WO2017113847A1 - 检验检疫用检查系统及其方法 - Google Patents

检验检疫用检查系统及其方法 Download PDF

Info

Publication number
WO2017113847A1
WO2017113847A1 PCT/CN2016/097577 CN2016097577W WO2017113847A1 WO 2017113847 A1 WO2017113847 A1 WO 2017113847A1 CN 2016097577 W CN2016097577 W CN 2016097577W WO 2017113847 A1 WO2017113847 A1 WO 2017113847A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
quarantine
inspected
contraband
inspection system
Prior art date
Application number
PCT/CN2016/097577
Other languages
English (en)
French (fr)
Inventor
苗齐田
陈志强
张丽
孙运达
黄铭
黄清萍
胡明
雷蕾
夏杰
Original Assignee
同方威视技术股份有限公司
中检科威(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 中检科威(北京)科技有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP16880640.4A priority Critical patent/EP3290912A4/en
Priority to JP2017564663A priority patent/JP2019500574A/ja
Priority to KR1020177035556A priority patent/KR20180115214A/ko
Publication of WO2017113847A1 publication Critical patent/WO2017113847A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/223Mixed interrogation beams, e.g. using more than one type of radiation beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies

Definitions

  • the invention relates to the technical field of radiation imaging detection, in particular to an inspection and quarantine inspection system and a method thereof.
  • CT technology plays an important role in safety inspections and the like because it can eliminate the influence of object overlap to the greatest extent.
  • various types of contraband that the workers are concerned about, including metal gun tools, sharp and sharp glass-ceramic aluminum products called mixtures, and various organic materials. Explosives containing flammable and explosive liquids. Due to the variety of objects that need to be imaged, any type of object fails to obtain the most prominent and finest display effect, which affects the experience and inspection ability of the CT system staff to some extent.
  • the main contraband is concerned with all kinds of animals and plants, including various fruits, vegetables, seeds, insects, meat products and so on.
  • These inspection and quarantine contraband can be subdivided into many sub-categories, basically belonging to the category of organic matter.
  • the staff in this field urgently need a more advanced CT system to replace the single-view or multi-view X-ray machine.
  • the CT system for quarantine is missing, and the imaging quality of the inspection and quarantine contraband is not targeted. It is very difficult for operators in the field to quickly and accurately identify the target object. After inquiring about the literature and patents, no CT inspection systems and methods for quarantine were found.
  • an inspection and quarantine inspection system comprising: a CT scanning device that performs CT scanning on an object to be inspected to obtain projection data; and a computing unit coupled to the CT scanning device, based on The projection data is reconstructed to obtain image data reflecting the internal features of the object to be inspected, and the organic part or the inspection and quarantine part in the object to be inspected is determined; the display unit is coupled to the calculation unit, and the determined organic part or inspection is performed.
  • the quarantine contraband is enhanced or highlighted relative to other parts.
  • the organic and non-organic portions of the object being inspected are distinguished based on the physical properties of the object being inspected.
  • the physical property comprises at least one of an attenuation coefficient, a base material coefficient, a CT number, a density, and an equivalent atomic number.
  • the inspection quarantine contraband and the non-inspection quarantine contraband are distinguished based on at least one of physical attributes, shape features, and texture features of the object under inspection.
  • the physical property comprises at least one of an attenuation coefficient, a base material coefficient, a CT number, a density, and an equivalent atomic number.
  • the CT scanning device performs a single-energy CT scan or a dual-energy CT scan on the object to be inspected, and reconstructs an attenuation coefficient image, a CT number image, or an equivalent atomic number image of the object to be inspected by the calculation unit, according to At least one of a shape feature, a texture feature, and a physical property determines an organic matter in the object to be inspected and a portion of the inspection and quarantine contraband.
  • the display unit enhances the contrast of the organic portion of the object being inspected or the portion of the inspection quarantine.
  • the display unit stretches the grayscale of those pixels classified to the organic or inspection quarantine category to a greater extent.
  • the computing unit divides the organic portion or the inspection quarantine portion into a plurality of subcategories using previously created classification criteria, and assigns different color values to the pixels of the subcategory.
  • the display unit indicates an organic portion of the object being inspected or a portion of the inspection quarantine.
  • the display unit frames the organic portion or the inspection quarantine item in the object to be inspected, displays the arrow, flashes the display, or assigns a special color display.
  • the display unit hides a non-organic portion or a non-inspection quarantine portion of the object being inspected.
  • the display unit weakens the display of non-organic portions or non-inspection quarantine portions of the object being inspected.
  • the display unit performs grayscale range compression, same color display, gray display, increased transparency, or reduced saturation on non-organic portions or non-inspection quarantine portions of the object being inspected.
  • the display unit weakens the display of the non-organic portion or the non-inspection quarantine portion while enhancing the display of the organic portion or the inspection quarantine portion.
  • the calculation unit determines image data of the foreground portion in the image data, and removes pixels having attenuation coefficients, CT numbers, or atomic numbers greater than a predetermined value in the foreground portion to eliminate The foreground obscures the organic part or the inspection and quarantine part.
  • the computing unit weakens those pixels in the image data that have attenuation coefficients, CT numbers, or atomic numbers greater than a predetermined value.
  • the computing unit identifies the quarantine contraband based on the template identification and highlights the image of the inspection quarantine contraband through the display unit.
  • the inspection system further includes a DR scanning device that operates in synchronization with the CT scanning device to obtain a transmission image and display a CT image and a transmission image on a screen of the display unit.
  • the computing unit automatically divides the image of the inspected object mixed with the plurality of items into separate items according to the contour edge, facilitating the inspector's decision.
  • the computing unit compares the appearance of the three-dimensional image of the object to be examined with the template in the database of suspect images, and highlights the inspection and quarantine suspects in conjunction with the results of the substance identification.
  • the computing unit automatically identifies the inspection quarantine object features that are often marked by the user and enters the database.
  • a method for inspection and quarantine comprising: performing CT scan on an object to be inspected to obtain projection data; reconstructing based on the projection data to obtain image data reflecting internal features of the object to be inspected; Examine the part of the organic matter in the object or inspect the quarantine part of the quarantine; and enhance or highlight the determined part of the organic substance or the part of the inspection and quarantine contraband relative to other parts.
  • Figure 1 shows a schematic view of an inspection system in accordance with one embodiment of the present invention
  • FIG. 2 shows a schematic flow chart of an inspection method according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing an image of an object to be inspected obtained by a conventional CT system
  • FIG. 4 is a schematic diagram showing an image processed by a method according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing an inspection system of another embodiment of the present invention.
  • Fig. 6 is a view showing the structure of the inspection system shown in Fig. 5.
  • FIG. 1 shows a schematic structural view of an inspection system according to an embodiment of the present invention.
  • the inspection system includes a CT apparatus for inspecting the quarantine field.
  • the system includes an X-ray source 11, a detection and acquisition device 12, a transfer device 13, a controller 14, a computing unit 15 such as a CPU or GPU, and a display unit 16.
  • the X-ray source 11 and the detecting and collecting device 12 are mounted on a rotating device such as a gantry, and are rotated at a high speed under the control of the controller 14.
  • the controller 14 controls the conveying device 13, for example, the belt to convey the object 17 to be inspected from one side of the rotating device to the other side at a constant rate.
