WO2017114981A1 - Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde - Google Patents

Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde Download PDF

Info

Publication number
WO2017114981A1
WO2017114981A1 PCT/ES2015/070960 ES2015070960W WO2017114981A1 WO 2017114981 A1 WO2017114981 A1 WO 2017114981A1 ES 2015070960 W ES2015070960 W ES 2015070960W WO 2017114981 A1 WO2017114981 A1 WO 2017114981A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
curve
base
leading edge
point
Prior art date
Application number
PCT/ES2015/070960
Other languages
English (en)
French (fr)
Inventor
Guzmán DÍEZ DÍEZ
Gorka GABIÑA IRIBAR
Original Assignee
Fundación Azti - Azti Fundazioa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundación Azti - Azti Fundazioa filed Critical Fundación Azti - Azti Fundazioa
Priority to EP15912053.4A priority Critical patent/EP3399181B1/en
Priority to PCT/ES2015/070960 priority patent/WO2017114981A1/es
Priority to US16/067,175 priority patent/US10746156B2/en
Priority to ES15912053T priority patent/ES2906635T3/es
Publication of WO2017114981A1 publication Critical patent/WO2017114981A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • F03D1/0633Rotors characterised by their aerodynamic shape of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B3/38Keels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2200/00Mathematical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a process for the design of leading edges that, by modifying only the profile of the structure (not the elevation), reduces the drag coefficient (resistance) in aero / hydrodynamic support structures.
  • the invention also comprises different structures provided with said edge.
  • the method of the invention is based on correlating the number of curves applied to the profile with the wingspan of the supporting structure and the width of its section, using a polynomial function to define the shape of the curve.
  • the proposed edge is on the contrary of very simple morphology since it does not modify the elevation of the structure and is based on a design of the curvature of the specific profile and adapted to each aero / hydrodynamic structure capable of being modified.
  • the edge can be applied to aerodynamic structures (wings, wind turbine blades, stabilizers in airplanes, turbine blades) or hydrodynamics (rudders, bows of boats, keels ...), since all these structures have a supporting profile similar to that of shown in figure 1.
  • the design procedure of a leading edge of a supporting structure comprises the following steps: a. establish a coordinate system with an "x" axis at the base of the profile of the supporting structure and an "y" axis orthogonal to it and extending from the midpoint of the base of the profile to the vertex of the structure;
  • any step that involves manufacturing such as design, modeling, carving, etc.
  • the maximum value of "D”, that is, "Do” is in the range of 0.25% to 0.31% of the length of the rope of the first NACA section "P ma x" of the structure a Modify. This range is obtained from the most preferred value, 0.28% of "P m x" to which a correction factor of ⁇ 10% is applied.
  • Figure 1 is a representation of the profile of the bearing surface and the initial reference points (coordinates) to define the first and successive curves that define the leading edge of this model.
  • Figure 2 shows the profile, elevation, perspective and side view of a surface according to the invention.
  • the leading edge design is done in several iterative steps.
  • a coordinate system is established with an "x" axis at the base of the profile of the support structure and an "y" axis orthogonal to it and extending from the midpoint of the profile base to the vertex of the structure.
  • Li 0.0510H 0 2 - 0.0790H 0 + 15.5790
  • the shape of the curve is obtained by the equation:
  • This polynomial function is obtained from the study of shark flow fins in 3D format, with the help of the Plot Digiter software, which obtains from the image of the curve the values of points on the "x" and "y" axes of a graph.
  • the inventors subsequently made an adjustment to the polynomial function that best guaranteed a reduction in the coefficient of friction (see below).
  • the elevation of the support structure is not modified, although of course, a cross section of it will show the difference in depth between different segments.
  • the maximum value of "D”, that is, "Do” is placed in the range from 0.25% to 0.31% of the length of the rope of the first NACA "Pmax” section of the structure to be modified. This range is obtained from the most preferred value, 0.28% of "Pmax” to which a correction factor of ⁇ 10% is applied.
  • the edge is scalable to any size and can be applied to airborne structures or in the aquatic environment
  • the edge of the invention applied to a hydrodynamic stabilizer has shown a drag coefficient reduction of 1% compared to an identical model with the smooth leading edge (see table 1 below).
  • the hydrodynamic efficiency of the models has been evaluated as follows: a model with an edge according to the invention set forth above and a smooth edge model have been reconstructed by software. Next, by means of a fluid dynamics analysis (or CFD, Computational Fluid Dynamics) using the ANSYS Fluent Software, drag coefficients (Cd), velocity and pressure field have been compared with the surface whose leading edge is smooth. The comparison has been carried out for two speeds (2 and 5 m / s) and three different angles of attack (0 o , 15 o and 45 °).
  • the CAD file in IGS / STEP format of the hydrodynamic stabilizer on which to generate the CFD model was supplied.
  • the geometry CAD was also supplied in the same format with a smooth leading edge.
  • the conditions of the study were established defining: a) the geometry of the virtual control volume in which the analyzes were performed (7m long, 3m wide and 1.5m high; b) meshing characteristics more suitable to use in models. In the latter case, a mesh sensitivity analysis was included to select the ideal number of cells in order to optimize computational effort.
  • the drag coefficient is defined as:
  • the velocity fields for the type of curved profile are also more developed and have less impact on downstream flow than in the case of a smooth profile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

