WO2017114021A1 - 一种下行数据传输方法及设备 - Google Patents

一种下行数据传输方法及设备 Download PDF

Info

Publication number
WO2017114021A1
WO2017114021A1 PCT/CN2016/106460 CN2016106460W WO2017114021A1 WO 2017114021 A1 WO2017114021 A1 WO 2017114021A1 CN 2016106460 W CN2016106460 W CN 2016106460W WO 2017114021 A1 WO2017114021 A1 WO 2017114021A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
user
time
frequency
different
Prior art date
Application number
PCT/CN2016/106460
Other languages
English (en)
French (fr)
Inventor
张希
陈磊
颜矛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20160311.5A priority Critical patent/EP3755101A1/en
Priority to BR112018011935-0A priority patent/BR112018011935B1/pt
Priority to EP16880811.1A priority patent/EP3379882B1/en
Publication of WO2017114021A1 publication Critical patent/WO2017114021A1/zh
Priority to US16/022,309 priority patent/US11503614B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0604Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching with predefined switching scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1221Wireless traffic scheduling based on age of data to be sent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a downlink data transmission method and device.
  • the wireless communication system begins to migrate to a higher frequency band.
  • a spectrum below 6 GHz can be referred to as a low frequency (LF), and a spectrum of 6 to 100 GHz can be referred to as a high frequency (HF).
  • LF low frequency
  • HF high frequency
  • How to effectively use high frequency is one of the research hotspots in the current communication industry. Compared to low frequency communication, the path loss of high frequency signals during propagation is more serious. Therefore, the propagation distance of the high-frequency signal is short, and the high-frequency base station at a fixed position cannot effectively serve the device in high-speed movement.
  • FIG. 1 is a schematic diagram of a simple networking in the prior art.
  • a base station can simultaneously communicate with multiple user equipments (UEs).
  • the base station may be a high frequency base station, a low frequency base station or a high and low frequency hybrid base station.
  • the design of the future communication system will seek consistency in the time granularity of the high and low frequency in the data frame structure, facilitating the scheduling across frequency bands.
  • the consistency mentioned here includes: 1.
  • the high and low frequencies use the same transmission time interval (TTI), and the high and low frequencies use the same period to send control signals for scheduling and feedback.
  • TTI transmission time interval
  • FIG. 2 is a schematic diagram of the coverage range of the directional beam signal after a certain propagation distance.
  • the directional beam signal used in the high-frequency communication system will cover a larger area after a certain propagation distance.
  • UEs User Equipments
  • the HF communication system needs to be able to support data transmission services with a rate of up to several Gbps for a single user, and also to support medium and low rate data transmission services for a large number of users at the same time.
  • a high frequency communication system needs to have a high degree of scheduling freedom.
  • the high frequency link can transmit a huge data packet in one transmission time interval. If you need to make full use of these packets for multi-user data transmission, this requires a high degree of scheduling freedom.
  • multiple users currently served must be in the same directional beam generated by the base station, and the system cannot further obtain the signal-to-noise ratio (Signal-to-) caused by using a narrower beam transmission signal.
  • the noise ratio, SNR) gain in this way, can not further improve the throughput of the system. That is to say, the prior art cannot provide the high degree of scheduling freedom required for high frequency communication, and will also set a bottleneck for the throughput rate of the system.
  • Embodiments of the present invention provide a downlink data transmission method and apparatus, which can improve system throughput by introducing time division multiplexing and transmitting control signals and data signals by using wide and narrow beams respectively in one transmission time interval.
  • embodiments of the present invention adopt the following technical solutions:
  • an embodiment of the present invention provides a downlink data transmission method, including:
  • the downlink data frame includes a control part located at a header and a data part for transmitting multi-user data, wherein time resources of at least two pieces of user data in the multi-user data are different;
  • the control portion carries time and frequency location information assigned to each user data in the multi-user data
  • an embodiment of the present invention provides a downlink data transmission device, including: a processor, a transmitter, and a bus, where the processor and the transmitter perform data transmission by using the bus connection;
  • the processor is configured to generate a downlink data frame, where the duration of the data frame is a transmission time interval TTI; the downlink data frame includes a control part located at a header and a data part for transmitting multi-user data, where The time resources of at least two user data in the multi-user data are different; the control part carries time and frequency position information allocated to each user data in the multi-user data;
  • the transmitter is configured to send the downlink data frame.
  • the time and frequency resources occupied by the data part are divided into time-frequency resource blocks according to a preset granularity, and the time-frequency resource blocks are numbered; the time occupied by each user data in the multi-user data is The frequency location information is the number of one or more time-frequency resource blocks occupied by each user data.
  • the data portion includes a plurality of user group data, and the plurality of user group data are multiplexed in a time division manner.
  • different user group data is transmitted using different beams.
  • different narrow beams are used to transmit signals to different groups of users, which can more specifically transmit signals to users in the same narrow beam, thereby avoiding the limitation based on frequency division multiplexing only.
  • the throughput bottleneck caused by the beam transmission scheme and the power gain brought by the narrow beam transmission improve the overall throughput of the system.
  • control portion is transmitted using a first beam; the data portion is transmitted using a second beam, wherein the second beam is different from the first beam.
  • different beams may have different beam configurations, wherein the beam configuration includes a beam width and a beam direction;
  • a beam width of the second beam is smaller than a beam width of the first beam; or, a beam direction of the second beam and a beam direction of the first beam are different.
  • the reception stability of the control signal can be improved, and the sensitivity to the user's movement can be reduced.
  • time intervals or redundant signals for beam switching are reserved between different user group data.
  • a time interval or a redundant signal for beam switching is reserved between the control portion and the data portion.
  • the time resource occupied by the downlink data frame is divided into multiple data blocks, and one or more of the multiple data blocks are used for performing beam switching.
  • the plurality of data blocks may be numbered, and the number of data blocks used for beam switching is indicated by the control portion.
  • the redundant signal when transmitting the downlink data frame by using a multi-carrier waveform based on orthogonal frequency division multiplexing (OFDM), the redundant signal is a cyclic prefix of an OFDM symbol; or, when using a single carrier frequency division multiple access SC - FDMA Single Carrier Waveform When transmitting the downlink data frame, the redundant signal is a cyclic prefix of the SC-FDMA symbol.
  • OFDM orthogonal frequency division multiplexing
  • the downlink data transmission method provided by the present invention can more efficiently support the high-frequency communication and the low-frequency communication to adopt the same transmission time interval and control signaling period, and facilitate the scheduling operation of the cross-band and the data service transfer and handover operations.
  • an embodiment of the present invention provides a method for sending a signal, including:
  • a start position of the current transmission time interval is a downlink control signal, and the downlink control signal includes scheduling information for multiple users;
  • the data to be transmitted of the plurality of users is mapped to the time and frequency resource locations characterized by the scheduling information at a subsequent location of the current transmission time interval, wherein at least the time after the data of the two users to be transmitted is mapped Different resource locations;
  • the downlink data frame over the entire transmission time interval after the mapping is modulated and transmitted.
  • an embodiment of the present invention provides a method for receiving a signal, including:
  • an embodiment of the present invention provides a method for sending a signal, including:
  • a downlink data signal is transmitted using a second beam configuration at a subsequent location of the current transmission time interval, wherein the second beam configuration is different from the first beam configuration.
  • the beam configuration includes a beamwidth and a beam direction.
  • the second beam configuration is different from the first beam configuration, and the beam width of the second beam configuration is smaller than a beam width of the first beam configuration.
  • an embodiment of the present invention provides a method for sending a signal, including:
  • the beam width of the second beam configuration is less than or equal to the beam width of the first beam configuration; the beam width of the third beam configuration is less than or equal to the beam of the first beam configuration. Width; the beamwidth of the third beam configuration is not equal to the beamwidth of the second beam configuration or the beam direction of the third beam configuration is different from the beam direction of the second beam configuration.
  • an embodiment of the present invention provides a method for sending a signal, including:
  • downlink control information Transmitting downlink control information at a start position of the current transmission time interval, where the downlink control information includes location information indicating a time resource used for beam switching;
  • the location information included in the downlink control information for indicating a time resource used for beam switching transmitting downlink data and performing beam switching at a corresponding time resource location.
  • an embodiment of the present invention provides a method for sending downlink data, including:
  • the downlink data frame includes a control portion located at a header and a data portion for transmitting multi-user data, wherein the control portion is transmitted using a first type of beam configuration; Transmitting the data portion, wherein the second beam configuration is different from the first beam configuration;
  • the beam configuration includes a beam width and a beam direction
  • the beam width of the second beam configuration is smaller than the beam width of the first beam configuration; or the beam direction of the second beam configuration and the beam direction of the first beam configuration are different.
  • the reception stability of the control signal can be improved, and the sensitivity to the user's movement can be reduced.
  • different narrow beams to send signals to different groups of users, data transmission can be performed more specifically to users in the same narrow beam, thereby avoiding the result of a wide beam transmission scheme based solely on frequency division multiplexing.