  • the radiation emitted from the X-ray source 11 passes through the object 17 to be inspected and is received by the detector, and a digital signal is formed by the analog-to-digital conversion circuit as projection data.
  • the calculation unit 15, for example, the image processing unit reconstructs the digital signal into a three-dimensional image reflecting the internal structure and/or material characteristics of the object 17 to be inspected, and enhances the display of the organic portion or the inspection quarantine portion in the three-dimensional image, highlighting these portions.
  • the X-ray source 11 can be a dual-energy X-ray source, and the detector can also receive X-rays of a plurality of energies to perform a dual-energy X-ray inspection of the object 17 to be inspected.
  • the CT scan performed here may be a helical scan or a circumferential scan or other scanning method.
  • the detecting and collecting device 12 is, for example, a detector having a monolithic module structure and a data collector, such as a flat panel detector, for detecting rays transmitted through the object to be inspected, obtaining an analog signal, and converting the analog signal into a digital signal, so that the output is The projection data of the object 17 for X-rays is examined.
  • the controller 14 is coupled to the radiation source 11, the detection and acquisition device 12, and the delivery device 13, controlling the various portions of the overall system to operate in unison.
  • the calculation unit 15 is used to process the data collected by the data collector, process and reconstruct the data, and output the result. For example, after the object 17 to be inspected is scanned by the dual-energy CT device, the obtained dual-energy three-dimensional image data is sent to the calculation unit 15, and the substance identification system is used to identify the object to be inspected according to the image data, thereby obtaining the equivalent of different substances.
  • the information such as the atomic number and the density is colored, and the three-dimensional image is colored and displayed on the screen of the display unit 16, and the items for judging the objects of inspection and quarantine (animals, animals, meat, etc.) can be further automatically marked.
  • a radiation source 11 is placed on one side of the object 17 to be inspected, and a detecting and collecting device 12 is placed on the other side of the object 17 to be inspected, including a detector and a data collector for acquiring the object to be inspected 17 Transmission data and/or multi-angle projection data.
  • the data collector includes a data amplification forming circuit that can operate in a (current) integration mode or a pulse (count) mode.
  • the data output cable of the detection and acquisition device 12 is coupled to the controller 14 and the computing unit 15 to store the acquired data in a memory in accordance with a trigger command.
  • the source and detector may be in the form of a rackless, static distributed multiple source.
  • system of the above embodiment can also integrate a traditional single-view or multi-view X-ray machine, synchronously display three-dimensional images, single-view or multi-view two-dimensional images, and make them correlated with each other, which is beneficial for quarantine workers to fuse two-dimensional images.
  • the reading experience and the three-dimensional image contain a lot of new information, so that it can be smoothly upgraded to a new generation of inspection technology.
  • step S21 CT scanning is performed on the object to be inspected to obtain projection data.
  • a CT scan of an object to be inspected is performed by a single-energy or dual-energy CT scanning device to obtain projection data of a plurality of angles.
  • step S22 reconstruction is performed based on the projection data to obtain image data reflecting the internal features of the object to be inspected.
  • the reconstruction of the image is performed by the calculation unit 15 running a program to obtain a three-dimensional image of the object to be inspected.
  • an equivalent atomic number image and/or a density image of the object being inspected is reconstructed.
  • an attenuation coefficient or a CT number image of the object to be inspected is reconstructed.
  • step S23 the organic matter portion or the inspection quarantine contraband portion in the object to be inspected is determined, and then in step S24, the determined organic matter portion or the inspection and quarantine contraband portion is enhancedly displayed on the screen of the display unit 16 with respect to other portions. Or highlight it.
  • the calculation unit 15 is based on physical properties such as an attenuation coefficient, a base material coefficient (a coefficient obtained when the base material is decomposed in the case of dual energy or pluripotency), a CT number, a density, and/or an equivalent atomic number. Distinguish between the organic and non-organic parts of the object being inspected. Further, the display unit 16 enhances the contrast of the organic matter portion in the object to be inspected.
  • most inspection and quarantine contraband have physical properties different from other organic matter, such as attenuation coefficient, base material coefficient, CT number, density and/or equivalent atomic number, etc., by comparing the characteristic database of different substances in advance to realize the identification.
  • the CT system can also automatically identify major inspection and quarantine contraband items such as fruits, vegetables, and meat products by combining physical attributes, shape features, and texture features.
  • the display unit 16 enhances the contrast of the inspection and quarantine contraband portion of the object to be inspected.
  • the calculation unit 15 can increase the gray scale interval of the organic matter display, use all or most of the gray scale interval for the display of the organic matter, improve the fineness of the display of the organic matter, and the contrast between the organic substances, and can also use a dedicated color matching scheme, Different types of organic substances give different colors and improve the visual difference between different organic substances including inspection and quarantine.
  • the computing unit 15 can also remove the mixture and metallic materials, avoiding affecting the worker's viewing line of sight, or retaining the mixture and metallic materials, but making them appear inconspicuous in the three-dimensional image, avoiding excessively attracting the attention of the worker.
  • the system can also automatically identify the main inspection and quarantine contraband, such as fruits, vegetables, meat products, etc., and give key tips by adding wireframes, adding arrows, flashing displays, or special coloring or sound and light alarms.
  • the CT system of the embodiment of the present invention can use all or most (such as 80% or more) grayscale intervals for the display of organic matter including inspection and quarantine contraband, for example, by linear, piecewise linearity.
  • the CT system of the embodiment of the present invention can use a dedicated color palette, in addition to orange of different saturations, can also contain purple, red, yellow, and various transition colors of different saturations, so as to make organic matter and inspection of different physical properties. Quarantine contraband has different shades, which further enhances the visual difference between different organic substances, including inspection and quarantine. Since workers in the field are not concerned with mixtures and metals, the green and blue colors that originally belonged to these two types of substances can also appear in a dedicated palette.
  • the three-dimensional image can be pre-segmented, so that all voxels of the same object are given the same color, and the uniformity of coloring of the object is improved.
  • the display unit 15 can hide a non-organic portion or a non-inspection quarantine portion of the object to be inspected.
  • computing unit 15 may determine the foreground portion of the image and remove pixels having an atomic number greater than a predetermined value in the foreground portion to eliminate occlusion of the foreground portion of the organic matter portion and the inspection quarantine contraband portion.
  • the image processing unit can restore the attenuation coefficient at any position inside the object, and the attenuation coefficient can partially reflect the material properties of the object; for the dual-energy CT system, the calculation unit 15 can also reconstruct the density and equivalent of any position inside the object. The atomic number and equivalent atomic number can accurately reflect the material properties of the object.
  • the attenuation coefficient or the equivalent atomic number can be used to remove the mixture and metal substances in the object to be inspected, such as the tie rod of the trunk, etc., to avoid affecting the worker's observation line of sight, for example by comparing the attenuation coefficient or the atomic value with a predetermined threshold. The comparison is made, pixels above the threshold are weakened or not displayed.
  • the attenuation coefficient or equivalent atomic number can also be used to select the mixture and metal species in the object to be inspected, by compressing the grayscale range, displaying in the same color, displaying in gray or setting a higher transparency or lower saturation in the 3D image. Does not seem to be significant, allowing the staff to focus as much as possible on the observation package Organic substances including inspection and quarantine contraband.