La invención concierne un procedimiento de fabricación o diseño de un borde de ataque de una estructura sustentadora donde, comenzando en el punto medio de la base (0,0), se aplica una curva al perfil de la estructura, cuya longitud "Li" es función del grosor máximo de la sección NACA en la base del perfil "Ho" en la base y viene definida por la ecuación L1 = 0,051 OHo2 - 0,0790Ho + 15,5790, y cuya cota máxima en el eje "x" se sitúa en el punto "L1/2" y se define mediante la relación x = 0.0137(L1)1 4944, estando la forma de dicha curva definida mediante la ecuación: (y- yo) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322x2 + 0.0136993913x y calculando el resto de la curva mediante un proceso iterativo según lo anteriormente indicado.

Description

PROCEDIMIENTO DE DISEÑO DE BORDES DE ATAQUE Y ESTRUCTURA SUSTENTADORA PROVISTA DE DICHO BORDE
DESCRIPCIÓN
SECTOR DE LA TÉCNICA
La invención se refiere a un procedimiento para el diseño de bordes de ataque que, modificando solo el perfil de la estructura (no el alzado), reduce el coeficiente de arrastre (resistencia) en estructuras sustentadoras aero/hidrodinámicas. La invención comprende también distintas estructuras provistas de dicho borde.
ESTADO DE LA TÉCNICA
La disminución del coeficiente de arrastre en cualquier estructura de sustentación, aun en una pequeña proporción, puede traducirse en reducciones de consumo de energía significativas, especialmente en los sectores del transporte aéreo, marítimo y generación eólica. Actualmente todas las superficies sustentadoras (alas, estabilizadores, palas de aerogenerador) tienen bordes de ataque de perfil tradicional liso. Existen algunas propuestas de bordes de ataque que presentan ventajas aerodinámicas que los bordes de ataque lisos, como el de la solicitud EP1805412, optimizado para palas de aerogenerador. Este último perfil tiene un diseño de bordes lobulados que modifica el perfil y el alzado del borde de ataque, cuya complejidad encarece el proceso de fabricación.
Se hacen necesarios por lo tanto bordes de ataque aplicables a una variedad de estructuras sustentadoras.
OBJETO DE LA INVENCIÓN El procedimiento de la invención se basa en correlacionar el número de curvas aplicadas al perfil con la envergadura de la estructura sustentadora y la anchura de su sección, usando una función polinomial para definir la forma de la curva.
El borde propuesto es por el contrario de morfología muy sencilla ya que no modifica el alzado de la estructura y se basa en un diseño de la curvatura del perfil específico y adaptado a cada estructura aero/hidrodinámica susceptible de ser modificada.
El borde puede aplicarse a estructuras aerodinámicas (alas, palas de aerogeneradores, estabilizadores en aviones, alabes de turbinas) o hidrodinámicas (timones, proas de embarcaciones, quillas...), ya que todas estas estructuras poseen un perfil sustentador similar al que se muestra en la figura 1.
Según la invención propuesta, el procedimiento de diseño de un borde de ataque de una estructura sustentadora comprende los siguientes pasos: a. establecer un sistema de coordenadas con un eje "x" en la base del perfil de la estructura sustentadora y un eje "y" ortogonal al mismo y que se extiende desde el punto medio de la base del perfil hasta el vértice de la estructura;
b. identificar el grosor máximo de la sección NACA (National Advisory Committee for Aeronautics) en la base del perfil "Ho" y comenzar a modificar el perfil de la superficie en el punto (0,0) aplicando una curva, cuya longitud " " en función del grosor máximo "Ho" en la base viene definida por la ecuación = 0,051 OHo2 - 0,0790Ho + 15,5790, y cuya cota máxima en el eje "x", que se da en el punto "yi/2" -ya que en este primer tramo
Figure imgf000004_0001
se define mediante la relación x = 0.0137(l_i)1 4944, estando la forma de dicha curva definida mediante la ecuación: (y-yo) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322x2 + 0.0136993913x, siendo y0=0;
c. repetir el paso b usando el grosor Ή" del perfil en la cota "yi" para calcular la nueva longitud "L -tal que
Figure imgf000004_0002
resultando la cota máxima en el eje "x", que se da en el punto "L1+L2/2", definida mediante la relación x = 0.0137(l_2)1 4944, estando la forma de dicha curva definida mediante la ecuación: (y-y1) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322x2 + 0.0136993913x; y así sucesivamente. Por modificar se entiende, en el sentido de la presente descripción, cualquier paso que implique la fabricación, como el diseño, modelado, tallado, etc.
Y en el que la profundidad de afectación "D", entendida como la distancia medida desde el borde de ataque del perfil respecto a la que se modifica la morfología de la estructura sustentadora, se calcula de manera dinámica, desde un valor máximo en la cota y=0 hasta un valor igual a cero en el punto "ymax". El valor máximo de "D", esto es, "Do", se sitúa en el rango del 0,25% al 0,31 % de la longitud de la cuerda de la primera sección NACA "Pmax" de la estructura a modificar. Dicho rango se obtiene de el valor más preferente, 0,28% de "Pmax" al que se le aplica un factor de corrección de ±10%.
BREVE DESCRIPCIÓN DE LAS FIGURAS Con objeto de ayudar a una mejor comprensión de las características de la invención de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña la siguiente descripción de un juego de dibujos en donde con carácter ilustrativo se ha representado lo siguiente: La figura 1 es una representación del perfil de la superficie sustentadora y los puntos de referencia iniciales (coordenadas) para definir la primera y sucesivas curvas que definen el borde de ataque de este modelo.
La figura 2 muestra el perfil, alzado, perspectiva y vista lateral de una superficie de acuerdo con la invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El diseño del borde de ataque se realiza en varios pasos iterativos. En primer lugar, se establece un sistema de coordenadas con un eje "x" en la base del perfil de la estructura de sustentación y un eje "y" ortogonal al mismo y que se extiende desde el punto medio de la base del perfil hasta el vértice de la estructura. En el punto (0,0) comienza la curva, cuya longitud "Li" en función del grosor máximo "Ho" en la base viene definida por la ecuación Li = 0,0510H0 2 - 0,0790H0 + 15,5790 La forma de la curva se obtiene mediante la ecuación:
(y-yo) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322X2 + 0.0136993913x
Tal que yo=0
La cota máxima en el eje "x" de dicha curva se alcanza en el punto "yi/2" y tiene como valor x = 0.0137( )1 4944
Esta función polinómica se obtiene del estudio de las aletas caudales de los tiburones en formato 3D, con la ayuda del software Plot Digiter, que obtiene a partir de la imagen de la curva los valores de puntos en los ejes "x" e "y" de una gráfica. Los inventores realizaron posteriormente un ajuste a la función polinómica que mejor garantizaba una reducción en el coeficiente de fricción (ver más adelante).
Una vez calculado el primer segmento de la curva, el segundo se calcula de manera análoga siendo Ή el grosor del perfil en la cota "yi", donde acaba la primera curva, de manera que L2 = 0,0510Hi2 - 0,0790Hi + 15,5790
Siendo la forma de la curva la que indica la ecuación:
(y-yi) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322X2 + 0.0136993913x
Y la cota máxima en el eje "x" en ese segundo tramo, que se alcanza en el punto "Li+L2/2", y tiene como valor x = 0.0137(L2)1 4944
Como puede apreciarse en la figura 2, el alzado de la estructura sustentadora no se modifica, aunque claro está, un corte transversal de la misma mostrará la diferencia en profundidad entre distintos segmentos.
La profundidad de afectación "D", medida respecto del borde de ataque del perfil, se calcula de manera dinámica, desde un valor máximo en el punto y=0 hasta un valor igual a cero en el punto "ymax". El valor máximo de "D", esto es, "Do", se sitúa en el rango del 0,25% al 0,31 % de la longitud de la cuerda de la primera sección NACA "Pmax" de la estructura a modificar. Dicho rango se obtiene de el valor más preferente, 0,28% de "Pmax" al que se le aplica un factor de corrección de ±10%. El borde es escalable a cualquier tamaño y puede aplicarse a estructuras sustentadoras en el aire o en el medio acuático
En los resultados experimentales que se presentan a continuación, el borde de la invención aplicado a un estabilizador hidrodinámico ha mostrado una reducción del coeficiente de arrastre del 1 % comparado un modelo idéntico con el borde de ataque liso (ver tabla 1 más adelante).
La eficiencia hidrodinámica de los modelos se ha evaluado como sigue: se ha reconstruido mediante software un modelo con un borde según la invención expuesta anteriormente y un modelo de borde liso. A continuación mediante un análisis de de dinámica de fluidos (o CFD, Computational Fluid Dynamics) usando el Software ANSYS Fluent se han comparado los coeficientes de arrastre (Cd), campo de velocidades y presiones con la superficie cuyo borde de ataque es liso. La comparativa se ha llevado a cabo para dos velocidades (2 y 5 m/s) y tres ángulos de ataque distintos (0o, 15o y 45°).
Para ello se suministró el fichero CAD en formato IGS / STEP del estabilizador hidrodinámico sobre el cual generar el modelo CFD. Asimismo se suministró el CAD de la geometría en el mismo formato con borde de ataque liso.
En primer lugar se establecieron las condiciones del estudio definiendo: a) la geometría del volumen virtual de control en el que se realizaron los análisis (7m. de largo 3m. de ancho y 1 ,5m. de alto; b) las características de mallado más adecuadas a emplear en los modelos. En este último caso se incluyó un análisis de sensibilidad de malla para seleccionar el número de celdas idóneo con el fin de optimizar el esfuerzo computacional.
Tras ello se estableció una capa de celdas en torno al estabilizador hidrodinámico que permite captar la capa límite a su alrededor (con especial cuidado en la zona del borde de ataque) y a continuación se aplicó un crecimiento de malla suave hacia el entorno exterior.
Tres fueron los parámetros analizados en cuanto a su influencia sobre el coeficiente de arrastre "Cd": la velocidad, el ángulo de ataque y el perfil del borde de ataque. El coeficiente de arrastre se define como:
Á
Donde "F" " es la componente de la fuerza en la dirección de la velocidad del flujo;
"p" es la densidad del fluido, "u" es la velocidad del flujo y "A" es la superficie de referencia, que para cuerpos hidrodinámicos sumergidos es la superficie en contacto con el fluido. Los resultados del análisis CFD indican que el borde de ataque propuesto presenta un menor coeficiente de arrastre que su homólogo liso en todas las configuraciones estudiadas y que el promedio de reducción de la resistencia del modelo de ataque con borde curvado es del 1 ,1 %. En la tabla 1 se puede observar el porcentaje de reducción del Coeficiente de arrastre (Cd) del estabilizador con perfil curvo frente a la aleta con perfil liso (1-(Cd perfil curvo/Cd perfil liso) x 100) en los distintos casos de estudio: dos velocidades (2 y 5 m/s) y tres ángulos de ataque distintos (0o, 15° y 45°).
Figure imgf000008_0001
Por otra parte, los campos de velocidades para el tipo de perfil curvado también son más desarrollados y presentan menor afectación al flujo aguas abajo que en el caso de perfil liso.

Claims

REIVINDICACIONES
1. - Procedimiento de fabricación o diseño de un borde de ataque de una estructura sustentadora que comprende los siguientes pasos: a. establecer un sistema de coordenadas con un eje "x" en la base del perfil de la estructura sustentadora y un eje "y" ortogonal al mismo y que se extiende desde el punto medio de la base hasta el vértice de la estructura;
b. identificar el grosor máximo de la sección NACA en la base del perfil "Ho" y comenzar a modificar el perfil de la superficie en la coordenada (0,0) aplicando una curva, cuya longitud " " en función del grosor máximo "Ho" en la base viene definida por la ecuación = 0,051 OHo2 - 0,0790Ho + 15,5790, y cuya cota máxima en el eje "x", que se da en el punto "yi/2", viene definida mediante la relación x = 0.0137(l_i)1 4944, estando la forma de dicha curva definida mediante la ecuación: (y-y0) = 0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3
+ 0.0097205322X2 + 0.0136993913x;
c. repetir el paso b usando el grosor Ή" del perfil en la cota "yi" para calcular la nueva longitud "L -tal que
Figure imgf000009_0001
resultando la cota máxima en el eje "x", que se da en el punto "L1+L2/2", definida mediante la relación x = 0.0137(l_2)1 4944, estando la forma de dicha curva definida mediante la ecuación: (y-y1) =
0.0000000107x6 + 0.0000016382x5 - 0.0000794412x4 + 0.0010194142x3 + 0.0097205322x2 + 0.0136993913x; y así sucesivamente.
2. Procedimiento de fabricación o diseño de un borde de ataque de una estructura sustentadora según la reivindicación 1 en el que la profundidad de afectación "D", calculada desde el borde de ataque del perfil, varía desde un valor máximo en el punto y=0 hasta un valor igual a cero en el punto "ymax"; y donde "Do" se sitúa en el rango del 0,25% al 0,31 % de la longitud de la cuerda de la primera sección NACA Pmax de la estructura a modificar.
3. Estructura sustentadora aero/hidrodinámica provista de un borde de ataque diseñado conforme al procedimiento de cualquiera de las reivindicaciones anteriores.
PCT/ES2015/070960 2015-12-29 2015-12-29 Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde WO2017114981A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15912053.4A EP3399181B1 (en) 2015-12-29 2015-12-29 Method for designing leading edges and supporting structure provided with said edge
PCT/ES2015/070960 WO2017114981A1 (es) 2015-12-29 2015-12-29 Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde
US16/067,175 US10746156B2 (en) 2015-12-29 2015-12-29 Method for designing leading edges and supporting structure provided with said edge
ES15912053T ES2906635T3 (es) 2015-12-29 2015-12-29 Procedimiento para diseñar bordes de ataque y estructura sustentadora provista de dicho borde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070960 WO2017114981A1 (es) 2015-12-29 2015-12-29 Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde

Publications (1)

Publication Number Publication Date
WO2017114981A1 true WO2017114981A1 (es) 2017-07-06

Family

ID=59225891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070960 WO2017114981A1 (es) 2015-12-29 2015-12-29 Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde

Country Status (4)

Country Link
US (1) US10746156B2 (es)
EP (1) EP3399181B1 (es)
ES (1) ES2906635T3 (es)
WO (1) WO2017114981A1 (es)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB791563A (en) * 1955-05-02 1958-03-05 Joseph Vaghi Improvements relating to structures for use as an airplane wing, a propeller blade, a blower or fan blade
US6431498B1 (en) * 2000-06-30 2002-08-13 Philip Watts Scalloped wing leading edge
US20110058955A1 (en) * 2009-04-08 2011-03-10 Sung Nam Jung Rotor blade for rotary wing aircraft having deformable protrusions to reduce blade vortex interaction noise

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1805412T3 (en) * 2004-10-18 2016-04-11 Whalepower Corp The turbine and compressor, which uses a rotor model with tuberkelforkant
JP5386433B2 (ja) * 2010-05-10 2014-01-15 株式会社日立製作所 翼設計装置,翼設計手法,それを用いて設計された翼,及びその翼を用いたターボ機械
US8789793B2 (en) * 2011-09-06 2014-07-29 Airbus Operations S.L. Aircraft tail surface with a leading edge section of undulated shape
US9249666B2 (en) * 2011-12-22 2016-02-02 General Electric Company Airfoils for wake desensitization and method for fabricating same
US20150217851A1 (en) * 2012-08-16 2015-08-06 Richard Kelso Wing configuration

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB791563A (en) * 1955-05-02 1958-03-05 Joseph Vaghi Improvements relating to structures for use as an airplane wing, a propeller blade, a blower or fan blade
US6431498B1 (en) * 2000-06-30 2002-08-13 Philip Watts Scalloped wing leading edge
US20110058955A1 (en) * 2009-04-08 2011-03-10 Sung Nam Jung Rotor blade for rotary wing aircraft having deformable protrusions to reduce blade vortex interaction noise

Also Published As

Publication number Publication date
ES2906635T3 (es) 2022-04-19
US10746156B2 (en) 2020-08-18
US20190093626A1 (en) 2019-03-28
EP3399181A1 (en) 2018-11-07
EP3399181B1 (en) 2021-11-24
EP3399181A4 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
Baltazar et al. Open-water thrust and torque predictions of a ducted propeller system with a panel method
US10352171B2 (en) Reduced drag system for windmills, fans, propellers, airfoils, and hydrofoils
Schramm et al. Simulation and optimization of an airfoil with leading edge slat
Nesteruk Rigid bodies without boundary-layer separation
CN113602473A (zh) 一种基于斜掠气梁的充气翼
Zahle et al. Design of the LRP airfoil series using 2D CFD
WO2017114981A1 (es) Procedimiento de diseño de bordes de ataque y estructura sustentadora provista de dicho borde
ES2637563T3 (es) Capa reductora de resistencia debida a la fricción y método para la fabricación de la misma
Swanson et al. Planform and camber effects on the aerodynamics of low-Reynolds-number wings
CN107016199A (zh) 一种无激波边界层排移鼓包的设计方法
Zeng et al. Numerical study on drag reduction for grid-fin configurations
Kang et al. Numerical investigation of active control for an S809 wind turbine airfoil
CN115221639A (zh) 适用于飞翼布局背负式半埋入进气道唇口参数化设计方法
CN111159942B (zh) 一种基于定常模拟的带翼飞行器滚转阻尼力矩计算方法
Shen et al. Numerical investigation of surface curvature effects on aerofoil aerodynamic performance
PrabhakaraRao et al. CFD analysis on airfoil at high angles of attack
Frolov Laminar separation point of flow on surface of symmetrical airfoil
Park et al. Particle image velocimetry measurement of laminar boundary layer in a streamwise corner
Liu et al. Automated marine propeller geometry generation of arbitrary configurations and a wake model for far field momentum prediction
Jiang et al. Drag Reduction Characteristics of Microstructure Inspired by the Cross Section of Barchan Dunes under High Speed Flow Condition
Isaev et al. Optimization of the slot suction of air from a circular vortex cell on a thick NACA0022 airfoil with a maximum lift–drag ratio
JP7038404B2 (ja) 遷音速翼型、翼及び航空機
Kalra et al. Methodological improvements for computational study of hovering micro-rotor in ground effect
Ho et al. CFD Analysis of Bio-Inspired Corrugated Aerofoils
Kumar et al. Flow Simulation and Theoretical Investigation on Aerodynamics of NACA-2415 Aerofoil at Low Reynolds Number

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15912053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015912053

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015912053

Country of ref document: EP

Effective date: 20180730