WO2017113647A1 - 左心耳封堵器 - Google Patents

左心耳封堵器 Download PDF

Info

Publication number
WO2017113647A1
WO2017113647A1 PCT/CN2016/086417 CN2016086417W WO2017113647A1 WO 2017113647 A1 WO2017113647 A1 WO 2017113647A1 CN 2016086417 W CN2016086417 W CN 2016086417W WO 2017113647 A1 WO2017113647 A1 WO 2017113647A1
Authority
WO
WIPO (PCT)
Prior art keywords
distal
proximal
left atrial
atrial appendage
sealing
Prior art date
Application number
PCT/CN2016/086417
Other languages
English (en)
French (fr)
Inventor
李安宁
Original Assignee
先健科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先健科技(深圳)有限公司 filed Critical 先健科技(深圳)有限公司
Priority to EP16880455.7A priority Critical patent/EP3398537A4/en
Priority to US16/066,840 priority patent/US10765416B2/en
Publication of WO2017113647A1 publication Critical patent/WO2017113647A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12122Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder within the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12027Type of occlusion
    • A61B17/12031Type of occlusion complete occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/1215Coils or wires comprising additional materials, e.g. thrombogenic, having filaments, having fibers, being coated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00592Elastic or resilient implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00597Implements comprising a membrane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00575Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect for closure at remote site, e.g. closing atrial septum defects
    • A61B2017/00632Occluding a cavity, i.e. closing a blind opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00796Breast surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties

Definitions

  • the present invention relates to medical devices, and more particularly to a left atrial appendage occluder.
  • the occluder can be placed into the left atrial appendage by catheter intervention to prevent the formation of a thrombus in the left atrial appendage due to atrial fibrillation, to prevent the thrombus from reaching the stroke caused by the brain, or to prevent the thrombus from reaching the rest of the body through the human blood circulation system.
  • Such left atrial appendage occlusion devices can generally include an integrated occluder and a split occluder.
  • a split occluder typically includes a holder and a sealing disc that are connected to each other, the holder is placed in the left atrial appendage to secure the entire occluder, and the sealing disc seals the mouth of the left atrial appendage for blocking blood flow inflow Left atrial appendage.
  • the technical solution adopted by the present invention to solve the technical problem thereof is to provide a left atrial appendage occluder, comprising a sealing disk and a fixing frame connected to the sealing disk, the sealing disk comprising a proximal disk surface and a distal disk surface,
  • the proximal disc surface includes a plurality of radially proximal support rods arranged radially radially, the distal disc surface comprising a plurality of radially distal support rods arranged radially radially, each of the proximal support rods
  • the suspended end is connected to a suspended end of a distal support rod adjacent thereto.
  • the proximal disc surface includes a proximal end cap, one end of each of the proximal support rods being connected to the proximal end and the other end radiating radially and Suspended;
  • the distal disk surface includes a distal end cap, one end of each of the distal support rods is coupled to the distal end cap, and the other end is radially radiated and suspended.
  • the proximal end cap is axially aligned with the distal end closure, a projection of each of the distal end support rods within the proximal disc surface and a The proximal support rods to which the distal support rods are connected substantially coincide.
  • the proximal closure is integrally formed with all of the proximal support rods, and/or the distal closure is integrally cut with all of the distal support rods Forming, and/or forming the proximal support rod and the distal support rod connected thereto are integrally bent by a rod.
  • the proximal end connection angle between the proximal end cap and one of the proximal end support rods is an acute angle; the distal end seal and one of the distal ends The angle of the proximal connection between the support rods is an acute angle.
  • the proximal end connection angle between the proximal end cap and one of the proximal support rods is 15 to 90 or 60 to 85 degrees;
  • the angle between the end seal and the distal end support bar is 15 to 90 or 60 to 85.
  • the distal support rod comprises a distal connection section and a distal suspension section, one end of the distal connection section being connected to the distal end and the other end being One end of the distal suspension section is connected, and the other end of the distal suspension section is connected to a suspended end of one of the proximal support rods; the distal suspension section is substantially perpendicular to an axis of the distal closure.
  • the stiffness of the distal connecting section is greater than the stiffness of the distal hanging section.
  • the proximal support rod includes a proximal connection section and a proximal suspension section, one end of the proximal connection section being connected to the proximal end and the other end being One end of the proximal suspension section is connected, and the proximal suspension section of the proximal support rod is coupled to a distal suspension section adjacent thereto.
  • the stiffness of the proximal connection segment is greater than the stiffness of the proximal suspension segment.
  • the proximal disc surface is substantially parallel to the distal disc surface.
  • proximal support rod and the distal support rod connected thereto are integrally bent by a rod body, and the rod body is bent at the suspended end .
  • the distal disc surface further includes a distal support structure having a plurality of meshes, the distal support structure radially radiating from a center of the distal disc surface
  • the plurality of distal support rods are each coupled to the distal support structure.
  • the distal support structure includes a plurality of distal branches, the plurality of distal branches being interconnected to form the plurality of meshes, the plurality of distal A portion of the distal branch of the end branch is converged at the center of the distal disk surface.
  • the proximal disc surface further includes a proximal support structure having a plurality of meshes, the proximal support structure radially radiating from a center of the proximal disc surface
  • the plurality of proximal support rods are each coupled to the proximal support structure.
  • the proximal support structure includes a plurality of proximal branches, the plurality of proximal branches being interconnected to form the plurality of meshes, the plurality of proximal A portion of the proximal branch of the end branch is converged at the center of the proximal disk surface.
  • the sealing disk further includes a sealing film covering at least one of the proximal disk surface and the distal disk surface.
  • the outer circumference of the sealing film is radially elongated by 1 mm to 15 mm with respect to the outer circumference of the disk surface covered by the sealing film.
  • the radial deformation ability of the sealing disk is greater than the radial deformation ability of the fixing frame and/or the axial deformation ability of the sealing disk is greater than that of the fixing frame Axial deformation ability.
  • the diameter change of the sealing disk is greater than the radial length change of the fixing frame under the same radial force; or under the same radial force,
  • the change rate of the diameter of the sealing disk is greater than the rate of change of the diameter of the fixing frame; or the displacement of the sealing disk along the axial force direction is greater than that of the fixed frame under the same axial force The amount of displacement in the direction of the axial force.
  • the fixing frame includes a plurality of supporting members, one ends of the plurality of supporting members are converged at the center of the fixing frame, and the other end is from the fixing frame
  • the central radiation extends and the plurality of supports cooperate to form an umbrella structure.
  • each support rod of the skeleton can maintain a considerable supporting force, resisting the pulling force of the left atrial appendage and the activity of the fixed frame, and avoiding long-term leakage, thereby achieving the effect of reducing the risk of thrombosis and stroke.
  • FIG. 1 is a schematic structural diagram of a left atrial appendage occluder according to an embodiment of the present invention.
  • Figure 2 is a schematic view showing the structure of the skeleton in the sealing disk of the left atrial appendage occluder shown in Figure 1.
  • Fig. 3 is a front view showing the structure of the skeleton shown in Fig. 2.
  • Figure 4 is a side elevational view of the skeleton shown in Figure 2.
  • FIG. 5 is a schematic structural view of a skeleton in a sealing disk of a left atrial appendage occluder according to another embodiment of the present invention.
  • Fig. 6 is a front view showing the structure of the skeleton shown in Fig. 5.
  • FIG. 7 is a schematic structural view of a sealing disk of a left atrial appendage occluder according to another embodiment of the present invention.
  • FIG. 8 is a schematic view showing a test method for the radial deformation capability of the holder of the left atrial appendage occluder shown in FIG. 1;
  • FIG. 9 is a schematic view showing a test method for the radial deformation ability of the sealing disk of the left atrial appendage occluder shown in FIG. 1;
  • FIG. 10 is a schematic view showing another specific test structure of the radial deformation ability of the sealing disc/fixing frame of the left atrial appendage occluder shown in FIG. 1;
  • Figure 11 is a schematic view showing the first test method of the axial deformability of the holder of the left atrial appendage occluder shown in Figure 1;
  • Figure 12 is a schematic view showing the first test method of the axial deformability of the sealing disk of the left atrial appendage occluder shown in Figure 1;
  • Figure 13 is a schematic view showing a second test method for the axial deformability of the holder of the left atrial appendage occluder shown in Figure 1;
  • Figure 14 is a schematic illustration of a second test method for the axial deformability of the sealing disk of the left atrial appendage occluder shown in Figure 1.
  • distal refers to the end away from the operator during the procedure
  • proximal refers to the end near the operator during the procedure.
  • a left atrial appendage occluder includes a sealing disk 21 and a fixing frame 12 connected to the sealing disk 21.
  • the fixation frame 12 is located in the cavity of the left atrial appendage and closely fits the cavity wall to prevent the left atrial appendage occluder from falling off the left atrial appendage
  • the sealing disk 21 is blocked in the mouth of the left atrial appendage to prevent thrombus formation in the left atrium from flowing into the left atrium, and/or to prevent blood flow from the left atrium into the left atrial appendage.
  • the sealing disk 21 includes a skeleton 213 and a sealing film 212 disposed on the skeleton 213.
  • the skeleton 213 has an umbrella-like skeleton structure as a whole.
  • the skeleton 213 includes a proximal disk surface 2134 and a distal disk surface 2135.
  • the proximal disc surface 2134 faces the left atrium
  • the distal disc surface 2135 faces the left atrial appendage cavity.
  • the proximal disc surface 2134 includes a proximal end cap 2131 and a plurality of radially proximally disposed resilient proximal end support rods 2137, the distal disc surface 2135 including a distal end cap 2132 and a plurality of radially radially arranged
  • the elastic distal support rods 2139 are connected to the free ends of a distal support rod 2139 adjacent thereto.
  • each of the proximal support rods 2137 is connected to the proximal end cap 2131, and the other end is radially radiated and suspended; one end of each of the distal end support rods 2139 and the distal end seal
  • the head 2132 is connected and the other end is radially radiated and suspended.
  • the proximal support rod 2137 and the distal support rod 2139 connected thereto can be integrally bent by a rod body 2138 which is bent at the hanging end.
  • the present invention has a free end by a proximal end support 2137 and a distal support rod 2139 of the distal disc surface 2134 and the distal disc surface 2135 of the sealing disk 21, adjacent the suspended end, between adjacent proximal support rods 2137, And the adjacent distal support rods 2139 are relatively independent between each other, so that the degree of freedom of deformation of the sealing disc 21 can be improved, and the outer edge of the sealing disc 21 can be adapted to the shape of the mouth of various irregular left atrial appendages to achieve the best. Fit and seal.
  • the sealing disk 21 has two disk faces, namely a proximal disk surface 2134 and a distal disk surface 2135, which have a gap space between them, but are still connected to each other at the hanging end, preferably except for the connection at the floating end.
  • the combined skeleton 213 has an umbrella-shaped skeleton structure, and each of the proximal support rods 2137 and the distal support rods 2139 can maintain a considerable supporting force if any one of the two disc faces is subjected to
  • the pulling effect on the disc surface does not directly act on the other disc surface, and the connected suspended end also enables the undrawn disc surface to be
  • the pulling effect of the pulled disk surface is reduced, the deformation amplitude of the pulled disk surface is reduced, thereby reducing the sealing instability caused by the disk surface deformation, and improving the sealing reliability of the left atrial appendage occluder.
  • the proximal disc surface 2134 is deformed by the pulling of the conveying device during transport or release, the deformation of the distal disc surface 2135 is very small due to the existence of a gap between the two disc surfaces, and is substantially unaffected by the pulling.
  • the effect of the action thereby ensuring the sealing effect; on the other hand, because the suspended ends of the two disc faces are connected, the distal disc surface 2135 can have a certain pull-back effect on the proximal disc surface 2134, avoiding the pulling deformation of the proximal disc surface 2134 Too large causes the left atrial appendage occluder to shift and the occlusion failure or even the left atrial appendage occlusion device to fall off the left atrial appendage cavity.
  • the proximal disc surface 2134 is substantially not subjected to the pulling action, ensuring The sealing disc can still fit the tissue wall and maintain the sealing shape to ensure the sealing effect; at the same time, the proximal disc surface 2134 will pull back the distal disc surface 2135 to a certain extent, resisting the left atrial appendage itself and the pulling force brought by the movement of the fixing frame. As far as possible, avoid long-term leakage, and prevent the left atrial appendage occlusion device from falling into the left atrial appendage.
  • the skeleton 213 of the sealing disk 21 has an umbrella-shaped skeleton design, and the structure is lightened, and the metal content of the skeleton 213 can be reduced, and the release amount of long-term metal ions into the blood can be reduced.
  • the distal support rod 2139 includes a distal connection section 2139a and a distal suspension section 2139b, one end of the distal connection section 2139a is connected to the distal closure 2132, and One end is connected to one end of the distal suspension section 2139b, and the other end of the distal suspension section 2139b is connected to the free end of one of the proximal support rods 2137.