  • the metal rod of the trolley case blocks the organic matter and the part of the inspection and quarantine contraband, which adversely affects the figurer.
  • the influence of the metal rod portion is eliminated, and the inspection and quarantine contraband is enhanced and framed to facilitate the judge's judgment.
  • CT system can fuse physical attributes, shape features and texture features. Such information automatically identifies the main inspection and quarantine contraband, such as fruits, vegetables, meat products. For the identified contraband, you can add wireframes, arrows, flashing hints or special coloring (such as bright red) to the 3D image, and the CT system performs sound and light alarms, prompting the staff to perform key confirmation and inspection. Improve the effectiveness and efficiency of quarantine supervision.
  • Fig. 5 is a schematic view showing an inspection apparatus according to another embodiment of the present invention.
  • the object under inspection 510 is placed on a conveyor 540 (eg, a belt) for inspection, in turn through the DR system 520 and the dual energy CT system 530.
  • a conveyor 540 eg, a belt
  • dual energy CT system 530 and DR system 520 can operate in synchronization.
  • Fig. 6 shows a detailed structural diagram of the inspection system shown in Fig. 5.
  • the inspection apparatus shown in Fig. 6 includes a DR system on the left side and a dual-energy CT system on the right side, which share a transfer device 630 that carries the object to be inspected 613 to advance.
  • the DR emits an X-ray 612 from the X-ray source 611, penetrates the object to be inspected 613 on the carrier mechanism 630, and the transmission signal is received by the detector module 614.
  • the acquisition circuit 615 converts the analog signal into a digital signal and sends it to the controller 617 and the computer. 618 and so on.
  • a transmission image of the object 613 to be inspected is obtained in the computer 618, stored in a memory or displayed.
  • the ray source 611 can include a plurality of X-ray generators, such as a distributed X-ray source including a plurality of X-ray source points.
  • the carrying mechanism 630 carries the inspected object 613 through the scanning area between the radiation source 611 and the detector 614.
  • detector 614 and acquisition circuit 615 are, for example, detectors and data collectors having an integral modular structure, such as multiple rows of detectors, for detecting radiation transmitted through the article under inspection, obtaining an analog signal, and simulating The signal is converted into a digital signal, thereby outputting projection data of the object under inspection for the X-ray.
  • the controller 617 is used to control the synchronization of various parts of the entire system.
  • the computer 618 is used to process the data collected by the data collector, process and reconstruct the data, and output the result.
  • the detector 614 and the acquisition circuit 615 are used to acquire transmission data of the object 613 to be inspected.
  • the acquisition circuit 615 includes a data amplification shaping circuit that operates in either (current) integration mode or pulse (count) mode.
  • the acquisition circuit 615 is connected to the controller 617 and the computer 618, and will collect according to the trigger command.
  • the data is stored in data processing computer 618.
  • the detector module 614 includes a plurality of detection units that receive X-rays that penetrate the object being inspected.
  • the data acquisition circuit 615 is coupled to the detector module 614 to convert the signals generated by the detector module 614 into probe data.
  • the controller 617 is connected to the radiation source 611 via the control line CTRL11, is connected to the detector module through the control line CTRL12, and is connected to the data acquisition circuit, and controls at least one X-ray generator in the radiation source to generate X-rays, thereby being checked The object moves to penetrate the object being inspected. Further, the controller 617 controls the detector module 614 and the data acquisition circuit 615 to obtain the probe data.
  • a computing unit, such as a processor, in computer 618 reconstructs an image of the object under inspection based on the probe data.
  • the dual energy CT system performs a CT scan of the object being inspected.
  • the CT X-ray source 621 emits an X-ray 622 that penetrates the object 613 to be inspected on the carrier mechanism 630.
  • the source and the detector rotate, thereby performing a CT scan, and the projection signal is received by the detector module 624.
  • the data acquisition circuit 625 converts the analog signal into a digital signal, which is sent to the controller 617, the computer 618, and the like.
  • a tomographic image of the object under inspection 613 is obtained in the computer 618, stored in a memory or displayed.
  • the detector module 624 includes a plurality of detection units that receive X-rays that penetrate the object being inspected.
  • the data acquisition circuit 625 is coupled to the detector module 624 to convert the signals generated by the detector module 624 into probe data.
  • the controller 617 is connected to the radiation source 621 through the control line CTRL21, connected to the detector module through the control line CTRL22, and connected to the data acquisition circuit, and the two high and low energy X-ray generators in the control source alternately generate high and low energy X-rays. Thereby, a penetrating object to be inspected is emitted as the object to be inspected moves, and a dual-energy CT scan is realized.
  • controller 617 controls detector module 624 and data acquisition circuit 625 to obtain projection data.
  • the computing unit in computer 618 reconstructs an image of the object under inspection based on the projection data and performs material identification.
  • the DR system operates in synchronization with the CT system, for example, DR scanning of the object to be inspected before the CT scan to obtain a transmission image.
  • the computer determines the location of the suspected contraband based on the transmission image, and the CT scanning device performs a CT scan of at least a portion of the object under inspection based on the location determined by the computing unit. This will only perform a CT scan of the location where suspicious items may be present, improving the efficiency and accuracy of the inspection.
  • the object to be inspected passes through the DR system and the dual-energy CT system, and the resulting two-dimensional and dual-energy three-dimensional image data is sent to a computer for substance identification.
  • the substance identification system installed in the computer performs material identification on the object to be inspected according to the image data, obtains information such as the equivalent atomic number and density of different substances, and colors the two-dimensional image and the three-dimensional image, and judges the inspection. Items marked by the epidemic (animals, animals, meat, etc.) are automatically marked.
  • the substance recognition system can hide portions identified as non-organic from the image to highlight the organic components.
  • the substance identification system can also more accurately identify and distinguish organic substances including inspection and quarantine contraband, and label plants, animals, meat and their products in different colors.
  • the image marked by the substance identification is transmitted to the image processing system, and in the computer 618, the inspection and quarantine inspection suspect is highlighted by the image processing system, and the alarm is automatically issued.
  • the DR scan does not have to be preceded by the CT, and does not necessarily require a CT scan based on the location of the suspected contraband determined by the DR image.
  • the DR system can only be used as a supplement to the CT system, enabling operators to extend the reading experience of two-dimensional images.
  • the computer can automatically divide the image of the object to be inspected mixed with various items into separate items according to the edge of the contour, which is convenient for the inspector to judge the picture.
  • the computer compares the appearance of the three-dimensional image of the object to be inspected with the template in the suspect image database, and combines the results of the substance identification to highlight the inspection and quarantine inspection suspect.
  • the computer automatically recognizes the appearance characteristics of the contraband frequently marked by the user and enters the database.
  • the image processing system in computer 618 can configure cloud data collection functionality, such as connecting to a cloud server, to upload inspection data to the cloud server.
  • cloud data collection functionality such as connecting to a cloud server
  • the user can open the image viewing permission of the cloud server to different objects as needed, or connect it to other management systems.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种检验检疫用检查系统及其方法,将CT技术应用于检疫监管领域,CT扫描设备对被检查物体(17)进行CT扫描,获得投影数据,计算单元(15)基于投影数据进行重建得到反映被检查物体(17)内部特征的图像数据,并且确定被检查物体(17)中的有机物部分或检验检疫违禁品部分,显示单元(16)将所确定的有机物部分或检验检疫违禁品部分相对于其它部分进行增强显示或者突出显示,克服了单视角或多视角X光机图像物体重叠的问题,同时又解决了普通CT图像中包含检验检疫违禁品在内的有机物不突出、不精细、对比度差的问题。

