WO2017113959A1 - 信道估计方法、发送端设备和接收端设备 - Google Patents

信道估计方法、发送端设备和接收端设备 Download PDF

Info

Publication number
WO2017113959A1
WO2017113959A1 PCT/CN2016/103266 CN2016103266W WO2017113959A1 WO 2017113959 A1 WO2017113959 A1 WO 2017113959A1 CN 2016103266 W CN2016103266 W CN 2016103266W WO 2017113959 A1 WO2017113959 A1 WO 2017113959A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
demodulation
active antenna
subframe
resource block
Prior art date
Application number
PCT/CN2016/103266
Other languages
English (en)
French (fr)
Inventor
陈大庚
刘瑾
刘永
施弘哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2017113959A1 publication Critical patent/WO2017113959A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals

Definitions

  • the present invention relates to wireless communication technologies, and in particular, to a channel estimation method, a transmitting end device, and a receiving end device.
  • MIMO Multi-input Multi-output
  • LTE Long-Term Evolution
  • DMRS Demodulation Reference Signal
  • the bearer resources of the demodulation reference signal are allocated in a fixed manner, so the resource allocation method is not flexible enough.
  • a transmitting end device which can implement flexible allocation of demodulation reference signal bearer resources.
  • a receiving end device which can implement flexible allocation of demodulation reference signal bearer resources.
  • a channel estimation method including:
  • each resource block pair includes multiple resource block pairs, and each resource block pair is carried by the same set of consecutive subcarriers and belongs to different time slots; each resource block pair include a plurality of demodulation resource granules, each demodulation resource granule group comprising a plurality of resource granules; each demodulation resource granule group carrying a demodulation reference signal of a plurality of active antenna ports; within each resource block pair, The number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • each resource block pair if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the same active antenna port is carried.
  • the number of demodulation resource groups of the demodulation reference signal is one.
  • the active antenna port associated with the subframe is If the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 2.
  • each resource block pair includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port in each resource block pair is related to the active antenna port associated with the subframe.
  • the number of bits decreases and decreases as the number of active antenna ports associated with the subframe decreases.
  • a channel estimation method including:
  • each resource block pair is carried by the same set of consecutive subcarriers and belongs to different time slots; each resource block pair include a plurality of demodulation resource granules, each demodulation resource granule group comprising a plurality of resource granules; each demodulation resource granule group carrying a demodulation reference signal of a plurality of active antenna ports; within each resource block pair, The number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • channel estimation is performed on the active antenna port according to a demodulation reference signal corresponding to the active antenna port carried in the subframe.
  • each resource block pair if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the same active antenna port is carried.
  • the number of demodulation resource groups of the demodulation reference signal is one.
  • the active antenna port associated with the subframe is If the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 2.
  • the first achievable manner of the second aspect, or the second achievable manner of the second aspect, in the third achievable manner of the second aspect, in each resource block pair if The number of active antenna ports associated with the subframe is greater than or equal to 1 and less than or equal to 8, and the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 3.
  • each resource block pair includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource block pair is related to the active day associated with the subframe.
  • the number of line ports decreases and increases as the number of active antenna ports associated with the subframe decreases.
  • a device for transmitting a device including:
  • a generating module configured to generate a subframe, where the subframe includes multiple resource block pairs, where each resource block pair is carried by the same set of consecutive subcarriers and belongs to different time slots;
  • Each resource block pair includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments;
  • each demodulation resource group carries a demodulation reference signal of a plurality of active antenna ports;
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • a sending module configured to send the subframe.
  • each resource block pair if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the same active antenna port is carried.
  • the number of demodulation resource groups of the demodulation reference signal is one.
  • the active antenna port associated with the subframe is If the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 2.
  • the first achievable manner of the third aspect, or the second achievable manner of the third aspect, in the third achievable manner of the third aspect, in each resource block pair if The number of active antenna ports associated with the subframe is greater than or equal to 1 and less than or equal to 8, and the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 3.
  • each resource block pair includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port is the active antenna port associated with the subframe.
  • the number of bits decreases and decreases as the number of active antenna ports associated with the subframe decreases.
  • a receiving end device including:
  • a receiving module configured to receive a subframe, where the subframe includes multiple resource block pairs, where each resource block pair is carried by the same set of consecutive subcarriers and belongs to different time slots;
  • Each resource block pair includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments;
  • each demodulation resource group carries a demodulation reference signal of a plurality of active antenna ports;
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • the channel estimation module is configured to perform channel estimation on the active antenna port according to the demodulation reference signal corresponding to the active antenna port carried in the subframe for each active antenna port.
  • each resource block pair if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the same active antenna port is carried.
  • the number of demodulation resource groups of the demodulation reference signal is one.
  • the active antenna port associated with the subframe is If the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 2.
  • each resource block pair includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource block pair is the active antenna port associated with the subframe.
  • the number of bits decreases and decreases as the number of active antenna ports associated with the subframe decreases.
  • a channel estimation method including:
  • the subframe includes a plurality of resource units, each resource unit being carried by a group of consecutive or non-contiguous subcarriers, and carried on a set of consecutive or non-contiguous symbols; the resource unit includes multiple solutions a resource group, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; and each resource unit carries the same active
  • the number of demodulation resource groups of the demodulation reference signal of the antenna port is associated with the number of active antenna ports associated with the subframe;
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the solution carrying the same active antenna port
  • the number of demodulation resource groups of the reference signal is one.
  • the number of active antenna ports associated with the subframe is When the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port is 2.
  • each resource unit includes six demodulation resource granular groups, and each demodulation resource granular group includes four Resource pellets.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource unit is related to the active antenna port associated with the subframe. The number increases and decreases, increasing as the number of active antenna ports associated with the subframe decreases.
  • a channel estimation method including:
  • the subframe includes a plurality of resource units, each resource unit being carried by a group of consecutive or non-contiguous subcarriers, and carried on a set of consecutive or non-contiguous symbols; the resource unit includes multiple solutions a resource group, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; and each resource unit carries the same active
  • the number of demodulation resource groups of the demodulation reference signal of the antenna port is associated with the number of active antenna ports associated with the subframe;
  • channel estimation is performed on the active antenna port according to a demodulation reference signal corresponding to the active antenna port carried in the subframe.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the solution carrying the same active antenna port
  • the number of demodulation resource groups of the reference signal is one.
  • the number of active antenna ports associated with the subframe is When the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port is 2.
  • the first implementable manner of the sixth aspect, or the second implementable manner of the sixth aspect, in the third implementable manner of the sixth aspect, in each resource unit if If the number of active antenna ports associated with the subframe is greater than or equal to 1 and less than or equal to 8, the bearer is the same.
  • the number of demodulation resource groups of the demodulation reference signal of the active antenna port is three.
  • each resource unit includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource unit is related to the active antenna port associated with the subframe. The number increases and decreases, increasing as the number of active antenna ports associated with the subframe decreases.
  • a transmitting device including:
  • Generating a module configured to generate a subframe, where the subframe includes multiple resource units, each resource unit is carried by a group of consecutive or non-contiguous subcarriers, and carried on a set of consecutive or non-contiguous symbols; the resource The unit includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; The number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • a sending module configured to send the subframe.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the solution carrying the same active antenna port
  • the number of demodulation resource groups of the reference signal is one.
  • the number of active antenna ports associated with the subframe is When the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port is 2.
  • each resource unit includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource unit is related to the active antenna port associated with the subframe. The number increases and decreases, increasing as the number of active antenna ports associated with the subframe decreases.
  • a receiving end device including:
  • a receiving module configured to receive a subframe, where the subframe includes multiple resource units, each resource unit is carried by a group of consecutive or non-contiguous subcarriers, and carried on a set of consecutive or non-contiguous symbols; the resource The unit includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; The number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • the channel estimation module is configured to perform channel estimation on the active antenna port according to the demodulation reference signal corresponding to the active antenna port carried in the subframe for each active antenna port.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the solution carrying the same active antenna port
  • the number of demodulation resource groups of the reference signal is one.
  • the number of active antenna ports associated with the subframe is When the number is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port is 2.
  • the first achievable manner of the eighth aspect, or the second achievable manner of the eighth aspect, in the third achievable manner of the eighth aspect, in each resource unit is greater than or equal to 1 and less than or equal to 8, and the number of demodulation resource groups of the demodulation reference signals carrying the same active antenna port is 3.
  • each resource unit includes 6 demodulation resource groups, and each demodulation resource group includes 4 resource particles.
  • the number of demodulation resource groups of the demodulation reference signal carrying the same active antenna port in each resource unit is related to the active antenna port associated with the subframe. The number increases and decreases, increasing as the number of active antenna ports associated with the subframe decreases.
  • a demodulation resource of a demodulation reference signal carrying the same active antenna port in multiple resource block pairs of the subframe may be set according to the number of active antenna ports associated with each subframe. The number of granules. Therefore, the technical solution provided by the embodiment of the present invention makes the allocation of the demodulation reference signal bearer resources more flexible.
  • FIG. 1 is a schematic diagram showing the logical structure of a resource block pair according to an embodiment of the present invention
  • FIG. 2 is a flow chart of a channel estimation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a distribution pattern of a demodulation resource group according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a distribution pattern of a demodulated resource group according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a distribution pattern of a demodulation resource group according to still another embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing the logical structure of a device at a transmitting end according to an embodiment of the invention.
  • FIG. 7 is a schematic diagram of a logical structure of a receiving end device according to an embodiment of the invention.
  • FIG. 8 is a schematic structural diagram of hardware of a communication device according to an embodiment of the invention.
  • FIG. 9 is a schematic diagram showing the logical structure of a resource unit according to an embodiment of the invention.
  • the number of antenna ports used per data transmission (eg, transmission per subframe) is likely to be lower than the maximum number of antenna ports supported by the wireless communication standard, in other words, each data transmission. Some antenna ports may not be used during the process. For example, although the latest LTE standard supports up to eight antenna ports, the number of antenna ports used per data transmission may be less than eight. For convenience of description, the antenna port actually used in each data transmission process is referred to as an active antenna port.
  • FIG. 1 is a schematic diagram of a logical structure of a resource block pair 100 according to an embodiment of the invention.
  • the resource block (RB) pair 100 is located in a subframe (not shown), and in addition to the resource block pair 100 shown in FIG. 1, the subframe further includes other resource block pairs (not shown). .
  • the resource block pair 100 shown in FIG. 1 includes a resource block 102 and a resource block 104.
  • the resource block 102 and the resource block 104 are carried by the same set of consecutive subcarriers (Subcarriers) in the frequency domain, and the set of subcarriers includes 12 subcarriers.
  • resource block 102 and resource block 104 belong to different slots, ie resource block 102 belongs to slot 1 and resource block 104 belongs to slot 2.
  • Each time slot contains 7 symbols in the time domain.
  • the smallest resource unit in the resource block pair 100 is a Resource Element (RE), such as a resource element 106, each resource element is carried by one subcarrier in the frequency domain and one symbol in the time domain.
  • RE Resource Element
  • each of resource block 102 and resource block 104 contains 84 (12 x 7) resource granules
  • resource block pair 100 contains 168 resource granules.
  • the structure of the resource block pair 100 shown in FIG. 1 adopts the structure of resource block pairs in the current LTE subframe.
  • the resource block pair in the current LTE subframe can also adopt other structures, and therefore the resource block pair 100 can adopt other structures.
  • the structure of the resource block pair in the subframe defined in the embodiment of the present invention is not limited to the structure defined in the current LTE standard, and other structures may be defined according to specific needs, for example, The number of subcarriers in the same group of consecutive subcarriers in the subframe resource resource pair and the number of symbols included in each slot are set according to specific needs, or the resource block pair is changed to another structure.
  • a plurality of resource granules are used to carry a demodulation reference signal, and the resource granules for carrying the demodulation reference signal are usually organized in units of resource granules, and each resource granule includes multiple Resource pellets.
  • the resource group of the above-mentioned bearer demodulation reference signal is referred to as a demodulation resource group. The number of demodulated resource groups in the resource block pair will be described in detail below with reference to FIG.
  • FIG. 2 is a flow diagram of a channel estimation method 200 in accordance with an embodiment of the present invention.
  • Step 202 The source device generates a subframe, where the subframe includes multiple resource block pairs, and each resource block pair is carried by the same set of consecutive subcarriers and belongs to different time slots.
