WO2017113902A1 - 血清标志物检测系统 - Google Patents

血清标志物检测系统 Download PDF

Info

Publication number
WO2017113902A1
WO2017113902A1 PCT/CN2016/100007 CN2016100007W WO2017113902A1 WO 2017113902 A1 WO2017113902 A1 WO 2017113902A1 CN 2016100007 W CN2016100007 W CN 2016100007W WO 2017113902 A1 WO2017113902 A1 WO 2017113902A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
serum
microfluidic
chip
detecting system
Prior art date
Application number
PCT/CN2016/100007
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
高伟明
Original Assignee
深圳市贝沃德克生物技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市贝沃德克生物技术研究院有限公司 filed Critical 深圳市贝沃德克生物技术研究院有限公司
Publication of WO2017113902A1 publication Critical patent/WO2017113902A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/558Immunoassay; Biospecific binding assay; Materials therefor using diffusion or migration of antigen or antibody
    • G01N33/561Immunoelectrophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades

Definitions

  • the utility model relates to the technical field of detection, in particular to a serum marker detection system.
  • hs-CRP hypersensitive C-reactive protein
  • creatine kinase isoenzyme (CK-MB) is an important indicator for the diagnosis of acute myocardial infarction, and its elevation is often used as a rapid auxiliary diagnosis for myocardial infarction, and two myocardial infarction markers are detected.
  • the diagnostic results of the objects are more authoritative than the results of the single markers.
  • microfluidic chip electrophoresis technology As a cutting-edge technology, microfluidic chip electrophoresis technology has been widely recognized by the scientific community, and gradually evolved from a simple method to an application level, in small molecule analysis, separation of amino acid proteins, accounting analysis and Research areas such as sequencing, biological cell analysis, and pathogen analysis have shown great potential.
  • the microfluidic chip forms a network through micro-pipes, and has a highly integrated feature. It can perform basic operations such as sample preparation, reaction, separation, and detection in one station. It has low sample consumption, fast sensitivity, high throughput, and automated analysis. And so on, its miniaturized size is easy to carry.
  • microfluidic chip-based electrophoresis technology is also continuously applied in clinical testing.
  • the use of micro-microfluidic chips to specifically quantify two serum markers of a single disease is the development direction of clinical testing, and is an important method for early judgment of the disease in family first aid. In serum serum biomarkers for infarction, can provide a more accurate diagnosis of the disease. technical problem
  • the main object of the present invention is to provide a serum marker detection system, which aims to provide a convenient, rapid and accurate clinical auxiliary detection system, and the device is suitable for home detection.
  • the present invention provides a serum marker detection system, the serum marker detection system comprising a blood collection device and a blood detection system, the blood collection device for collecting and delivering blood to the blood detection system
  • the blood detecting system includes a chip cover sheet, a chip body, a microfluidic chip, a centrifuge, a first photometer, and a second photometer.
  • the microfluidic chip includes a first microfluidic structure and a mirror image.
  • the centrifuge is configured to drive the microfluidic chip to rotate, and the first microfluidic structure and the second microfluidic structure are both used to separate the blood by rotation of the centrifuge Serum, and collecting the serum to bind to a specific antibody to form an antigen-antibody complex, the first photometer and the second photometer are respectively used for quantitative analysis of the first microfluidic chip and the second micro Antigen-antibody complexes in flow control chips.
  • the blood collection device includes a painless blood collection pen and a blood collection capillary
  • the painless blood collection pen includes a needle, a regulator, a capillary catheter, and a blood collection valve
  • the needle and the capillary catheter are used for one time.
  • Blood collection, the regulator is used to control the strength and depth of blood collection, and the blood collection is used to activate or close the painless blood collection pen.
  • the blood collection capillary is a Y-shaped hose structure including a blood inlet and two blood outlets
  • the chip cover sheet is on an upper layer of the chip body, and the chip cover sheet includes a first sample hole and a second sample hole symmetrically distributed, and the blood collection capillary tube passes through a Y-type hose structure. Collecting the collected blood into the first sample well and the second sample hole, the first sample hole for delivering the blood to the first microfluidic structure, the second A sample well is for delivering the blood to the second microfluidic structure.
  • the first microfluidic structure and the second microfluidic structure both comprise a serum separation structure, an immune reaction structure, and a microfluidic electrophoresis structure.
  • the serum separation structure is for obtaining blood from the first injection hole or the second injection hole, separating serum of the blood by centrifugal force, and delivering the serum to the
  • the immunoreactive structure is configured to quantitatively deliver a fluorescently labeled immunological reagent mixed with the serum, the immunological reagent specifically recognizing a biomarker in the serum to form an antigen-antibody complex,
  • a microfluidic electrophoresis structure is used to screen out the antigen-antibody complex.
  • the first microfluidic structure is used to screen a first serum marker in the serum
  • the second microfluidic structure is used to screen a second serum marker in the serum.
  • the chip body is provided with a control switch, and the control switch is used to control the opening/closing of the centrifuge and the running speed.
  • the microfluidic chip is a disc structure, and a mounting hole is disposed in a middle of the disc structure, the centrifuge includes a crankshaft and a latch, and the crankshaft passes through the mounting hole. And fixing the centrifuge and the microfluidic chip through the plug.
  • the microfluidic chip, the centrifuge, the first photometer and the second photometer are all disposed in the chip body.
  • the serum marker detection system of the present invention can be used for serum detection in the home, and the serum marker detection device can quantitatively detect two serum markers by the same method, which can be clinically Provide more reliable support.
  • FIG. 1 is an exploded view of the serum marker detection system of the present invention
  • FIG. 2 is a schematic view showing the appearance of a microfluidic chip of the serum marker detecting system of the present invention
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG. 2.
  • FIG. 1 is an exploded view of the serum marker detecting system of the present invention
  • FIG. 2 is a schematic view showing the appearance of a microfluidic chip of the serum marker detecting system of the present invention
  • 3 is a cross-sectional view taken along line AA of FIG. 2.
  • the explosion map of the serum marker detection system includes a blood collection device 1 and a blood detection system 2.
  • the blood collection device 1 is configured to collect blood and deliver blood to the blood detection system 2, the blood collection device 1 includes a painless blood collection pen 11 and a blood collection capillary 12, the painless blood collection pen 11 including a needle 111 and
  • the handheld body 112 includes a regulator 1121, a capillary conduit 1122 and a blood collection capillary 1123.
  • the capillary conduit 1122 connects the needle 111 and the blood collection capillary 12, and the blood collection capillary 12 is a Y-shaped hose structure. Includes a blood inlet and two blood outlets.
  • the needle 111, the blood collection capillary 12 and the capillary conduit 1122 are used for one-time blood collection, and can be discarded as needed to avoid cross infection.
  • the regulator 1121 is used to control the blood collection intensity and depth.
  • 1123 is used to activate or close the painless blood collection pen 11.
  • the blood collection switch 1123, the needle 111 collects blood on the skin, and the collected blood passes through the capillary conduit 1122 and the blood collection capillary 12 under the action of high performance capillary electrophoresis, and the blood collection capillary tube 12
  • the collected blood is shunted to the blood detecting system 2 for detection by a Y-shaped hose structure.
  • the blood detecting system 2 is used for separating serum by centrifugal force, and specifically binding the two serum markers by antigen-antibody, for example, for myocardial infarction diseases, detecting myocardial infarction markers hs-CRP and CK-MB, Two kinds of serum markers were quantitatively analyzed by microfluidic chip electrophoresis.
  • the blood detecting system 2 includes, but is not limited to, a chip cover sheet 21, a chip body 22, a microfluidic chip 23, a centrifuge 24, a first photometer 25, and a second photometer 26, the chip
  • the cover sheet 21 is on the upper layer of the chip body 22, and the chip cover sheet 21 includes a first sample injection hole 211 and a second sample injection hole 21 2 which are symmetrically distributed, and the first sample injection hole 211 and the second injection hole
  • the sample hole 212 is connected to the two blood outlets of the blood collection capillary 12, and the control unit 22 is provided outside the chip body 22 for controlling the opening/closing of the centrifuge 27.
  • the chip body 22 is provided with each component in the blood detecting system 2, and the components in the blood detecting system 2 include, but are not limited to, the microfluidic chip 23, centrifugal The machine 24, the first photometer 25 and the second photometer 26.