Description

检验检疫用检查系统及其方法 技术领域
本发明涉及辐射成像检测技术领域,尤其涉及检验检疫用检查系统及其方法。
背景技术
与单视角或多视角X光机相比,CT技术由于能够最大程度上消除物体重叠的影响,在安全检查等场合中发挥了重要作用。然而在这类场合中,工作人员所关注的违禁品有各种类型,既包括金属材质的枪支刀具,又包括被称为混合物的锋利尖锐的玻璃陶瓷铝制品,以及被归类为有机物的各种爆炸物,含易燃易爆液体。由于需要成像的物体种类太多,任何一类物体都未能获得最突出、最精细的显示效果,这在一定程度上影响了CT系统的工作人员的使用体验和查验能力。
对于行使检疫监管职能的工作人员,重点关心的违禁品主要是各类动植物,包含各种水果、蔬菜、种子、昆虫、肉制品等等。这些检验检疫违禁品可以细分为很多子类,基本上都属于有机物的范畴。当前,该领域的工作人员迫切需要技术更为先进的CT系统代替单视角或多视角X光机,然而检疫专用的CT系统缺失,未能针对性的提升检验检疫违禁品的成像质量,给该领域的操作人员快速准确的辨别目标物体造成了很大的困难。经过对文献及专利的查询,没有发现检疫专用的CT检查系统和方法。
发明内容
考虑到现有技术中的一个或多个问题,提出了一种检验检疫用检查系统及其方法。
在本发明的一个方面,提出了一种检验检疫用检查系统,包括:CT扫描设备,对被检查物体进行CT扫描,获得投影数据;计算单元,耦接至所述CT扫描设备,基于所述投影数据进行重建得到反映被检查物体内部特征的图像数据,并且确定被检查物体中的有机物部分或检验检疫违禁品部分;显示单元,耦接至所述计算单元,将所确定的有机物部分或检验检疫违禁品部分相对于其它部分进行增强显示或者突出显示。
在一些实施例中,基于被检查物体的物理属性来区分被检查物体中的有机物部分和非有机物部分。
在一些实施例中,所述物理属性包括衰减系数、基材料系数、CT数、密度和等效原子序数中的至少之一。
在一些实施例中,基于被检查物体的物理属性、形状特征和纹理特征中的至少之一区分检验检疫违禁品和非检验检疫违禁品。
在一些实施例中,所述物理属性包括衰减系数、基材料系数、CT数、密度和等效原子序数中的至少之一。
在一些实施例中,所述CT扫描设备对被检查物体进行单能CT扫描或双能CT扫描,通过计算单元重建得到被检查物体的衰减系数图像、CT数图像或等效原子序数图像,根据形状特征、纹理特征和物理属性中的至少之一确定被检查物体中的有机物和检验检疫违禁品部分。
在一些实施例中,显示单元增强被检查物体中的有机物部分或检验检疫违禁品部分的对比度。
在一些实施例中,显示单元将分类到有机物或者检验检疫违禁品类别的那些像素的灰度拉伸到更大的范围。
在一些实施例中,计算单元利用事先创建的分类标准将有机物部分或者检验检疫违禁品部分分成多个子类别,并且对所述子类别的像素赋予不同的颜色值。
在一些实施例中,显示单元指示出被检查物体中的有机物部分或者检验检疫违禁品部分。
在一些实施例中,显示单元给被检查物体中的有机物部分或者检验检疫违禁品部分加框显示、加箭头显示、闪烁显示或者赋予特殊的颜色显示。
在一些实施例中,显示单元隐藏被检查物体中的非有机物部分或非检验检疫违禁品部分。
在一些实施例中,显示单元弱化被检查物体中的非有机物部分或者非检验检疫违禁品部分的显示。
在一些实施例中,显示单元对被检查物体中的非有机物部分或者非检验检疫违禁品部分进行灰度范围压缩、同色显示、灰色显示、提高透明度或者降低饱和度。
在一些实施例中,显示单元在强化对有机物部分或者检验检疫违禁品部分的显示的同时,弱化对非有机物部分或者非检验检疫违禁品部分的显示。
在一些实施例中,计算单元确定所述图像数据中的前景部分的图像数据,并且去除前景部分中衰减系数、CT数或原子序数大于预定值以上的像素,以消除 所述前景对有机物部分或检验检疫违禁品部分的遮挡。
在一些实施例中,计算单元弱化所述图像数据中衰减系数、CT数或原子序数大于预定值的那些像素。
在一些实施例中,计算单元根据模板识别检验检疫违禁品,并且通过显示单元突出显示检验检疫违禁品的图像。
在一些实施例中,所述的检查系统还包括DR扫描设备,与所述CT扫描设备同步运行,得到透射图像,并且在显示单元的屏幕上显示CT图像和透射图像。
在一些实施例中,计算单元将多种物品混装的被检查物体的图像根据轮廓边缘自动分割为独立的物品,方便检查人员判图。
在一些实施例中,计算单元将被检物体三维图像的外观与嫌疑物图像数据库中的模板进行对比,并结合物质识别的结果,突出显示检验检疫查验嫌疑物。
在一些实施例中,计算单元自动识别使用者经常标记的检验检疫违禁品外形特征并录入数据库。
在本发明的其他方面,提出了一种检验检疫的方法,包括:对被检查物体进行CT扫描,获得投影数据;基于所述投影数据进行重建得到反映被检查物体内部特征的图像数据;确定被检查物体中的有机物部分或检验检疫违禁品部分;以及将所确定的有机物部分或检验检疫违禁品部分相对于其它部分进行增强显示或者突出显示。
利用上述技术方案,能够提升检疫工作人员查验目标物体的准确性和效率,具备非常高的实际应用价值。
附图说明
图1示出了根据本发明一个实施例的检查系统的示意图;
图2示出了根据本发明一个实施例的检查方法的示意性流程图;
图3示出了传统CT系统得到的被检查物体的图像的示意图;
图4示出了根据本发明实施例的方法处理得到的图像的示意图;
图5示出了本发明另一实施例的检查系统的示意图;
图6示出了如图5所示的检查系统的结构示意图。
具体实施方式
下面,参考附图详细说明本发明的优选实施方式。在附图中,虽然示于不同 的附图中,但相同的附图标记用于表示相同的或相似的组件。为了清楚和简明,包含在这里的已知的功能和结构的详细描述将被省略,防止使本发明的主题不清楚。以下的实施例用于说明本发明,但并不用来限制本发明的范围。
图1示出了根据本发明实施例的检查系统的结构示意图。如图1所示,根据本实施例的检查系统包括一CT设备,用于检验检疫领域。该系统包括X射线源11、探测和采集装置12、传送装置13、控制器14、诸如CPU或GPU之类的计算单元15和显示单元16。X射线源11和探测和采集装置12安装在诸如机架之类的旋转装置上,在控制器14的控制下高速旋转。并且控制器14控制传送装置13例如皮带以恒定的速率把被检物体17从旋转装置的一侧传送至另外一侧。X射线源11发出的射线穿过被检物体17后被探测器接收,通过模数转换电路形成数字信号,作为投影数据。计算单元15例如图像处理单元将数字信号重建为反映被检物体17内部结构和/或材料特征的三维图像,并强化三维图像中的有机物部分或者检验检疫违禁品部分的显示,突出显示这些部分。
