 13 comportent respectivement des électrodes inférieures 21 à 23 typiquement réalisées en métal réfléchissant. Les électrodes 21 à 23 sont chacune recouvertes d'une couche de semi-conducteur 1 16 à dopage de type P (par exemple du GaN à dopage de type P) avec laquelle elles sont en contact. La couche de semiconducteur 1 16 est recouverte d'une couche de semi-conducteur 1 18 à dopage de type N (par exemple du GaN à dopage de type N). Une couche active 1 17 est formée à l'interface entre les couches 1 16 et 1 18. La superposition des couches 1 16 à 1 18 sera ici assimilée à un substrat. La superposition des couches 1 16 à 1 18 formant substrat est délimitée en différentes parties séparées par des tranchées verticales. Les tranchées verticales traversent ici la superposition de couches de part en part, de sorte que les différentes parties du substrat sont séparées physiquement les unes des autres. L'armature conductrice 4 est au moins partiellement logée dans les tranchées de séparation entre les différentes parties du substrat. L'isolant électrique 5 est au moins partiellement logé dans les tranchées de séparation entre les différentes parties du substrat. L'isolant électrique 5 recouvre notamment les faces latérales des différentes parties de la superposition de couches 1 16 à 1 18. Ainsi, en coupe dans le plan du substrat formé, entre deux parties du substrat, on trouve une couche d'isolant électrique 5, l'armature 4, et une autre couche de l'isolant électrique 5.
La couche active 1 17 peut notamment comprendre un ou plusieurs puits quantique. Les LEDs 1 1 à 13 comportent des électrodes supérieures respectives, 31 1 à 313, formées en contact sur la couche 1 18. Les LEDs 1 1 à 13 peuvent ainsi être polarisées par l'intermédiaire de leurs électrodes inférieure et supérieure respectives. Les électrodes 31 1 à 313 sont transparentes pour la longueur d'onde d'émission de leur LED respective. Les électrodes 31 1 à 313 sont par exemple réalisées en oxyde d'indium étain.
Le circuit électronique 1 selon ce mode de réalisation comporte également un dispositif 7 configuré pour mesurer le courant traversant l'armature 4, la tension sur cette armature 4 ou sur chacune des LEDs 1 1 à 13. Le dispositif 7 est par exemple mis en œuvre sous la forme d'un microcontrôleur.
Le circuit électronique 1 comporte en outre un dispositif 8, connecté au dispositif 7. Le dispositif 8 est configuré pour déterminer un défaut de l'isolant électrique 5 en fonction de la tension ou du courant mesuré par le dispositif 7. Comme détaillé plus précisément dans des exemples pratiques par la suite, le dispositif 8 peut ainsi anticiper ou constater un dysfonctionnement du circuit électronique 1 . Le dispositif 8 est par exemple mis en œuvre sous la forme d'un microcontrôleur. Le mode d'identification et de localisation d'un dysfonctionnement peut être similaire à celui décrit en référence au premier mode de réalisation.
Afin d'anticiper un dysfonctionnement, on pourra également évaluer la dérive du potentiel flottant de l'armature 4 préalablement à un dysfonctionnement.
Dans les exemples détaillés précédemment, l'armature 4 est à un potentiel flottant. On peut également appliquer un potentiel sur l'armature 4 et déterminer le courant la traversant.
Dans le cadre de tests dans une ligne de fabrication, les mesures effectuées pourront aussi être croisées avec des mesures optiques en vue d'affiner le diagnostic du dysfonctionnement. Bien que l'invention ait été décrite pour une application particulière à des composants électroniques de type LEDs, l'invention s'applique également à tout autre type de composant électronique segmenté ou pixellisé contenant une armature conductrice et isolée électriquement de la matrice de pixels.