  • the throughput rate is bottlenecked, and the power gain due to narrow beam transmission increases the overall throughput of the system.
  • FIG. 1 is a schematic diagram of a simple networking in the prior art
  • FIG. 2 is a schematic diagram of coverage of a directional beam signal after a certain propagation distance
  • FIG. 3 is a schematic structural diagram of a data frame provided by the prior art
  • FIG. 4 is a schematic structural diagram of a frame corresponding to a first high frequency signal transmission method according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a frame corresponding to a second high-frequency signal transmission method according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a scheme for transmitting different types of data by using beams of different widths according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a frame corresponding to a third method for transmitting a high frequency signal according to an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a frame corresponding to a fourth high-frequency signal transmission method according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of a solution for reserving beam switching time resources according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another solution for reserving beam switching time resources according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a downlink data transmission device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a data frame provided by the prior art.
  • the basic structure of a downlink data frame sent from a base station to multiple users is shown in FIG. Includes control signals and multi-user data.
  • the transmission period of the control signal for carrying the control information is consistent with the basic transmission time interval.
  • the data sent to each user occupies other time resources except the duration of the control signal in the entire transmission time interval; the data of each user occupies frequency resources that do not overlap each other. That is to say, within one transmission time interval, the base station transmits data to multiple users in a frequency division multiplexing manner.
  • This solution can also be adopted by high frequency communication.
  • the scheme of multiplexing multiple users is adopted in a frequency division manner in one transmission time interval as described above, the number of user data that can be simultaneously transmitted is limited, and it is impossible to cope with the scenes of the aforementioned users. That is to say, if only the frequency division multiplexing method is used in high frequency communication, there is a problem that the degree of freedom of user scheduling is insufficient. If the data of different users are sent in different transmission time intervals, the scheduling delay experienced by each user is large, and the system cannot provide low-latency data transmission service for each user. At the same time, the high frequency communication system uses the beamforming method to transmit signals using the formed directional beam to increase the strength of the received signal and increase the coverage of the cell.
  • the data transmission method provided by the embodiment of the invention can solve the bottleneck of insufficient scheduling freedom and low system throughput caused by using only frequency division multiplexing in a transmission time interval when the user density in the high frequency communication is high, and The problem of scheduling delays caused by sending different users' data in different transmission time intervals is large.
  • the data transmission method provided by the embodiment of the present invention may also be referred to as a signal transmission method, such as the high frequency signal transmission method hereinafter.
  • the directional beam generated by beamforming has a certain angular width characteristic, which is usually determined by the angle at which the power gain is attenuated to half of the peak gain, and is also referred to as a 3 dB beam width (hereinafter referred to as beam width).
  • beam width 3 dB beam width
  • a beam with a wide 3dB beamwidth eg, above 25°, hereinafter referred to as a wide beam
  • a wide beam can be used to transmit control signals because the control signals usually use low-order modulation without requiring high signal power, while wide beam coverage ensures that the control signals are reliably received and are not sensitive to user movement. .
  • a narrow beam For a beam with a narrow 3dB beamwidth (such as below 6°, hereinafter referred to as a narrow beam), it has a feature that the signal power gain is extremely high, but the coverage is small.
  • Such narrow beams can be used to transmit data signals because, in order to increase throughput, data signals typically employ higher order modulation and require higher signal power gain, and the requirements for reliable reception are lower compared to control signals.
  • the embodiment of the present invention proposes to transmit data of multiple users by using frequency division and time division multiplexing in a single transmission time interval, and adopts a more flexible beam configuration scheme to transmit data to be transmitted in combination with the newly introduced time division multiplexing manner.
  • the beam configuration scheme may refer to a specific beam width and/or a specific beam direction used to transmit a certain portion of data.
  • the control signal included in the start position of each transmission time interval may carry information such as the time and frequency resource position occupied by the data sent to each user in the current transmission time interval (that is, carrying The time-frequency resource information of the multi-user data), and the data signals of the respective users are mapped in the subsequent data signals according to the indication of the information carried by the control signals.
  • the signal transmission method provided by the embodiment of the present invention further includes: transmitting a control signal by using a wide beam at a stage of transmitting a control signal to improve reliability of receiving the control signal; at a stage of transmitting the data signal, Users served within the coverage of the current control signal are further grouped according to their angle with respect to the base station, and narrow beams are used for each group of users to transmit data signals to increase the power of the received signals to increase system throughput by using higher order modulation.
  • the purpose of the rate By introducing time division multiplexing in a transmission time interval and separately transmitting control signals and data signals using wide and narrow beams, it is possible to avoid a throughput bottleneck caused by a frequency division multiplexing based transmission scheme alone.
  • embodiments of the present invention are not limited to applications and high frequency communication systems, and may be used in low frequency communication systems or high and low frequency hybrid communication systems.
  • the following describes the embodiment by taking a high-frequency base station as an example, but the high-frequency base station can also be replaced by a low-frequency base station or a high-low frequency hybrid base station, and the corresponding transmitted signal can also be a low-frequency signal or a high-low frequency mixed signal;
  • the example can also be analogized to WiFi systems.
  • a high-frequency base station (which may refer to a base station operating in a high-frequency band) is a control signal at a start position of a single downlink transmission time interval (that is, a control signal is located at a head of a transmission time interval), and carries a current service in the control signal.
  • Information such as the time and frequency position occupied by the data of each user in the current transmission time interval.
  • FIG. 4 is a schematic diagram of a frame structure corresponding to a first method for transmitting a high-frequency signal according to an embodiment of the present invention.
  • a time resource occupied by a data portion of a downlink data frame in a single transmission time interval is divided into three parts.
  • the data of the users 1-3 respectively occupy a part of the time resources, and of course, the number of users may also be two or more.
  • the time resources occupied by the data part can also be divided into two parts or more than three parts.
  • the frequency resources can also be divided into one or more frequency bands, so that data of different users can be multiplexed by frequency division (for example, the data of the user 5 and the data of the user 6 in FIG. 5).
  • FIG. 5 is a schematic diagram of a frame structure corresponding to a second method for transmitting a high-frequency signal according to an embodiment of the present invention.
  • the base station according to information such as time and frequency position occupied by data of each user carried in the control signal, Map each user's data to the appropriate location.
  • the base station (or the high frequency base station) generates a downlink data frame, where the duration of the data frame is a transmission time interval TTI; the downlink data frame includes a control part located in the header (such as the control signal in FIG. 5) and More transmission a data portion of user data (eg, data of users 1-12 in FIG.
  • time resources of at least two user data in the multi-user data are different (that is, at least two users have different data occupations Time resource, such as the data of user 1 and the data of user 5 occupy different time resources in FIG. 5; wherein the control part carries time and frequency position information occupied by each user data in the multi-user data, the information It can be the range of time and frequency locations where a certain user data is located, or the starting position and number of time and frequency locations where a certain user data is located; the downlink data frame is transmitted. Further, the base station modulates the downlink data frame to form a signal to be transmitted, and sends the signal through the intermediate radio frequency link. For a current user, it first demodulates the control signal part of the received signal, determines the time and frequency position of the data sent by the base station to the user in the current transmission time interval, and then performs data demodulation to restore the User's data.
  • Time resource such as the data of user 1 and the data of user 5 occupy different time resources in FIG. 5
  • the control part
  • the high-frequency base station groups the users that need to be served in the current transmission time interval according to their angles with respect to the base station, and the users who are close in angle are placed in the same user group. Then, the base station transmits data to a plurality of user groups in a time division manner, uses different transmission beams for each user group, and performs beam switching at a time division demarcation point. The data of each user in each user group occupies different frequency resources.
  • FIG. 6 is a schematic diagram of a scheme for transmitting different types of data by using beams of different widths according to an embodiment of the present invention.
  • users that are close in perspective with respect to a base station may be placed in the same user group.
  • FIG. 7 is a schematic diagram of a frame structure corresponding to a third method for transmitting a high frequency signal according to an embodiment of the present invention.
  • data of the same user group may be transmitted by using the same beam.
  • users 1 to 4 constitute the aforementioned first user group
  • users 5 to 9 constitute the aforementioned second user group
  • users 9 to 12 constitute the aforementioned The third user group.
  • the data of these three groups of users are multiplexed by time division.
  • the base station For the control signal located at the beginning of the current transmission time interval, the base station transmits by using a wide beam. For subsequent data signals, the base station transmits in a narrow beam manner. For different user group data, the base station transmits narrow beams with different directions and widths. For example, the first user group in Figure 7 transmits with narrow beam 1 and the second user group transmits with narrow beam 2, Three user groups are transmitted with narrow beam 3.