在一些实施例中,X射线源11可以为双能X射线源,探测器也能够接收多种能量的X射线,从而对被检查物体17进行双能X射线检查。这里进行的CT扫描可以是螺旋扫描也可以是圆周扫描或者其他扫描方式。
探测和采集装置12例如是具有整体模块结构的探测器及数据采集器,例如平板探测器,用于探测透射被检查物体的射线,获得模拟信号,并且将模拟信号转换成数字信号,从而输出被检查物体17针对X射线的投影数据。
控制器14连接到射线源11、探测和采集装置12和传送装置13,控制整个系统的各个部分同步工作。计算单元15用来处理由数据采集器采集的数据,对数据进行处理并重建,输出结果。例如,被检查物体17通过双能CT设备扫描后,得到的双能三维图像数据送入计算单元15,利用安装的物质识别系统根据图像数据对被检物体进行物质识别,得到不同物质的等效原子序数和密度等信息,并对三维图像进行着色,显示在显示单元16的屏幕上,也可以进一步对判断检验检疫关注对象(动植物、肉类等)的物品进行自动标注。
如图1所示,射线源11置于被检查物体17的一侧,探测和采集装置12置于被检查物体17的另一侧,包括探测器和数据采集器,用于获取被检查物体17的透射数据和/或多角度投影数据。数据采集器中包括数据放大成形电路,它可工作于(电流)积分方式或脉冲(计数)方式。探测和采集装置12的数据输出电缆与控制器14和计算单元15连接,根据触发命令将采集的数据存储在存储器中。本领域 技术人员可以理解,在其他实施例中,射线源和探测器可以采用无机架即静态分布式多光源的方式。
此外,上述实施例的系统也可以集成传统的单视角或多视角X光机,同步显示三维图像、单视角或多视角二维图像,并使之相互关联,有利于检疫工作人员融合二维图像的读图经验与三维图像包含的大量新信息,从而平稳升级至新一代检查技术。
图2示出了根据本发明一个实施例的检查方法的示意性流程图。如图2所示,在步骤S21,对被检查物体进行CT扫描,获得投影数据。例如,通过单能或者双能CT扫描设备对被检查物体进行CT扫描,得到多个角度的投影数据。
在步骤S22,基于所述投影数据进行重建得到反映被检查物体内部特征的图像数据。例如,通过计算单元15运行程序来执行图像的重建,得到被检查物体的三维图像。在双能CT的情况下,重建得到被检查物体的等效原子序数图像和/或密度图像。在单能CT的情况下,重建得到被检查物体的衰减系数或CT数图像。
在步骤S23,确定被检查物体中的有机物部分或检验检疫违禁品部分,然后在步骤S24,在显示单元16的屏幕上对所确定的有机物部分或检验检疫违禁品部分相对于其他部分进行增强显示或者突出显示。
例如,计算单元15基于诸如衰减系数、基材料系数(在双能或者多能情况下进行基材料分解时所得到的系数)、CT数、密度和/或等效原子序数之类的物理属性来区分被检查物体中的有机物部分和非有机物部分。此外,显示单元16增强被检查物体中的有机物部分的对比度。
例如,多数检验检疫违禁品有着区别于其它有机物的物理属性,如衰减系数、基材料系数、CT数、密度和/或等效原子序数等,通过先期建立不同物质的特征数据库来进行对比实现识别。此外,CT系统也能够融合物理属性、形状特征、纹理特征等信息自动识别主要的检验检疫违禁品,如水果、蔬菜、肉制品等。此外,显示单元16增强被检查物体中的检验检疫违禁品部分的对比度。
例如,计算单元15可以增大有机物显示灰度区间,将全部或大部分灰度区间用于有机物的显示,提高有机物显示的精细程度和有机物之间的对比度,也可以使用专用的配色方案,对不同类型的有机物质赋予不同的颜色,提高包括检验检疫违禁品在内的不同有机物质之间的视觉效果差异。此外,计算单元15也可以去除混合物和金属物质,避免影响工作人员的观察视线,或者保留混合物和金属物质,但使其在三维图像中看起来并不显著,避免过分吸引工作人员的注意力。再 如,系统也可以自动识别主要的检验检疫违禁品,如水果、蔬菜、肉制品等,并通过增加线框、加箭头、闪烁显示或者特殊着色或声光报警等方式给出重点提示。
具体来说,相比于金属物品,由于对X射线的衰减能力相对较弱,有机物仅占据了现有CT系统灰度区间中较高的一小段范围,且依据惯例被赋予不同饱和度的橙色,这就造成了在被检物体的三维图像中有机物并不显著,而且不同类型的有机物对比度较低,如果没有明确的形状或纹理信息无法辨别具体是哪一类物质。针对这样的问题,本发明实施例的CT系统可以将全部或者绝大部分(如80%以上)的灰度区间用于包含检验检疫违禁品在内的有机物的显示,例如通过线性、分段线性或各种非线性的方式完成有机物和检验检疫违禁品的物理属性至大灰度区间的映射,还可以进行物理属性或者灰度的全局统计或局部统计实现有机物和检验检疫违禁品的对比度增强,获得能呈现有机物表面和内部结构变化的最精细的显示效果。
此外,本发明实施例的CT系统可使用专用的调色板,除了不同饱和度的橙色,还可以包含不同饱和度的紫色、红色、黄色以及各种过渡色,使不同物理属性的有机物和检验检疫违禁品具有不同的色调,从而进一步提高包括检验检疫违禁品在内的不同有机物质之间的视觉效果差异。由于本领域工作人员不关注混合物和金属,原本惯例属于这两类物质的绿色和蓝色也可以出现在专用调色板中。另外,还可以对三维图像进行预分割,使同一个物体的所有体素赋予相同的颜色,改善物体着色的均匀性。
此外,显示单元15可以隐藏被检查物体中的非有机物部分或非检验检疫违禁品部分。例如,计算单元15可以确定图像中的前景部分,并且去除前景部分中原子序数大于预定值以上的像素,以消除所述前景对有机物部分和检验检疫违禁品部分的遮挡。对于单能CT系统,图像处理单元能够还原物体内部任意位置的衰减系数,衰减系数能够部分反映物体的材料属性;对于双能CT系统,计算单元15也可以重建物体内部任意位置的密度和等效原子序数,等效原子序数能够准确反映物体的材料属性。衰减系数或者等效原子序数可用来去除被检物体中的混合物和金属物质,比如行李箱的拉杆等,避免影响工作人员的观察视线,这例如通过将衰减系数或原子序数值与预定的阈值相比较来进行,高于该阈值的像素被弱化或者不显示。衰减系数或等效原子序数也可用于选出被检物体中的混合物和金属物质,通过压缩灰度范围、同色显示、灰色显示或者设置较高的透明度或者较低的饱和度,在三维图像中看起来并不显著,使工作人员尽可能集中注意力观察包 括检验检疫违禁品在内的有机物。如图3所示的传统系统中拉杆箱的金属杆遮挡了有机物和检验检疫违禁品部分,对判图员造成了不利的影响。但是如图4所示,根据本发明实施例的系统得到的图像中,消除了金属杆部分的影响,并且对检验检疫违禁品进行增强和加框显示,方便判图员的判断。