Claims

REVENDICATIONS
1 . Circuit électronique (1 ), caractérisé en ce qu'il comprend :
-un substrat (91 ), délimité en différentes parties par au moins une tranchée verticale ;
-deux composants électroniques (1 1 ) formés dans et sur des parties respectives du substrat et séparées par ladite tranchée verticale;
-une armature conductrice (4) logée au moins partiellement dans ladite tranchée, et entourant les deux composants électroniques ;
-un isolant électrique (5) logé au moins partiellement dans ladite tranchée entre les composants électroniques (1 1 ) et l'armature conductrice (4) ;
-un dispositif (7) configuré pour mesurer le courant traversant l'armature (4) ou la tension sur cette armature ;
-un dispositif de détermination (8) d'un défaut, configuré pour déterminer un défaut de l'isolant électrique (5) en fonction du courant ou de la tension mesurée.
2. Circuit électronique (1 ) selon la revendication 1 , dans lequel ladite armature (4) inclut majoritairement du polysilicium présentant une concentration de dopants au moins égale à 1019cnn~3.
3. Circuit électronique (1 ) selon la revendication 1 ou 2, dans lequel lesdits composants électroniques (1 1 ) sont des diodes électroluminescentes.
4. Circuit électronique (1 ) selon l'une quelconque des revendications précédentes, dans lequel ladite armature (4) est à un potentiel flottant.
5. Circuit électronique (1 ) selon l'une quelconque des revendications précédentes, dans lequel ledit isolant électrique (5) isole chacun desdits composants électroniques de l'armature conductrice et isole lesdits composants électroniques (1 1 -16) entre eux.
6. Circuit électronique (1 ) selon l'une quelconque des revendications précédentes, dans lequel lesdits composants électroniques (1 1 -16) sont connectés électriquement en série.
7. Circuit électronique (1 ) selon l'une quelconque des revendications 1 à 5, dans lequel lesdits composants électroniques (1 1 -16) sont connectés électriquement en parallèle.
8. Circuit électronique (1 ) selon l'une quelconque des revendications 1 à 5, comprenant un dispositif d'alimentation configuré pour alimenter séquentiellement lesdits composants électroniques (1 1 -16) avec une même différence de potentiel.
9. Circuit électronique (1 ) selon l'une quelconque des revendications précédentes, dans lequel ladite tranchée verticale traverse ledit substrat (91 ) de part en part.
10. Procédé de détermination d'un défaut d'un isolant électrique (5), le procédé comprenant les étapes de :
-fournir un circuit électronique (1 ) incluant un isolant électrique (5), un composant électronique (1 1 ) et une armature conductrice (4) entourant le composant électronique, l'isolant électrique (5) étant disposé entre l'armature conductrice (4) et le composant électronique (1 1 ),
-mesure du courant traversant l'armature (4) ou de la tension sur cette armature ou sur le composant électronique ;
-détermination d'un défaut de l'isolant électrique (5) en fonction du courant ou de la tension mesurée.
1 1 . Procédé de détermination selon la revendication 10, dans lequel ladite armature (4) du circuit électrique (1 ) est à un potentiel flottant en l'absence de défaut de l'isolant électrique (5).
12. Procédé de détermination selon la revendication 10 ou 1 1 , comprenant en outre une étape de localisation de l'emplacement d'un défaut en fonction de l'amplitude de la tension ou du courant mesuré.
13. Procédé de détermination selon la revendication 12, dans lequel ledit circuit électronique fourni comprend plusieurs composants électroniques (1 1 ) connectés électriquement en série et entourés par l'armature conductrice (4), l'isolant électrique étant disposé entre l'armature conductrice (4) et lesdits composants électroniques (1 1 ), et dans lequel la localisation du défaut est réalisée en mesurant la tension sur ladite armature et en comparant la tension mesurée aux tensions d'alimentation des composants électroniques connectés en série.
14. Procédé de détermination selon la revendication 12, dans lequel ledit circuit (1 ) fourni comprend plusieurs composants électroniques (1 1 ) entourés par l'armature conductrice (4), l'isolant électrique étant disposé entre l'armature conductrice (4) et lesdits composants électroniques (1 1 ), ledit circuit fourni comprenant un dispositif d'alimentation configuré pour alimenter séquentiellement lesdits composants électroniques (1 1 -13) avec une même différence de potentiel, et dans lequel la localisation du défaut est réalisée en mesurant la tension sur ladite armature (4) et en déterminant pour quel composant électronique alimenté la tension mesurée correspond à une tension d'alimentation du composant électronique.
15. Procédé de détermination selon l'une quelconque des revendications 10 à 14, dans lequel ladite armature fournie (4) inclut majoritairement du polysilicium présentant une concentration de dopants au moins égale à 10 9crrr3.
PCT/FR2016/053468 2015-12-28 2016-12-15 Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice WO2017115027A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16826103.0A EP3398407A1 (fr) 2015-12-28 2016-12-15 Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice
US16/066,142 US10845405B2 (en) 2015-12-28 2016-12-15 Integrated circuit intended for insulation defect detection and having a conductive armature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563404 2015-12-28
FR1563404A FR3046247B1 (fr) 2015-12-28 2015-12-28 Circuit integre pour detection d’un defaut d’isolation avec une armature conductrice

Publications (1)

Publication Number Publication Date
WO2017115027A1 true WO2017115027A1 (fr) 2017-07-06

Family

ID=55759751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053468 WO2017115027A1 (fr) 2015-12-28 2016-12-15 Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice

Country Status (4)

Country Link
US (1) US10845405B2 (fr)
EP (1) EP3398407A1 (fr)
FR (1) FR3046247B1 (fr)
WO (1) WO2017115027A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3715884A1 (fr) * 2019-03-29 2020-09-30 Automotive Lighting Italia S.p.A. Unité d'éclairage d'automobile comprenant des sources de lumière à diode électroluminescente organique et son procédé de fonctionnement
DE102021200002A1 (de) * 2021-01-04 2022-07-07 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung und Verfahren zum Überwachen eines Halbleiterbauelements

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782842A1 (fr) * 1998-08-25 2000-03-03 Commissariat Energie Atomique Dispositif comportant des composants electroniques dans des regions mutuellement insolees d'une couche de materiau semi-conducteur et procede de fabrication d'un tel dispositif
FR2964793A1 (fr) * 2010-09-09 2012-03-16 Ipdia Dispositif d'interposition
EP2669939A1 (fr) * 2012-05-29 2013-12-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé de fabrication d'un circuit intégré ayant des tranchées d'isolation avec des profondeurs distinctes
US20140084941A1 (en) * 2012-09-25 2014-03-27 Lg Display Co., Ltd. Display Device and Method for Detecting Line Defects of the Display Device
US20140191291A1 (en) * 2013-01-07 2014-07-10 Stmicroelectronics (Rousset) Sas Method of manufacturing a non-volatile memory
US20150021629A1 (en) * 2013-07-19 2015-01-22 Bridgelux, Inc. Using An LED Die To Measure Temperature Inside Silicone That Encapsulates An LED Array
FR3009474A1 (fr) * 2013-08-02 2015-02-06 Renault Sa Dispositif a diodes electroluminescentes
US20150155331A1 (en) * 2012-06-22 2015-06-04 Soitec Method of collective manufacture of leds and structure for collective manufacture of leds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314510A1 (en) * 2008-01-11 2009-12-24 Kukowski Thomas R Elastomeric Conductors and Shields