  • the proximal support rod 2137 includes a proximal connection section 2137a and a proximal suspension section 2137b, one end of the proximal connection section 2137a is connected to the proximal end 2131, and the other end is connected to the proximal suspension section 2137b. Connected at one end, the proximal suspension section 2137b of the proximal support rod 2137 is coupled to the distal suspension section 2139b of the distal support rod 2139.
  • the rod body 2138 is located between the proximal disc surface 2134 and the distal disc surface 2135, and the proximal disc surface 2134 and the distal disc surface 2135 are spaced apart from each other to form a gap space between the two disc surfaces, so that the sealing disc 21 has two layers.
  • the proximal end cap 2131 can be located in a central region of the proximal disc surface 2134.
  • the distal closure 2132 can be located in a central region of the distal disc surface 2135.
  • the proximal end cap 2131 is axially aligned with the distal end cap 2132 in a naturally deployed state. Further, the axis of the distal closure 2132, the axis of the proximal closure 2131, coincides with the axis 2136 of the skeleton 213. The proximal end cap 2131 and the distal end cap 2132 are spaced apart on the axis 2136 of the skeleton 213. The projection of each of the distal support rods 2139 within the proximal disc surface 2134 substantially coincides with a proximal support rod 2137 that is coupled to the distal support rod 2139.
  • the distal suspension section 2139b is substantially perpendicular to the axis of the distal head 2132.
  • the proximal suspension section 2137b is substantially perpendicular to the axis 2136 of the proximal closure 2131.
  • the proximal disk surface 2134 is substantially parallel to the distal disk surface 2135.
  • the proximal connecting section 2137a of the proximal support rod 2137 is parallel with the distal connecting section 2139a of the correspondingly connected distal support rod 2139, and the proximal suspension section 2137b of the proximal support rod 2137 is connected to the distal end of the corresponding connection.
  • the distal suspension section 2139b of the rod 2139 is parallel.
  • the proximal end connection angle C between the proximal end cap 2131 and one of the proximal end support rods 2137 is an acute angle; and the distal end cap 2132 and one of the distal end support rods
  • the angle of the proximal connection between 2139 is an acute angle.
  • an angle C between the proximal support rod 2137 and the proximal end 2131 is 15 to 90 degrees.
  • the angle C is 60 to 85°.
  • the arrangement is such that the proximal disk surface 2134 and the distal disk surface 2135 form an approximately conical shape, the proximal end cap 2131 is located in the inner space of the approximately conical surface, and the distal end cap 2132 is located at the apex angle of the approximately conical surface, when the left atrial appendage After the occluder is implanted into the left atrial appendage, the sealing disc 21 can be better fitted to the mouth of the left atrial appendage, and the distal disc surface 2135 can be fitted to the wall of the left atrium at the left atrial appendage.
  • the stiffness of the proximal suspension section 2137b of the proximal support rod 2137 may be greater than the stiffness of the distal suspension section 2139b of the distal support rod 2139 by material handling. Since the distal suspension segment 2139b is closer to the mouth of the left atrial appendage than the proximal suspension segment 2137b, the hardness of the distal suspension segment 2139b is set smaller, which can reduce the sealing disk 21 to the left atrial cavity wall of the left atrial appendage attachment. Rubbing, so as to avoid the formation of pericardial effusion or pericardial tamponade.
  • the hardness of the distal connecting section 2139a is greater than the hardness of the distal hanging section 2139b, such that the friction of the tissue wall in contact with the distal suspended section 2139b is reduced, and at the same time, the distal connection is made by a harder hardness.
  • Section 2139a ensures that the plugging profile of the disk surface is not easily deformed during the pulling deformation of the disk surface.
  • the stiffness of the proximal attachment section 2137a may be greater than the stiffness of the proximal suspension section 2137b in the proximal disc surface 2134.
  • proximal support rods 2137 is not less than two, preferably 6-8, to ensure sufficient contact fulcrum and area between the skeleton 213 and the lumen wall at the mouth of the left atrial appendage, ensuring a stable sealing effect.
  • the proximal end cap 2131 is integrally formed with all of the proximal support rods 2137.
  • the distal head 2132 is integrally formed with all of the distal support rods 2139.
  • the entire skeleton 213 may be formed by cutting a metal tube to form a predetermined pattern and then heat-setting. Specifically, the skeleton 213 can be cut into a certain pattern by a metal (preferably nickel-titanium material) tube having a diameter of 0.3 to 5 mm, and then formed by heat treatment.
  • the proximal end cap 2131 and the distal end cap 2132 are integrally formed with the proximal support rod 2137 and the distal support rod 2139.
  • the skeleton 213 may also be formed by heat-setting and setting a plurality of wires.
  • the wire is preferably a nickel titanium material.
  • the wire ends may be fixed by a plurality of wires having a wire diameter of 0.05 to 0.8 mm or a metal flat wire having a cross-sectional area of 0.03 ⁇ 0.8 mm, and both ends of the wire may be fixed by welding or riveting or bonding to form a near portion.
  • the end cap 2131 and the distal cap 2132 are then shaped by heat treatment to obtain a skeleton 213 of a corresponding shape.
  • a skeleton 214 is provided for another embodiment.
  • the skeleton 214 also includes a structure of a proximal disk surface 2144, a distal disk surface 2145, and the like.
  • the proximal disc surface 2144 includes a proximal end cap 2141 and a proximal end support rod 2147 that includes a distal end cap 2142 and a distal support rod 2149.
  • the distal disk surface 2145 in the present embodiment further includes a distal support structure 2148 having a plurality of meshes, the distal support structure 2148 from the distal disk surface
  • the center of 2145 is radially radiating and the plurality of distal support rods 2149 are each coupled to the distal support structure 2148.
  • the distal support structure 2148 includes a plurality of distal branches, the plurality of distal branches being interconnected to form the plurality of meshes, wherein a portion of the plurality of distal branches 2148 are distal One end of the branch 2148 is converged at the center of the distal disk surface 2145.
  • the proximal disk surface 2144 also includes a proximal support structure 2146 having a plurality of meshes, the proximal support structure 2146 radially radiating from the center of the proximal disk surface 2144, the plurality The proximal support rods 2147 are each coupled to the proximal support structure 2146.
  • the proximal support structure 2146 includes a plurality of proximal branches, the plurality of proximal branches being interconnected to form the plurality of meshes, wherein one of the plurality of proximal branches is at the proximal end The center of the disk surface 2144 is converged and connected.
  • proximal disc surface 2144 and the distal disc surface 2145 has the above-described support structure.
  • proximal support structure 2146 and the distal support structure 2148 are located in a central region of the skeleton 214, and the two are respectively separated from the other disk surface, and remain relatively independent, so that the supporting force strength of the sealing disk 21 is supported.
  • the central area where the structure is located is reinforced to ensure that the sealing disk 21 has sufficient supporting force to be pulled into the left atrial appendage by the fixing frame 12, and on the other hand, the proximal supporting rod 2137 and the distal supporting rod 2139 can still be at the hanging end. Goodly fits the irregular shape of the mouth of the left atrial appendage to achieve the best sealing effect.
  • the sealing film 212 may be a single layer film covering at least one of the discs 213, specifically covering the proximal disc surface 2134 of the bobbin 213 and/or the distal disc surface. 2135.
  • the sealing film 212 is sized to cover the entire proximal disk surface 2134 or slightly larger than the proximal disk surface 2134, for example, the outer circumference of the proximal disk surface 2134 is radially elongated by 1 to 15 mm.
  • the radially projecting portion can be freely suspended or can be extended over the distal disc surface 2135.
  • the sealing film 212 When covering the distal disk surface 2135, the sealing film 212 is sized to cover the entire distal disk surface 2135 or slightly larger than the distal disk surface 2135, for example, radially extending from the outer periphery of the distal disk surface 2135 by 1 to 15 mm, The radially projecting portion can be freely suspended or can be extended over the proximal disc surface 2134.
  • the sealing film 212 is usually made of a polymer material such as PET or PTFE or a silica gel material, and other film materials having biocompatibility and physical properties can be used.
  • the fixed connection of the sealing film 212 to the skeleton 213 can be achieved by stitching or bonding or hot melt.
  • the sealing film 212 is disposed on the sealing disk 21, so that the sealing film 21 and the mouth tissue of the left atrial appendage are directly in contact with the sealing film 212, which can reduce the abrasion of the metal material to the mouth tissue, and reduce the pericardial effusion caused by the worn tissue or The risk of pericardial tamponade can also promote the endothelialization of the sealing disc 21 and the tissue fit, and enhance the sealing effect. Further, the entire skeleton 213 is covered with the sealing film 212, which can reduce the metal ions released into the blood and tissues by the skeleton 213, and reduce the risk of inflammation.
  • the holder 12 includes a plurality of supports 122, one ends of which are connected together, for example, may be fixedly connected by welding or riveting, the plurality of supports The other end of the 122 is radiated out, the plurality of supports 122 cooperate to form an umbrella structure, and each of the supports 122 includes a suspended support section 123.
  • the holder can be prepared by cutting, for example, by integrally cutting a metal pipe member, which can be made of a shape memory material such as a nickel-titanium alloy.
  • an anchor thorn 124 may also be formed on the suspended support section 123 for insertion into the lumen wall of the left atrial appendage to securely attach the stent to the lumen wall.
  • the stent 12 When the left atrial appendage occluder is implanted and released, the stent 12 is placed in the cavity of the left atrial appendage and is fixedly attached to the wall of the left atrial appendage; the sealing disk 21 covers the opening of the left atrial appendage.
  • the sealing disk 21 is coupled to the proximal end 121 of the holder 12 by a distal end cap 2132 in the frame 213.
  • the connection of the sealing disk 21 to the holder 12 can be achieved by welding or riveting or bonding or interference fit.
  • the left atrial appendage occluder may further include a connection connecting the sealing disk 21 and the fixing frame 12, the connecting member being flexible and elastic.
  • One side of the connector is coupled to the distal head 2132, and the other side of the connector is coupled to the proximal end 121 of the holder 12.
  • the connection can be by welding or riveting or bonding or interference fit.
  • the connecting member can change its length to adjust the distance between the sealing disc 21 and the fixing frame 12 under the action of an external force, for example, under the pulling action of the sealing disc 21 and/or the fixing frame 12. Moreover, the angle between the sealing disk 11 and the holder 12 can also be adjusted. Therefore, the left atrial appendage occluder provided by the invention can adapt to the implantation requirements of the left atrial appendage of different shapes such as chicken wings and cones.
  • the radial deformation ability of the sealing disc 21 of the left atrial appendage occluder is greater than the radial deformation capability of the fixing frame 12 and/or the axial deformation capability of the sealing disk 21 is greater than the axial deformation capability of the fixing frame 12.
  • the diameter change of the sealing disk 21 is greater than the diameter change of the fixed frame 12; or under the same radial force, the diameter change rate of the sealing disk 21 is greater than the fixed frame.
  • the change rate of the path length of 12; or under the same axial force, the displacement of the sealing disk 21 in the axial force direction is greater than the displacement of the fixed frame in the axial force direction.
  • the plate length method can be used to test the change of the diameter of the fixing frame and the sealing disk under the same radial force.
  • the above left atrial appendage occluder can be tested using the plate method.
  • a radial force F is applied to the holder 12 by the two parallel plates 61 and 62 on the premise that the sealing disk 21 is kept in a freely unfolded state.
  • parallel plates 61 and 62 are respectively placed on opposite sides of a diameter of the fixing frame 12, and radial forces F of opposite magnitudes are applied to the plates 61 and 62 respectively along the diameter; the fixing frame 12 is The diameter passes through and is perpendicular to the central axis 140; the two parallel plates 61 and 62 remain parallel to each other throughout the test, ie, are always parallel to the central axis 140 during the test; any plate covers at least the maximum diameter of the fixed frame 12.
  • the entire holder 12 in a direction parallel to the central axis 140.
  • the diameter change of the fixing frame 12 under the radial force F is the diameter difference before and after the radial compression, and can be represented by ⁇ R1.
  • the diameter change rate is ⁇ R1/R1.
  • the radial force can be applied uniformly throughout the plate, the thickness of the plate being at least 5 mm.
  • the sealing plate 21 is tested by the same flat plate test method as described above, that is, the same radial force F is used, including the force F, the direction, and the action time are the same respectively, and the fixing frame 12 is naturally deployed.
  • the diameter change amount ⁇ R2 of the sealing disk 21 or the diameter change rate ⁇ R2/R2 is tested, and at this time, the maximum radial profile of the sealing disk 21 is located at the disk edge of the double-layer disk.
  • the diameter change amount ⁇ R2 of the sealing disk 21 of the left atrial appendage occluder according to the embodiment of the present invention is greater than the radial length change amount ⁇ R1 of the fixed frame 12; or
  • the diameter change rate ⁇ R2/R2 of the sealing disk 21 of the left atrial appendage occluder according to the embodiment of the present invention is larger than the diameter change rate ⁇ R1/R1 of the fixed frame 12.
  • the fixation frame may be too deep into the left atrial appendage cavity, thereby causing the natural expansion axial length of the occluder to be smaller than that after implantation.
  • the relative distance between the fixing frame and the sealing plate causes the mutual friction between the fixing frame and the sealing plate; or the occluder will move with the heart after implantation, due to the difference in the magnitude or direction of movement. It is also possible to cause mutual pulling between the fixing frame and the sealing disk. Usually, the fixing frame and the sealing disk are pulled together by the connecting member.
  • the fixing frame When the fixing frame is pulled by the sealing disk, since the fixing frame is fixed in the left atrial appendage cavity by the radial supporting force around the circumferential region of the central axis 140, the circumferential region of the left atrial appendage cavity is mainly adhered by the fixing frame. To resist this pulling force, so that the axial pulling of the fixing frame will cause its radial deformation. If the pulling effect is large enough, the fixing frame and the left atrial appendage wall may be detached, so that the left atrial appendage is sealed. The plug is detached, causing the implant to fail.
  • the sealing disk When the sealing disk is pulled by the fixing frame, since the sealing disk has a disk surface structure and is connected to the connecting member on the disk surface, the axial pulling of the sealing disk will also cause radial deformation thereof.
  • the holder and the sealing disk are pulled from each other, the one of the two that is easily deformed radially will be pulled by the other, for example, under the same radial force, the holder according to the embodiment of the invention
  • the change in the path length is smaller than the change in the diameter of the sealing disk, or the rate of change of the diameter of the fixing frame according to the embodiment of the present invention is smaller than the rate of change of the diameter of the sealing disk, and in the process of pulling each other, the fixing frame will The pulling of the sealing disk is dominated to deform the sealing disk toward the fixing frame (or toward the distal end).
  • the deformation causes the sealing disc to be closer to the left atrial wall at the opening of the left atrial appendage than the natural unfolded state, thereby improving the sealing effect of the sealing disc on the left atrial appendage opening, and avoiding the formation of a gap space between the sealing disc and the left atrial wall.
  • the stent is mainly pulled and not easily pulled by the sealing disc away from the wall of the left atrial appendage, so that the occluder is better fixed in the left atrial appendage, and the occluder is prevented from falling off from the left atrial appendage.
  • the above-mentioned flat test method is only an exemplary test method, and is not intended to limit the present invention. Those skilled in the art can perform any test equivalent to the flat test method by any suitable method, for example, also in the component to be tested.
  • the radial force is applied uniformly in the circumferential direction for testing. Specifically, referring to Fig. 10, three curved plates 63 may be evenly arranged in the same circumferential direction at the maximum radial profile of the component to be tested (fixing frame or sealing disk), and the same diameter is simultaneously formed on the above-mentioned curved plate 63 during the test. A radial force F is applied to the test, and the amount of change or rate of change of the diameter R of the component is tested.
  • the thickness of the curved plate can be set to be at least 5 mm.
  • you can also use Machine The left atrial appendage occluder was tested by Solution Inc (MSI) RX550-100 radial support tester.
  • the axis of the component can be characterized by the amount of displacement of the component in the axial direction (direction along the central axis 140) under the same axial force under the condition that a part of the component to be tested (fixed or sealed) is constrained.
  • Ability to deform In the first axial deformation capability test method, the above constraint is an equal-size constraint, that is, the component to be tested does not undergo elastic deformation or the elastic deformation variable is very small during the constraint process, and is substantially negligible; in addition, the component to be tested is selected. An axial force is applied at a position where no elastic deformation occurs.
  • the same axial force can be applied to one end of the component to be tested connected to the connecting member, and the axial displacement of the component is tested to characterize its respective deformability.
  • the axial displacement of the component is the applied point.
  • the axial displacement of the left atrial appendage occluder satisfies the axial displacement of the fixed frame less than the axial displacement of the sealing disk.
  • the holder 12 is circumferentially clamped at the maximum radial profile of the holder 12 by means of an annular holder 71 which is about the central axis 140 and perpendicular to the middle.
  • the axis 140 during the clamping process, the radial dimension of the clamping portion of the fixing frame 12 is substantially maintained in a state of natural expansion, the elastic deformation is substantially negligible; at the end 120 of the fixing frame 12 connected to the connecting member, along the middle An axial force F1 is applied to the axis 140 and in the direction of the sealing disk 21, the end 120 does not elastically deform during the application of the axial force F1, and the projection O1 of the measuring end 120 on the central axis 140 follows F1
  • the axial displacement ⁇ O1 is used to characterize the deformation amount (or deformation capability) of the fixing frame 12 in the first axial deformation capability test method. During the entire loading process of the axial force F1, the clamping member 71 The clamping state of itself remains unchanged.
  • the fixing frame is clamped under the condition that a part is clamped, for example, the fixing frame 12 is clamped at the maximum contour, and the measured axial pulling force is applied.
  • the axial displacement reflects the axial deformation ability of the stent after being implanted in the left atrial appendage and being pulled by the sealing disc under the restraint of the left atrial appendage. Under the same axial tension, the larger the ⁇ O1, the easier the bracket is to be pulled and deformed.
  • the sealing disk 21 is directly clamped at the distal end cap 2132 using a clamping member 72; the proximal end cap 2131 of the sealing disk 21, along the central axis 140 and facing away from the mounting frame
  • the direction of 12 applies an axial force F1 which is exactly the same as the axial force during the test fixture 12, measuring the axial displacement of the projection O2 of the proximal end 2131 on the central axis 140 with F1
  • the amount ⁇ O2 is used to characterize the axial deformation amount (or deformation ability) of the sealing disk 21 in the first axial deformation ability test method.
  • the sealing disc is clamped at a portion of the distal end head 2132 under the condition that a part of the sealing disc is clamped, and the measured axial tensile force is measured.
  • the axial displacement under the action of F1 reflects the axial deformation ability of the sealing disk 21 to be pulled by the fixing frame 12 under the restraint of the tissue wall of the left atrial appendage after implantation into the left atrial appendage cavity. Under the same axial tensile force, the larger the ⁇ O2, the easier the sealing disk 21 is to be pulled and deformed.
  • the axial displacement ⁇ O1 of the fixed frame is smaller than the axial displacement ⁇ O2 of the sealing disk. It can be understood that when the fixing frame and the sealing disk are pulled from each other, the one with the larger axial displacement amount will be pulled by the other side, for example, under the same axial force, according to the embodiment of the present invention.
  • the axial displacement of the holder is less than the axial displacement of the sealing disc, and during the pulling of each other, the holder will dominate the sealing disc to deform the sealing disc toward the holder (or toward the distal end).
  • the deformation causes the sealing disc to be closer to the left atrial wall at the opening of the left atrial appendage than the natural unfolded state, thereby improving the sealing effect of the sealing disc on the left atrial appendage opening, and avoiding the formation of a gap space between the sealing disc and the left atrial wall.
  • the stent is mainly pulled and not easily pulled by the sealing disc away from the wall of the left atrial appendage, so that the occluder is better fixed in the left atrial appendage, and the occluder is prevented from falling off from the left atrial appendage.
  • a second axial deformability test method can also be employed. Referring to FIG. 13, during the test fixture 12, the annular retainer 76 is used to clamp the mount 12 circumferentially at the maximum radial profile of the mount 12.
  • the annular clamping member is about the central axis 140 and perpendicular to the central axis 140.
  • the radial dimension of the clamping portion of the fixing frame 12 is smaller than that in the naturally deployed state, and the fixing frame 12 is radially compressed at the clamping position.
  • the maximum diameter after compression is 80% of the maximum path length before compression.
  • other compression ratios may also be used, which are not enumerated here.
  • a radial force F0 can be applied to the annular clamp 76 to radially compress the mount 12.
  • An axial force F2 is applied along the central axis 140 and toward the sealing disk 21 at the end 120 of the mounting frame 12 and the connecting member.
  • the end portion 120 does not elastically deform during the application of the axial force F2.
  • the projection O3 of the measuring end portion 120 on the central axis 140 is along with the axial displacement amount ⁇ O3 of F2, and the ⁇ O3 is used to characterize the deformation amount (or deformation ability) of the fixing frame 12 in the second axial deformation ability testing method.
  • the fixing frame 12 is compressed and clamped under the condition that a part is clamped, for example, the fixing frame 12 is clamped at the maximum contour, and the measured axial pulling force is applied.
  • the lower axial displacement reflects the deformability of the stent 12 being pulled by the sealing disk 21 under the restraint of the left atrial appendage after implantation into the left atrial appendage. Under the same axial pulling force, the larger the ⁇ O3, the more easily the fixing frame 12 is pulled and deformed.
  • the sealing disc 21 is distally coupled to the head 2132 and the connector is coupled to the distal end cap 2132.
  • a ring-shaped fastener 77 is used to abut the disk surface at a maximum edge of the sealing disk 21 facing a disk surface of the mounting frame 12 while being along the central axis 140 at the distal end cap 2132 and facing
  • the direction of the holder 12 applies an axial force F2, and during the axial stretching of F2, the position of the abutted disk surface in the direction of the central axis 140 is maintained by the ring-shaped fastener 77, thereby testing the distal seal
  • the projection displacement of the head 2132 on the central axis 140 is ⁇ O4.
  • the measured sealing disc is under axial tension under the condition that the annular fastener abuts the sealing disc toward the largest radial edge of the fixing frame and keeps it from being displaced along the central axis 140.
  • the axial displacement reflects the deformability of the sealing disc being pulled by the holder at the left atrial appendage after implantation in the human body. Under the same axial tensile force, the larger the ⁇ O4, the easier the sealing disc is to be pulled and deformed.
  • the axial displacement ⁇ O3 of the fixing frame is smaller than the axial displacement ⁇ O4 of the sealing disk. It can be understood that when the fixing frame and the sealing disk are pulled from each other, the one with the larger axial displacement amount will be pulled by the other side, for example, under the same axial force, according to the embodiment of the present invention.
  • the axial displacement of the holder is less than the axial displacement of the sealing disc, and during the pulling of each other, the holder will dominate the sealing disc to deform the sealing disc toward the holder (or toward the distal end).
  • the deformation causes the sealing disc to be closer to the left atrial wall at the opening of the left atrial appendage than the natural unfolded state, thereby improving the sealing effect of the sealing disc on the left atrial appendage opening, and avoiding the formation of a gap space between the sealing disc and the left atrial wall.
  • the stent is mainly pulled and not easily pulled by the sealing disc away from the wall of the left atrial appendage, so that the occluder is better fixed in the left atrial appendage, and the occluder is prevented from falling off from the left atrial appendage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Reproductive Health (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pulmonology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Surgical Instruments (AREA)
  • Prostheses (AREA)

Abstract

一种左心耳封堵器,包括密封盘(21)以及与密封盘(21)连接的固定架(12),密封盘(21)包括骨架(213,214);骨架(213,214)又包括近端盘面(2134,2144)和远端盘面(2135,2145),近端盘面(2134,2144)包括多个呈径向辐射状布置的弹性近端支撑杆(2137,2147),远端盘面(2135,2145)包括多个呈径向辐射状布置的弹性远端支撑杆(2139,2149),每个弹性近端支撑杆(2137,2147)的悬空端和一个与之相邻的弹性远端支撑杆(2139,2149)的悬空端相连。密封盘(21)的直径最大处的弹性近端支撑杆(2137,2147)与弹性远端支撑杆(2139,2149)相对独立设置,可以提升密封盘(21)的直径最大处的变形自由度,保证密封盘(21)外缘适应各种不规则的左心耳的口部形状,达到最佳贴合及密封效果。同时骨架(213,214)的各个弹性近端支撑杆(2137,2147)与弹性远端支撑杆(2139,2149)能保持相当的支撑力,可抵抗左心耳自身活动以及固定架(12)的活动带来的拉力,避免远期泄漏,降低形成血栓以及造成中风的风险。

Description

左心耳封堵器
【技术领域】
本发明涉及医疗器械,尤其涉及一种左心耳封堵器。
【背景技术】
目前可通过导管介入方法放置封堵器到左心耳中,预防由于房颤而致左心耳形成血栓,避免该血栓上行至大脑造成的中风;或预防该血栓通过人体血液循环系统到达身体其他部位,造成的系统性栓塞。此类左心耳封堵器从结构上可大致包括一体式封堵器和分体式封堵器。例如,分体式封堵器通常包括彼此连接的固定架和密封盘,固定架置于左心耳腔体中以固定整个封堵器,密封盘密封左心耳的口部,用于阻断血流流入左心耳腔体内。
对于此类分体式封堵器,其固定架和密封盘之间具有连接约束,其中一个部件会受到另一个部件的牵拉,两者不能完全独立地变形。例如,一旦固定架在左心耳腔内固定后,在顺应左心耳的腔体结构以及左心耳自身的活动过程中将牵拉密封盘,在牵拉过程中可能造成密封盘无法充分贴合左心耳的口部,在左心房与左心耳之间形成血流泄露通道,从而无法达到最佳密封效果,继而致使左心耳中的血栓从左心耳中流出,引发中风。
【发明内容】
基于此,有必要针对上述问题,提供一种密封效果更好、适应性更强的左心耳封堵器。
本发明解决其技术问题所采用的技术方案是:提供了一种左心耳封堵器,包括密封盘以及与所述密封盘连接的固定架,所述密封盘包括近端盘面和远端盘面,所述近端盘面包括多个呈径向辐射状布置的弹性近端支撑杆,所述远端盘面包括多个呈径向辐射状布置的弹性远端支撑杆,每个所述近端支撑杆的悬空端和一个与之相邻的远端支撑杆的悬空端相连。
在根据发明实施方式的左心耳封堵器中,所述近端盘面包括近端封头,每个所述近端支撑杆的一端与所述近端封头相连、另一端径向辐射出并悬空;所述远端盘面包括远端封头,每个所述远端支撑杆的一端与所述远端封头相连、另一端径向辐射出并悬空。
在根据发明实施方式的左心耳封堵器中,所述近端封头与所述远端封头轴向对齐,每个所述远端支撑杆在所述近端盘面内的投影和一个与该远端支撑杆相连的近端支撑杆基本重合。
在根据发明实施方式的左心耳封堵器中,所述近端封头与所有所述近端支撑杆一体切割形成,和/或所述远端封头与所有所述远端支撑杆一体切割形成,和/或所述近端支撑杆和与之相连的所述远端支撑杆通过一根杆体一体弯折形成。
在根据发明实施方式的左心耳封堵器中,所述近端封头与一个所述近端支撑杆之间的近端连接夹角为锐角;所述远端封头与一个所述远端支撑杆之间的近端连接夹角为锐角。
在根据发明实施方式的左心耳封堵器中,所述近端封头与一个所述近端支撑杆之间的近端连接夹角为15~90°或60~85°;且所述远端封头与一个所述远端支撑杆之间的近端连接夹角为15~90°或60~85°。
在根据发明实施方式的左心耳封堵器中,所述远端支撑杆包括远端连接段和远端悬空段,所述远端连接段的一端与所述远端封头连接、另一端与所述远端悬空段的一端连接,所述远端悬空段的另一端与一个所述近端支撑杆的悬空端连接;所述远端悬空段与所述远端封头的轴线基本垂直。
在根据发明实施方式的左心耳封堵器中,所述远端连接段的硬度大于所述远端悬空段的硬度。
在根据发明实施方式的左心耳封堵器中,所述近端支撑杆包括近端连接段和近端悬空段,所述近端连接段的一端与所述近端封头连接、另一端与所述近端悬空段的一端连接,所述近端支撑杆的近端悬空段和一个与之相邻的所述远端悬空段连接。
在根据发明实施方式的左心耳封堵器中,所述近端连接段的硬度大于所述近端悬空段的硬度。
在根据发明实施方式的左心耳封堵器中,所述近端盘面与所述远端盘面基本平行。
在根据发明实施方式的左心耳封堵器中,所述近端支撑杆和与之相连的所述远端支撑杆通过一根杆体一体弯折形成,所述杆体在所述悬空端处弯折。
在根据发明实施方式的左心耳封堵器中,所述远端盘面还包括具有多个网格的远端支撑结构,所述远端支撑结构从所述远端盘面的中心沿径向辐射展开,所述多个远端支撑杆均与所述远端支撑结构相连。
在根据发明实施方式的左心耳封堵器中,所述远端支撑结构包括多个远端分支,所述多个远端分支两两互连形成所述多个网格,所述多个远端分支中的一部分所述远端分支的一端均在所述远端盘面的中心汇聚相连。
在根据发明实施方式的左心耳封堵器中,所述近端盘面还包括具有多个网格的近端支撑结构,所述近端支撑结构从所述近端盘面的中心沿径向辐射展开,所述多个近端支撑杆均与所述近端支撑结构相连。
在根据发明实施方式的左心耳封堵器中,所述近端支撑结构包括多个近端分支,所述多个近端分支两两互连形成所述多个网格,所述多个近端分支中的一部分所述近端分支的一端均在所述近端盘面的中心汇聚相连。
在根据发明实施方式的左心耳封堵器中,所述密封盘还包括覆盖所述近端盘面和远端盘面中的至少一个盘面的密封膜。
在根据发明实施方式的左心耳封堵器中,所述密封膜的外周缘相对该密封膜所覆盖的盘面的外周缘径向伸长1mm-15mm。
在根据发明实施方式的左心耳封堵器中,所述密封盘的径向变形能力大于所述固定架的径向变形能力和/或所述密封盘的轴向变形能力大于所述固定架的轴向变形能力。
在根据发明实施方式的左心耳封堵器中,在相同径向力作用下,所述密封盘的径长变化量大于所述固定架的径长变化量;或者在相同径向力作用下,所述密封盘的径长变化率大于所述固定架的径长变化率;或者在相同轴向力作用下,所述密封盘沿所述轴向力方向的位移量大于所述固定架沿所述轴向力方向的位移量。
在根据发明实施方式的左心耳封堵器中,所述固定架包括多个支撑件,所述多个支撑件的一端皆在所述固定架的中心汇聚相连、另一端皆从所述固定架的中心辐射延伸,所述多个支撑件配合形成伞状结构。
本发明的左心耳封堵器中,通过将密封盘的直径最大处的支撑杆相对独立设置,可以提升密封盘的直径最大处的变形自由度,保证密封盘外缘适应各种不规则的左心耳的口部形状,达到最佳贴合及密封效果。同时骨架的各个支撑杆能保持相当的支撑力,可抵抗左心耳自身活动以及固定架的活动带来的拉力,避免远期泄漏,从而达到降低形成血栓以及造成中风的风险的效果。
【附图说明】
图1为本发明一实施方式提供的左心耳封堵器的结构示意图。
图2为图1中所示左心耳封堵器的密封盘中的骨架的结构示意图。
图3为图2中所示骨架的主视结构示意图。
图4为图2中所示骨架的侧视结构示意图。
图5为本发明另一实施方式提供的左心耳封堵器的密封盘中的骨架的结构示意图。
图6为图5中所示骨架的主视结构示意图。
图7为本发明另一实施方式提供的左心耳封堵器的密封盘的结构示意图。
图8为图1所示的左心耳封堵器的固定架的径向变形能力的测试方法示意图;
图9为图1所示的左心耳封堵器的密封盘的径向变形能力的测试方法示意图;
图10为图1所示的左心耳封堵器的密封盘/固定架的径向变形能力的另一具体测试结构示意图;
图11图1所示的左心耳封堵器的固定架的轴向变形能力的第一种测试方法示意图;
图12是图1所示的左心耳封堵器的密封盘的轴向变形能力的第一种测试方法示意图;
图13图1所示的左心耳封堵器的固定架的轴向变形能力的第二种测试方法示意图;
图14是图1所示的左心耳封堵器的密封盘的轴向变形能力的第二种测试方法示意图。
【具体实施方式】
为了更加清楚地描述左心耳封堵器的结构,本发明限定术语“远端”和“近端”,上述术语为介入医疗器械领域的惯用术语。具体而言,“远端”表示手术过程中远离操作者的一端,“近端”表示手术过程中靠近操作者的一端。
如图1所示,本发明一实施方式的左心耳封堵器包括密封盘21和与密封盘21连接的固定架12。当所述左心耳封堵器植入左心耳中后,所述固定架12位于左心耳的腔内并与腔壁紧密贴合,防止左心耳封堵器从左心耳中脱落,所述密封盘21封堵在左心耳的口部,防止左心房腔内形成的血栓流入左心房、和/或防止血流从左心房流入左心耳腔内。
所述密封盘21包括骨架213以及设置在骨架213上的密封膜212。
同时参考图1、图2、图3和图4,所述骨架213整体上呈类似伞状骨架结构。所述骨架213包括近端盘面2134和远端盘面2135。当所述左心耳封堵器被植入左心耳中后,所述近端盘面2134朝向左心房,所述远端盘面2135朝向左心耳腔体。
所述近端盘面2134包括近端封头2131和多个呈径向辐射状布置的弹性近端支撑杆2137,所述远端盘面2135包括远端封头2132和多个呈径向辐射状布置的弹性远端支撑杆2139,每个所述近端支撑杆2137的悬空端与一个与之相邻的远端支撑杆2139的悬空端相连。
具体地,每个所述近端支撑杆2137的一端与所述近端封头2131相连、另一端径向辐射出并悬空;每个所述远端支撑杆2139的一端与所述远端封头2132相连、另一端径向辐射出并悬空。所述近端支撑杆2137和与之相连的所述远端支撑杆2139可通过一根杆体2138一体弯折形成,该杆体2138在悬空端处弯折。
本发明通过将密封盘21的近端盘面2134和远端盘面2135的近端支撑杆2137和远端支撑杆2139均具有悬空端,在悬空端附近,相邻的近端支撑杆2137之间、以及相邻的远端支撑杆2139之间相对独立,因此可以提升密封盘21在此处的变形自由度,保证密封盘21外缘适应各种不规则的左心耳的口部形状,达到最佳贴合及密封效果。
另,密封盘21具有两个盘面,即近端盘面2134和远端盘面2135,这两个盘面之间具有间隙空间、但仍在悬空端处互相连接,优选地,除了悬空端处的连接之外,两个盘面之间无其它相互连接;结合骨架213具有伞状骨架结构,各个近端支撑杆2137和远端支撑杆2139能保持相当的支撑力,若两个盘面中的任一盘面受到牵拉时,因两个盘面之间的间隙空间提供了一定的缓冲作用,该盘面上的牵拉作用不会直接作用到另一个盘面,且相连的悬空端还使得未受牵拉的盘面可以对受到牵拉的盘面起到回拉作用,减少了被牵拉盘面的变形幅度,从而减少了盘面变形带来的封堵不严,提高了左心耳封堵器的封堵可靠性。
具体地,若近端盘面2134在输送或释放时受到输送装置的牵拉而发生变形时,因两个盘面之间的间隙存在,使得远端盘面2135的变形非常小,基本不受该牵拉作用的影响,从而确保了密封效果;另一方面,因两个盘面的悬空端相连,远端盘面2135可对近端盘面2134有一定的回拉作用,避免因近端盘面2134的牵拉变形太大造成左心耳封堵器移位而封堵失效甚至左心耳封堵器从左心耳腔体脱落。又例如,若远端盘面2135在左心耳封堵器植入完成后为顺应左心耳腔体形貌而受到固定架的牵拉,则近端盘面2134基本不会受到该牵拉作用,确保了密封盘仍能贴合组织壁并保持密封形貌而保证封闭效果;同时近端盘面2134还将在一定程度上回拉远端盘面2135,抵抗左心耳自身活动以及固定架的活动带来的拉力,尽可能避免远期泄漏,防止左心耳封堵器因此脱落进入左心耳腔体内。
此外,密封盘21的骨架213呈伞状骨架设计,结构得以轻量化,可降低骨架213的金属含量,减少远期金属离子向血液中的释放量。
如图2-图4中所示,所述远端支撑杆2139包括远端连接段2139a和远端悬空段2139b,所述远端连接段2139a的一端与所述远端封头2132连接、另一端与所述远端悬空段2139b的一端连接,所述远端悬空段2139b的另一端与一个所述近端支撑杆2137的悬空端连接。
所述近端支撑杆2137包括近端连接段2137a和近端悬空段2137b,所述近端连接段2137a的一端与所述近端封头2131连接、另一端与所述近端悬空段2137b的一端连接,所述近端支撑杆2137的近端悬空段2137b与所述远端支撑杆2139的远端悬空段2139b连接。
所述杆体2138位于近端盘面2134和远端盘面2135之间,将近端盘面2134和远端盘面2135互相间隔开来,从而在两个盘面之间形成间隙空间,使密封盘21为两层架构。所述近端封头2131可位于所述近端盘面2134的中心区域。所述远端封头2132可位于所述远端盘面2135的中心区域。
更为具体地,如图3和图4中所示,在自然展开状态下,所述近端封头2131与所述远端封头2132轴向对齐。进一步地,远端封头2132的轴线、近端封头2131的轴线均与骨架213的轴线2136重合。所述近端封头2131和远端封头2132在骨架213的轴线2136上间隔设置。每个所述远端支撑杆2139在所述近端盘面2134内的投影与一个与该远端支撑杆2139相连的近端支撑杆2137基本重合。进一步地,所述远端悬空段2139b与所述远端封头2132的轴线基本垂直。所述近端悬空段2137b与所述近端封头2131的轴线2136基本垂直。所述近端盘面2134与所述远端盘面2135基本平行。具体可以理解为近端支撑杆2137的近端连接段2137a与相应连接的远端支撑杆2139的远端连接段2139a平行,近端支撑杆2137的近端悬空段2137b与相应连接的远端支撑杆2139的远端悬空段2139b平行。承上所述,当骨架213的某一面受力后,相应面发生变形,另一面受影响较小,当骨架213的受力消除后,近端支撑杆2137和远端支撑杆2139回复到互相平行的自然展开状态。
在一实施方式中,所述近端封头2131与一个所述近端支撑杆2137之间的近端连接夹角C为锐角;且所述远端封头2132与一个所述远端支撑杆2139之间的近端连接夹角为锐角。进一步地,所述近端支撑杆2137与所述近端封头2131之间的夹角C为15~90°。优选地,此夹角C为60~85°。如此设置使得近端盘面2134和远端盘面2135构成近似锥面的形状,近端封头2131位于该近似锥面的内部空间,远端封头2132位于该近似锥面的顶角,当左心耳封堵器植入左心耳后,可使密封盘21更好地贴合在左心耳的口部,且远端盘面2135可贴合于左心耳口部处的左心房的腔壁上。
在一实施方式中,还可通过材料处理的方式,使得所述近端支撑杆2137的近端悬空段2137b的硬度大于所述远端支撑杆2139的远端悬空段2139b的硬度。由于远端悬空段2139b相较于近端悬空段2137b更加贴近左心耳的口部,将远端悬空段2139b硬度设置较小,可减少密封盘21对左心耳口部附件的左心房腔壁的摩擦,从而尽可能避免心包积液或心包填塞的形成。还可在远端盘面2135中设置远端连接段2139a的硬度大于远端悬空段2139b的硬度,使得与远端悬空段2139b接触的组织壁受到的摩擦减少,同时通过硬度较大的远端连接段2139a确保了在盘面的牵拉变形中盘面的封堵形貌不易变形。同样地,也可在近端盘面2134中设置近端连接段2137a的硬度大于近端悬空段2137b的硬度。
近端支撑杆2137的数量不少于两根,优选为6-8根,从而确保骨架213和左心耳的口部处的腔壁之间具有足够的接触支点和面积,确保稳定密封的效果。
在一些实施方式中,所述近端封头2131与所有所述近端支撑杆2137一体切割形成。
在一些实施方式中,所述远端封头2132与所有所述远端支撑杆2139一体切割形成。
在一些实施方式中,整个骨架213可以由金属管切割形成既定花纹后再经热处理定型而成。具体地,骨架213可以通过直径为0.3~5mm的金属(优选镍钛材料)管子切割成一定的花纹,再通过热处理定型而成。近端封头2131、远端封头2132均与近端支撑杆2137、远端支撑杆2139一体成型。在另外的一些实施方式中,骨架213也可以由多根金属丝经热处理定型后再固定连接而成。金属丝优选镍钛材料。例如可通过多根丝径为0.05~0.8mm的金属丝或截面积为0.03×0.8mm的金属扁丝固定两端,金属丝的两端可通过焊接或铆接或粘结等方式固定以形成近端封头2131、远端封头2132,然后再通过热处理的方式定型以得到相应形状的骨架213。
如图5和图6中所示,为另一实施方式所提供的骨架214。该骨架214也包括近端盘面2144、远端盘面2145等结构。近端盘面2144包括近端封头2141及近端支撑杆2147,远端盘面2145包括远端封头2142以及远端支撑杆2149。与上一实施方式中的骨架213不同之处在于,本实施方式中的远端盘面2145还包括具有多个网格的远端支撑结构2148,所述远端支撑结构2148从所述远端盘面2145的中心沿径向辐射展开,所述多个远端支撑杆2149均与所述远端支撑结构2148相连。
进一步地,所述远端支撑结构2148包括多个远端分支,所述多个远端分支两两互连形成所述多个网格,其中所述多个远端分支2148中的一部分远端分支2148的一端均在所述远端盘面2145的中心汇聚相连。
更进一步地,所述近端盘面2144也包括具有多个网格的近端支撑结构2146,所述近端支撑结构2146从所述近端盘面2144的中心沿径向辐射展开,所述多个近端支撑杆2147均与所述近端支撑结构2146相连。所述近端支撑结构2146包括多个近端分支,所述多个近端分支两两互连形成所述多个网格,其中一部分所述多个近端分支中的一端在所述近端盘面2144的中心汇聚相连。
应当知晓,近端盘面2144和远端盘面2145中的至少一个盘面具有上述支撑结构。另外,所述近端支撑结构2146、远端支撑结构2148位于骨架214的中心区域,两者分别与另外一个盘面均处于分离无连接状态,保持相对独立,使得密封盘21的支撑力强度在支撑结构所处的中心区域得到加强,保证密封盘21具有足够的支撑力,不被固定架12拉进左心耳,另一方面仍然可以使近端支撑杆2137、远端支撑杆2139在悬空端很好地和左心耳的口部不规则形状相贴合,从而达到最佳密封效果。
如图1和7中所示,所述密封膜212可以是单层膜,覆盖在骨架213其中的至少一个盘面上,具体可以为覆盖在骨架213的近端盘面2134上和/或远端盘面2135上。当覆盖在近端盘面2134上时,密封膜212的大小为覆盖整个近端盘面2134或比近端盘面2134的尺寸稍大,例如相对近端盘面2134的外周缘径向伸长1~15mm,该径向伸出的部分可自由悬空,也可向远端盘面2135延伸包覆。当覆盖在远端盘面2135上时,密封膜212的大小为覆盖整个远端盘面2135或比远端盘面2135的尺寸稍大,例如相对远端盘面2135的外周缘径向伸出1~15mm,该径向伸出的部分可自由悬空,也可向近端盘面2134延伸包覆。
密封膜212通常采用PET或PTFE或硅胶材料等高分子材料制成,也可以采用其它生物相容性及物理性能达到要求的薄膜材料。可通过缝合或粘接或热熔的方式实现密封膜212与骨架213的固定连接。
密封盘21上设置密封膜212,使得密封盘21和左心耳的口部组织直接接触的部分为密封膜212,可减少金属材料对口部组织的磨蚀,降低磨破组织而造成的心包积液或心包填塞的风险,同时可促进密封盘21和组织贴合处的内皮化,提升密封的效果。另外,骨架213整体被密封膜212包覆,可减少骨架213释放到血液和组织中的金属离子,降低炎症的风险。
如图1中所示,所述固定架12包括多个支撑件122,所述多个支撑件122的一端均连接在一起,例如可通过焊接或铆接的方式固定相连,所述多个支撑件122的另一端均辐射延伸出,该多个支撑件122配合形成伞状结构,且每个支撑件122包括悬空支承段123。可采用切割方式制备该固定架,例如可采用一体切割金属管件获得上述固定架,该金属管件可以采用形状记忆材料制成,例如镍钛合金。在一些实施例中,所述悬空支承段123上还可形成锚刺124,所述锚刺124用于插入左心耳的腔壁内以使固定架与腔壁固定连接。当上述左心耳封堵器植入人体释放展开后,固定架12置入左心耳的腔体内,并与左心耳的腔壁贴合固定;密封盘21覆盖左心耳的开口。
密封盘21通过骨架213中的远端封头2132与固定架12的近端121连接,密封盘21与固定架12的连接可采用焊接或铆接或粘接或过盈配合的方式实现。
进一步地,在一些实施方式中,所述左心耳封堵器还可包括连接所述密封盘21与所述固定架12的连接件,所述连接件具有柔性和弹性。所述连接件的一侧与所述远端封头2132连接,所述连接件的另一侧与所述固定架12的近端121连接。连接的方式可采用焊接或铆接或粘接或过盈配合等。
连接件因具有柔性和弹性,可在外力的作用下,例如可在密封盘21和/或固定架12的牵拉作用下,改变自身长度以调节密封盘21和固定架12之间的距离,而且还可调节密封盘11与固定架12之间的角度。由此本发明提供的左心耳封堵器可以适应鸡翅状、锥体状等不同形貌的左心耳的植入需求。
进一步地,上述左心耳封堵器的密封盘21的径向变形能力大于固定架12的径向变形能力和/或密封盘21的轴向变形能力大于固定架12的轴向变形能力。具体而言,在相同径向力作用下,密封盘21的径长变化量大于固定架12的径长变化量;或者在相同径向力作用下,密封盘21的径长变化率大于固定架12的径长变化率;或者在相同轴向力作用下,密封盘21沿轴向力方向的位移量大于固定架沿轴向力方向的位移量。
可采用平板法分别测试固定架和密封盘在相同径向力作用下的径长变化情况。例如,参见图8和9,可采用平板法测试上述左心耳封堵器。
参见图8,首先,在密封盘21保持自由展开状态的前提下,通过两块平行平板61和62对固定架12施加径向作用力F。具体地,分别在固定架12的一直径的相对两侧置放平行平板61和62,沿该直径在平板61和62上分别施加大小相同方向相反的径向作用力F;上述固定架12的直径穿过并垂直于中轴线140;两块平行平板61和62在整个测试过程中保持彼此平行状态,即测试过程中均始终与中轴线140平行;任一平板至少覆盖固定架12的最大径向轮廓处,优选可在平行于中轴线140的方向上覆盖整个固定架12。若自然展开状态下固定架12加载平板处的径长为R1,则在径向力F的作用下固定架12的径长变化量为径向压缩前后的径长差值,可用△R1表示,径长变化率为△R1/R1。为了确保径向力施加过程中,平板自身不变形,从而径向力可在平板各处均匀施加,平板的厚度至少为5mm。
参见图9,采用上述同样的平板测试方法对密封盘21进行测试,即采用相同的径向作用力F,包括作用力F大小、方向、作用时间均分别相同,在固定架12处于自然展开的前提下,测试密封盘21的径长变化量△R2或者径长变化率△R2/R2,此时密封盘21的最大径向轮廓处位于双层盘的盘边缘。基于上述测试条件,在相同的径向力作用下,依据本发明实施例的左心耳封堵器的密封盘21的径长变化量△R2大于固定架12的径长变化量△R1;或者,依据本发明实施例的左心耳封堵器的密封盘21的径长变化率△R2/R2大于固定架12的径长变化率△R1/R1。
在左心耳封堵器植入人体后,可能会出现植入位置选择不恰当的情况,例如固定架可能因过于深入左心耳腔体,从而造成封堵器的自然展开轴向长度小于植入后的固定架与密封盘的相对距离,使得固定架与密封盘之间发生互相牵拉作用;或者,封堵器在植入后将随着心脏一起运动,因各处运动幅度或方向的不同,也可能使得固定架与密封盘之间发生互相牵拉作用,通常,固定架与密封盘之间通过连接件进行相互牵拉。
当固定架受到密封盘的牵拉时,因固定架通过绕中轴线140的周向区域的径向支撑力固定于左心耳腔体内,因此主要将由固定架紧贴左心耳腔体的周向区域来抵抗这种牵拉作用力,这样,针对固定架的轴向牵拉将造成其径向变形,若牵拉作用足够大,将可能造成固定架与左心耳腔壁脱离,从而使得左心耳封堵器脱落,造成植入失效。当密封盘受到固定架的牵拉时,因密封盘为盘面结构,且在盘面上与连接件相连,因此针对密封盘的轴向牵拉同样将造成其径向变形。
由此,当固定架与密封盘彼此牵拉时,两者中易径向变形的一方将被另一方主导牵拉,例如,在相同的径向作用力下,依据本发明实施例的固定架的径长变化量小于密封盘的径长变化量,或者依据本发明实施例的固定架的径长变化率小于密封盘的径长变化率,则在彼此的牵拉的过程中,固定架将主导牵拉密封盘,使密封盘朝向固定架方向(或朝向远端)变形。这种变形使得密封盘相比自然展开状态更加紧贴左心耳开口处的左心房壁,从而提高了密封盘对左心耳开口的封闭效果,避免在密封盘与左心房壁之间形成间隙空间,从而防止血流经该间隙空间流入左心耳腔体内,以及防止血栓经该间隙空间流入左心房内,造成中风或系统性栓塞。同时,固定架主导牵拉而不易被密封盘牵拉脱离左心耳腔壁,使封堵器更好地固定在左心耳中,避免封堵器从左心耳中脱落。
上述的平板测试方法仅为一种示例测试方法,并不是对本发明的限制,本领域的普通技术人员可采用任意适合的方法进行与平板测试方法等效的测试,例如,还可在待测部件的周向上均匀施加径向作用力进行测试。具体地,参见图10,可在待测部件(固定架或密封盘)的最大径向轮廓处的同一周向上均匀布置三个弧形板63,测试中在上述弧形板63上同时沿径向施加径向作用力F,并测试部件的径长R的变化量或变化率。同样地,为了实现径向力的均匀施加,可设置弧形板的厚度至少为5mm。另外,也可采用Machine Solution Inc(MSI)公司RX550-100型号的径向支撑力测试仪对左心耳封堵器进行测试。
另外,可在待测部件(固定架或密封盘)的一部分被约束的条件下,通过在相同轴向力作用下测试部件的轴向(沿中轴线140方向)位移量来表征该部件的轴向变形能力。在第一种轴向变形能力测试方法中,上述约束为等尺寸约束,即在约束过程中待测部件不发生弹性形变或弹性形变量非常小,基本可忽略;另外,选择在待测部件的不发生弹性形变的位置处施加轴向作用力。例如,可分别在待测部件与连接件相连的一端部施加相同的轴向作用力,测试部件的轴向位移量来表征其各自的变形能力,此处部件的轴向位移量即为施力点处的轴向位移量,左心耳封堵器满足固定架的轴向位移量小于密封盘的轴向位移量。以下将针对上述左心耳封堵器结构来详细阐述该测试方法。测试中对固定架和密封盘分别进行独立测试,例如每次仅测试单个固定架或单个密封盘。
参见图11,测试固定架12过程中,采用环形夹持件71在固定架12的最大径向轮廓处沿周向夹持固定架12,该环形夹持件71绕中轴线140并垂直于中轴线140,夹持过程中,固定架12的夹持处的径向尺寸基本保持为自然展开状态下的尺寸,弹性形变基本可忽略;在固定架12与连接件相连的端部120,沿中轴线140并朝向密封盘21的方向施加轴向作用力F1,该端部120在施加轴向作用力F1的过程中不发生弹性形变,测量端部120在中轴线140上的投影O1随F1的轴向位移量△O1,采用该△O1表征该第一种轴向变形能力测试方法中固定架12的变形量(或变形能力),轴向作用力F1的整个加载过程中,夹持件71自身的夹持状态保持不变。
从以上可以看出,左心耳封堵器植入人体后,固定架在一部分被夹持住的条件下,例如固定架12在最大轮廓处被夹持住,测得的轴向拉力作用下的轴向位移量反应了该固定架在植入左心耳腔体后,在左心耳腔体的束缚作用下被密封盘牵拉的轴向变形能力。相同轴向拉力下,△O1越大,则表明固定架越易于被牵拉变形。
参见图12,测试密封盘21过程中,采用夹持件72在远端封头2132处直接夹持密封盘21;在密封盘21的近端封头2131,沿中轴线140并朝向远离固定架12的方向施加轴向作用力F1,该轴向作用力与测试固定架12过程中的轴向作用力完全相同,测量近端封头2131在中轴线140上的投影O2随F1的轴向位移量△O2,采用该△O2表征该第一种轴向变形能力测试方法中密封盘21的轴向变形量(或变形能力)。
从以上可以看出,左心耳封堵器植入人体后,密封盘在一部分被夹持住的条件下,例如密封盘21在远端封头2132处被夹持住,测得的轴向拉力F1作用下的轴向位移量反应了该密封盘21在植入左心耳腔体后,在左心耳口部的组织壁的束缚作用下被固定架12牵拉的轴向变形能力。相同轴向拉力下,△O2越大,则表明密封盘21越易于被牵拉变形。
测得在相同轴向力作用下,固定架的轴向位移量△O1小于密封盘的轴向位移量△O2。可以理解,当固定架与密封盘彼此牵拉时,两者中轴向位移量较大的一方将被另一方主导牵拉,例如,在相同的轴向作用力下,依据本发明实施例的固定架的轴向位移量小于密封盘的轴向位移量,则在彼此的牵拉的过程中,固定架将主导牵拉密封盘,使密封盘朝向固定架方向(或朝向远端)变形。这种变形使得密封盘相比自然展开状态更加紧贴左心耳开口处的左心房壁,从而提高了密封盘对左心耳开口的封闭效果,避免在密封盘与左心房壁之间形成间隙空间,从而防止血流经该间隙空间流入左心耳腔体内,以及防止血栓经该间隙空间流入左心房内。同时,固定架主导牵拉而不易被密封盘牵拉脱离左心耳腔壁,使封堵器更好地固定在左心耳中,避免封堵器从左心耳中脱落。
还可采用第二种轴向变形能力测试方法,参见图13,测试固定架12过程中,采用环形夹持件76在固定架12的最大径向轮廓处沿周向夹持固定架12,该环形夹持件绕中轴线140并垂直于中轴线140,夹持过程中,固定架12的夹持处的径向尺寸小于自然展开状态下的尺寸,固定架12在夹持处被径向压缩,例如压缩后的最大径长为压缩之前的最大径长的80%,当然,也可采用其它的压缩比例,此处不再一一列举。例如,可在环形夹持件76施加径向力F0,径向压缩固定架12。在固定架12与连接件相连的端部120,沿中轴线140并朝向密封盘21的方向施加轴向作用力F2,该端部120在施加轴向作用力F2的过程中不发生弹性形变,测量端部120在中轴线140上的投影O3随F2的轴向位移量△O3,采用该△O3表征该第二种轴向变形能力测试方法中固定架12的变形量(或变形能力)。
从以上可以看出,左心耳封堵器植入人体后,固定架12在一部分被夹持住的条件下,例如固定架12在最大轮廓处被压缩夹持住,测得的轴向拉力作用下的轴向位移量反应了该固定架12在植入左心耳腔体后,在左心耳腔体的束缚作用下被密封盘21牵拉的变形能力。相同轴向拉力下,△O3越大,则表明固定架12越易于被牵拉变形。
参见图14,密封盘21远端封头2132,连接件与远端封头2132相连。独立测试密封盘21过程中,采用环形固件77在密封盘21的朝向固定架12的一盘面上的最大边沿处,抵持该盘面,同时在远端封头2132处沿中轴线140、并朝向固定架12的方向施加轴向作用力F2,在F2的轴向拉伸过程中,通过环形固件77使得被抵持的盘面处保持沿中轴线140方向的位置不变,由此测试远端封头2132在中轴线140上的投影位移量△O4。
从以上可以看出,左心耳封堵器植入人体后,密封盘的一部分在左心耳口部被左心房腔壁抵挡,其中至少是密封盘朝向固定架的最大径向边沿被抵挡,因此,上述密封盘的测试过程中,在环形固件抵持密封盘朝向固定架的最大径向边沿处并保持其不沿中轴线140方向发生位移的条件下,测得的密封盘在轴向拉力作用下的轴向位移量反应了该密封盘在植入人体后,在左心耳开口处被固定架牵拉的变形能力。相同轴向拉力下,△O4越大,则表明密封盘越易于被牵拉变形。
测得在相同轴向力(F2)的作用下,固定架的轴向位移量△O3小于密封盘的轴向位移量△O4。可以理解,当固定架与密封盘彼此牵拉时,两者中轴向位移量较大的一方将被另一方主导牵拉,例如,在相同的轴向作用力下,依据本发明实施例的固定架的轴向位移量小于密封盘的轴向位移量,则在彼此的牵拉的过程中,固定架将主导牵拉密封盘,使密封盘朝向固定架方向(或朝向远端)变形。这种变形使得密封盘相比自然展开状态更加紧贴左心耳开口处的左心房壁,从而提高了密封盘对左心耳开口的封闭效果,避免在密封盘与左心房壁之间形成间隙空间,从而防止血流经该间隙空间流入左心耳腔体内,以及防止血栓经该间隙空间流入左心房内。同时,固定架主导牵拉而不易被密封盘牵拉脱离左心耳腔壁,使封堵器更好地固定在左心耳中,避免封堵器从左心耳中脱落。
以上所述实施方式的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施方式中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施方式仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种左心耳封堵器,包括密封盘以及与所述密封盘连接的固定架,其特征在于,所述密封盘包括近端盘面和远端盘面,所述近端盘面包括多个呈径向辐射状布置的弹性近端支撑杆,所述远端盘面包括多个呈径向辐射状布置的弹性远端支撑杆,每个所述近端支撑杆的悬空端和一个与之相邻的远端支撑杆的悬空端相连。
  2. 根据权利要求1所述的左心耳封堵器,其特征在于,所述近端盘面包括近端封头,每个所述近端支撑杆的一端与所述近端封头相连、另一端径向辐射出并悬空;所述远端盘面包括远端封头,每个所述远端支撑杆的一端与所述远端封头相连、另一端径向辐射出并悬空。
  3. 根据权利要求2所述的左心耳封堵器,其特征在于,所述近端封头与所述远端封头轴向对齐,每个所述远端支撑杆在所述近端盘面内的投影和一个与该远端支撑杆相连的近端支撑杆基本重合。
  4. 根据权利要求2所述的左心耳封堵器,其特征在于,所述近端封头与所有所述近端支撑杆一体切割形成,和/或所述远端封头与所有所述远端支撑杆一体切割形成,和/或所述近端支撑杆和与之相连的所述远端支撑杆通过一根杆体一体弯折形成。
  5. 根据权利要求2所述的左心耳封堵器,其特征在于,所述近端封头与一个所述近端支撑杆之间的近端连接夹角为锐角;所述远端封头与一个所述远端支撑杆之间的近端连接夹角为锐角。
  6. 根据权利要求5所述的左心耳封堵器,其特征在于,所述近端封头与一个所述近端支撑杆之间的近端连接夹角为15~90°或60~85°;且所述远端封头与一个所述远端支撑杆之间的近端连接夹角为15~90°或60~85°。
  7. 根据权利要求2所述的左心耳封堵器,其特征在于,所述远端支撑杆包括远端连接段和远端悬空段,所述远端连接段的一端与所述远端封头连接、另一端与所述远端悬空段的一端连接,所述远端悬空段的另一端与一个所述近端支撑杆的悬空端连接;所述远端悬空段与所述远端封头的轴线基本垂直。
  8. 根据权利要求7所述的左心耳封堵器,其特征在于,所述远端连接段的硬度大于所述远端悬空段的硬度。
  9. 根据权利要求7所述的左心耳封堵器,其特征在于,所述近端支撑杆包括近端连接段和近端悬空段,所述近端连接段的一端与所述近端封头连接、另一端与所述近端悬空段的一端连接,所述近端支撑杆的近端悬空段和一个与之相邻的所述远端悬空段连接。
  10. 根据权利要求9所述的左心耳封堵器,其特征在于,所述近端连接段的硬度大于所述近端悬空段的硬度。
  11. 根据权利要求1所述的左心耳封堵器,其特征在于,所述近端盘面与所述远端盘面基本平行。
  12. 根据权利要求1所述的左心耳封堵器,其特征在于,所述近端支撑杆和与之相连的所述远端支撑杆通过一根杆体一体弯折形成,所述杆体在所述悬空端处弯折。
  13. 根据权利要求1所述的左心耳封堵器,其特征在于,所述远端盘面还包括具有多个网格的远端支撑结构,所述远端支撑结构从所述远端盘面的中心沿径向辐射展开,所述多个远端支撑杆均与所述远端支撑结构相连。
  14. 根据权利要求13所述的左心耳封堵器,其特征在于,所述远端支撑结构包括多个远端分支,所述多个远端分支两两互连形成所述多个网格,所述多个远端分支中的一部分所述远端分支的一端均在所述远端盘面的中心汇聚相连。
  15. 根据权利要求13所述的左心耳封堵器,其特征在于,所述近端盘面还包括具有多个网格的近端支撑结构,所述近端支撑结构从所述近端盘面的中心沿径向辐射展开,所述多个近端支撑杆均与所述近端支撑结构相连。
  16. 根据权利要求15所述的左心耳封堵器,其特征在于,所述近端支撑结构包括多个近端分支,所述多个近端分支两两互连形成所述多个网格,所述多个近端分支中的一部分所述近端分支的一端均在所述近端盘面的中心汇聚相连。
  17. 根据权利要求1所述的左心耳封堵器,其特征在于,所述密封盘还包括覆盖所述近端盘面和远端盘面中的至少一个盘面的密封膜。
  18. 根据权利要求17所述的左心耳封堵器,其特征在于,所述密封膜的外周缘相对该密封膜所覆盖的盘面的外周缘径向伸长1mm-15mm。
  19. 根据权利要求1-18任一项所述的左心耳封堵器,其特征在于,所述密封盘的径向变形能力大于所述固定架的径向变形能力和/或所述密封盘的轴向变形能力大于所述固定架的轴向变形能力。
  20. 根据权利要求19所述的左心耳封堵器,其特征在于,在相同径向力作用下,所述密封盘的径长变化量大于所述固定架的径长变化量;或者在相同径向力作用下,所述密封盘的径长变化率大于所述固定架的径长变化率;或者在相同轴向力作用下,所述密封盘沿所述轴向力方向的位移量大于所述固定架沿所述轴向力方向的位移量。
  21. 根据权利要求19所述的左心耳封堵器,其特征在于,所述固定架包括多个支撑件,所述多个支撑件的一端皆在所述固定架的中心汇聚相连、另一端皆从所述固定架的中心辐射延伸,所述多个支撑件配合形成伞状结构。
PCT/CN2016/086417 2015-12-31 2016-06-20 左心耳封堵器 WO2017113647A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16880455.7A EP3398537A4 (en) 2015-12-31 2016-06-20 OCCLUSION DEVICE OF THE LEFT APPENDIX LEFT
US16/066,840 US10765416B2 (en) 2015-12-31 2016-06-20 Left atrial appendage occluder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511033081.6A CN106923884B (zh) 2015-12-31 2015-12-31 左心耳封堵器
CN201511033081.6 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017113647A1 true WO2017113647A1 (zh) 2017-07-06

Family

ID=59224313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/086417 WO2017113647A1 (zh) 2015-12-31 2016-06-20 左心耳封堵器

Country Status (4)

Country Link
US (1) US10765416B2 (zh)
EP (1) EP3398537A4 (zh)
CN (1) CN106923884B (zh)
WO (1) WO2017113647A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015249283B2 (en) 2014-04-25 2019-07-18 Flow Medtech, Llc Left atrial appendage occlusion device
EP3193790A4 (en) 2014-09-19 2018-10-03 Flow Medtech, Inc. Left atrial appendage occlusion device delivery system
CN110420044B (zh) * 2019-06-28 2020-12-18 先健科技(深圳)有限公司 封堵装置
EP3998962B1 (en) * 2019-07-17 2024-05-08 Boston Scientific Scimed, Inc. Left atrial appendage implant with continuous covering
CN112656474B (zh) * 2019-10-15 2022-09-02 先健科技(深圳)有限公司 封堵装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1342056A (zh) * 1998-11-06 2002-03-27 阿普利瓦医学股份有限公司 用于左心耳闭塞的方法和装置
WO2007035497A1 (en) * 2005-09-16 2007-03-29 Ev3 Endovascular, Inc. Intracardiac cage and method of delivering same
CN103598902A (zh) * 2013-11-14 2014-02-26 先健科技(深圳)有限公司 左心耳封堵器
CN104352260A (zh) * 2014-10-13 2015-02-18 陈奕龙 左心耳封堵系统
CN104856741A (zh) * 2015-06-15 2015-08-26 同济大学附属第十人民医院 一种经导管左心耳封堵系统

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128073B1 (en) * 1998-11-06 2006-10-31 Ev3 Endovascular, Inc. Method and device for left atrial appendage occlusion
WO2004043508A1 (en) * 2002-11-06 2004-05-27 Nmt Medical, Inc. Medical devices utilizing modified shape memory alloy
US7317951B2 (en) * 2003-07-25 2008-01-08 Integrated Sensing Systems, Inc. Anchor for medical implant placement and method of manufacture
WO2006126979A2 (en) * 2003-12-04 2006-11-30 Ev3, Inc. System and method for delivering a left atrial appendage containment device
US8801746B1 (en) * 2004-05-04 2014-08-12 Covidien Lp System and method for delivering a left atrial appendage containment device
US20070118176A1 (en) * 2005-10-24 2007-05-24 Opolski Steven W Radiopaque bioabsorbable occluder
US9034006B2 (en) * 2005-12-01 2015-05-19 Atritech, Inc. Method and apparatus for retrieving an embolized implant
WO2008124603A1 (en) * 2007-04-05 2008-10-16 Nmt Medical, Inc. Septal closure device with centering mechanism
WO2008150346A1 (en) * 2007-05-31 2008-12-11 Rex Medical, L.P. Closure device for left atrial appendage
US9649115B2 (en) * 2009-06-17 2017-05-16 Coherex Medical, Inc. Medical device for modification of left atrial appendage and related systems and methods
US9186152B2 (en) * 2010-11-12 2015-11-17 W. L. Gore & Associates, Inc. Left atrial appendage occlusive devices
EP2672927A4 (en) * 2011-02-10 2014-08-20 Atrial Innovations Inc EARLY APPENDIX OCCLUSION AND TREATMENT OF ARRHYTHMIA
US9554806B2 (en) * 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US8758389B2 (en) * 2011-11-18 2014-06-24 Aga Medical Corporation Devices and methods for occluding abnormal openings in a patient's vasculature
WO2013103888A1 (en) * 2012-01-06 2013-07-11 Paul Lubock Expandable occlusion devices and methods of use
US9592058B2 (en) * 2012-02-21 2017-03-14 Cardia, Inc. Left atrial appendage occlusion device
US9554804B2 (en) * 2012-02-21 2017-01-31 Cardia, Inc. Redeployable left atrial appendage occlusion device
EP3900648A1 (en) * 2012-07-13 2021-10-27 Boston Scientific Scimed, Inc. Occlusion device for an atrial appendage
CA2880025A1 (en) * 2012-09-12 2014-03-20 Boston Scientific Scimed, Inc. Fixation anchor design for an occlusion device
US20140135817A1 (en) * 2012-11-14 2014-05-15 Boston Scientific Scimed, Inc. Left atrial appendage closure implant
WO2014127641A1 (zh) * 2013-02-19 2014-08-28 湖南埃普特医疗器械有限公司 一种左心耳封堵装置以及一种输送系统
US11911258B2 (en) * 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
DE102013019890A1 (de) * 2013-11-28 2015-05-28 Bentley Innomed Gmbh Medizinisches Implantat
US10398441B2 (en) * 2013-12-20 2019-09-03 Terumo Corporation Vascular occlusion
US9730701B2 (en) * 2014-01-16 2017-08-15 Boston Scientific Scimed, Inc. Retrieval wire centering device
US9808201B2 (en) * 2014-08-18 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1342056A (zh) * 1998-11-06 2002-03-27 阿普利瓦医学股份有限公司 用于左心耳闭塞的方法和装置
WO2007035497A1 (en) * 2005-09-16 2007-03-29 Ev3 Endovascular, Inc. Intracardiac cage and method of delivering same
CN103598902A (zh) * 2013-11-14 2014-02-26 先健科技(深圳)有限公司 左心耳封堵器
CN104352260A (zh) * 2014-10-13 2015-02-18 陈奕龙 左心耳封堵系统
CN104856741A (zh) * 2015-06-15 2015-08-26 同济大学附属第十人民医院 一种经导管左心耳封堵系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3398537A4 *

Also Published As

Publication number Publication date
CN106923884B (zh) 2018-12-21
EP3398537A1 (en) 2018-11-07
US10765416B2 (en) 2020-09-08
CN106923884A (zh) 2017-07-07
EP3398537A4 (en) 2019-09-04
US20190021711A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
WO2017113646A1 (zh) 左心耳封堵器
WO2017113647A1 (zh) 左心耳封堵器
WO2017113631A1 (zh) 左心耳封堵器
WO2016107595A1 (zh) 左心耳封堵器
WO2017113632A1 (zh) 左心耳封堵器
WO2012034298A1 (zh) 封堵器及其制造方法
WO2014117661A1 (zh) 一种具有可变夹角的扁平盘面的封堵器
EP0614342B1 (en) Closure prosthesis for transcatheter placement
WO2017113629A1 (zh) 封堵器
WO2017071353A1 (zh) 左心耳封堵器
CN209474706U (zh) 分体式左心耳封堵器
CN211325298U (zh) 封堵装置
CN114587472B (zh) 一种封堵器
EP4241695B1 (en) Occlusion device for left atrial appendage
CN209996397U (zh) 左心耳封堵装置
CN113876369A (zh) 封堵器及封堵系统
WO2021010788A1 (ko) 색전 코일용 앵커 및 이를 포함하는 색전 코일
CN209059313U (zh) 左心耳封堵器
CN115944331A (zh) 组织缺损封堵器、输送机构及封堵器输送系统
WO2020096298A1 (ko) 인공심장판막 및 이를 포함하는 인공심장판막 세트
CN110025349B (zh) 锚固式左心耳封堵器
CN115770083A (zh) 介入组织封堵装置、输送机构及封堵器装置
CN110613492A (zh) 左心耳封堵装置
CN115737013A (zh) 一种边缘房间隔缺损封堵器
CN117379119A (zh) 封堵器及卵圆孔未闭封堵器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16880455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016880455

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016880455

Country of ref document: EP

Effective date: 20180731