多数检验检疫违禁品有着区别于其它有机物的物理属性,如衰减系数、密度和等效原子序数等,通过先期建立不同物质的特征数据库并不断完善,CT系统能够融合物理属性、形状特征、纹理特征等信息自动识别主要的检验检疫违禁品,如水果、蔬菜、肉制品等。对于识别出的违禁品,可以在三维图像中增加线框、箭头、闪烁提示或者给予特殊着色(如亮红色),同时CT系统进行声光报警,从而提示工作人员进行重点确认和检查,极大提高了检疫监管的工作效果和效率。
图5示出了本发明另一实施例的检查装置的示意图。在图5所示的实施例中,被检查物体510放置在传送装置540(例如皮带)上进行检验,依次通过DR系统520和双能CT系统530。在图5中所示的实施例中,双能CT系统530和DR系统520可以同步运行。
图6示出了如图5所示的检查系统的详细结构示意图。如图6所示的检查装置包括左侧的DR系统和右侧的双能CT系统,它们共用传送装置630,它承载被检查物体613前进。DR用X射线源611发出X射线612,穿透承载机构630上的被检查物体613,透射信号被探测器模块614接收,采集电路615将模拟信号转换成数字信号,发送给控制器617和计算机618等。在计算机618中得到被检查物体613的透射图像,存储在存储器中或者显示出来。
在一些实施例中,射线源611可以包括多个X射线发生器,例如包括多个X射线源点的分布式X射线源。
如图6所示,承载机构630承载被检查物体613穿过射线源611与探测器614之间的扫描区域。在一些实施例中,探测器614和采集电路615例如是具有整体模块结构的探测器及数据采集器,例如多排探测器,用于探测透射被检物品的射线,获得模拟信号,并且将模拟信号转换成数字信号,从而输出被检查物体针对X射线的投影数据。控制器617用于控制整个系统的各个部分同步工作。计算机618用来处理由数据采集器采集的数据,对数据进行处理并重建,输出结果。根据该实施例,探测器614和采集电路615用于获取被检查物体613的透射数据。采集电路615中包括数据放大成形电路,它可工作于(电流)积分方式或脉冲(计数)方式。采集电路615与控制器617和计算机618连接,根据触发命令将采集 的数据存储在数据处理计算机618中。
在一些实施例中,探测器模块614包括多个探测单元,接收穿透被检查物体的X射线。数据采集电路615与探测器模块614耦接,将探测器模块614产生的信号转换为探测数据。控制器617通过控制线路CTRL11与射线源611连接,通过控制线路CTRL12与探测器模块连接,并且与数据采集电路连接,控制射线源中的至少一个X射线发生器产生X射线,从而随着被检查物体的移动而发出穿透被检查物体。此外,控制器617控制探测器模块614和数据采集电路615,获得探测数据。计算机618中的诸如处理器之类的计算单元基于探测数据重建被检查物体的图像。
随着被检查物体继续向前行进,双能CT系统对被检查物体进行CT扫描。CT用X射线源621发出X射线622,穿透承载机构630上的被检查物体613,随着物体的行进,射线源和探测器旋转,从而进行CT扫描,投影信号被探测器模块624接收,数据采集电路625将模拟信号转换成数字信号,发送给控制器617和计算机618等。在计算机618中得到被检查物体613的断层图像,存储在存储器中或者显示出来。
在一些实施例中,探测器模块624包括多个探测单元,接收穿透被检查物体的X射线。数据采集电路625与探测器模块624耦接,将探测器模块624产生的信号转换为探测数据。控制器617通过控制线路CTRL21与射线源621连接,通过控制线路CTRL22与探测器模块连接,并且与数据采集电路连接,控制射线源中的两个高低能X射线发生器交替产生高低能X射线,从而随着被检查物体的移动而发出穿透被检查物体,实现双能CT扫描。此外,控制器617控制探测器模块624和数据采集电路625,获得投影数据。计算机618中的计算单元基于投影数据重建被检查物体的图像,并进行物质识别。
这样,DR系统与CT系统同步运行,例如在CT扫描之前对被检查物体进行DR扫描,得到透射图像。然后计算机基于透射图像确定可疑违禁品的位置,CT扫描设备根据计算单元确定的位置对被检查物体中的至少一部分进行CT扫描。这样仅仅对可能存在可疑物品的位置进行CT检查,提高了检查的效率和准确度。
例如,在图5和图6所示的实施例中,被检查物体先后通过DR系统和双能CT系统,所得的二维和双能三维图像数据送入计算机进行物质识别。安装在计算机中的物质识别系统根据图像数据对被检对象进行物质识别,得到不同物质的等效原子序数和密度等信息,并对二维图像和三维图像进行着色,对判断检验检 疫关注对象(动植物、肉类等)的物品进行自动标注。在本发明的一个优选实施例中,物质识别系统可以将识别为非有机物的部分从图像中隐藏,从而突出显示有机物成分。在本发明的一个优选实施例中,物质识别系统还可以将包含检验检疫违禁品在内的有机物进行更精确地识别和区分,对植物、动物、肉类及其制品分别以不同的颜色予以标注。此外,经过物质识别标注的图像传入图像处理系统,在计算机618中由图像处理系统对检验检疫查验嫌疑物予以突出显示,并自动报警。
此外,本领域的技术人员可以理解,DR扫描不是一定要在CT之前,而且未必需要根据DR图像确定的可疑违禁品位置进行CT扫描。例如,DR系统可仅作为CT系统的补充,使操作员能够延用二维图像的读图经验。
此外,计算机还可以将多种物品混装的被检查物体的图像根据轮廓边缘自动分割为独立的物品,方便检查人员判图。或者计算机将被检物体三维图像的外观与嫌疑物图像数据库中的模板进行对比,并结合物质识别的结果,突出显示检验检疫查验嫌疑物。或者计算机自动识别使用者经常标记的违禁品外形特征并录入数据库。
在本发明的一个优选实施例中,计算机618中的图像处理系统可配置云数据收集功能,例如与云端服务器连接,将检查数据上传至云端服务器。使用者可以根据需要,将云端服务器的图像查看权限向不同对象予以开放,或者将其接入其他管理系统。
虽然借助具体实施例描述了根据本发明的用于检验检疫查验的检查系统,但本领域技术人员可以将该装置应用到其它领域中以解决其它行业的查验问题,因此本领域技术人员在于此所给出的本发明的实施例的基础上所进行的所有相应的修改、改进、扩展和应用都应落入如所附的权利要求所限定的本发明的范围内。