  • the microfluidic chip 23 is a disc structure located at the center of the chip body 22, and the centrifuge 24 is located at the micro Directly below the flow control chip 23, the centrifuge 24 includes a crankshaft 241 and a pin 242 that passes through the center of the microfluidic chip 23 and that fixes the centrifuge through the pin 242 24 and the microfluidic chip 23, the first photometer 25 and the second photometer 26 are both distributed on both sides of the centrifuge 24, below the microfluidic chip 23.
  • the structure of the microfluidic chip 23 is as shown in FIG. 2 and FIG. 3, and the microfluidic chip 23 includes a first injection channel 231 on the surface thereof as shown in FIG. a second injection channel 232, a mounting hole 233, and six vent holes, the first sampling channel 231 is in communication with the first sampling hole 211, the second sampling channel 232 and the second sampling hole 212 is communicated, the mounting hole 233 is higher than the plane of the microfluidic chip 23, the centrifuge 23 passes through the mounting hole 233 through the crankshaft 241, and the mounting is performed by the plug 242 The hole 233 and the crankshaft 241 drive the microfluidic chip 23 to rotate.
  • the microfluidic chip 23 includes, but is not limited to, a first microfluidic structure 234 and a second micro image.
  • a flow control structure 235 the blood collected by the painless blood collection pen 1 is shunted by the Y-shaped hose structure of the blood collection capillary 12, and the blood passes through the first injection hole 211 and the first
  • the sample channel 231 is delivered to the first microfluidic structure 234, and the blood is delivered to the second microfluidic structure 235 through the second sample inlet 212 and the second sample channel 232.
  • the first microfluidic structure 234 and the second microfluidic structure 235 both separate serum in the blood by rotation of the centrifuge 24, and collect biomarkers in the serum to form a combination with specific antibodies. Antigen-antibody complex.
  • the first microfluidic structure 234 is taken as an example to illustrate the structural configuration of the first microfluidic structure and the second microfluidic structure, and the first microfluidic structure 234 includes a first serum separation structure. 2341, a first immune reaction structure 2342 and a first microfluidic electrophoresis structure 2343; correspondingly, the second microfluidic structure 235 comprises a second serum separation structure, a second immune reaction structure, and a second microfluidic electrophoresis structure .
  • the serum separation structure is for obtaining blood from the first injection hole or the second injection hole, separating serum of the blood by centrifugal force, and delivering the serum to the immune reaction structure by Euler force.
  • the immunoreactive structure is used for quantitatively delivering a fluorescently labeled immunological reagent mixed with the serum, the immunological reagent specifically recognizing the biomarker in the serum to form an antigen-antibody complex, and the microfluidic electrophoresis structure is used The antigen-antibody complex is screened.
  • the first serum separation structure 2341 includes a first blood injection chamber 23411, a first blood expansion valve 23412 a first blood separation chamber 23413, a first blood waste liquid chamber 23414, a first blood cell collection chamber 23415, and a first serum siphon 23416;
  • the first immune reaction structure 2342 includes a first reagent chamber 23421, a first immune expansion valve 23422, a first reagent injection chamber 23423, a first reagent siphon 23424, and a first immune reaction cell 23425.
  • the first blood sampling chamber 23411 is in communication with the first injection channel 231.
  • the blood sequentially passes through the blood collection needle 111, the capillary conduit 1122, the blood collection capillary tube 12, and the first injection hole 211.
  • the first injection channel 231 enters the first blood injection chamber 23411; the first reagent chamber 23421 has a fluorescently labeled immunological reagent, and the first reagent chamber 23421 and the first immune reaction pool 23424 are both
  • the vents are in communication to provide a pressure balance for the flow of the immunological reagent from the first reagent chamber 23421 to the first immunoreaction cell 23424.
  • control switch 221 is opened, the centrifuge 24 is initially operated, and the microfluidic chip 23 is driven to rotate by the crankshaft 241 and the mounting hole 231, under the action of centrifugal force,
  • the first blood expansion valve 23412 and the first immunodeflation valve 23422 are activated, and blood enters the first blood separation chamber 23413 from the first blood injection chamber 23411, and excess blood overflows to the first blood waste.
  • the liquid chamber 23414, the immunological reagent is quantitatively introduced into the first reagent injection chamber 23423 from the first reagent chamber 23421; the serum separation microfluidic chip 23 is continuously rotated, and the blood in the first blood separation chamber 23413 is ⁇ Starting to separate, wherein the heavier density blood cells enter the first blood cell collection chamber 23415; when the blood in the first blood separation chamber 2341 3 is completely separated, the centrifuge 24 is decelerated to run, and then stops.
  • the microfluidic chip 23 obtains an angular acceleration, and the serum in the first blood separation chamber 23413 and the immunological reagent in the first reagent injection chamber 23423 pass through the action of the Euler force respectively.
  • the first serum siphon 23416 and the first reagent siphon 23424 continue to flow into the first immune reaction cell 23425; restart the centrifuge 24 to reach the corresponding rotational speed, and then stop, and thus repeat the cycle operation N times, so that the first The serum and immunological reagents in an immunoreaction cell 23425 are thoroughly shaken and mixed.
  • the centrifuge is stopped at a high speed for a while, and the mixed solution in the first immunoreaction cell 23425 enters the first microfluidic electrophoresis structure 2343 under the action of the Euler force.
  • the first microfluidic electrophoresis structure 2343 includes a first electrophoresis channel 23431, a first buffer chamber 23432, a first immune complex collection chamber 23433, a first control valve 23434, and a first waste liquid chamber 23435.
  • the first buffer chamber 23432 has an electrophoresis buffer, and the first immunoreaction chamber 23425 and the first buffer chamber 23432 are connected to the first electrophoresis channel 23431, and the mixed solution and the electrophoresis buffer are both In Under the action of the Euler force, the flow continues through the first electrophoresis channel 23431.
  • the first electrophoresis channel 2343 1 may, but is not limited to, internally integrated molecular sieve channels for screening substances of different molecular weights, and the serum markers in the mixed solution are combined with specific antibodies under the action of the molecular sieve channels
  • the formed antigen-antibody complex has the largest molecular weight, passes through the first electrophoresis channel 23431, and enters the first immune complex collection chamber 23433. After a while, the first control valve 23434 is closed, and other small molecular substances that move slowly are entered into the first waste liquid chamber 23435.
  • the first photometer 25 is disposed below the first immune complex collection chamber 23433 for detecting the fluorescence absorbance of the antigen-antibody complex formed in the first microfluidic structure 234, and quantifying Analyzing the corresponding biomarker concentration in the serum;
  • the second photometer 26 is configured to detect the fluorescence absorbance of the antigen-antibody complex formed in the second microfluidic structure 2 35, and quantitatively analyze the corresponding organism in the serum Marker concentration
  • the first microfluidic structure 234 and the second microfluidic structure 235 operate in the same manner to detect two serum biomarkers of a certain disease: in the first microfluidic structure 234,
  • the immunological reagent is a fluorescently labeled antibody reagent specifically binding to the first serum biomarker for quantitatively analyzing the concentration of the first serum marker in the serum; the second microfluidic structure 235, the immunological reagent A fluorescently labeled antibody reagent that specifically binds to a second serum biomarker for quantitative analysis of the concentration of a second serum marker in the serum.
  • the serum marker detection system provided by the utility model can also be applied to household detection, so that the patient can detect his own physical condition after the hospital, and conveniently, quickly and accurately obtain the concentration of the specific marker in a certain disease. To provide support for clinical diagnosis.
  • FIG. 1 is an exploded view of the serum marker detecting system of the present invention
  • FIG. 2 is a schematic view showing the appearance of a microfluidic chip of the serum marker detecting system of the present invention
  • 3 is a cross-sectional view taken along line AA of FIG. 2.
  • the explosion map of the serum marker detection system includes the blood collection device 1 and the blood detection system 2.
  • the blood collection device 1 is configured to collect blood and deliver blood to the blood detection system 2, the blood collection device 1 includes a painless blood collection pen 11 and a blood collection capillary 12, the painless blood collection pen 11 including a needle 111 and
  • the handheld body 112 includes a regulator 1121, a capillary conduit 1122 and a blood collection capillary 1123.
  • the capillary conduit 1122 connects the needle 111 and the blood collection capillary 12, and the blood collection capillary 12 is a Y-shaped hose structure. Includes a blood inlet and two blood outlets.
  • the needle 111, the blood collection capillary 12 and the capillary conduit 1122 are used for one-time blood collection, and can be discarded as needed to avoid cross infection.
  • the regulator 1121 is used to control the blood collection intensity and depth.
  • 1123 is used to activate or close the painless blood collection pen 11.
  • the blood collection switch 1123, the needle 111 collects blood on the skin, and the collected blood passes through the capillary conduit 1122 and the blood collection capillary 12 under the action of high performance capillary electrophoresis, and the blood collection capillary tube 12
  • the collected blood is shunted to the blood detecting system 2 for detection by a Y-shaped hose structure.
  • the blood detecting system 2 is used for separating serum by centrifugal force, and specifically labeling two serum markers by antigen-antibody specific binding, for example, for myocardial infarction diseases, detecting myocardial infarction markers hs-CRP and CK-MB, Two kinds of serum markers were quantitatively analyzed by microfluidic chip electrophoresis.
  • the blood detecting system 2 includes, but is not limited to, a chip cover sheet 21, a chip body 22, a microfluidic chip 23, a centrifuge 24, a first photometer 25, and a second photometer 26, the chip
  • the cover sheet 21 is on the upper layer of the chip body 22, and the chip cover sheet 21 includes a first sample injection hole 211 and a second sample injection hole 21 2 which are symmetrically distributed, and the first sample injection hole 211 and the second injection hole
  • the sample hole 212 is connected to the two blood outlets of the blood collection capillary 12, and the control unit 22 is provided outside the chip body 22 for controlling the opening/closing of the centrifuge 27.
  • Each component in the measurement system 2 includes, but is not limited to, the microfluidic chip 23, the centrifuge 24, the first photometer 25, and the second photometer 26.
  • the microfluidic chip 23 is a disc structure located at the center of the chip body 22, the centrifuge 24 is located directly below the microfluidic chip 23, and the centrifuge 24 includes a crankshaft 241 and a pin 242.
  • the crankshaft 241 passes through the center of the microfluidic chip 23, and the centrifuge 24 and the microfluidic chip 23 are fixed by the latch 242, the first photometer 25 and the The second photometers 26 are both distributed on both sides of the centrifuge 24, below the microfluidic chip 23.
  • the structure of the microfluidic chip 23 is as shown in FIG. 2 and FIG. 3.
  • the microfluidic chip 23 includes a first injection channel 231 on the surface thereof. a second injection channel 232, a mounting hole 233, and six vent holes, the first sampling channel 231 is in communication with the first sampling hole 211, the second sampling channel 232 and the second sampling hole 212 is communicated, the mounting hole 233 is higher than the plane of the microfluidic chip 23, the centrifuge 23 passes through the mounting hole 233 through the crankshaft 241, and the mounting is performed by the plug 242 The hole 233 and the crankshaft 241 drive the microfluidic chip 23 to rotate.
  • the microfluidic chip 23 includes, but is not limited to, a first microfluidic structure 234 and a second micro image.
  • a flow control structure 235 the blood collected by the painless blood collection pen 1 is shunted by the Y-shaped hose structure of the blood collection capillary 12, and the blood passes through the first injection hole 211 and the first
  • the sample channel 231 is delivered to the first microfluidic structure 234, and the blood is delivered to the second microfluidic structure 235 through the second sample inlet 212 and the second sample channel 232.
  • the first microfluidic structure 234 and the second microfluidic structure 235 both separate serum in the blood by rotation of the centrifuge 24, and collect biomarkers in the serum to form a combination with specific antibodies. Antigen-antibody complex.
  • the first microfluidic structure 234 is taken as an example to illustrate the structural configuration of the first microfluidic structure and the second microfluidic structure, and the first microfluidic structure 234 includes a first serum separation structure. 2341, a first immune reaction structure 2342 and a first microfluidic electrophoresis structure 2343; correspondingly, the second microfluidic structure 235 comprises a second serum separation structure, a second immune reaction structure, and a second microfluidic electrophoresis structure .
  • the serum separation structure is for obtaining blood from the first injection hole or the second injection hole, separating serum of the blood by centrifugal force, and delivering the serum to the immune reaction structure by Euler force.
  • the immunoreactive structure is used to quantitatively deliver a fluorescently labeled immunological reagent mixed with the serum, the immunological reagent specificity A biomarker in the serum is identified to form an antigen-antibody complex, and the microfluidic electrophoresis structure is used to screen out the antigen-antibody complex.
  • the first serum separation structure 2341 includes a first blood injection chamber 23411, a first blood expansion valve 23412, a first blood separation chamber 23413, a first blood waste chamber 23414, a first blood collection chamber 23415, and a first serum siphon 23416;
  • the first immune response structure 2342 includes a first reagent chamber 23421, a first immunodeflation valve 23422, a first reagent injection chamber 23423, a first reagent siphon 23424, and a first immunoreaction pool 23425.
  • the first blood sampling chamber 23411 is in communication with the first injection channel 231.
  • the blood sequentially passes through the blood collection needle 111, the capillary conduit 1122, the blood collection capillary tube 12, and the first injection hole 211.
  • the first injection channel 231 enters the first blood injection chamber 23411; the first reagent chamber 23421 has a fluorescently labeled immunological reagent, and the first reagent chamber 23421 and the first immune reaction pool 23424 are both
  • the vents are in communication to provide a pressure balance for the flow of the immunological reagent from the first reagent chamber 23421 to the first immunoreaction cell 23424.
  • the liquid chamber 23414, the immunological reagent is quantitatively introduced into the first reagent injection chamber 23423 from the first reagent chamber 23421; the rotation of the serum separation microfluidic chip 23 is continued, and the blood in the first blood separation chamber 23413 is ⁇ Starting to separate, wherein the heavier density blood cells enter the first blood cell collection chamber 23415; after the blood in the first blood separation chamber 2341 3 is completely separated, the centrifuge 24 is decelerated to run, and then stops.
  • the microfluidic chip 23 obtains an angular acceleration, and the serum in the first blood separation chamber 23413 and the immunological reagent in the first reagent injection chamber 23423 pass through the Euler force respectively.
  • a serum siphon 23416 and the first reagent siphon 23424 continue to flow into the first immune reaction cell 23425; restart the centrifuge 24 to reach the corresponding rotational speed and then stop, and thus repeat the cycle operation N times, so that the first The serum and immunological reagents in the immunoreaction pool 23425 are thoroughly shaken and mixed.
  • the centrifuge is stopped at a high speed for a while, and the mixed solution in the first immunoreaction cell 23425 enters the first microfluidic electrophoresis structure 2343 under the action of the Euler force.
  • the first microfluidic electrophoresis structure 2343 includes a first electrophoresis channel 23431, a first buffer chamber 23432, a first immune complex collection chamber 23433, a first control valve 23434 and a first waste liquid chamber 23435, wherein the first buffer chamber 23432 has a running buffer, the first immune reaction pool 23425, the first buffer
  • the liquid chambers 23432 are all connected to the first electrophoresis channel 23431, and the mixed solution and the electrophoresis buffer continuously flow into the first electrophoresis channel 23431 under the action of the Euler force.
  • the first electrophoresis channel 2343 1 may, but is not limited to, internally integrated molecular sieve channels for screening substances of different molecular weights, and the serum markers in the mixed solution are combined with specific antibodies under the action of the molecular sieve channels
  • the formed antigen-antibody complex has the largest molecular weight, passes through the first electrophoresis channel 23431, and enters the first immune complex collection chamber 23433. After a while, the first control valve 23434 is closed, and other small molecular substances that move slowly are entered into the first waste liquid chamber 23435.
  • the first photometer 25 is disposed below the first immune complex collection chamber 23433 for detecting the fluorescence absorbance of the antigen-antibody complex formed in the first microfluidic structure 234, and quantifying Analyzing the corresponding biomarker concentration in the serum;
  • the second photometer 26 is configured to detect the fluorescence absorbance of the antigen-antibody complex formed in the second microfluidic structure 2 35, and quantitatively analyze the corresponding organism in the serum Marker concentration
  • the first microfluidic structure 234 and the second microfluidic structure 235 operate in the same manner to detect two serum biomarkers of a certain disease: in the first microfluidic structure 234,
  • the immunological reagent is a fluorescently labeled antibody reagent specifically binding to the first serum biomarker for quantitatively analyzing the concentration of the first serum marker in the serum; the second microfluidic structure 235, the immunological reagent A fluorescently labeled antibody reagent that specifically binds to a second serum biomarker for quantitative analysis of the concentration of a second serum marker in the serum.
  • the serum marker detection system provided by the utility model can also be applied to household detection, so that the patient can detect his own physical condition after the hospital, and conveniently, quickly and accurately obtain the concentration of the specific marker in a certain disease. To provide support for clinical diagnosis.
  • the serum marker detection system of the utility model can be used for serum detection in the home, and the serum marker detection device can quantitatively detect two serum markers by the same method, which can provide more reliable clinical support. Support.

Abstract

一种血清标志物检测系统,包括采血装置(1)和血液检测系统(2),采血装置(1)用于采集并输送血液至血液检测系统(2),血液检测系统(2)包括芯片盖片(21)、芯片本体(22)、微流控芯片(23)、离心机(24)、第一光度仪(25)以及第二光度仪(26),微流控芯片(23)包括镜像分布的第一微流控结构(234)和第二微流控结构(235),离心机(24)用于驱动微流控芯片(23)转动,第一微流控结构(234)和第二微流控结构(235)均用于通过离心机(24)的转动分离血液中的血清,并收集血清与特异性抗体结合形成的抗原-抗体复合物,第一光度仪(25)和第二光度仪(26)分别用于定量分析第一微流控芯片(234)和第二微流控芯片(235)中的抗原-抗体复合物。该血清标志物的检测系统,能够满足于家用,并通过同时定量检测两种血清标志物来为临床提供更可靠的支撑。

Description

说明书 发明名称:血清标志物检测系统
技术领域
[0001] 本实用新型涉及检测技术领域, 尤其涉及血清标志物检测系统。
背景技术
[0002] 传统的诊断试剂盒, 一般只能检测一种血清生物标志物, 考虑到人体免疫系统 的复杂性, 单一标志物的检测容易造成漏诊误诊, 诊断试剂盒的准确性有待提 高。 比如超敏 C反应蛋白 (hs-CRP) 被认定为新的具有高度特异性和敏感性的心 肌标志物检测指标, 是心血管吋间危险最强有力的预测因子之一, 被普遍用于 临床实验室诊断; 然而肌酸激酶同工酶 (CK-MB) 为诊断急性心肌梗死的重要 指标, 其升高常常用作心肌梗死突发是的快速的辅助诊断, 同吋检测两种心肌 梗死标志物的诊断结果比单一标志物的检测结果更具有权威性。
[0003] 微流控芯片电泳技术作为一种前沿科技, 获得了科学界的广泛认可, 并逐渐从 单纯的方法幵发, 走向了应用层面, 在小分子分析、 氨基酸蛋白质的分离、 核 算分析和测序、 生物细胞分析、 病原体分析等研究领域显示了巨大潜力。 微流 控芯片通过微管道构成网络, 具有高度集成化的特点, 可一站式完成样品制备 、 反应、 分离、 检测等基本操作, 同吋具有样品消耗低、 快速灵敏、 高通量, 自动化分析等优点, 其微型化尺寸便于携带。 微流控芯片的这些特性使其在临 床检测中显示出极大的优势, 基于微流控芯片的电泳技术也不断应用在临床检 测中。 利用微型微流控芯片特异性地定量检测单一疾病的两种血清标志物, 是 临床检测的发展方向, 更是家庭急救中进行病情初期判断的重要方法, 而同吋 定量检测这两种判断心急梗死的血清生物标志物, 能提供更准确的病情诊断。 技术问题
[0004] 本实用新型的主要目的在于提供血清标志物检测系统, 旨在提供一种便捷、 快 速、 准确地临床辅助检测系统, 同吋该装置适合家用检测。
问题的解决方案
技术解决方案 [0005] 为实现上述目的, 本实用新型提供了血清标志物检测系统, 所述血清标志物检 测系统包括采血装置和血液检测系统, 所述采血装置用于采集并输送血液至所 述血液检测系统, 所述血液检测系统包括芯片盖片、 芯片本体、 微流控芯片、 离心机、 第一光度仪以及第二光度仪, 所述微流控芯片包括镜像分布的第一微 流控结构和第二微流控结构, 所述离心机用于驱动所述微流控芯片转动, 所述 第一微流控结构和第二微流控结构均用于通过所述离心机的转动分离所述血液 中的血清, 并收集所述血清与特异性的抗体结合形成抗原-抗体复合物, 所述第 一光度仪和第二光度仪分别用于定量分析所述第一微流控芯片和第二微流控芯 片中的抗原-抗体复合物。 。
[0006] 优选的, 所述采血装置包括无痛采血笔和采血毛细管, 所述无痛采血笔包括针 头、 调节器、 毛细导管以及采血幵关, 所述针头和所述毛细导管用于一次性采 血, 所述调节器用于控制采血力度和深度, 所述采血幵关用于幵启或关闭所述 无痛采血笔。
[0007] 优选的, 所述采血毛细管是 Y型软管结构, 包括一个血液入口和两个血液出口
[0008] 优选的, 所述芯片盖片在所述芯片本体的上层, 所述芯片盖片上包括对称分布 的第一进样孔和第二进样孔, 所述采血毛细管通过 Y型软管结构将采集到的血液 输送到所述第一进样孔和第二进样孔中, 所述第一进样孔用于将所述血液输送 给所述第一微流控结构, 所述第二进样孔用于将所述血液输送给所述第二微流 控结构。
[0009]
[0010] 优选的, 所述第一微流控结构和第二微流控结构均包括血清分离结构、 免疫反 应结构以及微流控电泳结构。
[0011] 优选的, 所述血清分离结构用于从所述第一进样孔或第二进样孔获得血液, 通 过离心力分离所述血液的血清, 通过欧拉力将所述血清输送到所述免疫反应结 构中, 所述免疫反应结构用于定量输送荧光标记的免疫试剂与所述血清混合, 所述免疫试剂特异性识别所述血清中的生物标志物, 形成抗原-抗体复合物, 所 述微流控电泳结构用于筛选出所述抗原-抗体复合物。 [0012] 优选的, 所述第一微流控结构用于筛选所述血清中的第一血清标志物, 所述第 二微流控结构用于筛选所述血清中的第二血清标志物。
[0013] 优选的, 所述芯片本体外设置有控制幵关, 所述控制幵关用于控制所述离心机 的幵启 /关闭, 以及运转速度。
[0014] 优选的, 所述微流控芯片为圆盘结构, 所述圆盘结构的正中间设置有安装孔, 所述离心机包括机轴和插销, 所述机轴穿过所述安装孔, 并通过所述插销固定 所述离心机和所述微流控芯片。
[0015] 优选的, 所述微流控芯片、 离心机、 第一光度仪以及第二光度仪均设置在所述 芯片本体中。 发明的有益效果
有益效果
[0016] 相较于现有技术, 本实用新型所述血清标志物检测系统可用于家用的血清检测 , 同吋所述血清标志物检装置通过同吋定量检测两种血清标志物, 可为临床提 供更可靠的支撑。
对附图的简要说明
附图说明
[0017] 图 1是本实用新型血清标志物检测系统的爆炸图;
[0018] 图 2是本实用新型血清标志物检测系统的微流控芯片外观示意图;
[0019] 图 3是图 2中 A-A方向的剖面图。
[0020] 本实用新型目的实现、 功能特点及优点将结合实施例, 参照附图做进一步说明
实施该发明的最佳实施例
本发明的最佳实施方式
[0021] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图对本实用新型的具体实施方式、 结构、 特征及其功效进行说明。 应当指 出的是, 此处所描述的具体实施例仅仅用以解释本实用新型, 并不以任何形式 限定本实用新型。 [0022] 如图 1、 图 2和图 3所示, 图 1是本实用新型血清标志物检测系统的爆炸图; 图 2 是本实用新型血清标志物检测系统的微流控芯片外观示意图; 图 3是图 2中 A-A方 向的剖面图。
[0023] 在本实施例中, 所述血清标志物检测系统的爆炸图包括采血装置 1和血液检测 系统 2。
[0024] 所述采血装置 1用于采集血液并输送血液至所述血液检测系统 2, 所述采血装置 1包括无痛采血笔 11和采血毛细管 12, 所述无痛采血笔 11包括针头 111和手持本 体 112, 所述手持本体 112中包括调节器 1121、 毛细导管 1122和采血幵关 1123, 所述毛细导管 1122连接所述针头 111和采血毛细管 12, 所述采血毛细管 12为 Y型 软管结构, 包括一个血液入口和两个血液出口。 所述针头 111、 所述采血毛细管 12和所述毛细导管 1122用于一次性采血, 可以随用随弃, 避免交叉感染, 所述 调节器 1121用于控制采血力度和深度, 所述采血幵关 1123用于幵启或关闭所述 无痛采血笔 11。 幵启所述采血幵关 1123, 所述针头 111, 采集皮肤上的血液, 采 集到的所述血液在高效毛细管电泳的作用下通过所述毛细导管 1122和所述采血 毛细管 12, 所述采血毛细管 12通过 Y型软管结构将采集到的血液分流输送到血液 检测系统 2中进行检测。
[0025] 血液检测系统 2用于通过离心力分离血清, 通过抗原 -抗体发生特异性结合标记 两种血清中标志物, 例如针对心肌梗死疾病, 可以检测心肌梗死标志物 hs-CRP 和 CK-MB , 并利用微流控芯片电泳技术分别对两种血清标志物进行定量分析。
[0026] 所述血液检测系统 2包括, 但不限于, 芯片盖片 21、 芯片本体 22、 微流控芯片 2 3、 离心机 24、 第一光度仪 25以及第二光度仪 26, 所述芯片盖片 21在所述芯片本 体 22的上层, 所述芯片盖片 21上包括对称分布的第一进样孔 211和第二进样孔 21 2, 所述第一进样孔 211和第二进样孔 212用于与所述采血毛细管 12的两个血液出 口相连, 所述芯片本体 22外设置有控制幵关 221, 所述控制幵关 221用于控制所 述离心机 27的幵启 /关闭、 以及运转速度, 所述芯片本体 22中设置有所述血液检 测系统 2中的各个零部件, 所述血液检测系统 2中的零部件包括, 但不仅限于, 所述微流控芯片 23、 离心机 24、 第一光度仪 25以及第二光度仪 26。 其中, 所述 微流控芯片 23为圆盘结构, 位于所述芯片本体 22的中心, 所述离心机 24位于微 流控芯片 23的正下方, 所述离心机 24包括机轴 241和插销 242, 所述机轴 241穿过 所述微流控芯片 23的正中心, 并通过所述插销 242固定所述离心机 24和所述微流 控芯片 23, 所述第一光度仪 25和所述第二光度仪 26均分布在所述离心机 24的两 侧, 位于所述微流控芯片 23的下方。
[0027] 在本实施例中, 所述微流控芯片 23的结构如图 2和图 3所示, 如图 2所示所述微 流控芯片 23表面上包括第一进样通道 231、 第二进样通道 232、 安装孔 233以及六 个通气孔, 所述第一进样通道 231与所述第一进样孔 211相通, 所述第二进样通 道 232与所述第二进样孔 212相通, 所述安装孔 233高于所述微流控芯片 23的平面 , 所述离心机 23通过所述机轴 241穿过所述安装孔 233, 通过所述插销 242横插联 结所述安装孔 233和所述机轴 241, 驱动所述微流控芯片 23转动。
[0028] 如图 3中的微流控芯片 A- A方向的剖面图所示, 所述微流控芯片 23内部包括, 但不仅限于, 镜像分布的第一微流控结构 234和第二微流控结构 235, 所述无痛 采血笔 1采集到的血液在所述采血毛细管 12的 Y型软管结构的作用下分流, 所述 血液经过所述第一进样孔 211和所述第一进样通道 231输送至所述第一微流控结 构 234, 所述血液经过所述第二进样孔 212和所述第二进样通道 232输送至所述第 二微流控结构 235, 所述第一微流控结构 234和第二微流控结构 235均通过所述离 心机 24的转动分离所述血液中的血清, 并收集所述血清中的生物标志物与特异 性的抗体结合形成抗原-抗体复合物。
[0029] 以所述第一微流控结构 234为例说明所述第一微流控结构和第二微流控结构的 结构构造, 所述第一微流控结构 234包括第一血清分离结构 2341、 第一免疫反应 结构 2342以及第一微流控电泳结构 2343 ; 对应地, 所述第二微流控结构 235包括 第二血清分离结构、 第二免疫反应结构以及第二微流控电泳结构。 所述血清分 离结构用于从所述第一进样孔或第二进样孔获得血液, 通过离心力分离所述血 液的血清, 通过欧拉力将所述血清输送到所述免疫反应结构中, 所述免疫反应 结构用于定量输送荧光标记的免疫试剂与所述血清混合, 所述免疫试剂特异性 识别所述血清中的生物标志物, 形成抗原-抗体复合物, 所述微流控电泳结构用 于筛选出所述抗原-抗体复合物。
[0030] 所述第一血清分离结构 2341包括第一血液进样腔 23411、 第一血液扩张阀 23412 、 第一血液分离腔 23413、 第一血液废液腔 23414、 第一血细胞收集腔 23415、 以 及第一血清虹吸管 23416; 所述第一免疫反应结构 2342包括第一试剂腔 23421、 第一免疫扩张阀 23422、 第一试剂进样腔 23423、 第一试剂虹吸管 23424和第一免 疫反应池 23425。 所述第一血液进样腔 23411与所述第一进样通道 231相通, 在大 气压的作用下, 血液顺序经过所述采血针头 111、 毛细导管 1122、 采血毛细管 12 、 第一进样孔 211, 第一进样通道 231进入所述第一血液进样腔 23411 ; 所述第一 试剂腔 23421内有荧光标记的免疫试剂, 所述第一试剂腔 23421和所述第一免疫 反应池 23424均与通气孔相通, 为免疫试剂从所述第一试剂腔 23421到所述第一 免疫反应池 23424的流动提供气压平衡。
[0031] 打幵所述控制幵关 221, 所述离心机 24幵始运转, 并通过所述机轴 241和所述安 装孔 231驱动所述微流控芯片 23旋转, 在离心力的作用下, 所述第一血液扩张阀 23412和第一免疫扩张阀 23422幵启, 血液由所述第一血液进样腔 23411进入所述 第一血液分离腔 23413, 多余的血液溢出到所述第一血液废液腔 23414, 免疫试 剂从所述第一试剂腔 23421定量进入所述第一试剂进样腔 23423 ; 继续旋转所述 血清分离微流控芯片 23, 所述第一血液分离腔 23413中的血液幵始分离, 其中密 度较重的血细胞进入所述第一血细胞收集腔 23415 ; 当所述第一血液分离腔 2341 3中的血液完全分离后, 减速运转所述离心机 24—段吋间后停止, 所述微流控芯 片 23获得角加速度, 所述第一血液分离腔 23413中的血清和所述第一试剂进样腔 23423中的免疫试剂在欧拉力的作用下分别通过所述第一血清虹吸管 23416和所 述第一试剂虹吸管 23424, 持续流入所述第一免疫反应池 23425 ; 再次启动所述 离心机 24到达相应转速后停止, 并如此反复循环操作 N次, 使所述第一免疫反应 池 23425中的血清和免疫试剂充分震荡混合。
[0032] 高速启动所述离心机 24片刻后停止, 所述第一免疫反应池 23425中的混合溶液 在欧拉力的作用下进入所述第一微流控电泳结构 2343。
[0033] 所述第一微流控电泳结构 2343包括第一电泳通道 23431、 第一缓冲液腔 23432, 第一免疫复合物收集腔 23433、 第一控制阀 23434以及第一废液腔 23435, 所述第 一缓冲液腔 23432中有电泳缓冲液, 所述第一免疫反应池 23425、 所述第一缓冲 液腔 23432均与所述第一电泳通道 23431相连, 所述混合溶液和电泳缓冲液均在 欧拉力的作用下持续进入流过所述第一电泳通道 23431。 所述第一电泳通道 2343 1可以, 但不仅限于, 在内部集成分子筛通道, 用于筛选不同分子量的物质, 在 所述分子筛通道的作用下, 所述混合溶液中血清标志物与特异性抗体结合形成 的抗原 -抗体复合物具有最大的分子量, 率先通过所述第一电泳通道 23431, 并进 入所述第一免疫复合物收集腔 23433。 片刻后关闭所述第一控制阀 23434, 移动 较慢的其他小分子物质进入所述第一废液腔 23435。
[0034] 所述第一光度仪 25设置在所述第一免疫复合物收集腔 23433的下方, 用于检测 所述第一微流控结构 234中形成的抗原-抗体复合物的荧光吸光度, 定量分析血清 中的相应生物标志物浓度; 所述第二光度仪 26, 用于检测所述第二微流控结构 2 35中形成的抗原-抗体复合物的荧光吸光度, 定量分析血清中的相应生物标志物 浓度
[0035] 所述第一微流控结构 234和所述第二微流控结构 235同吋运行, 分别检测某种疾 病的两种血清生物标志物: 所述第一微流控结构 234中, 所述免疫试剂为荧光标 记的、 与第一血清生物标志物特异性结合的抗体试剂, 用于定量分析血清中第 一血清标志物的浓度; 所述第二微流控结构 235中, 免疫试剂为荧光标记的、 与 第二血清生物标志物特异性结合的抗体试剂, 用于定量分析血清中第二血清标 志物的浓度。 通过所述第一光度仪 25和第二光度仪 26同吋对所述两种血清生物 标志物的定量检测, 实现准确可靠的检测出某种疾病中特异性标记物的浓度。
[0036] 本实用新型提供的血清标记物检测系统还可以应用于家用检测, 使患者在院后 可以随吋检测自身身体状况, 便捷、 快速且准确的获得某种疾病中特异性标记 物的浓度, 从而为临床诊断提供支撑。
[0037] 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡 是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围 内。
本发明的实施方式
[0038] 为更进一步阐述本实用新型为达成上述目的所采取的技术手段及功效, 以下结 合附图对本实用新型的具体实施方式、 结构、 特征及其功效进行说明。 应当指 出的是, 此处所描述的具体实施例仅仅用以解释本实用新型, 并不以任何形式 限定本实用新型。
[0039] 如图 1、 图 2和图 3所示, 图 1是本实用新型血清标志物检测系统的爆炸图; 图 2 是本实用新型血清标志物检测系统的微流控芯片外观示意图; 图 3是图 2中 A-A方 向的剖面图。
[0040] 在本实施例中, 所述血清标志物检测系统的爆炸图包括采血装置 1和血液检测 系统 2。
[0041] 所述采血装置 1用于采集血液并输送血液至所述血液检测系统 2, 所述采血装置 1包括无痛采血笔 11和采血毛细管 12, 所述无痛采血笔 11包括针头 111和手持本 体 112, 所述手持本体 112中包括调节器 1121、 毛细导管 1122和采血幵关 1123, 所述毛细导管 1122连接所述针头 111和采血毛细管 12, 所述采血毛细管 12为 Y型 软管结构, 包括一个血液入口和两个血液出口。 所述针头 111、 所述采血毛细管 12和所述毛细导管 1122用于一次性采血, 可以随用随弃, 避免交叉感染, 所述 调节器 1121用于控制采血力度和深度, 所述采血幵关 1123用于幵启或关闭所述 无痛采血笔 11。 幵启所述采血幵关 1123, 所述针头 111, 采集皮肤上的血液, 采 集到的所述血液在高效毛细管电泳的作用下通过所述毛细导管 1122和所述采血 毛细管 12, 所述采血毛细管 12通过 Y型软管结构将采集到的血液分流输送到血液 检测系统 2中进行检测。
[0042] 血液检测系统 2用于通过离心力分离血清, 通过抗原 -抗体发生特异性结合标记 两种血清中标志物, 例如针对心肌梗死疾病, 可以检测心肌梗死标志物 hs-CRP 和 CK-MB , 并利用微流控芯片电泳技术分别对两种血清标志物进行定量分析。
[0043] 所述血液检测系统 2包括, 但不限于, 芯片盖片 21、 芯片本体 22、 微流控芯片 2 3、 离心机 24、 第一光度仪 25以及第二光度仪 26, 所述芯片盖片 21在所述芯片本 体 22的上层, 所述芯片盖片 21上包括对称分布的第一进样孔 211和第二进样孔 21 2, 所述第一进样孔 211和第二进样孔 212用于与所述采血毛细管 12的两个血液出 口相连, 所述芯片本体 22外设置有控制幵关 221, 所述控制幵关 221用于控制所 述离心机 27的幵启 /关闭、 以及运转速度, 所述芯片本体 22中设置有所述血液检 测系统 2中的各个零部件, 所述血液检测系统 2中的零部件包括, 但不仅限于, 所述微流控芯片 23、 离心机 24、 第一光度仪 25以及第二光度仪 26。 其中, 所述 微流控芯片 23为圆盘结构, 位于所述芯片本体 22的中心, 所述离心机 24位于微 流控芯片 23的正下方, 所述离心机 24包括机轴 241和插销 242, 所述机轴 241穿过 所述微流控芯片 23的正中心, 并通过所述插销 242固定所述离心机 24和所述微流 控芯片 23, 所述第一光度仪 25和所述第二光度仪 26均分布在所述离心机 24的两 侧, 位于所述微流控芯片 23的下方。
[0044] 在本实施例中, 所述微流控芯片 23的结构如图 2和图 3所示, 如图 2所示所述微 流控芯片 23表面上包括第一进样通道 231、 第二进样通道 232、 安装孔 233以及六 个通气孔, 所述第一进样通道 231与所述第一进样孔 211相通, 所述第二进样通 道 232与所述第二进样孔 212相通, 所述安装孔 233高于所述微流控芯片 23的平面 , 所述离心机 23通过所述机轴 241穿过所述安装孔 233, 通过所述插销 242横插联 结所述安装孔 233和所述机轴 241, 驱动所述微流控芯片 23转动。
[0045] 如图 3中的微流控芯片 A- A方向的剖面图所示, 所述微流控芯片 23内部包括, 但不仅限于, 镜像分布的第一微流控结构 234和第二微流控结构 235, 所述无痛 采血笔 1采集到的血液在所述采血毛细管 12的 Y型软管结构的作用下分流, 所述 血液经过所述第一进样孔 211和所述第一进样通道 231输送至所述第一微流控结 构 234, 所述血液经过所述第二进样孔 212和所述第二进样通道 232输送至所述第 二微流控结构 235, 所述第一微流控结构 234和第二微流控结构 235均通过所述离 心机 24的转动分离所述血液中的血清, 并收集所述血清中的生物标志物与特异 性的抗体结合形成抗原-抗体复合物。
[0046] 以所述第一微流控结构 234为例说明所述第一微流控结构和第二微流控结构的 结构构造, 所述第一微流控结构 234包括第一血清分离结构 2341、 第一免疫反应 结构 2342以及第一微流控电泳结构 2343 ; 对应地, 所述第二微流控结构 235包括 第二血清分离结构、 第二免疫反应结构以及第二微流控电泳结构。 所述血清分 离结构用于从所述第一进样孔或第二进样孔获得血液, 通过离心力分离所述血 液的血清, 通过欧拉力将所述血清输送到所述免疫反应结构中, 所述免疫反应 结构用于定量输送荧光标记的免疫试剂与所述血清混合, 所述免疫试剂特异性 识别所述血清中的生物标志物, 形成抗原-抗体复合物, 所述微流控电泳结构用 于筛选出所述抗原-抗体复合物。
[0047] 所述第一血清分离结构 2341包括第一血液进样腔 23411、 第一血液扩张阀 23412 、 第一血液分离腔 23413、 第一血液废液腔 23414、 第一血细胞收集腔 23415、 以 及第一血清虹吸管 23416; 所述第一免疫反应结构 2342包括第一试剂腔 23421、 第一免疫扩张阀 23422、 第一试剂进样腔 23423、 第一试剂虹吸管 23424和第一免 疫反应池 23425。 所述第一血液进样腔 23411与所述第一进样通道 231相通, 在大 气压的作用下, 血液顺序经过所述采血针头 111、 毛细导管 1122、 采血毛细管 12 、 第一进样孔 211, 第一进样通道 231进入所述第一血液进样腔 23411 ; 所述第一 试剂腔 23421内有荧光标记的免疫试剂, 所述第一试剂腔 23421和所述第一免疫 反应池 23424均与通气孔相通, 为免疫试剂从所述第一试剂腔 23421到所述第一 免疫反应池 23424的流动提供气压平衡。
[0048] 打幵所述控制幵关 221, 所述离心机 24幵始运转, 并通过所述机轴 241和所述安 装孔 231驱动所述微流控芯片 23旋转, 在离心力的作用下, 所述第一血液扩张阀 23412和第一免疫扩张阀 23422幵启, 血液由所述第一血液进样腔 23411进入所述 第一血液分离腔 23413, 多余的血液溢出到所述第一血液废液腔 23414, 免疫试 剂从所述第一试剂腔 23421定量进入所述第一试剂进样腔 23423; 继续旋转所述 血清分离微流控芯片 23, 所述第一血液分离腔 23413中的血液幵始分离, 其中密 度较重的血细胞进入所述第一血细胞收集腔 23415; 当所述第一血液分离腔 2341 3中的血液完全分离后, 减速运转所述离心机 24—段吋间后停止, 所述微流控芯 片 23获得角加速度, 所述第一血液分离腔 23413中的血清和所述第一试剂进样腔 23423中的免疫试剂在欧拉力的作用下分别通过所述第一血清虹吸管 23416和所 述第一试剂虹吸管 23424, 持续流入所述第一免疫反应池 23425; 再次启动所述 离心机 24到达相应转速后停止, 并如此反复循环操作 N次, 使所述第一免疫反应 池 23425中的血清和免疫试剂充分震荡混合。
[0049] 高速启动所述离心机 24片刻后停止, 所述第一免疫反应池 23425中的混合溶液 在欧拉力的作用下进入所述第一微流控电泳结构 2343。
[0050] 所述第一微流控电泳结构 2343包括第一电泳通道 23431、 第一缓冲液腔 23432, 第一免疫复合物收集腔 23433、 第一控制阀 23434以及第一废液腔 23435, 所述第 一缓冲液腔 23432中有电泳缓冲液, 所述第一免疫反应池 23425、 所述第一缓冲 液腔 23432均与所述第一电泳通道 23431相连, 所述混合溶液和电泳缓冲液均在 欧拉力的作用下持续进入流过所述第一电泳通道 23431。 所述第一电泳通道 2343 1可以, 但不仅限于, 在内部集成分子筛通道, 用于筛选不同分子量的物质, 在 所述分子筛通道的作用下, 所述混合溶液中血清标志物与特异性抗体结合形成 的抗原 -抗体复合物具有最大的分子量, 率先通过所述第一电泳通道 23431, 并进 入所述第一免疫复合物收集腔 23433。 片刻后关闭所述第一控制阀 23434, 移动 较慢的其他小分子物质进入所述第一废液腔 23435。
[0051] 所述第一光度仪 25设置在所述第一免疫复合物收集腔 23433的下方, 用于检测 所述第一微流控结构 234中形成的抗原-抗体复合物的荧光吸光度, 定量分析血清 中的相应生物标志物浓度; 所述第二光度仪 26, 用于检测所述第二微流控结构 2 35中形成的抗原-抗体复合物的荧光吸光度, 定量分析血清中的相应生物标志物 浓度
[0052] 所述第一微流控结构 234和所述第二微流控结构 235同吋运行, 分别检测某种疾 病的两种血清生物标志物: 所述第一微流控结构 234中, 所述免疫试剂为荧光标 记的、 与第一血清生物标志物特异性结合的抗体试剂, 用于定量分析血清中第 一血清标志物的浓度; 所述第二微流控结构 235中, 免疫试剂为荧光标记的、 与 第二血清生物标志物特异性结合的抗体试剂, 用于定量分析血清中第二血清标 志物的浓度。 通过所述第一光度仪 25和第二光度仪 26同吋对所述两种血清生物 标志物的定量检测, 实现准确可靠的检测出某种疾病中特异性标记物的浓度。
[0053] 本实用新型提供的血清标记物检测系统还可以应用于家用检测, 使患者在院后 可以随吋检测自身身体状况, 便捷、 快速且准确的获得某种疾病中特异性标记 物的浓度, 从而为临床诊断提供支撑。
[0054] 以上仅为本实用新型的优选实施例, 并非因此限制本实用新型的专利范围, 凡 是利用本实用新型说明书及附图内容所作的等效结构或等效功能变换, 或直接 或间接运用在其他相关的技术领域, 均同理包括在本实用新型的专利保护范围 内。 工业实用性
相较于现有技术, 本实用新型所述血清标志物检测系统可用于家用的血清检测 , 同吋所述血清标志物检装置通过同吋定量检测两种血清标志物, 可为临床提 供更可靠的支撑。

Claims

权利要求书
[权利要求 1] 一种血清标志物检测系统, 其特征在于, 所述血清标志物检测系统包 括采血装置和血液检测系统, 所述采血装置用于采集并输送血液至所 述血液检测系统, 所述血液检测系统包括芯片盖片、 芯片本体、 微流 控芯片、 离心机、 第一光度仪以及第二光度仪, 所述微流控芯片包括 镜像分布的第一微流控结构和第二微流控结构, 所述离心机用于驱动 所述微流控芯片转动, 所述第一微流控结构和第二微流控结构均用于 通过所述离心机的转动分离所述血液中的血清, 并收集所述血清与特 异性的抗体结合形成抗原 -抗体复合物, 所述第一光度仪和第二光度 仪分别用于定量分析所述第一微流控芯片和第二微流控芯片中的抗原 -抗体复合物。
[权利要求 2] 根据权利要求 1所述的血清标志物检测系统, 其特征在于, 所述采血 装置包括无痛采血笔和采血毛细管, 所述无痛采血笔包括针头、 调节 器、 毛细导管以及采血幵关, 所述针头和所述毛细导管用于一次性采 血, 所述调节器用于控制采血力度和深度, 所述采血幵关用于幵启或 关闭所述无痛采血笔。
[权利要求 3] 根据权利要求 2所述的血清标志物检测系统, 其特征在于, 所述采血 毛细管是 Y型软管结构, 包括一个血液入口和两个血液出口。
[权利要求 4] 根据权利要求 3所述的血清标志物检测系统, 其特征在于, 所述芯片 盖片在所述芯片本体的上层, 所述芯片盖片上包括对称分布的第一进 样孔和第二进样孔, 所述采血毛细管通过 Y型软管结构将采集到的血 液输送到所述第一进样孔和第二进样孔中, 所述第一进样孔用于将所 述血液输送给所述第一微流控结构, 所述第二进样孔用于将所述血液 输送给所述第二微流控结构。
[权利要求 5] 根据权利要求 4所述的血清标志物检测系统, 其特征在于, 所述第一 微流控结构和第二微流控结构均包括血清分离结构、 免疫反应结构以 及微流控电泳结构。
[权利要求 6] 根据权利要求 5所述的血清标志物检测系统, 其特征在于, 所述血清 分离结构用于从所述第一进样孔或第二进样孔获得血液, 通过离心力 分离所述血液的血清, 通过欧拉力将所述血清输送到所述免疫反应结 构中, 所述免疫反应结构用于定量输送荧光标记的免疫试剂与所述血 清混合, 所述免疫试剂特异性识别所述血清中的的生物标志物, 形成 抗原-抗体复合物, 所述微流控电泳结构用于筛选出所述抗原-抗体复 合物。
[权利要求 7] 根据权利要求 4所述的血清标志物检测系统, 其特征在于, 所述第一 微流控结构用于筛选所述血清中的第一血清标志物, 所述第二微流控 结构用于筛选所述血清中的第二血清标志物。
[权利要求 8] 根据权利要求 4所述的血清标志物检测系统, 其特征在于, 所述芯片 本体外设置有控制幵关, 所述控制幵关用于控制所述离心机的幵启 / 关闭, 以及运转速度。
[权利要求 9] 根据权利要求 4所述的血清标志物检测系统, 其特征在于, 所述微流 控芯片为圆盘结构, 所述圆盘结构的正中间设置有安装孔, 所述离心 机包括机轴和插销, 所述机轴穿过所述安装孔, 并通过所述插销固定 所述离心机和所述微流控芯片。
[权利要求 10] 根据权利要求 1至 9任一项所述的血清标志物检测系统, 其特征在于, 所述微流控芯片、 离心机、 第一光度仪以及第二光度仪均设置在所述 芯片本体中。
PCT/CN2016/100007 2015-12-31 2016-09-24 血清标志物检测系统 WO2017113902A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201521136516.5U CN205280728U (zh) 2015-12-31 2015-12-31 血清标志物检测系统
CN201521136516.5 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113902A1 true WO2017113902A1 (zh) 2017-07-06

Family

ID=56065294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/100007 WO2017113902A1 (zh) 2015-12-31 2016-09-24 血清标志物检测系统

Country Status (2)

Country Link
CN (1) CN205280728U (zh)
WO (1) WO2017113902A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205280728U (zh) * 2015-12-31 2016-06-01 深圳市贝沃德克生物技术研究院有限公司 血清标志物检测系统
JP7179329B2 (ja) * 2016-01-14 2022-11-29 ヨーロピアン モレキュラー バイオロジー ラボラトリー リガンド誘発型の細胞発現のマイクロ流体分析
CN105891457A (zh) * 2016-06-03 2016-08-24 南京航空航天大学 一种基于毛细现象的超声血液分流装置及其工作方法
CN108931645A (zh) * 2018-07-26 2018-12-04 北京大学第医院 一种hcv清除后肝纤维化评估系统及评估方法
US20210356487A1 (en) * 2019-04-04 2021-11-18 Biobank Inc. Multisystem for simultaneously performing biochemical examination and blood test, and multi-disc used therein

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008019028A2 (en) * 2006-08-03 2008-02-14 Advanced Medical Products Gmbh Self-contained test unit for testing body fluids
CN201578249U (zh) * 2009-12-17 2010-09-15 庄彩梅 一种新型采血笔
US20120130343A1 (en) * 2001-06-12 2012-05-24 Dominique Freeman Tissue penetration device
US20140309558A1 (en) * 2013-04-15 2014-10-16 Becton, Dickinson And Company Biological Fluid Sampling Device
CN104646079A (zh) * 2015-02-17 2015-05-27 方雪萍 一种用于毛细管电泳的离心式cd微流控芯片及毛细管凝胶电泳装置
CN204522994U (zh) * 2015-02-17 2015-08-05 方雪萍 一种用于毛细管电泳的离心微流控芯片及凝胶电泳装置
CN104838267A (zh) * 2012-10-08 2015-08-12 通用电气公司 用于lal反应物质测试的向心微流体平台
CN104849222A (zh) * 2015-01-23 2015-08-19 江苏大学 基于光度检测的旋转碟式微流控浓度测量装置与方法
CN104884954A (zh) * 2012-12-31 2015-09-02 高丽大学校产学协力团 测试基于离心式微流控法的血小板的多功能和药物反应的设备和方法
CN205280728U (zh) * 2015-12-31 2016-06-01 深圳市贝沃德克生物技术研究院有限公司 血清标志物检测系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120130343A1 (en) * 2001-06-12 2012-05-24 Dominique Freeman Tissue penetration device
WO2008019028A2 (en) * 2006-08-03 2008-02-14 Advanced Medical Products Gmbh Self-contained test unit for testing body fluids
CN201578249U (zh) * 2009-12-17 2010-09-15 庄彩梅 一种新型采血笔
CN104838267A (zh) * 2012-10-08 2015-08-12 通用电气公司 用于lal反应物质测试的向心微流体平台
CN104884954A (zh) * 2012-12-31 2015-09-02 高丽大学校产学协力团 测试基于离心式微流控法的血小板的多功能和药物反应的设备和方法
US20140309558A1 (en) * 2013-04-15 2014-10-16 Becton, Dickinson And Company Biological Fluid Sampling Device
CN104849222A (zh) * 2015-01-23 2015-08-19 江苏大学 基于光度检测的旋转碟式微流控浓度测量装置与方法
CN104646079A (zh) * 2015-02-17 2015-05-27 方雪萍 一种用于毛细管电泳的离心式cd微流控芯片及毛细管凝胶电泳装置
CN204522994U (zh) * 2015-02-17 2015-08-05 方雪萍 一种用于毛细管电泳的离心微流控芯片及凝胶电泳装置
CN205280728U (zh) * 2015-12-31 2016-06-01 深圳市贝沃德克生物技术研究院有限公司 血清标志物检测系统

Also Published As

Publication number Publication date
CN205280728U (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017113902A1 (zh) 血清标志物检测系统
TWI550274B (zh) 微流體檢驗裝置及其運作方法
US10086373B2 (en) Cartridge with a rotatable lid
US20100279309A1 (en) Microfluidic chips and systems for analyzing protein expression, and methods of use thereof
WO2011093602A2 (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
WO2017118128A1 (zh) 多种血清标志物综合检测设备
US10906043B2 (en) Microfluidic based integrated sample analysis system
TWI400446B (zh) 免疫分析晶片
KR101931071B1 (ko) 혈액 샘플에서의 분석 물질의 양의 판별
JP2010505108A (ja) カートリッジシステム
CN102243234B (zh) 一种基于免疫方法的细菌自动分选标记方法和装置
Shen et al. An enhanced centrifugation-assisted lateral flow immunoassay for the point-of-care detection of protein biomarkers
KR102371415B1 (ko) 다수의 미터링 챔버들을 구비한 회전가능한 카트리지
CN103170378A (zh) 用于免疫分析的微流控芯片装置
CN109765391B (zh) 一种多指标检测离心式试纸条芯片
CN207913802U (zh) 一种全血检测的微流控芯片及其检测装置
CN207655161U (zh) 全血分离微流控芯片及检测装置
CN113189349A (zh) 多通道elisa检测外周血中多种感染标志物的微流控芯片
US10782288B2 (en) Multi-unit for conducting biochemical test and immunological test and testing method thereof
WO2014184810A1 (en) Method for assaying glycated protein
CN109939751A (zh) 一种全血检测的微流控芯片、检测装置及其检测方法
CN109781478B (zh) 一种用于高通量层析检测的集成化自动前处理装置
Zirath et al. A disposable microfluidic chip for rapid and sensitive detection of plasma biomarkers
CN210045262U (zh) 一种心血管突发事件检测微流控芯片
US20200238279A1 (en) Devices, systems, and methods for specimen preparation and analysis using capillary and centrifugal forces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10/10/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16880695

Country of ref document: EP

Kind code of ref document: A1