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2782842A1 (fr) * 1998-08-25 2000-03-03 Commissariat Energie Atomique Dispositif comportant des composants electroniques dans des regions mutuellement insolees d'une couche de materiau semi-conducteur et procede de fabrication d'un tel dispositif
FR2964793A1 (fr) * 2010-09-09 2012-03-16 Ipdia Dispositif d'interposition
EP2669939A1 (fr) * 2012-05-29 2013-12-04 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Procédé de fabrication d'un circuit intégré ayant des tranchées d'isolation avec des profondeurs distinctes
US20150155331A1 (en) * 2012-06-22 2015-06-04 Soitec Method of collective manufacture of leds and structure for collective manufacture of leds
US20140084941A1 (en) * 2012-09-25 2014-03-27 Lg Display Co., Ltd. Display Device and Method for Detecting Line Defects of the Display Device
US20140191291A1 (en) * 2013-01-07 2014-07-10 Stmicroelectronics (Rousset) Sas Method of manufacturing a non-volatile memory
US20150021629A1 (en) * 2013-07-19 2015-01-22 Bridgelux, Inc. Using An LED Die To Measure Temperature Inside Silicone That Encapsulates An LED Array
FR3009474A1 (fr) * 2013-08-02 2015-02-06 Renault Sa Dispositif a diodes electroluminescentes

Also Published As

Publication number Publication date
US20190369157A1 (en) 2019-12-05
US10845405B2 (en) 2020-11-24
FR3046247B1 (fr) 2018-06-15
FR3046247A1 (fr) 2017-06-30
EP3398407A1 (fr) 2018-11-07

Similar Documents

Publication Publication Date Title
WO2017115027A1 (fr) Circuit integre pour detection d'un defaut d'isolation avec une armature conductrice
WO2017046048A1 (fr) Source lumineuse led a micro- ou nano-fils comprenant des moyens de mesure de la temperature
KR102430497B1 (ko) 발광소자의 제조 방법
FR2760893A1 (fr) Cathode a emission de champ
EP0905776A1 (fr) Dispositif semi-conducteur à deux plots de connexion de masse reliés à une patte de connexion de masse et procédé pour tester un tel dispositif
US10867873B2 (en) Method and device for measurement of a plurality of semiconductor chips in a wafer array
JP6056299B2 (ja) 半導体装置とワイヤオープン不良の検出方法
EP1198715B1 (fr) Procede et dispositif pour determiner individuellement l'etat de vieillissement d'un condensateur
WO2014202511A1 (fr) Cellule solaire multi-jonctions
EP2981811A1 (fr) Procede et systeme de controle de la qualite d'un dispositif photovoltaique
FR2726691A1 (fr) Photodetecteur de grande dimension et procede de realisation d'un tel photodetecteur
CA2396190C (fr) Procede et dispositif de test d'un module de puissance
EP3314753B1 (fr) Procede de controle de la qualite d'un dispositif photovoltaïque, et dispositif de controle associe
EP3010312A1 (fr) Procede de prevision d'une defaillance d'une diode electroluminescente
WO2008043786A1 (fr) Dispositif de couplage electromagnetique d'un detecteur de rayonnement electromagnetique.
WO2020064824A1 (fr) Source lumineuse matricielle pilotee en tension a circuit diagnostic pour un vehicule automobile
EP3351057A1 (fr) Gestion de puissance d'une source lumineuse led a micro- ou nano-fils
EP0908944A1 (fr) Caractérisation électrique d'une couche isolante recouvrant un substrat conducteur ou semiconducteur
FR3090867A1 (fr) Gestion d’informations dans un module lumineux pour véhicule automobile comprenant des sources lumineuses à élément semi-conducteur
EP3570200B1 (fr) Puce éléctronique
WO2023105169A1 (fr) Procédé de caractérisation électrique de cellules d'un module photovoltaïque
FR3110001A1 (fr) Mesure de temps au claquage d'isolants électriques
WO2018087460A1 (fr) Systeme de caracterisation d'une diode de puissance
EP0553001A1 (fr) Procédé et système de test du fonctionnement et/ou de la présence d'éléments connectés en parallèle
FR2656158A1 (fr) Photosenseur hybride.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16826103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016826103

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016826103

Country of ref document: EP

Effective date: 20180730