Claims (23)

  1. 一种检验检疫用检查系统,包括:
    CT扫描设备,对被检查物体进行CT扫描,获得投影数据;
    计算单元,耦接至所述CT扫描设备,基于所述投影数据进行重建得到反映被检查物体内部特征的图像数据,并且确定被检查物体中的有机物部分或检验检疫违禁品部分;
    显示单元,耦接至所述计算单元,将所确定的有机物部分或检验检疫违禁品部分相对于其它部分进行增强显示或者突出显示。
  2. 如权利要求1所述的检查系统,其中基于被检查物体的物理属性来区分被检查物体中的有机物部分和非有机物部分。
  3. 如权利要求2所述的检查系统,其中所述物理属性包括衰减系数、基材料系数、CT数、密度和等效原子序数中的至少之一。
  4. 如权利要求1所述的检查系统,其中基于被检查物体的物理属性、形状特征和纹理特征中的至少之一区分检验检疫违禁品和非检验检疫违禁品。
  5. 如权利要求4所述的检查系统,其中所述物理属性包括衰减系数、基材料系数、CT数、密度和等效原子序数中的至少之一。
  6. 如权利要求1所述的检查系统,其中所述CT扫描设备对被检查物体进行单能CT扫描或双能CT扫描,通过计算单元重建得到被检查物体的衰减系数图像、CT数图像或等效原子序数图像,根据形状特征、纹理特征和物理属性中的至少之一确定被检查物体中的有机物和检验检疫违禁品部分。
  7. 如权利要求1所述的检查系统,其中显示单元增强被检查物体中的有机物部分或检验检疫违禁品部分的对比度。
  8. 如权利要求7所述的检查系统,其中显示单元将分类到有机物或者检验检疫违禁品类别的那些像素的灰度拉伸到更大的范围。
  9. 如权利要求7所述的检查系统,其中计算单元利用事先创建的分类标准将有机物部分或者检验检疫违禁品部分分成多个子类别,并且对所述子类别的像素赋予不同的颜色值。
  10. 如权利要求1所述的检查系统,其中显示单元指示出被检查物体中的有机物部分或者检验检疫违禁品部分。
  11. 如权利要求10所述的检查系统,其中显示单元给被检查物体中的有机物部分或者检验检疫违禁品部分加框显示、加箭头显示、闪烁显示或者赋予特殊的颜色显示。
  12. 如权利要求1所述的检查系统,其中显示单元隐藏被检查物体中的非有机物部分或非检验检疫违禁品部分。
  13. 如权利要求1所述的检查系统,其中显示单元弱化被检查物体中的非有机物部分或者非检验检疫违禁品部分的显示。
  14. 如权利要求13所述的检查系统,其中显示单元对被检查物体中的非有机物部分或者非检验检疫违禁品部分进行灰度范围压缩、同色显示、灰色显示、提高透明度或者降低饱和度。
  15. 如权利要求1所述的检查系统,其中显示单元在强化对有机物部分或者检验检疫违禁品部分的显示的同时,弱化对非有机物部分或者非检验检疫违禁品部分的显示。
  16. 如权利要求1所述的检查系统,其中计算单元确定所述图像数据中的前景部分的图像数据,并且去除前景部分中衰减系数、CT数或原子序数大于预定值以上的像素,以消除所述前景对有机物部分或检验检疫违禁品部分的遮挡。
  17. 如权利要求1所述的检查系统,其中计算单元弱化所述图像数据中衰减系数、CT数或原子序数大于预定值的那些像素。
  18. 如权利要求1所述的检查系统,其中计算单元根据模板识别检验检疫违禁品,并且通过显示单元突出显示检验检疫违禁品的图像。
  19. 如权利要求1所述的检查系统,还包括DR扫描设备,与所述CT扫描设备同步运行,得到透射图像,并且在显示单元的屏幕上显示CT图像和透射图像。
  20. 如权利要求1所述的检查系统,其中计算单元将多种物品混装的被检查物体的图像根据轮廓边缘自动分割为独立的物品,方便检查人员判图。
  21. 如权利要求1所述的检查系统,其中计算单元将被检物体三维图像的外观与嫌疑物图像数据库中的模板进行对比,并结合物质识别的结果,突出显示检验检疫查验嫌疑物。
  22. 如权利要求1所述的检查系统,其中计算单元自动识别使用者经常标记的检验检疫违禁品外形特征并录入数据库。
  23. 一种检验检疫的方法,包括:
    对被检查物体进行CT扫描,获得投影数据;
    基于所述投影数据进行重建得到反映被检查物体内部特征的图像数据;
    确定被检查物体中的有机物部分或检验检疫违禁品部分;以及
    将所确定的有机物部分或检验检疫违禁品部分相对于其它部分进行增强显示或者突出显示。
PCT/CN2016/097577 2015-12-29 2016-08-31 检验检疫用检查系统及其方法 WO2017113847A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16880640.4A EP3290912A4 (en) 2015-12-29 2016-08-31 EXAMINATION SYSTEM FOR INSPECTION AND QUARANTAINE, AND METHOD THEREOF
JP2017564663A JP2019500574A (ja) 2015-12-29 2016-08-31 検証検疫用検査システム及びその方法
KR1020177035556A KR20180115214A (ko) 2015-12-29 2016-08-31 검출 검역용 검사 시스템 및 그 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511010081.4A CN106932414A (zh) 2015-12-29 2015-12-29 检验检疫用检查系统及其方法
CN201511010081.4 2015-12-29

Publications (1)

Publication Number Publication Date
WO2017113847A1 true WO2017113847A1 (zh) 2017-07-06

Family

ID=59086292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097577 WO2017113847A1 (zh) 2015-12-29 2016-08-31 检验检疫用检查系统及其方法

Country Status (8)

Country Link
US (1) US10436932B2 (zh)
EP (1) EP3290912A4 (zh)
JP (1) JP2019500574A (zh)
KR (1) KR20180115214A (zh)
CN (1) CN106932414A (zh)
AU (1) AU2016235025A1 (zh)
CA (1) CA2943764C (zh)
WO (1) WO2017113847A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10282869B2 (en) * 2016-12-28 2019-05-07 Lawrence Livermore National Security, Llc Few-view image reconstruction
US10795049B2 (en) * 2018-01-09 2020-10-06 Voti Inc. Methods for assigning a threat or safe condition to an object in an image
CN108469630B (zh) * 2018-01-30 2021-04-20 张岚 一种放射性物质空间分布信息的显示方法
CN108959345A (zh) * 2018-04-11 2018-12-07 北京航星机器制造有限公司 一种安检图像记录快速回溯的方法和设备
US11977037B2 (en) 2018-10-22 2024-05-07 Rapiscan Holdings, Inc. Insert for screening tray
JP2021025874A (ja) * 2019-08-05 2021-02-22 株式会社イシダ 検査装置
CN110751079A (zh) * 2019-10-16 2020-02-04 北京海益同展信息科技有限公司 物品检测方法、装置、系统和计算机可读存储介质
US11885752B2 (en) 2021-06-30 2024-01-30 Rapiscan Holdings, Inc. Calibration method and device therefor
US12019035B2 (en) 2021-07-16 2024-06-25 Rapiscan Holdings, Inc. Material detection in x-ray security screening