  • Each resource block pair includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource particles; each demodulation resource group carries a demodulation reference signal of a plurality of active antenna ports; Within a resource block pair, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe.
  • Step 204 The sending end device sends the foregoing subframe to the receiving end.
  • Step 206 The receiving end device receives the foregoing subframe.
  • Step 208 For each active antenna port, the receiving end device performs channel estimation on the active antenna port according to the demodulation reference signal corresponding to the active antenna port carried in the foregoing subframe.
  • the demodulation of the same active antenna port in the multiple resource block pairs of the subframe may be set according to the number of active antenna ports associated with each subframe.
  • the number of demodulation resource groups of reference signals Therefore, the technical solution provided by the embodiment of the present invention makes the resource allocation of the demodulation reference signal more flexible.
  • each resource block pair if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the demodulation resource of the demodulation reference signal carrying the same active antenna port The number of groups is 1.
  • the distribution pattern of the demodulation resource group within the resource block pair can be as shown in FIG.
  • the resource particles represented by the fill patterns 302-312 are used to carry the demodulation reference signal, so that a total of 24 resource blocks are used to carry the demodulation reference signal.
  • the resource particles represented by the same filling pattern constitute a demodulation resource group, and therefore, the distribution pattern 300 shown in FIG. 3 includes a total of 6 demodulation resource groups, and each resource particle carrying the demodulation reference signal It belongs to only one demodulation resource group.
  • Each demodulation resource group can carry demodulation reference signals of multiple active antenna ports by using Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • the demodulation reference signal of each active antenna port is carried by only one demodulation resource group, but each demodulation resource group carries at most 4 The demodulation reference signal corresponding to the active antenna port.
  • the lower limit 13 and the upper limit 24 of the number of active antenna ports associated with the subframe, and the number 1 of demodulation resource groups of the demodulation reference signals carrying the same active antenna port may be modified according to specific needs.
  • the first value and the second value, and the third value may be modified according to specific needs.
  • the demodulation resource group of the demodulation reference signal carrying the same active antenna port The number is 2.
  • the distribution pattern of the demodulation resource group within the resource block pair can be as shown in FIG.
  • the resource particles represented by the fill patterns 402-406 are used to carry the demodulation reference signal, so that a total of 24 resource blocks are used to carry the demodulation reference signal.
  • the resource particles carried by the same subcarrier and represented by the same filling pattern constitute a demodulation resource group. Therefore, the distribution pattern 400 shown in FIG. 4 includes a total of 6 demodulation resource groups and carries a demodulation reference. Signal Each resource granule is attributed to only one demodulation resource granule. Each demodulation resource group can carry demodulation reference signals of multiple active antenna ports by code division multiplexing.
  • each demodulation resource block group carries a demodulation reference signal corresponding to at most 4 active antenna ports.
  • the lower limit 9 and the upper limit 12 of the number of active antenna ports associated with the subframe, and the number 2 of demodulation resource groups of the demodulation reference signals carrying the same active antenna port can be modified according to specific needs.
  • the fourth value and the fifth value, and the sixth value can be modified according to specific needs.
  • the demodulation resource group of the demodulation reference signal carrying the same active antenna port is 3.
  • the resource particles indicated by the fill patterns 502 to 504 are used to carry the demodulation reference signal, so that a total of 24 resource blocks are used to carry the demodulation reference signal.
  • the resource granules carried by the same subcarrier and represented by the same padding pattern constitute a demodulation resource granule. Therefore, the distribution pattern 500 shown in FIG. 5 includes a total of 6 demodulation resource granules, and carries a demodulation reference.
  • Each resource granule of the signal belongs to only one demodulation resource granule.
  • Each demodulation resource group can carry demodulation reference signals of multiple active antenna ports by code division multiplexing.
  • each demodulation reference signal of each active antenna port is carried by three demodulation resource groups, and the resources in the three demodulation resource groups are The granules are represented by the same filling pattern.
  • each demodulation resource block group carries a demodulation reference signal corresponding to at most 4 active antenna ports.
  • the lower limit 1 and the upper limit 8 of the number of active antenna ports associated with the subframe, and the number 3 of demodulation resource groups of the demodulation reference signals carrying the same active antenna port may be modified according to specific needs.
  • the position of the resource particles in the demodulation resource group carrying the demodulation reference signal within the resource block pair is not limited to the positions shown in FIG. 3 to FIG. 5.
  • the resource blocks in the demodulation resource group carrying the demodulation reference signal may be set in the resource block according to specific needs.
  • the foregoing code division multiplexing can be implemented by using an Orthogonal Cover Code (OCC), and the length of the orthogonal cover code is related to the number of resource particles in each demodulation resource group.
  • OCC Orthogonal Cover Code
  • code division multiplexing can be realized using an orthogonal cover code having a length of four.
  • the demodulation reference signal of the active antenna port is loaded on each resource particle in the demodulation resource group, and the demodulation reference signals of the plurality of active antenna ports are loaded by code division multiple access by means of the orthogonal cover code.
  • each resource block pair may include six demodulation resource groups, and each demodulation resource group may include four resource groups.
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port in each resource block pair is associated with the subframe. The number of associated active antenna ports decreases and decreases as the number of active antenna ports associated with the subframe decreases.
  • the beam formed on the base station side is narrowed, the energy is more concentrated, the interference between users becomes smaller, and the number of multipaths is reduced.
  • the above changes cause the frequency selective fading to be reduced, and relatively flat.
  • the frequency selective fading creates the basis for the thinning process of the demodulation reference signal in the frequency domain, that is, the number of subcarriers occupied by the resource granules in the demodulation resource group is less, and the occupied subcarriers The interval between them is greater. Based on the above analysis, the number of resource fragments or demodulation resource groups occupied by the demodulation reference signal in the resource block pair can be appropriately reduced, and the number of higher active antenna ports is supported.
  • FIG. 6 is a schematic diagram showing the logical structure of a transmitting device 600 according to an embodiment of the invention.
  • the sending end device 600 may be a base station or a user terminal.
  • Sending end Apparatus 600 includes a generation module 602 and a transmission module 604.
  • the generating module 602 is configured to generate a subframe, where the subframe includes multiple resource block pairs, and the two resource blocks included in each resource block pair are carried by the same set of consecutive subcarriers and belong to different time slots;
  • Each resource block pair includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments;
  • each demodulation resource group carries a demodulation reference signal of a plurality of active antenna ports;
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • the sending module 604 is configured to send the subframe.
  • FIG. 7 is a schematic diagram showing the logical structure of a receiving end device 700 according to an embodiment of the invention.
  • the receiving end device 700 may be a user terminal or a base station.
  • the receiving device includes an accepting module 702 and a channel estimating module 704.
  • the receiving module 702 is configured to receive a subframe, where the subframe includes multiple resource block pairs, and the two resource blocks included in each resource block pair are carried by the same set of consecutive subcarriers and belong to different time slots;
  • Each resource block pair includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments;
  • each demodulation resource group carries a demodulation reference signal of a plurality of active antenna ports;
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe;
  • the channel estimation module 704 is configured to perform channel estimation on the active antenna port according to the demodulation reference signal corresponding to the active antenna port carried in the subframe for each active antenna port.
  • the transmitting device 600 and the receiving device 700 cooperate with each other to perform a channel estimation method 200.
  • the related technical features involved in the above-mentioned operations are performed in detail in conjunction with the channel estimation method 200, and thus are not described herein again.
  • FIG. 8 is a schematic diagram showing the hardware structure of a communication device 800 according to an embodiment of the present invention.
  • the communication device 800 may be the above described transmitting device, and may be the receiving device described above.
  • Communication device 800 includes a processor 802, a memory 804, a transceiver 806, an input/output interface 808, and a bus 810, wherein the processor 802, memory 804, transceiver 806, and input/output interface 808 implements a communication connection with each other via bus 810.
  • the processor 802 is configured to read the control instructions stored in the memory 804 to perform the operations performed by the generating module 602 in the transmitting device 600 described above, and the operations performed by the channel estimating module 704 in the receiving device 700.
  • the transceiver 806 is configured to cooperate with the processor 802 to perform the operations performed by the transmitting module 604 in the transmitting device 600 described above, and the operations performed by the receiving module 702 in the receiving device 700.
  • the foregoing resource block pair can be simplified into a single format, that is, a resource unit.
  • the resource unit is carried by a set of consecutive or non-contiguous subcarriers and carried on a set of consecutive or non-contiguous symbols.
  • the resource unit includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; Within the resource unit, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe.
  • the logical structure of the resource unit is shown in Figure 9.
  • FIG. 9 is a schematic diagram showing the logical structure of a resource unit 900 according to an embodiment of the invention.
  • the resource unit 900 is located within a subframe (not shown), and in addition to the resource unit 900 shown in FIG. 9, the subframe further includes other resource units (not shown).
  • the resource unit 900 shown in FIG. 9 is carried by the same group of consecutive subcarriers in the frequency domain, and the group of subcarriers includes M subcarriers.
  • the resource unit 900 shown in FIG. 9 is carried in a time domain over a set of consecutive symbols, which contain N symbols.
  • the smallest resource unit in resource unit 900 is still a resource granule, such as resource granule 902, each resource granule being carried by one subcarrier within the frequency domain and one symbol within the time domain.
  • the resource unit 900 includes M ⁇ N resource particles.
  • the resource unit 900 shown in FIG. 9 is carried by the same set of consecutive subcarriers in the frequency domain and carried on a set of consecutive symbols in the time domain, the present invention is not limited thereto.
  • the resource unit can also be carried by a set of non-contiguous subcarriers and carried on a set of non-contiguous symbols.
  • a group of subcarriers carrying the resource unit may be continuous or non-contiguous.
  • a set of symbols carrying the resource unit may also be continuous or non-contiguous.
  • the subframe includes multiple resource units, and each resource unit is carried by a group of consecutive or non-contiguous subcarriers, and is carried on a group of consecutive or non-contiguous symbols.
  • the resource unit includes a plurality of demodulation resource groups, each demodulation resource group includes a plurality of resource fragments; each demodulation resource group carries a demodulation reference signal of a single or multiple active antenna ports; Within the resource unit, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is associated with the number of active antenna ports associated with the subframe.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 13 and less than or equal to 24, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is one. Similarly, the lower limit 13 and the upper limit 24 of the number of active antenna ports associated with the subframe, and the number 1 of demodulation resource groups of the demodulation reference signals carrying the same active antenna port can be modified according to specific needs. The first value and the second value, and the third value.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 9 and less than or equal to 12, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 2. Similarly, the lower limit 9 and the upper limit 12 of the number of active antenna ports associated with the subframe, and the number 2 of demodulation resource groups of the demodulation reference signals carrying the same active antenna port can be modified according to specific needs. The fourth value and the fifth value, and the sixth value.
  • each resource unit if the number of active antenna ports associated with the subframe is greater than or equal to 1 and less than or equal to 8, the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port is 3. Similarly, the lower limit 1 and the upper limit 8 of the number of active antenna ports associated with the subframe, and the number 3 of demodulation resource groups of the demodulation reference signal carrying the same active antenna port can be modified according to specific needs.
  • the seventh and eighth values, and the ninth value are examples of the eighth values.
  • each resource unit may include six demodulation resource groups, each The demodulation resource group can contain 4 resource particles.
  • the number of demodulation resource groups of demodulation reference signals carrying the same active antenna port decreases as the number of active antenna ports associated with the subframe increases, along with the subframe The number of associated active antenna ports is increased by a decrease.
  • the location of the resource particles in the demodulation resource group carrying the demodulation reference signal in the resource unit may be set according to specific needs.
  • code division multiplexing may be implemented using an Orthogonal Cover Code (OCC) to carry demodulation reference signals of a plurality of active antenna ports on each demodulation resource group.
  • OCC Orthogonal Cover Code
  • the length of the orthogonal cover code is related to the number of resource particles in each demodulated resource group.
  • the demodulation reference signal of the active antenna port is loaded on each resource particle in the demodulation resource group, and the demodulation reference signals of the plurality of active antenna ports are loaded by code division multiple access by means of the orthogonal cover code.
  • the channel estimation method of the subframe based on the structure can still be implemented by referring to the processing procedure described above, for example, the sub-relevant in the channel estimation method 200.
  • the frame is replaced with a subframe of another structure (for example, a subframe designed based on a resource unit above), and a channel estimation method based on the replaced subframe can be obtained.
  • the transmitting end device, the receiving end device, and the communication device of the subframe based on the structure may still be implemented by referring to the corresponding device described above, for example, the transmitting end device 600 and the receiving end device.
  • the sub-frames involved in the 700 and the communication device 800 are replaced with sub-frames of other structures, so that the transmitting end device, the receiving end device, and the communication device based on the replaced sub-frame can be obtained.
  • subframe structure is different, features having the same name in different structural subframes, such as demodulation resource groups, may have the same meaning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例提供了一种信道估计方法,包括生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;发送子帧。在本发明实施例提供的技术方案中,可以根据每个子帧所关联的活跃天线端口的数量,设置该子帧的多个资源块对内承载同一活跃天线端口的解调参考信号的解调资源粒组的数量,因而使得解调参考信号承载资源的分配更加灵活。

Description

信道估计方法、发送端设备和接收端设备
本申请要求于2015年12月28日提交中国专利局、申请号为201511006101.0、发明名称为“信道估计方法、发送端设备和接收端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无线通信技术,尤其涉及一种信道估计方法、发送端设备和接收端设备。
背景技术
MIMO(Multi-input Multi-output,多入多出)技术的出现,极大的提高了无线通信系统的数据传输速率,因此逐渐被越来越多的无线通信标准,例如LTE(Long-Term Evolution,长期演进)所采纳。最新的LTE标准最高支持8个天线端口(Antenna Port),接收端借助每个天线端口所对应的解调参考信号(Demodulation Reference Signal,DMRS)对该天线端口进行信道估计。
在最新的LTE标准中,解调参考信号的承载资源采用固定不变的方式进行分配,因此资源分配方式不够灵活。
发明内容
有鉴于此,实有必要提供一种信道估计方法,可实现解调参考信号承载资源的灵活分配。
同时,提供一种发送端设备,可实现解调参考信号承载资源的灵活分配。
同时,提供一种接收端设备,可实现解调参考信号承载资源的灵活分配。
根据本发明实施例的第一方面,提供一种信道估计方法,包括:
生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
发送所述子帧。
在第一方面的第一种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第一方面或者第一方面的第一种可实现方式,在第一方面的第二种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第一方面、第一方面的第一种可实现方式或者第一方面的第二种可实现方式,在第一方面的第三种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第一方面、第一方面的第一种可实现方式、第一方面的第二种可实现方式或者第一方面的第三种可实现方式,在第一方面的第四种可实现方式中,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第一方面的第五种可实现方式中,在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第二方面,提供一种信道估计方法,包括:
接收一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
在第二方面的第一种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第二方面或者第二方面的第一种可实现方式,在第二方面的第二种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第二方面、第二方面的第一种可实现方式或者第二方面的第二种可实现方式,在第二方面的第三种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第二方面、第二方面的第一种可实现方式、第二方面的第二种可实现方式或者第二方面的第三种可实现方式,在第二方面的第四种可实现方式中,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第二方面的第五种可实现方式中,在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天 线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第三方面,提供一种发送端设备,其特征在于,包括:
生成模块,用于生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
发送模块,用于发送所述子帧。
在第三方面的第一种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第三方面或者第三方面的第一种可实现方式,在第三方面的第二种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第三方面、第三方面的第一种可实现方式或者第三方面的第二种可实现方式,在第三方面的第三种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第三方面、第三方面的第一种可实现方式、第三方面的第二种可实现方式或者第三方面的第三种可实现方式,在第三方面的第四种可实现方式中,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第三方面的第五种可实现方式中,在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第四方面,提供一种接收端设备,包括:
接收模块,用于接收一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
信道估计模块,用于对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
在第四方面的第一种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第四方面或者第四方面的第一种可实现方式,在第四方面的第二种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第四方面、第四方面的第一种可实现方式或者第四方面的第二种可实现方式,在第四方面的第三种可实现方式中,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第四方面、第四方面的第一种可实现方式、第四方面的第二种可实现方式或者第四方面的第三种可实现方式,在第四方面的第四种可实现方式 中,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第四方面的第五种可实现方式中,在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第五方面,提供一种信道估计方法,包括:
生成一子帧,该子帧包括多个资源单元,每个资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上;该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
发送所述子帧。
在第五方面的第一种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第五方面或者第五方面的第一种可实现方式,在第五方面的第二种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第五方面、第五方面的第一种可实现方式或者第五方面的第二种可实现方式,在第五方面的第三种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第五方面、第五方面的第一种可实现方式、第五方面的第二种可实 现方式或者第五方面的第三种可实现方式,在第五方面的第四种可实现方式中,每个资源单元包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第五方面的第五种可实现方式中,在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第六方面,提供一种信道估计方法,包括:
接收一子帧,该子帧包括多个资源单元,每个资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上;该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
在第六方面的第一种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第六方面或者第六方面的第一种可实现方式,在第六方面的第二种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第六方面、第六方面的第一种可实现方式或者第六方面的第二种可实现方式,在第六方面的第三种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一 活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第六方面、第六方面的第一种可实现方式、第六方面的第二种可实现方式或者第六方面的第三种可实现方式,在第六方面的第四种可实现方式中,每个资源单元包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第六方面的第五种可实现方式中,在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第七方面,提供一种发送端设备,包括:
生成模块,用于生成一子帧,该子帧包括多个资源单元,每个资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上;该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
发送模块,用于发送所述子帧。
在第七方面的第一种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第七方面或者第七方面的第一种可实现方式,在第七方面的第二种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第七方面、第七方面的第一种可实现方式或者第七方面的第二种可实现方式,在第七方面的第三种可实现方式中,在每个资源单元内,若与所 述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第七方面、第七方面的第一种可实现方式、第七方面的第二种可实现方式或者第七方面的第三种可实现方式,在第七方面的第四种可实现方式中,每个资源单元包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第七方面的第五种可实现方式中,在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
根据本发明实施例的第八方面,提供一种接收端设备,包括:
接收模块,用于接收一子帧,该子帧包括多个资源单元,每个资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上;该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
信道估计模块,用于对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
在第八方面的第一种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
根据第八方面或者第八方面的第一种可实现方式,在第八方面的第二种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
根据第八方面、第八方面的第一种可实现方式或者第八方面的第二种可实现方式,在第八方面的第三种可实现方式中,在每个资源单元内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
根据第八方面、第八方面的第一种可实现方式、第八方面的第二种可实现方式或者第八方面的第三种可实现方式,在第八方面的第四种可实现方式中,每个资源单元包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
在第八方面的第五种可实现方式中,在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
在本发明实施例提供的技术方案中,可以根据每个子帧所关联的活跃天线端口的数量,设置该子帧的多个资源块对内承载同一活跃天线端口的解调参考信号的解调资源粒组的数量。因此,本发明实施例提供的技术方案使得解调参考信号承载资源的分配更加灵活。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是依照本发明一实施例的资源块对的逻辑结构示意图;
图2是依照本发明一实施例的信道估计方法的流程图;
图3是依照本发明一实施例的解调资源粒组的分布图样的示意图;
图4是依照本发明另一实施例的解调资源粒组的分布图样的示意图;
图5是依照本发明又一实施例的解调资源粒组的分布图样的示意图;
图6是依照本发明一实施例的发送端设备的逻辑结构示意图;
图7是依照本发明一实施例的接收端设备的逻辑结构示意图;
图8是依照本发明一实施例的通信设备的硬件结构示意图;
图9是依照本发明一实施例的资源单元的逻辑结构示意图。
具体实施方式
通常来说,每次数据传输(例如每个子帧(Subframe)的传输)所使用的天线端口的数量有可能低于无线通信标准所支持的最大天线端口数量,换句话说,在每次数据传输的过程中,部分天线端口可能并未被使用。例如,尽管最新的LTE标准最高支持8个天线端口,但是每次数据传输所使用的天线端口的数量可能低于8个。为便于描述,将每次数据传输过程中实际使用的天线端口称为活跃天线端口。
为清楚描述本发明实施例的技术方案,下文首先对资源块对的结构进行描述。
图1是依照本发明一实施例的资源块对100的逻辑结构示意图。该资源块(Resource Block,RB)对100位于一子帧(未示出)内,且除了图1所示的资源块对100之外,该子帧还包含其他资源块对(未示出)。图1所示的资源块对100包括资源块102和资源块104。资源块102和资源块104在频域内由同一组连续的子载波(Subcarrier)承载,这组子载波中包含12个子载波。此外,资源块102和资源块104分属不同的时隙(Slot),即资源块102属于时隙1,资源块104属于时隙2。每个时隙包含时域内的7个符号(Symbol)。这个资源块对100中的最小资源单位为资源粒(Resource Element,RE),如资源粒106,每个资源粒由频域内的一个子载波和时域内的一个符号承载。如此一来,资源块102和资源块104之中的每一个都包含84(12×7)个资源粒,资源块对100包含168个资源粒。
应注意,为便于描述,图1所示的资源块对100的结构采用了目前LTE子帧中资源块对的结构。但是,本领域的技术人员应当明白,目前LTE子帧中的资源块对还可以采用其他的结构,因此资源块对100也可采用其他的结构。此外,本领域的技术人员应当明白,本发明实施例中定义的子帧中资源块对的结构也并非仅限于目前LTE标准中定义的结构,还可以根据具体需要定义其他的结构,例如,可根据具体的需要设置子帧资源块对中上述同一组连续的子载波中子载波的数量以及每个时隙所包含的符号的数量,或者将资源块对更改为其他结构。
在资源块对100中,多个资源粒被用于承载解调参考信号,这种用于承载解调参考信号的资源粒通常以资源粒组为单位进行组织,每个资源粒组包含多个资源粒。为便于描述,将上述承载解调参考信号的资源粒组称为解调资源粒组。下面就结合图2对资源块对内解调资源粒组的数量进行详细的描述。
图2是依照本发明一实施例的信道估计方法200的流程图。
步骤202,发送端设备生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联。
步骤204,发送端设备将上述子帧发往接收端。
步骤206,接收端设备接收上述子帧。
步骤208,对于每一活跃天线端口,接收端设备依照上述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
在本发明实施例提供的技术方案中,可以根据每个子帧所关联的活跃天线端口的数量,设置该子帧的多个资源块对内承载同一活跃天线端口的解调 参考信号的解调资源粒组的数量。因此,本发明实施例提供的技术方案使得解调参考信号的资源分配更加灵活。
具体来说,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。在这种情况下,解调资源粒组在资源块对内的分布图样可以如图3所示。
在图3所示的分布图样300中,由填充图案302~312表示的资源粒用于承载解调参考信号,因此共有24个资源粒用于承载解调参考信号。同时,由相同填充图案表示的资源粒组成一解调资源粒组,因此,图3所示的分布图样300共包含6个解调资源粒组,且承载有解调参考信号的每个资源粒仅归属于一个解调资源粒组。每个解调资源粒组可通过码分复用(Code Division Multiplexing,CDM)方式承载多个活跃天线端口的解调参考信号。在图3所示的分布图样300中,在每个资源块对内,每个活跃天线端口的解调参考信号仅由一个解调资源粒组承载,但是每个解调资源粒组最多承载4个活跃天线端口对应的解调参考信号。
应注意,与所述子帧相关联的活跃天线端口的数量下限13和上限24,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量1,均可根据具体需要修改为第一数值和第二数值,以及第三数值。
此外,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。在这种情况下,解调资源粒组在资源块对内的分布图样可以如图4所示。
在图4所示的分布图样400中,由填充图案402~406表示的资源粒用于承载解调参考信号,因此共有24个资源粒用于承载解调参考信号。同时,由相同子载波承载且由相同填充图案表示的资源粒组成一解调资源粒组,因此,图4所示的分布图样400共包含6个解调资源粒组,且承载有解调参考信号 的每个资源粒仅归属于一个解调资源粒组。每个解调资源粒组可通过码分复用方式承载多个活跃天线端口的解调参考信号。在图4所示的分布图样400中,在每个资源块对内,每个活跃天线端口的解调参考信号由两个解调资源粒组承载,这两个解调资源粒组中的资源粒由相同的填充图案表示。此外,每个解调资源粒组最多承载4个活跃天线端口对应的解调参考信号。
应注意,与所述子帧相关联的活跃天线端口的数量下限9和上限12,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量2,均可根据具体需要修改为第四数值和第五数值,以及第六数值。
此外,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
在图5所示的分布图样500中,由填充图案502~504表示的资源粒用于承载解调参考信号,因此共有24个资源粒用于承载解调参考信号。同时,由相同子载波承载且由相同填充图案表示的资源粒组成一解调资源粒组,因此,图5所示的分布图样500共包含6个解调资源粒组,且承载有解调参考信号的每个资源粒仅归属于一个解调资源粒组。每个解调资源粒组可通过码分复用方式承载多个活跃天线端口的解调参考信号。在图5所示的分布图样500中,在每个资源块对内,每个活跃天线端口的解调参考信号由三个解调资源粒组承载,这三个解调资源粒组中的资源粒由相同的填充图案表示。此外,每个解调资源粒组最多承载4个活跃天线端口对应的解调参考信号。
应注意,与所述子帧相关联的活跃天线端口的数量下限1和上限8,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量3,均可根据具体需要修改为第七数值和第八数值,以及第九数值。
应注意,在具体实现过程中,承载有解调参考信号的解调资源粒组中的资源粒在资源块对内的位置并非仅限于图3~图5所示的位置。换句话说,可根据具体需要设置承载有解调参考信号的解调资源粒组中的资源粒在资源块 对内的位置。此外,在具体实现过程中,可使用正交覆盖码(Orthogonal Cover Code,OCC)来实现上述码分复用,正交覆盖码的长度与每个解调资源粒组中资源粒的数量有关。例如,在图3~图5所示的分布图样300~500中,可使用长度为4的正交覆盖码来实现码分复用。同时,将活跃天线端口的解调参考信号加载在解调资源粒组中各个资源粒上的过程,以及将多个活跃天线端口的解调参考信号借助正交覆盖码以码分多址方式加载在同一解调资源粒组的过程,在现有技术(例如LTE相关标准)中已经进行了清楚的描述,因此此处不再赘述。
由图3至图5所示的分布图样300~500可知,在具体实现过程中,每个资源块对可包含6个解调资源粒组,每个解调资源粒组可包含4个资源粒。此外,由图3至图5所示的分布图样300~500可知,在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
随着大规模阵列天线的引入,基站侧形成的波束变窄,能量更为集中,用户间的干扰变小,多径的个数减少,上述变化导致频率选择性衰落的程度减轻,而较为平坦的频率选择性衰落为解调参考信号在频域上的稀疏化处理创造了基础,即,即解调资源粒组中的资源粒所占用的子载波的数量更少,且所占用的子载波之间的间隔更大。基于上述分析,解调参考信号在资源块对内占用的资源粒或者解调资源粒组的数量可以适当减少,支持更高的活跃天线端口数量。
另一方面,当信道环境变差时,活跃天线端口的数量下降。在这种情况下,可以为每个活跃天线端口所对应的解调参考信号分配更多的资源粒或者解调资源粒组,以提高信道估计的精度。
图6是依照本发明一实施例的发送端设备600的逻辑结构示意图。在具体实现过程中,该发送端设备600可以是基站,也可以是用户终端。发送端 设备600包括生成模块602和发送模块604。
生成模块602用于生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
发送模块604用于发送所述子帧。
图7是依照本发明一实施例的接收端设备700的逻辑结构示意图。在具体实现过程中,该接收端设备700可以是用户终端,也可以是基站。接收端设备包括接受模块702和信道估计模块704。
接收模块702用于接收一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
信道估计模块704用于对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
发送端设备600和接收端设备700相互配合,执行信道估计方法200。上述各个模块在执行上述操作过程中涉及的相关技术特征,例已经在上文结合信道估计方法200进行了详细的描述,因此此处不再赘述。
图8是依照本发明一实施例的通信设备800的硬件结构示意图。通信设备800可以是上文所述的发送端设备,有可以是上文所述的接收端设备。通信设备800包括处理器802、存储器804、收发器806、输入/输出接口808和总线810,其中,处理器802、存储器804、收发器806和输入/输出接口 808通过总线810实现彼此之间的通信连接。
处理器802用于读取存储器804中存储的控制指令,以执行上述发送端设备600中生成模块602所执行的操作,以及接收端设备700中信道估计模块704所执行的操作。收发器806用于与处理器802配合,以执行上述发送端设备600中发送模块604所执行的操作,以及接收端设备700中接收模块702所执行的操作。
应注意,上述子帧也可采用其他的结构。例如,在具体实现过程中,上述资源块对可简化为一种单一的格式,即资源单元。该资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上。该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联。资源单元的逻辑结构示意图如图9所示。
图9是依照本发明一实施例的资源单元900的逻辑结构示意图。该资源单元900位于一子帧(未示出)内,且除了图9所示的资源单元900之外,该子帧还包含其他资源单元(未示出)。图9所示的资源单元900在频域内由同一组连续的子载波承载,这组子载波中包含M个子载波。此外,图9所示的资源单元900在时域内承载在一组连续的符号上,这组符号中包含N个符号。资源单元900中的最小资源单位仍然为资源粒,如资源粒902,每个资源粒由频域内的一个子载波和时域内的一个符号承载。如此一来,资源单元900包含M×N个资源粒。
应注意,尽管图9所示的资源单元900在频域内由同一组连续的子载波承载,在时域内承载在一组连续的符号上,但本发明并非仅限于此。事实上,该资源单元也可以由一组非连续的子载波承载,且承载在一组非连续的符号上。更进一步的说,承载该资源单元的一组子载波可以连续也可以非连续, 承载该资源单元的一组符号也可以连续也可以非连续。
如此一来,上述子帧便可采用如下结构:该子帧包括多个资源单元,每个资源单元由一组连续或者非连续的子载波承载,且承载在一组连续或者非连续的符号上。该资源单元包括多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有单个或者多个活跃天线端口的解调参考信号;在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联。
此外,基于上述子帧结构:
在每个资源单元内,若与该子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。同样的,与所述子帧相关联的活跃天线端口的数量下限13和上限24,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量1,均可根据具体需要修改为第一数值和第二数值,以及第三数值。
此外,基于上述子帧结构:
在每个资源单元内,若与该子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。同样的,与所述子帧相关联的活跃天线端口的数量下限9和上限12,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量2,均可根据具体需要修改为第四数值和第五数值,以及第六数值。
此外,基于上述子帧结构:
在每个资源单元内,若与该子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。同样的,与所述子帧相关联的活跃天线端口的数量下限1和上限8,以及承载同一活跃天线端口的解调参考信号的解调资源粒组的数量3,均可根据具体需要修改为第七数值和第八数值,以及第九数值。
同时,基于上述子帧结构,每个资源单元可包含6个解调资源粒组,每 个解调资源粒组可包含4个资源粒。
此外,在每个资源单元内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量随着该子帧所关联的活跃天线端口的数量的增加而减少,随着该子帧所关联的活跃天线端口的数量的减少而增加。
同时,在具体实现过程中,可根据具体需要设置承载有解调参考信号的解调资源粒组中的资源粒在资源单元内的位置。同时,可使用正交覆盖码(Orthogonal Cover Code,OCC)来实现码分复用,以便在每个解调资源粒组上承载多个活跃天线端口的解调参考信号。正交覆盖码的长度与每个解调资源粒组中资源粒的数量有关。同时,将活跃天线端口的解调参考信号加载在解调资源粒组中各个资源粒上的过程,以及将多个活跃天线端口的解调参考信号借助正交覆盖码以码分多址方式加载在同一解调资源粒组的过程,在现有技术(例如LTE相关标准)中已经进行了清楚的描述,因此此处不再赘述。
应注意,本领域技术人员应当明白,尽管子帧结构不同,但基于该结构的子帧的信道估计方法仍然可以参考上文描述的处理过程来实现,例如,将信道估计方法200中涉及的子帧替换为其他结构的子帧(例如上文基于资源单元而设计的子帧),便可得到基于替换后子帧的信道估计方法。同理,尽管子帧结构不同,但基于该结构的子帧的发送端设备、接收端设备和通信设备仍然可以参考上文描述的相应设备来实现,例如,将发送端设备600、接收端设备700和通信设备800中涉及的子帧替换为其他结构的子帧,便可得到基于替换后子帧的发送端设备、接收端设备和通信设备。
此外,应注意,尽管子帧结构不同,但不同结构子帧中名称相同的特征例如解调资源粒组可以具有相同的含义。
本领域普通技术人员可知,上述方法中的全部或部分步骤可以通过程序指令相关的硬件完成,该程序可以存储于一计算机可读存储介质中,该计算机可读存储介质如ROM、RAM和光盘等。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种信道估计方法,其特征在于,包括:
    生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
    发送所述子帧。
  2. 如权利要求1所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
  3. 如权利要求1所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
  4. 如权利要求1所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
  6. 一种信道估计方法,其特征在于,包括:
    接收一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天 线端口的数量相关联;
    对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
  7. 如权利要求6所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
  8. 如权利要求6所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
  9. 如权利要求6所述的方法,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
  10. 如权利要求6至9中任一项所述的方法,其特征在于,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
  11. 一种发送端设备,其特征在于,包括:
    生成模块,用于生成一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
    发送模块,用于发送所述子帧。
  12. 如权利要求11所述的设备,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
  13. 如权利要求11所述的设备,其特征在于,在每个资源块对内,若与 所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
  14. 如权利要求11所述的设备,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
  15. 如权利要求11至14中任一项所述的设备,其特征在于,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
  16. 一种接收端设备,其特征在于,包括:
    接收模块,用于接收一子帧,该子帧包括多个资源块对,每个资源块对所包含的两个资源块由相同的一组连续的子载波承载且分属不同的时隙;每个资源块对包含多个解调资源粒组,每个解调资源粒组包含多个资源粒;每个解调资源粒组承载有多个活跃天线端口的解调参考信号;在每个资源块对内,承载同一活跃天线端口的解调参考信号的解调资源粒组的数量与该子帧所关联的活跃天线端口的数量相关联;
    信道估计模块,用于对于每一活跃天线端口,依照所述子帧中承载的该活跃天线端口对应的解调参考信号,对该活跃天线端口进行信道估计。
  17. 如权利要求16所述的设备,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于13且小于等于24,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为1。
  18. 如权利要求16所述的设备,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于9且小于等于12,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为2。
  19. 如权利要求16所述的设备,其特征在于,在每个资源块对内,若与所述子帧相关联的活跃天线端口的数量大于等于1且小于等于8,则承载同一活跃天线端口的解调参考信号的解调资源粒组的数量为3。
  20. 如权利要求16至19中任一项所述的设备,其特征在于,每个资源块对包含6个解调资源粒组,每个解调资源粒组包含4个资源粒。
PCT/CN2016/103266 2015-12-28 2016-10-25 信道估计方法、发送端设备和接收端设备 WO2017113959A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511006101.0 2015-12-28
CN201511006101.0A CN106921479B (zh) 2015-12-28 2015-12-28 信道估计方法、发送端设备和接收端设备

Publications (1)

Publication Number Publication Date
WO2017113959A1 true WO2017113959A1 (zh) 2017-07-06

Family

ID=59224511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103266 WO2017113959A1 (zh) 2015-12-28 2016-10-25 信道估计方法、发送端设备和接收端设备

Country Status (2)

Country Link
CN (1) CN106921479B (zh)
WO (1) WO2017113959A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113259287B (zh) * 2020-02-13 2023-03-24 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282899A (zh) * 2009-04-24 2011-12-14 华为技术有限公司 产生参考信号的方法
US20120121031A1 (en) * 2010-11-15 2012-05-17 Futurewei Technologies, Inc. Method and Apparatus for Demodulation of a Reference Signal
CN102859900A (zh) * 2010-04-22 2013-01-02 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
WO2014038865A1 (en) * 2012-09-05 2014-03-13 Lg Electronics Inc. Method and apparatus for transmitting downlink signal in wireless communication system
CN103841644A (zh) * 2012-11-22 2014-06-04 电信科学技术研究院 一种传输解调参考信号的方法、设备及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076076B (zh) * 2009-11-20 2015-11-25 夏普株式会社 一种解调参考信号的资源分配通知方法
US8665811B2 (en) * 2011-08-15 2014-03-04 Motorola Mobility Llc Reference signal for a control channel in wireless communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102282899A (zh) * 2009-04-24 2011-12-14 华为技术有限公司 产生参考信号的方法
CN102859900A (zh) * 2010-04-22 2013-01-02 Lg电子株式会社 用于基站与中继站之间的无线链路的信道估计的方法和设备
US20120121031A1 (en) * 2010-11-15 2012-05-17 Futurewei Technologies, Inc. Method and Apparatus for Demodulation of a Reference Signal
WO2014038865A1 (en) * 2012-09-05 2014-03-13 Lg Electronics Inc. Method and apparatus for transmitting downlink signal in wireless communication system
CN103841644A (zh) * 2012-11-22 2014-06-04 电信科学技术研究院 一种传输解调参考信号的方法、设备及系统

Also Published As

Publication number Publication date
CN106921479B (zh) 2022-09-23
CN106921479A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
US10680773B2 (en) Method and apparatus for transmitting pilot signal
JP6803890B2 (ja) 制御チャネルを受信および送信する方法、ユーザ機器ならびに基地局
EP3494661B1 (en) Method and apparatus for reference signal signaling for advanced wireless communications
CN110226306B (zh) 共享频谱的广播控制信道
CN105324952B (zh) 用于对用户设备处的物理下行链路共享信道进行干扰消除和/或抑制的系统和方法
JP5468606B2 (ja) 反復重複のあるシンボルのリソース・ブロック・マッピング
JP2022174214A (ja) マルチコードワード伝送方法及び装置
WO2014176967A1 (zh) 一种解调参考信号图样信息的选取方法、系统及装置
JP2022511201A (ja) 信号の送信に関与するユーザ機器およびネットワークノード
KR102352674B1 (ko) 시퀀스 기반의 신호 처리 방법 및 장치
WO2019137058A1 (zh) 资源指示方法、终端设备和网络设备
JP6139686B2 (ja) ダウンリンク制御情報を送信するための方法、ネットワーク側装置、およびユーザ機器
CN106464296A (zh) 传输数据的方法、设备及系统
CN107925997A (zh) 一种上行控制信息的发送方法、接收方法及相关装置
EP3800945B1 (en) Power allocation method and related device
WO2021160010A1 (zh) 数据传输方法、装置、设备和存储介质
TW202215867A (zh) 用於進行車聯網通訊的傳輸終端和接收終端、以及在車聯網通訊系統中進行通訊的方法
WO2018028654A1 (zh) 参考信号映射方法及装置
TWI700910B (zh) 通訊裝置及通訊方法
WO2018112698A1 (zh) 传输信号的方法、网络设备和终端设备
JP7481437B2 (ja) 復調参照信号の構成情報取得方法、構成方法、および装置
CN112153690B (zh) 通信方法和通信装置
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2017113959A1 (zh) 信道估计方法、发送端设备和接收端设备
WO2019137144A1 (zh) 数据传输方法及装置、计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880750

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16880750

Country of ref document: EP

Kind code of ref document: A1