  • the beam direction and the beam width of the narrow beams 1-3 may be different. The direction and width of multiple narrow beams used by the base station due to the different angular centers and ranges of the individual user groups relative to the base station It is different.
  • the base station can fully utilize the power gain brought by the narrow beam to provide higher received signal power to each user group, thereby improving the overall throughput of the system.
  • the base station may need to perform beam switching. Therefore, as shown in FIG. 7, the base station reserves time resources for beam switching between data of two user groups before and after.
  • the wide beam and the narrow beam in the embodiments of the present invention are relative concepts.
  • a beam with a 3 dB beam width greater than 25 degrees can be considered a wide beam with a 25 dB boundary, and a beam with a 3 dB beam width of less than 25 degrees can be considered as a narrow beam.
  • the limit of 25 degrees here can be other values.
  • the configuration and concept of wide and narrow beams can also be flexibly determined by the base station.
  • the wide beam in Figure 7 needs to cover the user group where the user 1-4 is located, the user group where the user 5-8 is located, and the user group where the user 9-12 is located, and the coverage is large, so it can be called a wide beam.
  • the narrow beam 1 only needs to cover the user group where the user 1-4 is located, and the coverage is small, so it can be called a narrow beam.
  • For a current user it first demodulates the control signal part of the received signal, determines the time and frequency position of the data sent by the base station to the user in the current transmission time interval, and then performs data demodulation to restore the User's data.
  • the high-frequency base station groups the users that need to be served in the current transmission time interval according to their angles with respect to the base station, and the users who are close in angle are placed in the same user group. Then, the base station transmits data to a plurality of user groups in a time division manner, uses different transmission beams for each user group, and performs beam switching at a time division demarcation point. The data of each user in each user group occupies different frequency resources.
  • FIG. 8 is a schematic diagram of a frame structure corresponding to a fourth method for transmitting a high-frequency signal according to an embodiment of the present invention.
  • the base station according to a pre-agreed rule, according to a preset time and frequency resource in a single transmission time interval. The smallest granularity is divided and numbered.
  • the base station is a control signal at the beginning of a single transmission time interval, and carries the number of the resource block used for transmitting data of each user in the control signal. Among them, the data sent to a user may occupy one or more resource blocks.
  • the base station maps the data of each user to a corresponding location according to the resource block number carried in the control signal, forms a downlink data frame, and modulates the downlink data frame to form a signal to be transmitted, and sends the signal through the medium radio frequency link. For a current user, it first demodulates the control signal in the received signal. In part, determining the resource block number of the data that the base station sends to the user. Then, the user determines the location of the time and frequency resources of the data sent by the base station to the user in the current transmission time interval according to the pre-agreed mapping rule, and then performs data demodulation to recover the data of the user.
  • the base station may group the users that need to be served in the current transmission time interval according to their angles with respect to the base station, and the users that are close in angle are placed in the same user group. Then, the base station transmits data to a plurality of user groups in a time division manner, uses different transmission beams for each user group, and performs beam switching at a time division demarcation point. The data of each user in each user group occupies different frequency resources. Specifically, as shown in FIG. 8, according to a pre-agreed rule, the base station divides the part of the current transmission time interval except the control signal into the same number as the current user group according to the number of user groups served by the current transmission time interval.
  • Time resource blocks (e.g., time resource blocks 1-3 in Figure 8), and time resources for beam switching are reserved between these time resource blocks.
  • the base station For the control signal located at the beginning of the current transmission time interval, the base station transmits by using a wide beam. For subsequent data signals, the base station transmits in a narrow beam manner. For data in different time resource blocks, the base station transmits with narrow beams of different directions and widths (for example, in FIG. 8, time resource block 1 is transmitted with narrow beam 1 and time resource block 2 is transmitted with narrow beam 2, time resource Block 3 is transmitted with a narrow beam 3).
  • the base station may need to perform beam switching at the time (or time interval) between transmitting data of two adjacent user groups.
  • a current user For a current user, it first demodulates the portion of the control signal in the received signal to determine the time and frequency resource block number at which the data transmitted by the base station is sent to the user. Then, the user determines the location of the time and frequency resources of the data sent by the base station to the user in the current transmission time interval according to the pre-agreed mapping rule, and then performs data demodulation to recover the data of the user.
  • the base station uses a wide beam transmission control signal and a different narrow beam to transmit data signals to groups of users in different directions in a single transmission time interval.
  • This process involves the operation of beam switching.
  • the base station cannot effectively transmit signals. Therefore, it is necessary to reserve a certain time resource (or a time interval) for the beam switching or provide a certain redundant signal to avoid the beam switching to bring a large distortion to the signal transmission.
  • This embodiment provides two ways to reserve time resources or redundant signals for beam switching.
  • FIG. 9 is a schematic diagram of a solution for reserving beam switching time resources according to an embodiment of the present invention, such as As shown in FIG. 9, the time resource in a single transmission time interval is divided into a number of data blocks and transmitted in data blocks, wherein the present invention does not limit the partitioning granularity of the data blocks or the duration of the data blocks.
  • These data blocks are numbered (for example, in Figure 9, the data blocks in narrow beam 1 are numbered 2-7), and some of the specific data blocks are reserved for beam switching purposes (for example, in Figure 9, data blocks) 1 and data block 8), no signal is sent.
  • the base station can declare the numbers of the data blocks that do not transmit signals (e.g., numbers 1 and 8 in Fig.
  • the base station may simply vacate the symbols reserved for beam switching, and do not declare the numbers of the symbols in the control signal, and the user determines the position of the vacant symbols according to the amplitude of the received signal to obtain the aforementioned Relevant information and subsequent signal demodulation and recovery.
  • FIG. 10 is a schematic diagram of another scheme for reserving a beam switching redundant signal according to an embodiment of the present invention.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA single-carrier frequency division multiple access
  • CP Cyclic prefix
  • these OFDM or SC-FDMA symbols can be numbered and the cyclic prefix of partial OFDM or SC-FDMA symbols lengthened to facilitate base station beam switching on these long cyclic prefixes.
  • the base station can carry the number of the OFDM or SC-FDMA symbol using the long cyclic prefix in the control signal at the beginning of the single transmission time interval.
  • the user can use this information to determine the time position of the valid data other than the cyclic prefix in the received signal, and can also use this information to determine the number of time resource blocks in the current transmission time interval mentioned in Embodiments 2 and 3. Information such as location and location for subsequent signal demodulation and recovery.
  • the beneficial effect of the downlink signal transmission method for high frequency communication lies in: Introducing time-division multiplexing in the transmission time interval, which can provide higher scheduling freedom for high-frequency communication systems, and reduce the scheduling delay experienced by each user in scenarios with high user density and low rate requirements;
  • the method of controlling the signal can improve the receiving stability of the control signal and reduce its sensitivity to the user's movement; by combining the time division multiplexing method, different narrow beams are used to send signals to different user groups, which can be more targeted.
  • Data transmission to users in the same narrow beam can avoid the throughput bottleneck caused by the wide beam transmission scheme based on frequency division multiplexing, and improve the overall throughput of the system by using the power gain brought by narrow beam transmission. rate.
  • the downlink signal transmission method for high-frequency communication provided by the present invention can more efficiently support the same transmission time interval and control signaling period for high-frequency communication and low-frequency communication, and facilitates cross-band scheduling operation and data service transfer and handover. operating.
  • the embodiment of the present invention further provides a downlink data transmission apparatus, including:
  • a generating module configured to generate a downlink data frame, where the duration of the data frame is a transmission time interval TTI;
  • the downlink data frame includes a control part located at a header and a data part for transmitting multi-user data, where The time resources of the at least two user data in the multi-user data are different;
  • the control part carries time and frequency position information occupied by each user data in the multi-user data;
  • a sending module configured to send the downlink data frame.
  • the embodiment of the present invention provides a downlink data transmission device, including: a processor 1101, a transmitter 1102, and a bus 1103, where the processor 11012 and the transmitter 1102 pass through The bus 1103 is connected for data transmission;
  • the processor 1101 is configured to generate a downlink data frame, where the duration of the data frame is a transmission time interval TTI; the downlink data frame includes a control part located at a header and a data part for transmitting multi-user data, The time resource of at least two user data in the multi-user data is different; the control part carries time and frequency occupied by each user data in the multi-user data. Rate location information;
  • the transmitter 1102 is configured to send the downlink data frame.
  • the device may also include a memory.
  • the memory is used to store instructions or programs required by the processor 1101 to execute.
  • the embodiment of the present invention can also be applied to a low frequency system or a high and low frequency hybrid system, except for the unique operation portion for high frequency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明提供了一种下行数据传输方法,包括:在一个传输时间间隔内引入时分复用的传输方式;利用宽波束向当前传输时间间隔所服务的用户发送控制信号;将用户分组并利用不同的窄波束向不同的用户组发送数据信号。通过在一个传输时间间隔内引入时分复用和利用宽、窄波束分别传输控制信号和数据信号,从而可以避免仅仅基于频分复用的传输方案所带来的吞吐率瓶颈。

Description

一种下行数据传输方法及设备 技术领域
本发明涉及通信技术领域,尤其涉及一种下行数据传输方法及设备。
背景技术
为了通过使用更大的带宽来进一步提高传输速率,无线通信系统开始向更高的频段迁移。可以将6GHz以下的频谱称为低频(Low frequency,LF),将6至100GHz的频谱称为高频(High frequency,HF)。如何有效的利用高频是当前通信业界的研究热点之一。相比于低频通信,高频信号在传播过程中的路径损耗更加严重。因此,高频信号的传播距离较短,处于固定位置的高频基站无法有效的为高速移动中的设备提供服务。基于这一点,目前认为下一代蜂窝通信系统有较大可能采用高低频混合组网的模式:由低频基站提供远距离的信号覆盖和高移动性的支持,由高频基站在热点区域提供高速的数据传输服务。图1为现有技术中简单组网示意图,如图1所示,一个基站可以与多个用户设备(User equipment,UE)同时进行通信。而在未来通信系统中,该基站可以是高频基站、低频基站或高低频混合基站。为了有效的支持这一工作模式,未来通信系统的设计将会寻求高低频在数据帧结构的时间粒度上的一致性,便于跨频段的调度。这里所说的一致性包括:1.高低频采用相同的传输时间间隔(Transmission time interval,TTI),2.高低频采用相同的周期发送用于调度和反馈的控制信号。
值得注意的是在高频和低频中传输的数据格式存在较大的差异。在低频工作的通信系统具有系统带宽相对较窄和传输速率相对较低的特性。例如,在第四代无线本地局域网(Wireless local area network,WLAN)和第四代蜂窝通信系统即长期演进(Long-term evolution,LTE)这两个当前最常用的通信标准中,系统的带宽通常为数十兆赫兹(Megahertz,MHz),传输速率通常为数百兆比特每秒(Megabit per second,Mbps)。相比而言,高频通信可以使用更多的频率资源,如采用从数百到数千MHz不等的系统带宽,提供高达数个吉比特每 秒(Gigabit per second,Gbps)的传输速率。同时,在高频通信中通常使用波束赋形形成的定向波束发送信号,利用波束赋形带来的信号增益对抗较高的路径损耗并且增加信号的覆盖范围。
图2为定向波束信号经过一定的传播距离后的覆盖范围示意图,如图2所示,在高频通信系统中所使用的定向波束信号经过一定的传播距离后将会覆盖较大的面积,在该波束覆盖的范围内可能存在多达上百个的用户设备(User equipment,UE)。结合前面的讨论可以总结出,高频通信系统既需要能够支持为单个用户提供速率高达数Gbps的数据传输服务,也需要能够支持同时为数量较多的用户提供中低速率的数据传输服务。为了达成这样的目标,高频通信系统需要拥有较高的调度自由度。
在前面提到的高低频采用相同的传输时间间隔(如250us)的前提下,由于高频系统具有较大的带宽,在一个传输时间间隔内,高频链路可以传输一个巨大的数据包。如果需要充分利用这些数据包进行多用户数据传输的话,这就需要较高的调度自由度。同时,现有技术中当前被服务的多个用户必须处于基站所产生的同一个定向波束内,则该系统无法进一步获得采用更窄的波束传输信号所带来的信噪比(Signal-to-noise ratio,SNR)增益,也就不能通过这种方式进一步提高系统的吞吐率。也就是说,现有技术无法提供高频通信所需的较高的调度自由度,同时也将会为系统的吞吐率设置瓶颈。
发明内容
本发明的实施例提供一种下行数据传输方法及设备,通过在一个传输时间间隔内引入时分复用和利用宽、窄波束分别传输控制信号和数据信号,可以提高系统吞吐率。为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种下行数据传输方法,包括:
生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;
所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;
所述控制部分携带分配给所述多用户数据中各个用户数据的时间和频率位置信息;
发送所述下行数据帧。
第二方面,本发明实施例提供一种下行数据传输设备,包括:处理器、发射机及总线,其中所述处理器及发射机通过所述总线连接进行数据传输;
所述处理器用于生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;所述控制部分携带分配给所述多用户数据中各个用户数据的时间和频率位置信息;
所述发射器用于发送所述下行数据帧。
通过在一个传输时间间隔内引入时分复用,可以为高频通信系统提供更高的调度自由度,在高用户密度和低速率要求的场景中降低每个用户所承受的调度时延。
结合第一方面或第二方面,本发明实施例给出了进一步的描述如下:
可选地,所述数据部分占用的时间和频率资源按预设的粒度划分时频资源块并对所述时频资源块编号;所述所述多用户数据中各个用户数据所占用的时间和频率位置信息为各个用户数据所占用的一个或多个时频资源块的编号。
可选地,所述数据部分包括多个用户组数据,所述多个用户组数据通过时分的方式复用。
可选地,不同的用户组数据使用不同的波束发送。
通过结合时分复用的方法,采用不同的窄波束给不同的用户组发送信号,可以更具针对性地对处于同一窄波束内的用户进行信号传输,从而可以避免仅仅基于频分复用的宽波束传输方案所带来的吞吐率瓶颈,并且利用窄波束传输所带来的功率增益提高系统整体的吞吐率。
可选地,使用第一波束发送所述控制部分;使用第二波束发送所述数据部分,其中,所述第二波束与所述第一波束不同。
可选地,不同的波束可以有不同的波束配置,其中,波束配置包括波束宽度和波束方向;
可选地,所述第二波束的波束宽度小于所述第一波束的波束宽度;或者,所述第二波束的波束方向和所述第一波束的波束方向是不同的。
通过采用宽波束发送控制信号的方法,可以提高控制信号的接收稳定性,降低其对用户移动的敏感程度。
可选地,不同的用户组数据之间预留用于波束切换的时间区间或冗余信号。
可选地,所述控制部分和所述数据部分之间预留用于波束切换的时间区间或冗余信号。
可选地,将所述下行数据帧所占据的时间资源划分为多个数据块,所述多个数据块中的一个或多个被用来进行波束切换。进一步地,可以对所述多个数据块进行编号,通过所述控制部分指示用于进行波束切换的数据块的编号。
可选地,当利用基于正交频分复用OFDM的多载波波形传输所述下行数据帧时,所述冗余信号为OFDM符号的循环前缀;或者,当利用基于单载波频分多址SC-FDMA的单载波波形传输所述下行数据帧时,所述冗余信号为SC-FDMA符号的循环前缀。
同时,本发明提供的下行数据传输方法能够更高效的支持高频通信和低频通信采用相同的传输时间间隔和控制信令周期,便于跨频段的调度操作和数据业务的转移和切换操作。
第三方面,本发明实施例提供一种发送信号的方法,包括:
生成下行数据帧,其中,在当前传输时间间隔的开始位置为下行控制信号,所述下行控制信号包含对多个用户的调度信息;
在当前传输时间间隔的后续位置将给多个用户的待发送数据映射到所述调度信息所表征的时间和频率资源位置,其中,至少存在两个用户的待发送数据经过映射后所处的时间资源位置不同;
对映射后的整个传输时间间隔上的下行数据帧进行调制并发送出去。
第四方面,本发明实施例提供一种接收信号的方法,包括:
对下行控制信号进行解调,获取其中对多个用户的调度信息;
根据所述调度信息,获取发送给当前用户的数据所处的时间和频率资源位置信息,并利用所述位置信息从接收信号中恢复发送给当前用户的数据。
第五方面,本发明实施例提供一种发送信号的方法,包括:
在当前传输时间间隔的开始位置使用第一种波束配置发送下行控制信号;
在当前传输时间间隔的后续位置使用第二种波束配置发送下行数据信号,其中,所述第二种波束配置与所述第一种波束配置不同。
可选地,所述波束配置包括波束宽度和波束方向。
可选地,所述第二种波束配置与所述第一种波束配置不同包括:所述第二种波束配置的波束宽度小于所述第一种波束配置的波束宽度。
第六方面,本发明实施例提供一种发送信号的方法,包括:
在当前传输时间间隔的第一时间资源位置使用第一种波束配置发送下行控制信号,所述第一时间资源位置是当前传输时间间隔中的一段时间资源所对应的时间位置;
在当前传输时间间隔的第二时间资源位置使用第二种波束配置发送下行数据信号,所述第二时间资源位置是当前传输时间间隔中除所述第一时间资源位置以外的一段时间资源所对应的时间位置;
在当前传输时间间隔的第三时间资源位置使用第三种波束配置发送下行数据信号,所述第三时间资源位置是当前传输时间间隔中除所述第一时间资源位置和所述第二时间资源位置以外的一段时间资源所对应的时间位置。
可选地,所述第二种波束配置的波束宽度小于或等于所述第一种波束配置的波束宽度;所述第三种波束配置的波束宽度小于或等于所述第一种波束配置的波束宽度;所述第三种波束配置的波束宽度不等于所述第二种波束配置的波束宽度或者所述第三种波束配置的波束方向和所述第二种波束配置的波束方向不同。
第七方面,本发明实施例提供一种发送信号的方法,包括:
在当前传输时间间隔的开始位置发送下行控制信息,所述下行控制信息中包括用于指示用于波束切换的时间资源的位置信息;
根据所述下行控制信息中所包括的用于指示用于波束切换的时间资源的位置信息,发送下行数据并在相应时间资源位置进行波束切换。
第八方面,本发明实施例提供一种发送下行数据的方法,包括:
生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;
所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,使用第一种波束配置发送所述控制部分;使用第二种波束配置发 送所述数据部分,其中,所述第二种波束配置与所述第一种波束配置不同;
发送所述下行数据帧。
可选地,所述波束配置包括波束宽度和波束方向;
可选地,所述第二种波束配置的波束宽度小于所述第一种波束配置的波束宽度;或者,所述第二种波束配置的波束方向和所述第一种波束配置的波束方向是不同的。在阅读了以下各附图中图示的实施例的详细说明后,本领域的普通技术人员将明白本发明的各种实施例的这些及其它目的和优点。
通过采用宽波束发送控制信号的方法,可以提高控制信号的接收稳定性,降低其对用户移动的敏感程度。通过采用不同的窄波束给不同的用户组发送信号,可以更具针对性地向处于同一窄波束内的用户进行数据传输,从而可以避免仅仅基于频分复用的宽波束传输方案所带来的吞吐率瓶颈,并且利用窄波束传输所带来的功率增益提高系统整体的吞吐率。
附图说明
附图包含在并且构成本说明书的一部分,其中相同的数字描绘相同的元件,附图说明本发明的实施例,并且与描述内容一起用于解释本发明的原理。
图1为现有技术中简单组网示意图;
图2为定向波束信号经过一定的传播距离后的覆盖范围示意图;
图3为现有技术提供的数据帧的结构示意图;
图4为本发明实施例提供的第一种高频信号传输方法对应的帧结构示意图;
图5为本发明实施例提供的第二种高频信号传输方法对应的帧结构示意图;
图6为本发明实施例提供的利用不同宽度的波束传输不同类型的数据的方案示意图;
图7为本发明实施例提供的第三种高频信号传输方法对应的帧结构示意图;
图8为本发明实施例提供的第四种高频信号传输方法对应的帧结构示意图;
图9为本发明实施例提供的一种预留波束切换时间资源的方案示意图;
图10为本发明实施例提供的另一种预留波束切换时间资源的方案示意图;
图11为本发明实施例提供的一种下行数据传输设备示意图。
具体实施方式
现在详细参考本发明的各种实施例,其示例在附图中示出。虽然会结合这些实施例进行描述,但可以理解的是它们并不用于将本发明限制于这些实施例。相反,本发明公开旨在覆盖可能包括在所附权利要求书中限定的本发明的精神和范围内的替代技术、修改和等同技术。另外,在以下本发明的详细描述中,阐述了许多特定细节以便提供对本发明的透彻理解。然而,可以理解的是,实际应用中,可以不包括本发明的这些特定细节。在其它实例中没有详细描述众所周知的方法、流程、部件和电路,以免对本发明的各方面造成不必要地模糊。
图3为现有技术提供的数据帧的结构示意图,如图3所示,在现有的用于低频的第四代蜂窝通信系统中,从基站发给多个用户的下行数据帧的基本结构包括控制信号和多用户数据。其中,用于承载控制信息的控制信号的发送周期与基本的传输时间间隔一致。同时,发送给各个用户的数据均占满整个传输时间间隔内除控制信号持续时间以外的其它时间资源;各个用户的数据占用互不交叠的频率资源。也就是说,在一个传输时间间隔以内,基站通过频分复用的方式向多个用户发送数据。这一方案同样可以被高频通信所采用。
如果按照前面描述的在一个传输时间间隔内采用频分的方式复用多个用户的方案,能够同时发送的用户数据的数量有限,无法应对前面提到的用户较多的场景。也就是说,在高频通信中如果仅仅使用频分复用的方法,存在用户调度的自由度不足的问题。如果将不同的用户的数据放到不同的传输时间间隔中发送,则每个用户所经历的调度时延较大,系统无法为每个用户提供低时延的数据传输服务。同时,高频通信系统使用波束赋形的方法利用所形成的定向波束发送信号以提高接收信号的强度和增大小区的覆盖范围。如果在高频通信系统的一个传输时间间隔内仅仅采用频分复用的方式复用多个用户的数据,那 么当前被服务的多个用户必须处于基站所产生的同一个定向波束内,则该系统无法进一步获得采用更窄的波束传输信号所带来的信噪比(Signal-to-noise ratio,SNR)增益,也就不能通过这种方式进一步提高系统的吞吐率。
本发明实施例提供的数据传输方法可以解决高频通信中用户密度较高时在一个传输时间间隔内仅使用频分复用所带来的调度自由度不足和系统吞吐率不高的瓶颈,以及将不同用户的数据调度在不同的传输时间间隔中发送所带来的调度时延较大的问题。需要注意的是,本发明实施例提供的数据传输方法也可称为信号传输方法,例如下文中的高频信号传输方法。
在高频通信中,由波束赋形产生的定向波束具有一定的角度域宽度特征,通常由功率增益衰减至峰值增益的一半时的角度来确定,又称3dB波束宽度(以下简称波束宽度)。对于3dB波束宽度较宽的波束(如25°以上,以下称宽波束),其具有信号功率增益相对较低,但是覆盖范围较广的特征。这种宽波束可以用于发送控制信号,因为控制信号通常采用低阶调制而不需要较高的信号功率,同时宽波束覆盖广的特性可以保证控制信号被可靠的接收,对用户的移动不敏感。对于3dB波束宽度较窄的波束(如6°以下,以下称窄波束),其具有信号功率增益极高,但是覆盖范围较小的特征。这种窄波束可以用于发送数据信号,因为为了提高吞吐率,数据信号通常采用高阶调制而需要较高的信号功率增益,对可靠接收的要求相比于控制信号较低。
本发明实施例提出在单个传输时间间隔内采用频分和时分复用的方式来传输多个用户的数据,并且结合新引入的时分复用方式采用更灵活的波束配置方案来传输待发送的数据(其中,波束配置方案可以指发送某一部分数据所采用的特定的波束宽度和/或特定的波束方向)。具体地,可以在每个传输时间间隔的开始位置所包含的控制信号中,携带发送给各个用户的数据在本次传输时间间隔内所占用的时间和频率资源位置等信息(也就是说,携带多用户数据的时频资源信息),并且在后续的数据信号中按照控制信号携带的信息的指示映射各个用户的数据信号。通过这种方案,可以达到在降低调度时延的同时提高系统整体的调度自由度和数据吞吐率的目的。
本发明实施例提供的信号传输方法还包括在传输控制信号的阶段使用宽波束发送控制信号以提高控制信号接收的可靠性;在发送数据信号的阶段,将 当前控制信号的覆盖范围内所服务的用户按照其相对于基站所处的角度进一步分组,针对各组用户使用窄波束来传输数据信号以提高接收信号的功率从而通过使用高阶调制达到增加系统吞吐率的目的。通过在一个传输时间间隔内引入时分复用和利用宽、窄波束分别传输控制信号和数据信号,从而可以避免仅仅基于频分复用的传输方案所带来的吞吐率瓶颈。
需要注意的是,本发明实施例不限于应用与高频通信系统,在低频通信系统或高低频混合通信系统中也可用于。下面以高频基站为例进行实施例的描述,但是高频基站也可换成低频基站,或高低频混合基站,对应发送的信号也就可以为低频信号或高低频混合信号;同时本发明实施例还可以类比应用于WiFi系统。
实施例一
高频基站(可以指工作在高频频段的基站)在单个下行传输时间间隔的开始位置为控制信号(也就是说,控制信号位于一个传输时间间隔的头部),在控制信号中携带当前服务的各个用户的数据在当前传输时间间隔中所占用的时间和频率位置等信息。
图4为本发明实施例提供的第一种高频信号传输方法对应的帧结构示意图,如图4所示,在单个传输时间间隔内的下行数据帧的数据部分占用的时间资源分为三部分,其中用户1-3的数据分别占用一部分时间资源,当然用户数也可以为两个或三个以上。另外,数据部分占用的时间资源也可以分为两部分或三个以上部分。通过对单个传输时间间隔的时间资源进行划分,使得不同用户的数据可以通过时分的方式复用(例如图4中的用户1的数据和用户2的数据)。在此基础上,也可以将频率资源划分为一个或多个频带,使得不同用户的数据可以通过频分的方式复用(例如图5中的用户5的数据和用户6的数据)。
图5为本发明实施例提供的第二种高频信号传输方法对应的帧结构示意图,如图5所示,基站按照控制信号中携带的各个用户的数据所占用的时间和频率位置等信息,将各个用户的数据映射到相应的位置。具体地,基站(或高频基站)生成下行数据帧,其中,数据帧的时长为一个传输时间间隔TTI;该下行数据帧包括位于头部的控制部分(例如图5中的控制信号)和用于传输多 用户数据的数据部分(例如图5中的用户1-12的数据),其中,多用户数据中至少两个用户数据的时间资源是不同的(也就是说,至少有两个用户的数据占用不同的时间资源,如图5中的用户1的数据和用户5的数据占用了不同的时间资源);其中控制部分携带所述多用户数据中各个用户数据所占用的时间和频率位置信息,该信息可以为某个用户数据所处的时间和频率位置的范围,也可以为某个用户数据所处的时间和频率位置的起始位置和数量;发送该下行数据帧。进一步的,基站将该下行数据帧进行调制,形成待发送的信号,并且通过中射频链路发送出去。对于当前某一个用户,其首先解调接收到的信号中的控制信号部分,确定基站发送给该用户的数据在当前传输时间间隔内所处的时间和频率位置,然后进行数据解调以恢复该用户的数据。
实施例二
高频基站对当前传输时间间隔内需要服务的用户按照其相对于基站的角度进行分组,在角度上接近的用户放在同一个用户组内。然后,基站通过时分的方式向多个用户组传输数据,针对每个用户组采用不同的发送波束,并且在时分的分界点进行波束切换。每个用户组内的各个用户的数据占用不同的频率资源。
图6为本发明实施例提供的利用不同宽度的波束传输不同类型的数据的方案示意图,如图6所示,可以将在相对于基站的角度上接近的用户放在同一个用户组内。图7为本发明实施例提供的第三种高频信号传输方法对应的帧结构示意图,如图7所示,同一个用户组的数据可以用同一种波束进行传输。具体地,对于图7中所示的用户,用户1至4构成前面提到的第一个用户组,用户5至9构成前面提到的第二个用户组,用户9至12构成前面提到的第三个用户组。这三组用户的数据通过时分的方式复用在一起。对于位于本次传输时间间隔开始位置的控制信号,基站采用宽波束的方式进行传输。对于后续的数据信号,基站采用窄波束的方式进行传输。对于不同的用户组的数据,基站采用不同方向和宽度的窄波束进行传输,例如,图7中第一个用户组用窄波束1进行传输,第二个用户组用窄波束2进行传输,第三个用户组用窄波束3进行传输。其中,窄波束1-3的波束方向和波束宽度可以不同。由于各个用户组相对于基站所处的角度中心和范围不同,基站所使用的多个窄波束的方向和宽度 也就不同。通过这样的传输方案,基站可以充分的利用窄波束所带来的功率增益来给每个用户组提供更高的接收信号功率,从而提高系统整体的吞吐率。在发送前后两个用户组的数据之间的时刻,基站可能需要进行波束切换。因此,如图7所示,基站在前后两个用户组的数据之间预留了用于波束切换的时间资源。
需要注意的是,本发明实施例中的宽波束和窄波束是个相对概念。一般地,以25度为界,3dB波束宽度大于25度的波束可以认为是宽波束,3dB波束宽度小于25度的波束可以认为是窄波束。当然,这里的界限25度可以为其它的值。同时,宽窄波束的配置和概念也可以由基站灵活的确定。如图7中的宽波束需要覆盖用户1-4所在的用户组、用户5-8所在的用户组以及用户9-12所在的用户组,覆盖范围较大,因此可以称为宽波束。而窄波束1只需覆盖用户1-4所在的用户组即可,覆盖范围较小,因此可以称为窄波束。
对于当前某一个用户,其首先解调接收到的信号中的控制信号部分,确定基站发送给该用户的数据在当前传输时间间隔内所处的时间和频率位置,然后进行数据解调以恢复该用户的数据。
实施例三
高频基站对当前传输时间间隔内需要服务的用户按照其相对于基站的角度进行分组,在角度上接近的用户放在同一个用户组内。然后,基站通过时分的方式向多个用户组传输数据,针对每个用户组采用不同的发送波束,并且在时分的分界点进行波束切换。每个用户组内的各个用户的数据占用不同的频率资源。
图8为本发明实施例提供的第四种高频信号传输方法对应的帧结构示意图,如图8所示,基站按照预先约定的规则将单个传输时间间隔中的时间和频率资源按照预设的最小粒度分块并且进行编号。基站在单个传输时间间隔的开始位置为控制信号,并在控制信号中携带用于传输各个用户的数据所使用的资源块的编号。其中,发送给某个用户的数据可能占用一个或多个资源块。基站按照控制信号中携带的资源块编号将各个用户的数据映射到相应的位置,形成下行数据帧,并对该下行数据帧进行调制形成待发送的信号,并且通过中射频链路发送出去。对于当前某一个用户,其首先解调接收到的信号中的控制信号 部分,确定基站发送给该用户的数据所处的资源块编号。然后,该用户根据预先约定的映射规则确定基站发送给该用户的数据在本次传输时间间隔中所处的时间和频率资源的位置,然后进行数据解调以恢复该用户的数据。
进一步地,基站可以对当前传输时间间隔内需要服务的用户按照其相对于基站的角度进行分组,在角度上接近的用户放在同一个用户组内。然后,基站通过时分的方式向多个用户组传输数据,针对每个用户组采用不同的发送波束,并且在时分的分界点进行波束切换。每个用户组内的各个用户的数据占用不同的频率资源。具体地,如图8所示,按照预先约定的规则,基站根据当前传输时间间隔所服务的用户组的数量将当前传输时间间隔除控制信号以外的部分分割为数量与当前用户组数量相同的多个时间资源块(例如图8中的时间资源块1-3),并在这些时间资源块之间预留用于波束切换的时间资源。对于位于本次传输时间间隔开始位置的控制信号,基站采用宽波束的方式进行传输。对于后续的数据信号,基站采用窄波束的方式进行传输。对于不同时间资源块内的数据,基站采用不同方向和宽度的窄波束进行传输(例如图8中,时间资源块1用窄波束1进行传输,时间资源块2用窄波束2进行传输,时间资源块3用窄波束3进行传输)。在发送相邻两个用户组的数据之间的时刻(或时间区间),基站可能需要进行波束切换。
对于当前某一个用户,其首先解调接收到的信号中的控制信号部分,确定基站发送给该用户的数据所处的时间和频率资源块编号。然后,该用户根据预先约定的映射规则确定基站发送给该用户的数据在本次传输时间间隔中所处的时间和频率资源的位置,然后进行数据解调以恢复该用户的数据。
实施例四
在实施例二和三中,基站在单个传输时间间隔中采用了宽波束发送控制信号和不同的窄波束向不同方向的用户组发送数据信号。这一过程涉及了波束切换的操作。在波束切换的过程中,基站无法有效的传输信号。因此,需要为波束切换预留一定的时间资源(或一段时间区间)或者提供一定的冗余信号避免波束切换给信号传输带来较大的失真。本实施例给出两种为波束切换预留时间资源或者冗余信号的方式。
图9为本发明实施例提供的一种预留波束切换时间资源的方案示意图,如 图9所示,单个传输时间间隔中的时间资源被划分为若干个数据块并且按数据块发送,其中,本发明并不限定数据块的划分粒度或者数据块的持续时间。对这些数据块进行编号(例如图9中,窄波束1中的数据块被编号为2-7),将其中某些特定的数据块预留为波束切换的用途(例如图9中,数据块1和数据块8),不发送信号。在这种方案下,基站可以在单个传输时间间隔的开始位置的控制信号中声明这些不发送信号的数据块的编号(例如图9中的编号1和8)。用户可以利用这一信息确定接收到的信号中的有效数据的时间位置,也可以利用这一信息确定实施例三和四中提到的当前传输时间间隔中的时间资源块的数量和位置等信息,便于进行后续的信号解调和恢复。作为另一种实现方式,基站可以简单的将预留给波束切换的符号空置,且不在控制信号中声明这些符号的编号,由用户根据接收信号的幅度确定空置符号的位置,以获得前面提到的相关信息并进行后续的信号解调和恢复。
图10为本发明实施例提供的另一种预留波束切换冗余信号的方案示意图,如图10所示,如果采用基于正交频分复用(Orthogonal frequency division multiplexing,OFDM)的多载波波形或者基于单载波频分多址(Single-carrier frequency division multiple access,SC-FDMA)的单载波波形传输信号,通常会在每个OFDM或SC-FDMA符号的前面添加循环前缀(Cyclic prefix,CP)以对抗多径信道。这种循环前缀在接收机通常会被简单的去掉。为了给波束切换提供冗余信号,可以对这些OFDM或SC-FDMA符号进行编号并且将部分OFDM或SC-FDMA符号的循环前缀加长,便于基站在这些长循环前缀上进行波束切换。在这样的信号传输方案下,即使这些具有长循环前缀的OFDM或SC-FDMA符号的循环前缀由于波束切换的影响在接收过程中存在一定的误差,其对抗多径信道的能力损失不大,对系统整体的解调性能的影响也不大。在这种方案下,基站可以在单个传输时间间隔的开始位置的控制信号中携带采用长循环前缀的OFDM或SC-FDMA符号的编号。用户可以利用这一信息确定接收到的信号中除循环前缀以外的有效数据的时间位置,也可以利用这一信息确定实施例二和三中提到的当前传输时间间隔中的时间资源块的数量和位置等信息,便于进行后续的信号解调和恢复。
本发明提供的高频通信的下行信号传输方法的有益效果在于:通过在一个 传输时间间隔内引入时分复用,可以为高频通信系统提供更高的调度自由度,在高用户密度和低速率要求的场景中降低每个用户所承受的调度时延;通过采用宽波束发送控制信号的方法,可以提高控制信号的接收稳定性,降低其对用户移动的敏感程度;通过结合时分复用的方法,采用不同的窄波束给不同的用户组发送信号,可以更具针对性地向处于同一窄波束内的用户进行数据传输,从而可以避免仅仅基于频分复用的宽波束传输方案所带来的吞吐率瓶颈,并且利用窄波束传输所带来的功率增益提高系统整体的吞吐率。同时,本发明提供的高频通信的下行信号传输方法能够更高效的支持高频通信和低频通信采用相同的传输时间间隔和控制信令周期,便于跨频段的调度操作和数据业务的转移和切换操作。
相应于上述方法实施例,本发明实施例还提供一种下行数据传输装置,包括:
生成模块,用于生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;所述控制部分携带所述多用户数据中各个用户数据所占用的时间和频率位置信息;
发送模块,用于发送所述下行数据帧。
上述装置实施例中涉及到的一些技术特征,例如:传输时间间隔,控制部分,数据部分等,以及其他进一步的描述(如宽波束,窄波束,波束切换,波束配置等),和上述方法实施例中涉及到的一些技术特征类似或对应,在此不再进行重复说明。
相应于上述方法实施例,如图11所示,本发明实施例提供一种下行数据传输设备,包括:处理器1101、发射机1102及总线1103,其中所述处理器11012及发射机1102通过所述总线1103连接进行数据传输;
所述处理器1101用于生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;所述控制部分携带所述多用户数据中各个用户数据所占用的时间和频 率位置信息;
所述发射器1102用于发送所述下行数据帧。
进一步地,该设备还可以包括存储器。该存储器用于存储所述处理器1101执行所需的指令或程序。
上述装置实施例中涉及到的一些技术特征,例如:传输时间间隔,控制部分,数据部分等,以及其他进一步的描述(如宽波束,窄波束,波束切换,波束配置等),和上述方法实施例中涉及到的一些技术特征类似或对应,在此不再进行重复说明。
需要特别说明的是,除去针对高频的特有操作部分,本发明实施例还可以用于低频系统或高低频混合系统。
虽然本发明已经在特定实施例中进行了描述,但是应理解,本发明不应该被解释为受这些实施例的限制,而是根据前面的权利要求书进行解释。

Claims (16)

  1. 一种下行数据传输方法,其特征在于,包括:
    生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;
    所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;
    所述控制部分携带分配给所述多用户数据中各个用户数据的时间和频率位置信息;
    发送所述下行数据帧。
  2. 根据权利要求1所述的下行数据传输方法,其特征在于,
    所述数据部分的时间和频率资源被按预设的粒度划分为时频资源块,其中,每一个时频资源块对应一个编号;
    所述所述多用户数据中各个用户数据所占用的时间和频率位置信息为各个用户数据所占用的一个或多个时频资源块的编号。
  3. 根据权利要求1或2所述的下行数据传输方法,其特征在于,
    使用第一波束发送所述控制部分;
    使用第二波束发送所述数据部分,其中,所述第二波束与所述第一波束不同。
  4. 根据权利要求3所述的下行数据传输方法,其特征在于,
    所述第二波束的波束宽度小于所述第一波束的波束宽度;或者
    所述第二波束的波束方向和所述第一波束的波束方向是不同的。
  5. 根据权利要求1所述的下行数据传输方法,其特征在于,
    所述数据部分包括多个用户组数据,所述多个用户组数据通过时分的方式复用。
  6. 根据权利要求5所述的下行数据传输方法,其特征在于,
    不同的用户组数据使用不同的波束发送。
  7. 根据权利要求6所述的下行数据传输方法,其特征在于,
    不同的用户组数据之间预留用于波束切换的时间区间或冗余信号。
  8. 根据权利要求1-7任一项所述的下行数据传输方法,其特征在于,
    所述控制部分和所述数据部分之间预留用于波束切换的时间区间或冗余 信号。
  9. 一种下行数据传输设备,其特征在于,包括:处理器、发射机及总线,其中所述处理器及发射机通过所述总线连接进行数据传输;
    所述处理器用于生成下行数据帧,其中,所述数据帧的时长为一个传输时间间隔TTI;所述下行数据帧包括位于头部的控制部分和用于传输多用户数据的数据部分,其中,所述多用户数据中至少两个用户数据的时间资源是不同的;所述控制部分携带分配给所述多用户数据中各个用户数据的时间和频率位置信息;
    所述发射器用于发送所述下行数据帧。
  10. 根据权利要求9所述的下行数据传输装置,其特征在于,
    所述数据部分的时间和频率资源被按预设的粒度划分为时频资源块,其中,每一个时频资源块对应一个编号;
    所述所述多用户数据中各个用户数据所占用的时间和频率位置信息为各个用户数据所占用的一个或多个时频资源块的编号。
  11. 根据权利要求9或10所述的下行数据传输装置,其特征在于,
    使用第一波束发送所述控制部分;
    使用第二波束发送所述数据部分,其中,所述第二波束与所述第一波束不同。
  12. 根据权利要求11所述的下行数据传输装置,其特征在于,
    所述第二波束的波束宽度小于所述第一波束的波束宽度;或者
    所述第二波束的波束方向和所述第一波束的波束方向是不同的。
  13. 根据权利要求9所述的下行数据传输装置,其特征在于,
    所述数据部分包括多个用户组数据,所述多个用户组数据通过时分的方式复用。
  14. 根据权利要求13所述的下行数据传输装置,其特征在于,
    不同的用户组数据使用不同的波束发送。
  15. 根据权利要求14所述的下行数据传输装置,其特征在于,
    不同的用户组数据之间预留用于波束切换的时间区间或冗余信号。
  16. 根据权利要求9-15任一项所述的下行数据传输装置,其特征在于,
    所述控制部分和所述数据部分之间设置用于波束切换的时间区间或冗余信号。
PCT/CN2016/106460 2015-12-29 2016-11-18 一种下行数据传输方法及设备 WO2017114021A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20160311.5A EP3755101A1 (en) 2015-12-29 2016-11-18 Downlink data transmission method and device
BR112018011935-0A BR112018011935B1 (pt) 2015-12-29 2016-11-18 Método e dispositivo de transmissão de dados de enlace descendente
EP16880811.1A EP3379882B1 (en) 2015-12-29 2016-11-18 Downlink data transmission method and device
US16/022,309 US11503614B2 (en) 2015-12-29 2018-06-28 Downlink data transmission method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511019529.9A CN106937394B (zh) 2015-12-29 2015-12-29 一种下行数据传输方法及设备
CN201511019529.9 2015-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/022,309 Continuation US11503614B2 (en) 2015-12-29 2018-06-28 Downlink data transmission method and device

Publications (1)

Publication Number Publication Date
WO2017114021A1 true WO2017114021A1 (zh) 2017-07-06

Family

ID=59224640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106460 WO2017114021A1 (zh) 2015-12-29 2016-11-18 一种下行数据传输方法及设备

Country Status (5)

Country Link
US (1) US11503614B2 (zh)
EP (2) EP3379882B1 (zh)
CN (2) CN110166085B (zh)
BR (1) BR112018011935B1 (zh)
WO (1) WO2017114021A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095276A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种数据传输方法和装置
EP3691322A4 (en) * 2017-09-27 2021-06-30 ZTE Corporation TRANSMISSION METHOD AND DEVICE AND RECEIVING METHOD AND DEVICE FOR DOWNLINK DATA, AND INFORMATION MEDIA

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10396874B1 (en) * 2016-04-25 2019-08-27 Avago Technologies International Sales Pte. Limited Proactive beamforming while in motion
US10904784B2 (en) * 2016-06-15 2021-01-26 Qualcomm Incorporated Beam reporting and scheduling in multicarrier beamformed communications
CN108260134B (zh) * 2016-12-28 2023-12-29 华为技术有限公司 一种下行波束调整的方法及装置
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置
CN109392120B (zh) * 2017-08-10 2023-06-09 株式会社电装 信息指示方法及相关设备
CN108093480B (zh) * 2017-09-30 2024-02-13 中兴通讯股份有限公司 一种信号传输的方法及装置
EP3518471B1 (de) * 2018-01-24 2020-07-29 Siemens Aktiengesellschaft Funk-kommunikationssystem für ein industrielles automatisierungssystem und verfahren zum betrieb eines funk-kommunikationssystems
WO2019160652A1 (en) * 2018-02-15 2019-08-22 Sony Corporation Method and apparatus for mapping beam pattern to paging resources
JPWO2022215119A1 (zh) * 2021-04-05 2022-10-13
CN113099539A (zh) * 2021-04-12 2021-07-09 北京贝耀信科技有限公司 一种用于智慧矿山管理的大数据传输方法及系统
CN113347720A (zh) * 2021-05-25 2021-09-03 浙江安防职业技术学院 一种计算机大数据信息收集方法及系统
US11943705B2 (en) * 2021-06-11 2024-03-26 Skylo Technologies, Inc. RF (radio frequency) virtualization architecture
US11723053B2 (en) * 2021-07-08 2023-08-08 Qualcomm Incorporated Time domain coreset design for single carrier waveforms

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627564A (zh) * 2007-03-09 2010-01-13 三星电子株式会社 在通信系统中发送和接收公共控制信息的方法和系统
CN101868926A (zh) * 2007-11-20 2010-10-20 高通股份有限公司 用于为无线通信系统提供高效的帧结构的方法和装置
CN101951639A (zh) * 2010-08-31 2011-01-19 华为技术有限公司 一种数据传输方法、终端、基站及系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634296B2 (en) * 2009-06-16 2014-01-21 Viasat, Inc. Dynamic bandwidth resource allocation for satellite downlinks
US20130051321A1 (en) * 2011-08-24 2013-02-28 Qualcomm Incorporated Multiple description coding (mdc) for channel state information reference signals (csi-rs)
KR20230145244A (ko) * 2011-09-30 2023-10-17 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
CN103139125B (zh) 2011-12-02 2016-04-13 华为技术有限公司 下行数据发送、接收方法及基站与用户终端
US9699668B2 (en) * 2012-04-24 2017-07-04 Lg Electronics Inc. Methods for measuring and transmitting downlink signals and apparatuses therefor
US10206244B2 (en) * 2012-07-06 2019-02-12 Samsung Electronics Co., Ltd Method and apparatus for determining TDD UL-DL configuration applicable for radio frames
US9526112B2 (en) * 2013-09-30 2016-12-20 Apple Inc. Control signaling optimization for LTE communications
US10512008B2 (en) * 2014-01-17 2019-12-17 Idac Holdings, Inc. 3GPP MMW access link system architecture
CN115483956A (zh) * 2014-11-26 2022-12-16 Idac控股公司 高频无线系统中的初始接入
US9936519B2 (en) * 2015-03-15 2018-04-03 Qualcomm Incorporated Self-contained time division duplex (TDD) subframe structure for wireless communications
US20170013618A1 (en) * 2015-07-10 2017-01-12 Electronics And Telecommunications Research Institute Low latency transmission method and apparatus
US10411777B2 (en) * 2016-08-24 2019-09-10 Qualcomm Incorporated Mapping between a control beam and a data channel beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101627564A (zh) * 2007-03-09 2010-01-13 三星电子株式会社 在通信系统中发送和接收公共控制信息的方法和系统
CN101868926A (zh) * 2007-11-20 2010-10-20 高通股份有限公司 用于为无线通信系统提供高效的帧结构的方法和装置
CN101951639A (zh) * 2010-08-31 2011-01-19 华为技术有限公司 一种数据传输方法、终端、基站及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3379882A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3691322A4 (en) * 2017-09-27 2021-06-30 ZTE Corporation TRANSMISSION METHOD AND DEVICE AND RECEIVING METHOD AND DEVICE FOR DOWNLINK DATA, AND INFORMATION MEDIA
US11502802B2 (en) 2017-09-27 2022-11-15 Zte Corporation Transmission method and device and reception method and device for downlink data, and storage medium
WO2019095276A1 (zh) * 2017-11-17 2019-05-23 华为技术有限公司 一种数据传输方法和装置
CN111357370A (zh) * 2017-11-17 2020-06-30 华为技术有限公司 一种数据传输方法和装置
EP3700280A4 (en) * 2017-11-17 2020-11-04 Huawei Technologies Co., Ltd. DATA TRANSFER METHOD AND DEVICE
JP2021503213A (ja) * 2017-11-17 2021-02-04 ホアウェイ・テクノロジーズ・カンパニー・リミテッド データ伝送方法および装置
CN111357370B (zh) * 2017-11-17 2022-01-14 华为技术有限公司 一种数据传输方法和装置
US11309950B2 (en) 2017-11-17 2022-04-19 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Also Published As

Publication number Publication date
EP3379882B1 (en) 2020-03-04
CN110166085A (zh) 2019-08-23
BR112018011935B1 (pt) 2023-12-26
CN106937394A (zh) 2017-07-07
EP3379882A4 (en) 2018-11-14
US20180310322A1 (en) 2018-10-25
CN106937394B (zh) 2023-02-03
CN110166085B (zh) 2020-08-07
EP3755101A1 (en) 2020-12-23
EP3379882A1 (en) 2018-09-26
US11503614B2 (en) 2022-11-15
BR112018011935A2 (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
WO2017114021A1 (zh) 一种下行数据传输方法及设备
US11044061B2 (en) Terminal apparatus, communication method, and integrated circuit
EP3579515B1 (en) Base station device, terminal device and communication methods
TW202021397A (zh) 無線通訊方法與無線通訊裝置
TW202029821A (zh) 跨時槽邊界的排程
CN107888360B (zh) 参考信号传输方法、设备及系统
US11705942B2 (en) Methods for UE-specific RS multiplexing
US11848894B2 (en) Method and device in UE and base station used for wireless communication
US11844008B2 (en) Method and device in UE and base station for beam recovery in wireless communication
US20190319680A1 (en) Method and Device for Multi-Antenna Transmission in UE and Base Station
JP2015510726A (ja) 無線通信カバー方法及びシステム
CN114616894A (zh) 无线通信系统中用于管理基站的无线电单元的资源的装置和方法
US11424881B2 (en) Method and device in UE and base station used for wireless communication
US20210045111A1 (en) Method and device used in wireless communication nodes
US20220329401A1 (en) Method and device in ue and base station for wireless communication
CN110913476B (zh) 通信方法及通信装置
US11870629B2 (en) Enhanced phase tracking reference signal for digital post distortion assist
US11659575B2 (en) Phase coherent demodulation reference signal techniques for cross-slot channel estimation
WO2021226144A1 (en) Dynamic switching between coherent and non-coherent modulation for ultra-reliable low-latency communication (urllc)
JP2019165464A (ja) 基地局及び端末
US20230354047A1 (en) Sidelink synchronization signal block designs for shared spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016880811

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018011935

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016880811

Country of ref document: EP

Effective date: 20180620

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112018011935

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180613