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403710A (zh) * 2007-10-05 2009-04-08 清华大学 液态物品检查方法和设备
EP2309257A1 (en) * 2008-03-27 2011-04-13 Analogic Corporation Method of and system for three-dimensional workstation for security and medical applications
CN102435620A (zh) * 2007-10-05 2012-05-02 清华大学 液态物品检查方法和设备
CN102565107A (zh) * 2007-10-05 2012-07-11 清华大学 液态物品检查方法和设备
CN102590234A (zh) * 2009-05-27 2012-07-18 清华大学 基于直线轨迹扫描的双能欠采样物质识别系统和方法
CN204008508U (zh) * 2014-06-25 2014-12-10 清华大学 一种ct图像的标定装置和一种ct系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539648A (en) 1982-09-29 1985-09-03 The United States Of America As Represented By The Secretary Of Agriculture Detection of agricultural contraband in baggage
US4789930A (en) 1985-11-15 1988-12-06 Picker International, Inc. Energy dependent gain correction for radiation detection
US5367552A (en) * 1991-10-03 1994-11-22 In Vision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US5182764A (en) * 1991-10-03 1993-01-26 Invision Technologies, Inc. Automatic concealed object detection system having a pre-scan stage
US20060115109A1 (en) * 2001-10-01 2006-06-01 L-3 Communications Security And Detection Systems, Inc. Ensuring airline safety while safeguarding personal passenger information
US7856081B2 (en) * 2003-09-15 2010-12-21 Rapiscan Systems, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US20060098866A1 (en) * 2004-04-26 2006-05-11 L-3 Communications Security And Detection Systems, Inc. User interface for inspection system with isoluminant regions
US7324625B2 (en) 2004-05-27 2008-01-29 L-3 Communications Security And Detection Systems, Inc. Contraband detection systems using a large-angle cone beam CT system
US20060269161A1 (en) * 2005-03-15 2006-11-30 Ramsay Thomas E Method of creating a divergence transform for a class of objects
CN102162798B (zh) 2007-10-05 2013-12-04 清华大学 液态物品检查方法和设备
CN101435783B (zh) * 2007-11-15 2011-01-26 同方威视技术股份有限公司 物质识别方法和设备
CN101470082B (zh) * 2007-12-27 2011-03-30 同方威视技术股份有限公司 物品检测装置及其检测方法
DE102008004473A1 (de) 2008-01-15 2009-07-23 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Erzeugung eines tomosynthetischen 3D-Röntgenbildes
US8180139B2 (en) * 2009-03-26 2012-05-15 Morpho Detection, Inc. Method and system for inspection of containers
EP2435955A4 (en) * 2009-05-26 2016-12-21 Rapiscan Systems Inc X-RAY TOMOGRAPHY INSPECTION SYSTEMS FOR IDENTIFICATION OF SPECIFIC TARGET ELEMENTS
US8254656B2 (en) * 2009-10-13 2012-08-28 Morpho Detection, Inc. Methods and system for selective resolution improvement in computed tomography
JP5336996B2 (ja) * 2009-10-20 2013-11-06 株式会社イシダ X線検査装置
DE112012004856B4 (de) 2011-11-22 2022-01-05 The University Of North Carolina At Chapel Hill Kontrollsystem und Verfahren zur schnellen, platzsparenden Röntgentomografiekontrolle
CN103900503B (zh) * 2012-12-27 2016-12-28 清华大学 提取形状特征的方法、安全检查方法以及设备
CN103903297B (zh) * 2012-12-27 2016-12-28 同方威视技术股份有限公司 三维数据处理和识别方法
CN103901489B (zh) * 2012-12-27 2017-07-21 清华大学 检查物体的方法、显示方法和设备
CN103913472B (zh) * 2012-12-31 2016-04-20 同方威视技术股份有限公司 Ct成像系统和方法
KR101621815B1 (ko) 2014-04-10 2016-05-17 한국생산기술연구원 컴퓨터 단층 촬영 영상 처리 장치 및 이를 이용한 3차원 복원 영상 생성 방법
CN103926628A (zh) 2014-04-22 2014-07-16 史崇政 一种安检设备和使用该设备进行违禁物品识别的识别方法
CN105004741A (zh) * 2015-07-07 2015-10-28 中国检验检疫科学研究院 一种基于x射线物品机进行检疫违禁物快速自动筛查的方法和装置
CN205353380U (zh) 2015-12-29 2016-06-29 中检科威(北京)科技有限公司 一种检验检疫用检查装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101403710A (zh) * 2007-10-05 2009-04-08 清华大学 液态物品检查方法和设备
CN102435620A (zh) * 2007-10-05 2012-05-02 清华大学 液态物品检查方法和设备
CN102565107A (zh) * 2007-10-05 2012-07-11 清华大学 液态物品检查方法和设备
EP2309257A1 (en) * 2008-03-27 2011-04-13 Analogic Corporation Method of and system for three-dimensional workstation for security and medical applications
CN102590234A (zh) * 2009-05-27 2012-07-18 清华大学 基于直线轨迹扫描的双能欠采样物质识别系统和方法
CN204008508U (zh) * 2014-06-25 2014-12-10 清华大学 一种ct图像的标定装置和一种ct系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3290912A4 *

Also Published As

Publication number Publication date
CN106932414A (zh) 2017-07-07
KR20180115214A (ko) 2018-10-22
US20170184756A1 (en) 2017-06-29
AU2016235025A1 (en) 2017-07-13
CA2943764C (en) 2021-05-18
JP2019500574A (ja) 2019-01-10
EP3290912A4 (en) 2019-02-20
US10436932B2 (en) 2019-10-08
EP3290912A1 (en) 2018-03-07
CA2943764A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
WO2017113847A1 (zh) 检验检疫用检查系统及其方法
CA2979932C (en) Automated quality control and selection
US9552521B2 (en) Human body security inspection method and system
US20040258199A1 (en) System and method for resolving threats in automated explosives detection in baggage and other parcels
US8180139B2 (en) Method and system for inspection of containers
US8254656B2 (en) Methods and system for selective resolution improvement in computed tomography
CN105527654B (zh) 一种检验检疫用检查装置
Rogers et al. A deep learning framework for the automated inspection of complex dual-energy x-ray cargo imagery
JPH11500229A (ja) 多重エネルギコンピュータ断層撮影法を用いた隠された対象物の自動認識のための装置および方法
US20080123895A1 (en) Method and system for fast volume cropping of three-dimensional image data
WO2015107150A2 (de) Verfahren und röntgenprüfanlage, insbesondere zur zerstörungsfreien inspektion von objekten
US9355502B2 (en) Synthetic image generation by combining image of object under examination with image of target
US11103198B2 (en) Projection of objects in CT X-ray images
CN205353380U (zh) 一种检验检疫用检查装置
US9633428B2 (en) Automatic occlusion region identification using radiation imaging modality
Frosio et al. Optimized acquisition geometry for X-ray inspection
US9846935B2 (en) Segmentation of sheet objects from image generated using radiation imaging modality
CN111458760A (zh) 跨境物品图像查验方法及系统
Yildiz et al. Projection image enhancement for explosive detection systems
US20090087012A1 (en) Systems and methods for identifying similarities among alarms

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880640

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016880640

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177035556

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2017564663

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE