WO2017113270A1 - 天线装置和终端 - Google Patents

天线装置和终端 Download PDF

Info

Publication number
WO2017113270A1
WO2017113270A1 PCT/CN2015/100065 CN2015100065W WO2017113270A1 WO 2017113270 A1 WO2017113270 A1 WO 2017113270A1 CN 2015100065 W CN2015100065 W CN 2015100065W WO 2017113270 A1 WO2017113270 A1 WO 2017113270A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
frequency band
antenna device
frequency
antenna
Prior art date
Application number
PCT/CN2015/100065
Other languages
English (en)
French (fr)
Inventor
王汉阳
李建铭
张学飞
应李俊
薛亮
尤佳庆
王磊
史悦
余冬
伍国平
黄波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US16/067,500 priority Critical patent/US11264725B2/en
Priority to PCT/CN2015/100065 priority patent/WO2017113270A1/zh
Priority to CN201580081834.2A priority patent/CN108140929B/zh
Priority to EP15911898.3A priority patent/EP3386030B1/en
Priority to JP2018534653A priority patent/JP6701351B2/ja
Publication of WO2017113270A1 publication Critical patent/WO2017113270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/328Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors between a radiating element and ground
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • H01Q1/2266Supports; Mounting means by structural association with other equipment or articles used with computer equipment disposed inside the computer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals

Definitions

  • the present invention relates to communication technologies, and in particular, to an antenna device and a terminal.
  • the existing terminal antenna design usually adopts a Monopole Antenna or a Planar Inverted F Antenna (PIFA).
  • PIFA Planar Inverted F Antenna
  • the embodiment of the invention provides an antenna device and a terminal, which are used to solve the problem that the terminal antenna in the prior art needs to occupy a large clear space.
  • an antenna device includes: an antenna body and at least one stub, and the antenna body is provided with a feeding terminal;
  • One end of the stub is electrically connected to a connection point between the feed terminal and the first open end of the antenna body, and the other end of the stub is an open end;
  • the length of the antenna body between the connection point and the feed terminal is one-half of a wavelength corresponding to a set operating frequency of the antenna device, and the length of the stub is corresponding to the set operating frequency. One quarter of the wavelength.
  • the three-quarter wavelength corresponding to the set operating frequency is comparable to the length of the antenna body between the antenna device feed terminal and the stub open end.
  • the antenna device further includes: a low frequency switching network and a first ground terminal;
  • One end of the low frequency switching network is electrically connected between the feeding terminal and the connection point, and the other end of the low frequency switching network is electrically connected to the first ground terminal.
  • the antenna device further includes: a second ground terminal;
  • the second ground terminal is disposed between the feed terminal and the second open end of the antenna body.
  • the low frequency switching network includes: a single-pole multi-throw switch and a low-frequency matching device;
  • the fixed end of the single-pole multi-throw switch is connected between the feeding terminal and the connection point;
  • the low frequency matching device is electrically connected between the first movable end of the single-pole multi-throw switch and the first ground terminal, and the second movable end of the single-pole multi-throw switch is electrically connected to the first ground terminal.
  • the low frequency matching device is an inductor or a capacitor.
  • the antenna device works in a first frequency band, a second frequency band, a third frequency band, a fourth frequency band, and a fifth frequency band;
  • the first frequency band is between 698 MHz and 960 MHz;
  • the second frequency band, the third frequency band, the fourth frequency band, and the fifth frequency band are between 1710 MHz and 3600 MHz.
  • the second frequency band, the third frequency band, the fourth frequency band, and the fifth frequency band are between 1710 MHz and 2690 MHz.
  • the antenna device works in a first frequency band, a second frequency band, a third frequency band, a fourth frequency band, and a fifth frequency band;
  • the first frequency band is between 698 MHz and 960 MHz;
  • the second frequency band is a preset frequency band, and the preset frequency band is 1427 MHz to 1495 MHz or 1448 MHz to 1511 MHz, or the preset frequency band is used to support GPS or GNSS;
  • the third frequency band, the fourth frequency band, and the fifth frequency band are between 1710 MHz and 2690 MHz.
  • the first frequency band is between 880 MHz and 960 MHz.
  • a second aspect of the invention provides a terminal comprising: a printed circuit board and the antenna device according to the first aspect, wherein the printed circuit board is provided with a feeding device; The electrical terminal is electrically connected to the feed device.
  • a third aspect of the invention provides a terminal comprising: a printed circuit board, a metal casing, and the antenna device according to the first aspect;
  • the printed circuit board is located inside the grounded metal casing, the printed circuit board is electrically connected to the grounded metal casing, and the printed circuit board is provided with a feeding device;
  • the grounded metal casing is a hollow structure
  • a gap is formed between the antenna body and the grounded metal casing in the antenna device, and the feeding terminal of the antenna device is electrically connected to the feeding device.
  • the gap at the back of the terminal is U-shaped.
  • the gap width is less than or equal to 3 mm.
  • An antenna device includes: an antenna body and at least one stub, and the antenna body is provided with a feeding terminal; one end of the stub is electrically connected to the feeding terminal and the first open end of the antenna body At the connection point, the other end of the stub is an open end; the length of the antenna body between the connection point and the feed terminal is one-half of a wavelength corresponding to a set operating frequency of the antenna device, and the stub is short. The length is one quarter of the wavelength corresponding to the set operating frequency.
  • the metal casing of the terminal can be used as the antenna body, that is, the shape of the antenna body is matched with the metal casing, and the arrangement usually requires less than 3 mm of clearance.
  • the area can be used. Therefore, the antenna device can fully utilize the shape design of the terminal when in use, and only needs to occupy a small clear space while ensuring performance.
  • FIG. 1 is a schematic structural diagram of an antenna apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of an antenna apparatus according to Embodiment 2 of the present invention.
  • 3a is a schematic diagram of a standing wave ratio of an antenna device according to Embodiment 2 of the present invention.
  • 3b is a schematic diagram of a standing wave ratio of an antenna device according to Embodiment 2 of the present invention.
  • 3c is a schematic diagram of a standing wave ratio of an antenna device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a standing wave ratio of an antenna device according to Embodiment 2 of the present invention.
  • 3e is a schematic diagram of a standing wave ratio of an antenna device according to Embodiment 2 of the present invention.
  • FIG. 4a is a schematic diagram of a current mode of an antenna device according to Embodiment 2 of the present invention.
  • 4b is a schematic diagram of a current mode of an antenna device according to Embodiment 2 of the present invention.
  • 4c is a schematic diagram of a current mode of an antenna device according to Embodiment 2 of the present invention.
  • 4d is a schematic diagram of a current mode of an antenna device according to Embodiment 2 of the present invention.
  • 4 e is a schematic diagram of a current mode of an antenna device according to Embodiment 2 of the present invention.
  • FIG. 5 is a schematic structural diagram of a terminal according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic structural diagram of a terminal according to Embodiment 4 of the present invention.
  • Figure 7a is a front elevational view of a terminal according to Embodiment 4 of the present invention.
  • FIG. 7b is a rear view of a terminal according to Embodiment 4 of the present invention.
  • FIG. 7c is a rear view of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8 is a partial schematic diagram of a terminal according to Embodiment 4 of the present invention.
  • FIG. 8b is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8c is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8 is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8e is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8f is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • FIG. 8g is a partial schematic diagram of another terminal according to Embodiment 4 of the present invention.
  • the antenna device provided by the embodiment of the present invention may be used in a terminal, and the terminal may be a portable terminal or other suitable communication terminal.
  • the terminal may be a portable terminal or other suitable communication terminal.
  • a laptop computer, a tablet computer, a somewhat small device or micro device such as a wristwatch device, a wristband device, or other wearable device, a cellular A telephone, or media player, set top box, desktop computer, computer monitor into which the computer is integrated, or other suitable terminal.
  • the terminal can have a display mounted in the housing.
  • the display can be a touch screen that incorporates capacitive contact electrodes or that may be insensitive to touch.
  • the display can include image pixels comprised of light emitting diodes, organic light emitting diodes, plasma cells, electrowetting pixels, electrophoretic pixels, liquid crystal display components, or other suitable image pixel structures.
  • a cover glass layer can cover the surface of the display. The cover glass may have one or more openings such as openings for receiving buttons.
  • the outer casing may be constructed of plastic, glass, ceramic, fiber composite, metal (eg, stainless steel, aluminum, etc.), other suitable materials, or a combination of these materials.
  • the outer casing or portions thereof may be constructed of a dielectric or other low conductivity material.
  • the outer casing or at least some of the structures that make up the outer casing may be constructed of metal elements.
  • the terminal can be used to support any relevant communication band.
  • the terminal can include one or more antenna devices.
  • the terminal can include support for local area network communication, voice and data cellular telephone communication, global positioning system communication or other satellite navigation system communication, Bluetooth communication, and the like.
  • FIG. 1 is a schematic structural diagram of an antenna apparatus according to Embodiment 1 of the present invention.
  • the antenna device 1 includes an antenna body 10 and a stub 11 on which a feed terminal 12 is disposed.
  • one end of the stub 11 is electrically connected to the connection point A between the feed terminal 12 and the first open end 100 of the antenna body 10, and the other end of the stub 11 is an open end.
  • the feed terminal 12 is used for electrically connecting with a feed point of a feed circuit in the terminal where the antenna device 1 is located, where the terminal may be a mobile device, a user terminal, a wireless communication device, etc.; the feed circuit is used for
  • the antenna device 1 is provided with an input signal, which may be specifically used for processing the transmission signal generated by the terminal transmitter and then providing the signal to the antenna device 1, or after the antenna device 1 receives the signal, processing the received signal and transmitting it to the receiver of the terminal. .
  • the antenna device 1 In order to ensure that the antenna device 1 can cover a sufficient number of frequency bands, the antenna device 1 has a limitation on the position and length of the above-mentioned stub 11 .
  • the length of the antenna body 10 between the connection point A and the feed terminal 12 is one-half of the wavelength corresponding to a set operating frequency of the antenna device 1; in terms of length, the length of the stub 11 It is one quarter of the wavelength corresponding to the above set operating frequency.
  • the antenna device 1 can operate in five operating modes, including a low frequency mode and Four high frequency modes. Specifically, according to the principle of electromagnetic waves, when the wavelength of the electromagnetic wave is compared with the length of the antenna, resonance can be realized. Therefore, the lengths of the antenna body 10 and the stub 11 can be set according to the operating frequency of the antenna device 1 to achieve the above. Five modes of resonance. For example, the length of the antenna body 10 between the feed terminal 12 and the first open end 100 of the antenna body 10 may be set larger than the antenna body 10 between the feed terminal 12 and the second open end 101 of the antenna body 10.
  • the antenna body 10 between the feed terminal 12 and the first open end 100 of the antenna body 10 serves as a first branch of the antenna device 1 for radiating a low frequency signal, and further, since the antenna device 1 is further disposed
  • the stub 11 is thus, between the feed terminal 12 and the open end of the stub 11, a second branch of the antenna device 1 can be constructed for radiating high frequency signals, and the feed terminal 12 to the antenna
  • the antenna body 10 between the second open ends 101 of the body 10 serves as a third branch of the antenna device 1, and can radiate high frequency signals in cooperation with the first branch and the second branch.
  • the low frequency signal and the high frequency signal here are only relative, and do not specifically refer to the signal of a certain frequency band.
  • the first branch may generate a quarter-wave resonance, which is a low frequency mode in which the antenna device 1 operates, and represents an antenna body that can cover the first frequency band, that is, between the power feeding terminal 12 and the first open end 100.
  • the length of 10 is one quarter of a wavelength corresponding to the set operating frequency in the first frequency band; for the antenna body 10, a half wavelength resonance may also be generated between the first open end 100 and the second open end 101, that is, One-half wavelength resonance, which is the first high frequency mode in which the antenna device 1 operates, representing that it can cover the second frequency band, that is, the antenna body 10 from the first open end 100 to the second open end 101
  • the length is one-half of a wavelength corresponding to a set operating frequency in the second frequency band; the second branch may also generate a three-quarter wavelength resonance, and the resonance is a second high-frequency mode in which the antenna device 1 operates.
  • the length of the antenna body 10 between the feeding terminal 12 and the connection point A plus the length of the stub 11 is three quarters of the wavelength corresponding to a set operating frequency in the third frequency band;
  • the third branch above can be Generating a single-wavelength resonance, which is the third high-frequency mode in which the antenna device 1 operates, that is, it can cover the fourth frequency band, that is, the length of the antenna body 10 between the power feeding terminal 12 and the first open end 101 is One of the four frequency bands sets a working frequency corresponding to one quarter of the wavelength; in addition, from the feeding terminal 12 to the first open end 100, in addition to the resonance of the above two modes, a quarter of the total can be generated.
  • Three-wavelength resonance which is the fourth high-frequency mode in which the antenna device 1 operates, that is, it can cover the fifth frequency band, and the fifth frequency band of the length of the antenna body 10 between the feeding terminal 12 and the first open end 100 Set the operating frequency to a quarter of the wavelength.
  • the length of the antenna body 10 between the feeding terminal 12 and the connection point A plus the length of the stub 11 is three-quarters of the wavelength corresponding to a set operating frequency in the third frequency band, and the actual coverage is generated.
  • the three-band resonant radiator is composed of the antenna body 10 and the stub 11 between the feeding terminal 12 and the connection point A, wherein the length of the stub 11 is a setting in the third frequency band.
  • the working frequency corresponds to one quarter of the wavelength
  • the length of the antenna body 10 between the feeding terminal 12 and the connecting point A is one-half of the wavelength corresponding to a set operating frequency in the third frequency band.
  • the antenna device 1 can cover five frequency bands, and the set working frequency in each frequency band can be selected according to actual needs. For example, a lower frequency point can be selected in each frequency band as the above setting operation. frequency.
  • different frequency band coverage can be achieved by adjusting the length of the antenna body 10 and the stub 11 and the position of the feed terminal 12 and the connection point A on the antenna body 10.
  • the present embodiment only takes one stub 11 as an example, but is not limited thereto.
  • different numbers of frequency band coverage can be achieved by adjusting the number of stubs 11 and the length of the specific position.
  • the current at the feed terminal 12 is the largest, so that a plurality of stubs can be disposed at a position closer to the feed terminal 12.
  • the material of the stub 11 is the same as that of the antenna made in the prior art, such as copper plating, alloying, and the like.
  • the shape of the antenna device 1 shown in FIG. 1 is merely an example, but is not limited thereto.
  • the metal casing of the terminal can be used as its antenna body, that is, the shape of the antenna body matches the metal casing, and the arrangement can reduce the required space of the terminal antenna, usually less than 3 mm.
  • the clearance area is OK.
  • An antenna device includes: an antenna body and at least one stub, and the antenna body is provided with a feeding terminal; one end of the stub is electrically connected to the feeding terminal and the first open end of the antenna body At the connection point, the other end of the stub is an open end; the length of the antenna body between the connection point and the feed terminal is one-half of the wavelength corresponding to a set operating frequency of the antenna device, and the stub is short. The length is one quarter of the wavelength corresponding to the set operating frequency.
  • the antenna device can fully utilize the shape design of the terminal during use, and only needs to occupy a small clear space while ensuring performance.
  • FIG. 2 is a schematic structural diagram of an antenna apparatus according to Embodiment 2 of the present invention.
  • the antenna device 2 includes an antenna body 10 and at least one stub 11 on which a feed terminal 12 is disposed.
  • the connection manner and length limitation of the stub 11 are the same as those in the first embodiment, and details are not described herein again.
  • the antenna device 2 further includes a low frequency switching network 20 (a virtual box in FIG. 2, which is only used to indicate that devices, units, and lines in the virtual frame constitute a low frequency switching network 20, and the dotted line itself has no practical meaning) and a first ground. Terminal 21.
  • a low frequency switching network 20 (a virtual box in FIG. 2, which is only used to indicate that devices, units, and lines in the virtual frame constitute a low frequency switching network 20, and the dotted line itself has no practical meaning) and a first ground. Terminal 21.
  • One end of the low frequency switching network 20 is electrically connected between the feeding terminal 12 and the connection point A, and the other end of the low frequency switching network 20 is electrically connected to the first ground terminal 21.
  • the antenna device 2 can also operate in five modes including one adjustable low frequency mode and four high frequency modes. Since the low frequency switching network 20 is connected to the first branch between the feed terminal 12 and the first open end 100, and the first branch corresponds to the low frequency operation mode of the antenna device 2, the low frequency switching network 20 can be set. The internal structure is matched to the low frequency mode of the antenna device 2, thereby adjusting the specific position of the first frequency band covered by the antenna device 2, and the low frequency mode resonance is adjustable.
  • the low frequency switching network 20 may be composed of a single-pole multi-throw switch and a low-frequency matching device.
  • the single-pole multi-throw switch is used for switching, so that the antenna body 10 is directly connected to the first ground terminal 21 or indirectly through the low-frequency matching device, specifically, when the first ground terminal 21 is directly connected, the antenna device 2 is covered.
  • the first frequency band described in Embodiment 1 when the low frequency matching device is turned on, the first frequency band is shifted to a higher frequency or lower frequency.
  • the low frequency switching network 20 may include a single pole triple throw switch 200 and two low frequency matching devices, namely an inductor 201 and an inductor 202.
  • the fixed end of the single-pole three-throw switch 200 is connected between the feed terminal 12 and the connection point A; the inductor 201 is electrically connected between a first movable end of the single-pole three-throw switch 200 and the first ground terminal 21, and the inductance 202 is electrically connected between the other first movable end of the single-pole three-throw switch 200 and the first ground terminal 21, and the second movable end of the single-pole three-throw switch 200 is electrically connected to the first ground terminal 21.
  • the first active end here refers to the movable end connected to the low frequency matching device, the number of which matches the number of the low frequency matching device, and the second movable end is the movable end connected to the first ground terminal 21. Since the inductance is equivalent to increasing the length of the antenna of the antenna, adding the inductance is equivalent to changing the length of the antenna, thereby realizing the adjustment of the first frequency band covered by the antenna device 2. It should be noted that, here, the two inductors, that is, the inductor 201 and the inductor 202 are taken as an example, so the single-pole three-throw switch 200 is three-throw.
  • inductor 201 and the inductor 202 can also be replaced by capacitors.
  • both capacitors or one of them is an inductor, and the other is a capacitor, which is not limited herein.
  • the antenna device 2 may further include a second ground terminal 22 disposed between the feed terminal 12 and the second open end 101 of the antenna body 10, and the function is equivalent to a parallel distributed
  • the inductance is grounded, and the matching effect of the parallel parallel inductance can be realized for the antenna device 2, and the effect of fine-tuning the resonance frequency can also be achieved by this means.
  • the distributed inductance is not realized by the second ground terminal 22, another way is that a concentrated inductor can be connected in parallel with the feed line connected to the feed terminal 12, and the above effect can also be achieved.
  • the antenna device 2 operates in five modes, that is, covers five frequency bands, which are a first frequency band, a second frequency band, a third frequency band, a fourth frequency band, and a fifth frequency band, respectively.
  • the frequency band corresponds to the low frequency mode in which the antenna device 2 operates, and the remaining four frequency bands correspond to the high frequency mode.
  • the first frequency band includes a first frequency and a second frequency
  • the second frequency band includes a third frequency and a fourth frequency
  • the third frequency band includes a fifth frequency and a sixth frequency
  • the fourth frequency band includes a seventh frequency and an eighth frequency
  • the fifth frequency band includes a ninth frequency and a tenth frequency.
  • 3a is a schematic diagram of the standing wave ratio of the antenna device 2, wherein the horizontal axis represents frequency in megahertz (MHz), and the vertical axis represents voltage standing wave ratio (VSWR), and the voltage standing wave ratio is also It can be simply referred to as standing wave ratio (SWR).
  • the standing wave ratio represents the ratio of the antinode voltage of the standing wave to the amplitude of the valley voltage, and is also called the standing wave coefficient. It is specifically a value. When the standing wave ratio is equal to 1, it means that the impedance of the feeder line and the impedance of the antenna are completely matched.
  • the five modes of the antenna device 2 that is, the five resonance modes described in the first embodiment, are shown in order from left to right in Fig. 3a.
  • the first frequency band corresponding to the low frequency mode can cover the frequency range of about 698 MHz to 960 MHz, and the first frequency and the second frequency are respectively 698 MHz and 960 MHz; the first to fourth high frequency modes can be combined to cover the broadband.
  • the first high frequency mode and the second high frequency mode may combine a resonant coverage wide bandwidth, for example, control a coverage frequency of 1710 MHz to 2170 MHz, where the third frequency is 1710 MHz, and the sixth frequency is 2170 MHz, and the fourth frequency is
  • the frequency and the fifth frequency can be 1990MHz and 2050MHz, respectively; the third high frequency mode can control the coverage from 2050MHz to 2500MHz.
  • the frequency band between the two, and the fourth high-frequency mode usually controls the coverage frequency of 2500MHz to 2690MHz, thereby supporting Frequency Division Duplexing (FDD) and Time Division Duplexing (TDD) bands.
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the above ninth frequency and tenth frequency are 2500 MHz and 2690 MHz, respectively.
  • the frequency band covered by the antenna device 2 described above can be changed.
  • the first frequency band may be changed from 698 MHz to 960 MHz to cover 880 MHz to 960 MHz, and the first frequency and the second frequency are respectively 880 MHz and 960 MHz;
  • the first to fourth high frequency modes may be combined to cover a wide bandwidth, for example Covering 1710MHz to 2690MHz, or extending to a higher frequency band, for example, covering 1710MHz to 3600MHz.
  • the positions of the first to fourth high-frequency modes may be changed, and are not limited to the order shown in FIG. 3a, as shown in FIG. 3c and FIG. 3d, and details are not described herein again.
  • the specific values of the five frequency bands covered by the antenna device 2 can be specifically adjusted by adjusting the lengths of the antenna body 10 and the stub 11 and the positions of the feeding terminal 12 and the connection point A, so that FIG. 3a In the middle, only five modes are identified on the horizontal axis, but the specific values of the coverage frequency of each mode are not marked in the horizontal axis.
  • the specific numerical values of the above frequency points are only examples, but are not limited thereto.
  • FIG. 3a shows that the antenna device 2 is connected to the low frequency switching network 20, but the fixed end of the single pole three throw switch 200 is connected to the second movable end, that is, the standing wave ratio of the antenna device 20 when the first ground terminal 21 is directly connected.
  • FIG. 3b shows a schematic diagram of the standing wave ratio when the fixed end of the single-pole three-throw switch 200 is connected to the first movable end. Since there are two low-frequency matching devices at this time, respectively, the inductor 201 and the inductor 202, Therefore, there are also two first active ends, which are electrically connected to the inductors. Specifically, as can be seen from FIG.
  • the low-frequency mode of the antenna device 2 may migrate due to
  • the two inductors have different values, so their migration to lower frequencies is also different (generally designed to cover at least the LTE 700 band to the LTE B8 band); the four high-frequency modes of the antenna device 2 are not influences.
  • the connection of the low frequency mode coverage frequency of the antenna device 2 can be implemented by connecting the low frequency switching network 20, and the antenna is suitable for a carrier aggregation (CA) scenario.
  • CA carrier aggregation
  • the four high-frequency modes covered by the antenna device 2 can be interchanged.
  • the first frequency band can be changed from 698 MHz to 960 MHz to cover 880 MHz to 960 MHz, and the first frequency and the second frequency are 880 and 960, respectively, and the first, third and fourth frequencies are respectively
  • the high-frequency mode can be combined to cover a wide bandwidth, which can be, for example, 1710MHz to 2690MHz.
  • the second high-frequency mode can cover a preset frequency band, which can be used to support the Global Position System (Global Position System).
  • the antenna device 1 or the antenna device 2 described in the present invention operates, that is, the low frequency mode and the first to fourth high frequency modes are in the numerical axis direction, the five frequency bands are sequentially covered from small to large, such as As shown in FIG. 3a and FIG.
  • the first five to fifth frequency ranges are arranged from small to large, and sequentially correspond to five modes, that is, the low frequency mode corresponds to the first frequency band, and the first to fourth high frequency modes are sequentially Corresponding to the second to fifth frequency bands.
  • the five frequency bands at this time are still arranged in order from small to large, but do not necessarily correspond to the five modes in turn.
  • the frequency bands corresponding to the four high frequency modes are not fixed, in FIG. 3a, the second frequency band corresponds to the first high frequency mode, and in FIG. 3e, the second frequency band corresponds to the second high frequency mode.
  • FIGS. 4a to 4e are schematic diagrams showing current mode resonances in the five operating modes of the antenna device 2, wherein FIGS. 4a to 4e sequentially correspond to the above five modes, wherein the black dotted arrows indicate five resonance modes.
  • the black solid dots represent the maximum point of the electric field strength
  • the hollow dots represent the maximum point of the current.
  • FIG. 4e is similar to that of FIG. 4a, and details are not described herein. It should be noted that the current maximum point or the electric field intensity maximum point shown in FIG. 4a to FIG. 4e are only schematic and are not limited thereto. It should be noted that FIG. 4a to FIG. 4e are resonant mode diagrams shown in a schematic diagram of a partial structure of the terminal.
  • the antenna body 10 in the antenna device 2 is a metal casing of the terminal, wherein the opening is a USB port, wherein the opening is a USB port, wherein
  • the black twilled portion represents the gap formed between the antenna body 10 and the metal casing of the terminal, and the black solid portion in the black twill represents the RF switch of the antenna.
  • the structure of the specific terminal and the configuration of the gap will be described in detail in the following embodiments.
  • the current trend pair shown in Figure 4a Should be a quarter-wave resonance of the low-frequency mode, which can cover 698MHz ⁇ 960MHz; the current direction shown in Figure 4b corresponds to a half-wave resonance, the center frequency of the coverage band is 1.85 gigahertz (GHz); Figure 4c The current direction shown corresponds to three-quarters of the wavelength resonance, and the center frequency of the coverage band is 2.2 GHz; the current direction shown in Figure 4d corresponds to a single-wavelength resonance, and the center frequency of the coverage band is 2.5 GHz; the current shown in Figure 4e It goes to the corresponding three-quarter wavelength resonance, and its center frequency of the coverage band is 3.3 GHz.
  • GHz gigahertz
  • the antenna device 2 in FIG. 2 is only described by taking two inductors as an example. It can be seen that in practice, if it is required to cover more different frequency bands in the low frequency mode, the single-pole three-throw switch can be used. The first active end of 200 can be connected to more inductors.
  • the metal casing of the terminal can be used as its antenna body, that is, the shape of the antenna body is matched with the metal casing, and such an arrangement generally requires only a clearance area of less than 3 mm.
  • An antenna device includes: an antenna body and at least one stub, and the antenna body is provided with a feeding terminal; one end of the stub is electrically connected to the feeding terminal and the first open end of the antenna body At the connection point, the other end of the stub is an open end; the length of the antenna body between the connection point and the feed terminal is one-half of the wavelength corresponding to a set operating frequency of the antenna device, and the stub is short. The length is one quarter of the wavelength corresponding to the set operating frequency.
  • the antenna device can fully utilize the shape design of the terminal during use, and only needs to occupy a small clear space while ensuring performance, that is, achieve a high screen ratio of the whole machine.
  • FIG. 5 is a schematic diagram of a terminal according to Embodiment 3 of the present invention. As shown in FIG. 5, the terminal 3 includes a printed circuit board 40 and an antenna device 41.
  • the printed circuit board 40 is provided with a feeding device 400, and the antenna device 41 may be any one of the antenna devices described in the first embodiment and the second embodiment.
  • the antenna device 41 as an example of the antenna device 1 in the first embodiment, the feed terminal 12 in the antenna device 41 is electrically connected to the power feeding device 400.
  • the antenna device 41 is taken as the antenna device 2 in the second embodiment. Since the antenna device includes the first grounding terminal, the printed circuit board 40 is further provided with a grounding end. The grounding terminal is electrically connected to the first grounding terminal. If the antenna device further includes a second grounding terminal, the grounding terminal is also electrically connected to the second grounding terminal, which is not illustrated or described herein.
  • the terminal provided by the embodiment of the invention includes: a printed circuit board and an antenna device, wherein the feeding circuit device is provided with a feeding device; and the feeding terminal of the antenna device is electrically connected to the feeding device.
  • the antenna is installed
  • the device may include an antenna body and at least one stub, and the antenna body is provided with a feeding terminal; one end of the stub is electrically connected to a connection point between the feeding terminal and the first open end of the antenna body, short The other end of the cut line is an open end; the length of the antenna body between the connection point and the feed terminal is one-half of the wavelength corresponding to the set operating frequency of the antenna device, and the length of the stub is the wavelength corresponding to the set operating frequency.
  • the antenna device can fully utilize the shape design of the terminal when using, and only needs to occupy a small clear space while ensuring performance.
  • FIG. 6 is a schematic diagram of a terminal according to Embodiment 4 of the present invention. As shown in FIG. 6, the terminal 4 includes a printed circuit board 50, a grounded metal casing 51, and an antenna device 52.
  • the printed circuit board 50 is located inside the grounded metal casing 51.
  • the printed circuit board 50 is provided with a feeding device 500.
  • the printed circuit board 50 is electrically connected to the grounded metal casing 51, that is, the printed circuit board 50 is connected to the grounded metal casing 51. And grounded (the connection relationship is not shown in the figure).
  • the grounded metal casing 51 has a hollow structure.
  • the antenna device 52 may be any of the antenna devices as described in the first embodiment and the second embodiment. Taking the antenna device 52 as an example of the antenna device 1 in the first embodiment, the feeding terminal 12 in the antenna device 52 is electrically connected to the feeding device 500, and the antenna device 10 in the antenna device 52 is formed between the antenna body 10 and the grounded metal casing 51. The gap 53, where the gap 53 is not shown, will be shown later in the other figures.
  • the antenna device 52 is taken as an example of the antenna device in the second embodiment. Since the antenna device includes the first ground terminal, the printed circuit board 50 is further provided with a ground terminal, the ground terminal and the first ground terminal. Electrical connection. If the antenna device further includes a second grounding terminal, the grounding terminal is also electrically connected to the second grounding terminal, and is not illustrated or described herein.
  • Fig. 7a is a front view of the terminal 4.
  • the front side of the terminal 4 includes a display screen 54, a plastic portion 55, a grounded metal casing 51, and a region G0.
  • the width of the region G0 is as shown in Fig. 7a. Shown as L.
  • the display screen 54 may be a liquid crystal display, a touch screen or the like; the plastic portion 55 is located at one side of the display screen 54, and the area G0 is located at the other side of the display screen 54.
  • an antenna setting area an area enclosed by a broken line
  • the antenna device 52 and the clearance area G1 required to set the antenna are included in the antenna setting area.
  • the material of the region G1 on the front side of the terminal may be plastic, and the region other than G1 in the region G0 may be made of a non-plastic material such as metal.
  • the front view of the terminal shown in Figures 7b, 7c, 8a-8g can be referred to Figure 7a.
  • the terminal includes two sets of antenna devices 52, and one set of antenna devices 52 is disposed in FIG. 7a.
  • the area G1 is shown, and another set of antenna means 52 is provided in the plastic portion 55 shown in Fig. 7a. That is, two sets of antenna devices 52 are symmetrically arranged in the terminal, and the two sets of antenna devices 52 can also be alternately operated by switching circuits additionally provided by the terminals.
  • Figure 7b shows a rear view of the terminal 4, including the grounded metal casing 51 and the clearance area G1.
  • the antenna body 10 and the grounded metal casing 51 form a gap 53 therebetween, they can pass electromagnetic waves through the gap 53. Radiation is exited, optionally, non-conducting materials such as plastics may be filled in the gap 53 by embedding, filling or injection molding.
  • the antenna device 52 is located in the dotted frame area shown in the back view of FIG. 7b, and the width of the back clearance G1 of the clearance area is usually less than 3 mm, and the width of the side gap G2 is generally 1.5 mm to 2.0 mm. between.
  • the terminal of the embodiment of the present invention has a G1 of less than 3 mm, and only needs to ensure a high screen ratio while only requiring a high screen ratio. Take up less net space.
  • a high dielectric constant can be filled in the gap 53 to extend the low frequency bandwidth to an ultra low frequency, such as to the frequency band of the LTE 700, thereby providing more broadband coverage.
  • the material in the gap 53 may be made of a plastic material, which may be transparent or opaque, or may be coated with different colors or patterns thereon. Achieve aesthetic and decorative effects.
  • the gap 53 may be U-shaped (as shown in FIG. 7b, FIG. 8a, FIG. 8f, FIG. 8g), or may be linear (as shown in FIG. 7c, FIG. 8b, 8c, 8d, 8e), the gap 53 may extend from the back of the terminal through the terminal side to the front of the terminal (as shown in Fig. 8b, Fig. 8d, Fig. 8g), and the gap 53 may also pass through the terminal from the back of the terminal.
  • the bottom edge extends toward the front of the terminal (as shown in Fig. 8c, Fig. 8e, Fig. 8f), or the gap 53 extends from the back of the terminal through the side edge and the bottom edge to the front of the terminal (Fig. 8a),
  • the specific shape of the gap 53 is limited, and the shape of the gap 53 shown in the drawings of the present invention is also merely an example.
  • FIG. 8a to FIG. 8g only the design of the terminal gap portion is shown, which is not an overall schematic diagram of the terminal.
  • the shape of the antenna device may refer to other drawings, wherein the opening may be a USB port, and the diagonal stripe indicates For the gap 53.
  • the terminal provided by the embodiment of the invention comprises: a printed circuit board, a grounded metal casing and an antenna device.
  • the antenna device may include an antenna body and at least one stub, and the antenna body is provided with a feeding terminal; one end of the stub is electrically connected between the feeding terminal and the first open end of the antenna body. At the connection point, the other end of the stub is an open end; the length of the antenna body between the connection point and the feed terminal is one-half of the wavelength corresponding to a set operating frequency of the antenna device, and the length of the stub is The set operating frequency corresponds to a quarter of the wavelength.
  • the antenna device can fully utilize the shape design of the terminal when using, and only needs to occupy a small clear space while ensuring performance.

Abstract

本发明提供一种天线装置和终端,包括:天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端电连接至馈电端子与天线体的第一开路端之间的连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为一设定工作频率对应波长的二分之一,短截线的长度为该设定工作频率对应波长的四分之一。

Description

天线装置和终端 技术领域
本发明涉及通信技术,尤其涉及一种天线装置和终端。
背景技术
随着通信技术的不断发展,手持移动终端也在不断改进。从功能上来说,终端需同时支持多种制式以适应通信网络的不断演进,而从外形上来看,现今移动终端为追求外观的时尚感,通常都具备高屏占比,并且普遍采用金属外观设计(Industrial Design,简称ID)。
现有的终端天线设计方案通常采用单极天线(Monopole Antenna)或是平面倒置F型天线(Planar Inverted F Antenna,简称PIFA)等。然而,由于金属的屏蔽作用,为了保证终端天线的辐射性能,现有的终端天线通常体积较大,需要占用较大的净空间。
发明内容
本发明实施例提供一种天线装置和终端,用以解决现有技术中的终端天线需要占用较大的净空间的问题。
本发明的第一方面,提供一种天线装置,包括:天线体和至少一根短截线,所述天线体上设置有馈电端子;
所述短截线的一端,电连接至所述馈电端子与所述天线体的第一开路端之间的连接点上,所述短截线的另一端为开路端;
所述连接点与所述馈电端子之间的天线体长度为所述天线装置的一设定工作频率对应波长的二分之一,所述短截线的长度为所述设定工作频率对应波长的四分之一。
在第一方面一种可能的实现方式中,所述设定工作频率对应的四分之三波长与该天线装置馈电端子到短截线开路端间天线体长度可比拟。
在第一方面一种可能的实现方式中,所述天线装置还包括:低频切换网络和第一接地端子;
所述低频切换网络的一端电连接于所述馈电端子与所述连接点之间,所述低频切换网络的另一端与所述第一接地端子电连接。
在第一方面一种可能的实现方式中,所述天线装置还包括:第二接地端子;
所述第二接地端子设置于所述馈电端子与所述天线体的第二开路端之间。
在第一方面一种可能的实现方式中,所述低频切换网络包括:单刀多掷开关和低频匹配器件;
所述单刀多掷开关的固定端连接于所述馈电端子与所述连接点之间;
所述低频匹配器件电连接于所述单刀多掷开关的第一活动端与所述第一接地端子之间,所述单刀多掷开关的第二活动端与所述第一接地端子电连接。
在第一方面一种可能的实现方式中,所述低频匹配器件为电感或电容。
在第一方面一种可能的实现方式中,所述天线装置工作于第一频段、第二频段、第三频段、第四频段和第五频段;
所述第一频段介于698MHz和960MHz之间;
所述第二频段、所述第三频段、所述第四频段以及所述第五频段介于1710MHz和3600MHz之间。
在第一方面一种可能的实现方式中,所述第二频段、所述第三频段、所述第四频段以及所述第五频段介于1710MHz和2690MHz之间。
在第一方面一种可能的实现方式中,所述天线装置工作于第一频段、第二频段、第三频段、第四频段和第五频段;
所述第一频段介于698MHz和960MHz之间;
所述第二频段为预设频段,所述预设频段为1427MHz~1495MHz或1448MHz~1511MHz,或者,所述预设频段用于支持GPS或GNSS;
所述第三频段、所述第四频段以及所述第五频段介于1710MHz和2690MHz之间。
在第一方面一种可能的实现方式中,所述第一频段介于880MHz和960MHz之间。
本发明的第二方面,提供一种终端,包括:印刷电路板和如第一方面所述的天线装置,所述印刷电路板上设置有馈电装置;所述天线装置中所述馈 电端子与所述馈电装置电连接。
本发明的第三方面,提供一种终端,包括:印刷电路板、金属外壳以及如第一方面所述的天线装置;
所述印刷电路板位于所述接地金属外壳内部,所述印刷电路板与所述接地金属外壳电连接,所述印刷电路板上设置有馈电装置;
所述接地金属外壳为中空结构;
所述天线装置中所述天线体与所述接地金属外壳之间相对形成间隙,所述天线装置中所述馈电端子与所述馈电装置电连接。
在第三方面一种可能的实现方式中,在所述终端背部的所述间隙呈U型。
在第三方面一种可能的实现方式中,所述间隙宽度小于或等于3毫米。
本发明实施例提供的天线装置,包括:天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端,电连接至馈电端子与天线体的第一开路端之间的连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为天线装置的一设定工作频率对应波长的二分之一,短截线的长度为该设定工作频率对应波长的四分之一。与现有的终端天线相比,在应用该天线装置时,可以用终端的金属外壳作为其天线体,即天线体的形状与金属外壳相匹配,这样的设置方式通常只需小于3毫米的净空区域即可,因此,该天线装置在使用时可以充分利用终端的外形设计,在保证性能的同时,只需占用较小的净空间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一种天线装置的结构示意图;
图2为本发明实施例二提供的一种天线装置的结构示意图;
图3a为本发明实施例二提供的一种天线装置的驻波比示意图;
图3b为本发明实施例二提供的一种天线装置的驻波比示意图;
图3c为本发明实施例二提供的一种天线装置的驻波比示意图;
图3d为本发明实施例二提供的一种天线装置的驻波比示意图;
图3e为本发明实施例二提供的一种天线装置的驻波比示意图;
图4a为本发明实施例二提供的一种天线装置的电流模式示意图;
图4b为本发明实施例二提供的一种天线装置的电流模式示意图;
图4c为本发明实施例二提供的一种天线装置的电流模式示意图;
图4d为本发明实施例二提供的一种天线装置的电流模式示意图;
图4e为本发明实施例二提供的一种天线装置的电流模式示意图;
图5为本发明实施例三提供的一种终端的结构示意图;
图6为本发明实施例四提供的一种终端的结构示意图;
图7a为本发明实施例四提供的一种终端的正视图;
图7b为本发明实施例四提供的一种终端的背视图;
图7c为本发明实施例四提供的另一种终端的背视图;
图8a为本发明实施例四提供的一种终端的局部示意图;
图8b为本发明实施例四提供的另一种终端的局部示意图;
图8c为本发明实施例四提供的另一种终端的局部示意图;
图8d为本发明实施例四提供的另一种终端的局部示意图;
图8e为本发明实施例四提供的另一种终端的局部示意图;
图8f为本发明实施例四提供的另一种终端的局部示意图;
图8g为本发明实施例四提供的另一种终端的局部示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供的天线装置可以用在终端中,所述终端可以是便携式终端或其他合适的通信终端。例如,膝上型计算机、平板电脑、诸如腕表设备、手环设备、或其他可佩带的设备之类的有点小的设备或微型设备、蜂窝 电话,或媒体播放器,机顶盒、台式计算机、计算机被集成到其中的计算机监视器、或其他合适的终端。
终端可以具有安装在外壳中的显示器。显示器可以是结合了电容性接触式电极或可能对触摸不敏感的触摸屏。显示器可以包括由发光二极管、有机发光二极管、等离子单元、电润湿像素、电泳像素、液晶显示器组件、或其他合适的图像像素结构构成的图像像素。防护玻璃层可以覆盖显示器的表面。防护玻璃可以具有诸如用于容纳按钮的开口之类的一个或多个开口。
外壳可以由塑料、玻璃、陶瓷、纤维合成物、金属(例如,不锈钢、铝等),其他合适的材料或这些材料的组合构成。在某些情况下,外壳或其某些部分可以由电介质或其他低导电性材料构成。在其他情况下,外壳或构成外壳的至少某些结构可以由金属元件构成。
理论上,终端可以被用来支持任何相关的通信频带。终端可以包括一个或多个天线装置。例如,终端可以包括用于支持局域网通信、声音和数据蜂窝电话通信、全球定位系统通信或其他卫星导航系统通信、蓝牙通信等。
图1为本发明实施例一提供的一种天线装置的结构示意图。如图1所示,该天线装置1包括:天线体10和短截线11,天线体10上设置有馈电端子12。
具体的,短截线11的一端,电连接至馈电端子12与天线体10的第一开路端100之间的连接点A上,短截线11的另一端为开路端。
其中,馈电端子12用于与天线装置1所在的终端中馈电电路的馈点(Feed)电连接,这里的终端可以是移动设备、用户终端以及无线通信设备等;该馈电电路用于为天线装置1提供输入信号,其具体可以用于将终端发射机生成的发射信号处理后提供给天线装置1,或在天线装置1接收信号之后,将接收信号处理后传送至终端的接收机中。
为了保证天线装置1可以覆盖足够多的频段,该天线装置1对上述短截线11的位置和长度是有限定的。
从位置上来说,连接点A与馈电端子12之间的天线体10的长度是天线装置1的一设定工作频率对应波长的二分之一;从长度上来说,短截线11的长度是上述设定工作频率对应波长的四分之一。
下面结合图1,详细说明天线装置1的工作原理。基于该天线装置1的具体结构,该天线装置1可以工作在五种工作模式,包括一个低频模式以及 四个高频模式。具体的,根据电磁波原理可知,当电磁波的波长与天线的长度相比拟时,即可实现谐振,因此可以根据该天线装置1的工作频率设置天线体10以及短截线11的长度,以实现上述五种模式的谐振。例如,可以设置馈电端子12到天线体10的第一开路端100之间的天线体10的长度,大于从馈电端子12到天线体10的第二开路端101之间的天线体10的长度,从而将馈电端子12到天线体10的第一开路端100之间的天线体10作为该天线装置1的第一分支,用于辐射低频信号,另外,由于该天线装置1上还设置了短截线11,因此,从馈电端子12到短截线11的开路端之间,可以构成该天线装置1的第二分支,用于辐射高频信号,并且,馈电端子12到天线体10的第二开路端101之间的天线体10作为该天线装置1的第三分支,可以配合第一分支及第二分支辐射高频信号。需要说明的是,这里的低频信号与高频信号只是相对而言,并不特指某个频段的信号。
上述第一分支可以产生一四分之一波长谐振,此谐振为该天线装置1工作的低频模式,代表其可以覆盖第一频段,即馈电端子12到第一开路端100之间的天线体10长度为第一频段中一设定工作频率对应波长的四分之一;对于天线体10来说,其第一开路端100到第二开路端101之间也可以产生一个半波长谐振,即二分之一波长谐振,此谐振为该天线装置1工作的第一高频模式,代表其可以覆盖第二频段,即从第一开路端100到第二开路端101之间的天线体10的长度为该第二频段中一设定工作频率对应波长的二分之一;上述第二分支也可以产生一四分之三波长谐振,此谐振为该天线装置1工作的第二高频模式,代表其可以覆盖第三频段,馈电端子12到连接点A之间的天线体10长度加上短截线11的长度为第三频段中一设定工作频率对应波长的四分之三;另外,上述第三分支可以产生一单波长谐振,此谐振为该天线装置1工作的第三高频模式,即代表其可以覆盖第四频段,即馈电端子12到第一开路端101之间的天线体10长度为第四频段中一设定工作频率对应波长的四分之一;此外,从馈电端子12到第一开路端100之间,除了可以产生上述两个模式的谐振,还可以再产生一四分之三波长谐振,此谐振为该天线装置1工作的第四高频模式,即代表其可以覆盖第五频段,馈电端子12到第一开路端100之间的天线体10长度第五频段中一设定工作频率对应波长的四分之一。
根据上述描述可知,馈电端子12到连接点A之间的天线体10长度加上短截线11的长度为第三频段中一设定工作频率对应波长的四分之三,实际产生覆盖第三频段的谐振的辐射体是馈电端子12到连接点A之间的天线体10和短截线11两部分组成的,那么,其中,短截线11的长度是第三频段中一设定工作频率对应波长的四分之一,馈电端子12到连接点A之间的天线体10的长度是第三频段中一设定工作频率对应波长的二分之一。
需要说明的是,上述天线装置1可以覆盖五个频段,在各频段中的设定工作频率可以根据实际需要选择,例如,可以在各频段中选择较低的一个频率点,作为上述设定工作频率。
另外,在实际中,可以通过调整天线体10和短截线11的长度,以及馈电端子12和连接点A在天线体10上的位置,从而实现不同的频段覆盖。
此外,还需要说明的是,本实施例仅以一根短截线11为例,但并不以此为限定。事实上,可以通过调整短截线11的数量以及具体位置长度等,从而实现不同数量的频段覆盖。具体地,在设置多根短截线时,通常可以根据天线体10上的电流分布,将其设置在电流较大处,从而产生更多谐振,以覆盖更多频段。例如,由于信号是由馈电端子12处输出或输入的,因此馈电端子12处的电流最大,故可以在离馈电端子12较近的位置设置多根短截线。另外,在实际中,短截线11的材质与现有技术中制作天线的材质相同,如镀铜、合金等。
值得注意的是,图1中所示的天线装置1的形状只为示例,但并不以此为限定。在应用该天线装置时,可以用终端的金属外壳作为其天线体,即天线体的形状与金属外壳相匹配,这样的设置方式能够减小终端天线所需的净空间,通常只需小于3毫米的净空区域即可。
本发明实施例提供的天线装置,包括:天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端,电连接至馈电端子与天线体的第一开路端之间的连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为天线装置的一设定工作频率所对应波长的二分之一,短截线的长度为该设定工作频率对应波长的四分之一。与现有的终端天线相比,该天线装置在使用时可以充分利用终端的外形设计,在保证性能的同时,只需占用较小的净空间。
图2为本发明实施例二提供的一种天线装置的结构示意图。如图2所示,该天线装置2包括:天线体10和至少一根短截线11,天线体10上设置有馈电端子12。其中,短截线11的连接方式以及长度限定均与实施例一相同,此处不再赘述。
此外,天线装置2还包括低频切换网络20(图2中的虚框,仅用于指示所述虚框内的器件、单元和线路组成低频切换网络20,虚线本身无实际含义)和第一接地端子21。其中,低频切换网络20的一端电连接于馈电端子12与连接点A之间,低频切换网络20的另一端与第一接地端子21电连接。
如实施例一,该天线装置2也可以工作于五个模式,其中包括一个可调低频模式和四个高频模式。由于该低频切换网络20是连接于馈电端子12与第一开路端100之间的第一分支上,而该第一分支对应于天线装置2的低频工作模式,故可以通过设置低频切换网络20的内部结构,使其匹配该天线装置2的低频模式,从而调整天线装置2覆盖的第一频段的具体位置,实现低频模式谐振可调。可选的,如图2所示,该低频切换网络20可以由单刀多掷开关和低频匹配器件组成。其中,单刀多掷开关用于切换,使得天线体10与第一接地端子21直接连通或是通过低频匹配器件间接连通,具体是在直接接通第一接地端子21时,使得天线装置2覆盖如实施例一所述的第一频段,而在接通低频匹配器件时,使得上述第一频段向更高频率或更低频率迁移。
可选的,如图2所示,上述低频切换网络20可以包括单刀三掷开关200和两个低频匹配器件,即电感201和电感202。其中,单刀三掷开关200的固定端连接于馈电端子12与连接点A之间;电感201电连接于单刀三掷开关200的一个第一活动端与第一接地端子21之间,而电感202电连接于单刀三掷开关200的另一个第一活动端与第一接地端子21之间,单刀三掷开关200的第二活动端与第一接地端子21电连接。这里的第一活动端指的是与低频匹配器件连接的活动端,其数量与低频匹配器件的个数相匹配,而第二活动端则是与第一接地端子21连接的活动端。由于电感相当于增加了天线的走线长度,故添加电感即相当于改变了天线的长度,从而实现对天线装置2覆盖的第一频段的调节。需要说明的是,此处以两个电感,即电感201和电感202为例,故该单刀三掷开关200为三掷的。在实际应用时,还可以设置更多的低频匹配器件,并配置匹配的单刀多掷开关,此处并不限定。此外,还 需要说明的是,上述电感201及电感202也可以换成电容,比如两者都是电容或者其中一个是电感,另一个是电容,此处均不限定。
可选的,该天线装置2还可以包括一第二接地端子22,第二接地端子22设置于馈电端子12与天线体10的第二开路端101之间,其作用相当于一并联分布式电感接地,可对于天线装置2实现近似并联电感下地匹配效果,通过该手段也能实现谐振频率微调的效果。此外,在具体实现时,若不通过上述第二接地端子22实现分布式电感,另一种方式是可以在与馈电端子12连接的馈线上并联一集中电感,同样可以达到上述效果。
另外,如实施例一的描述,该天线装置2工作于五个模式,即覆盖五个频段,分别为第一频段、第二频段、第三频段、第四频段和第五频段,上述第一频段对应于天线装置2工作的低频模式,其余四个频段对应高频模式。其中,第一频段包括第一频率和第二频率,第二频段包括第三频率和第四频率,第三频段包括第五频率和第六频率,第四频段包括第七频率和第八频率,第五频段包括第九频率和第十频率。
下面结合图3a详细说明上述天线装置2的工作原理。图3a为该天线装置2的驻波比示意图,其中,横轴表示频率,单位为兆赫兹(MHz),纵轴表示电压驻波比(Voltage Standing Wave Ratio,简称VSWR),电压驻波比也可以简称为驻波比(SWR)。驻波比表示驻波波腹电压与波谷电压幅度之比,又称为驻波系数。其具体为一个数值,当驻波比等于1时,表示馈电线路的阻抗和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;当驻波比为2时,表示约有10%的能量损耗,90%的能量被天线辐射出去;而当驻波比为无穷大时,则表示全反射,能量完全没有辐射出去。图3a中从左至右依次示出了天线装置2的五个模式,即实施例一中描述的五个谐振模态。其中,低频模式对应的第一频段,其可以覆盖频率范围约在698MHz~960MHz,此时上述第一频率和第二频率即分别为698MHz和960MHz;第一至第四高频模式可以组合覆盖宽带宽,例如1710MHz~3600MHz。具体的,第一高频模式和第二高频模式可以组合谐振覆盖宽带宽,例如控制其覆盖频率1710MHz~2170MHz,此时上述第三频率即为1710MHz,第六频率即为2170MHz,而第四频率和第五频率则分别可以为1990MHz和2050MHz;第三高频模式可以控制其覆盖2050MHz~2500MHz 之间的频段,而第四高频模式则通常会控制其覆盖频率2500MHz~2690MHz,从而支持频分双工(Frequency Division Duplexing,简称FDD)和时分双工(Time Division Duplexing,简称TDD)频段,此时上述第九频率和第十频率即分别为2500MHz和2690MHz。
当然,根据实际需求,上述天线装置2所覆盖的频段可以变换。例如,第一频段可以由698MHz~960MHz变化至覆盖880MHz~960MHz,此时上述第一频率和第二频率即分别为880MHz和960MHz;第一至第四高频模式则可以组合覆盖宽带宽,例如覆盖1710MHz~2690MHz,或者,也可以向更高频带扩展,例如覆盖1710MHz~3600MHz。此外,上述第一至第四高频模式的位置可以变换,并不以图3a所示的顺序为限定,具体如图3c和图3d所示,此处不再赘述。
需要说明的是,因天线装置2覆盖的五个频段的具体数值可以通过调整天线体10和短截线11的长度,以及馈电端子12和连接点A的位置等具体调整,故在图3a中,仅在横轴上标识了五个模式,但并未在横轴中标出每个模式覆盖频率的具体数值。此外,上述频率点的具体数值只为举例,但并不以此为限定。
此外,图3a示出了天线装置2连接低频切换网络20,但单刀三掷开关200的固定端与第二活动端接通,即直接连接第一接地端子21时,天线装置20的驻波比示意图,当然,实施例一的天线装置1的驻波比示意图也与之类似。而在图3b则示出了当单刀三掷开关200的固定端与第一活动端接通时的驻波比示意图,由于此时的低频匹配器件有两个,分别为电感201和电感202,故上述第一活动端也有两个,分别与这些电感电连接。具体的,从图3b中可以看出,当电感201和电感202分别接通于单刀三掷开关200的固定端与第一接地端子21之间时,天线装置2的低频模式会发生迁移,由于这两个电感的数值不同,因而其向更低频率的迁移量也不同(一般会设计至少能覆盖从LTE 700频带到LTE B8频带);而天线装置2的四个高频模式则并未受到影响。由此可以看出,通过连接该低频切换网络20,可以实现对天线装置2的低频模式覆盖频率的调节,这种天线适用于载波聚合(Carrier Aggregation,简称CA)场景。此外,与图3a相比,天线装置2覆盖的四种高频模式可以互换,具体请参照图3e所示,仍以前面列举的频段覆盖为例,此时的低频模 式对应覆盖第一频段,而该第一频段可以由698MHz~960MHz变化至覆盖880MHz~960MHz,此时上述第一频率和第二频率即分别为880和960,而第一、第三和第四高频模式则可以组合覆盖宽带宽,一般例如可以是1710MHz~2690MHz,此时的第二高频模式可以覆盖一预设频段,该预设频段可以用来支持全球定位系统(Global Position System,简称GPS)或全球导航卫星系统(Global Navigation Satellite System,简称GNSS),又或者是为LTE频带(Band)11,即为运营商,如日本的KDDI或SKB定制的1427MHz~1495MHz频段,或LTE Band 21,即1448MHz~1511MHz。需要说明的是,当前文所述的天线装置1或天线装置2工作的五个模式,即低频模式以及第一至第四高频模式沿数轴方向,依次从小到大覆盖五个频段时,如图3a和图3b所示,上述第一至第五这五个频段范围从小到大排列,并与五个模式依次对应,即低频模式对应第一频段,第一至第四高频模式分别依次对应第二至第五频段。当如图3c~图3e所示,此时的五个频段依然按照从小到大的顺序排列,但并不一定与五种模式依次对应。比如,因四个高频模式对应的频段位置不定,故在图3a中,第二频段对应第一高频模式,而在图3e中,第二频段则对应第二高频模式。
图4a~图4e示出了上述天线装置2的五个工作模式下的电流模式谐振示意图,其中,图4a~图4e依次对应了上述的五种模式,其中的黑色虚线箭头表示五种谐振模式下的电流走向,黑色实心圆点均表示电场强度最大点,而空心圆点均表示电流最大点。以图4a为例,电流从连接于Feed的馈电端子12处(即图4a中的空心圆点处),流至第一开路端100(即图4a中的黑色实心圆点处,终端左侧边框的间隙处),从而形成低频模式的四分之一波长谐振。图4b~图4e的原理与图4a类似,此处不做赘述。需要说明的是,图4a~图4e示出的电流最大点或电场强度最大点均仅为示意,并不以此为限定。需要说明的是,图4a~图4e是在终端局部结构示意图上示出的谐振模式图,此时该天线装置2中的天线体10即为终端的金属外壳,其中的开口为USB口,其中黑色斜纹的部分表示天线体10与终端的金属外壳之间相对形成的间隙,黑色斜纹中的黑色实心部分表示天线的射频开关。具体终端的结构以及间隙的构成会在后面的实施例详细描述。
结合前文描述的谐振模式以及相应的覆盖频段,图4a所示的电流走向对 应低频模式的四分之一波长谐振,其可以覆盖698MHz~960MHz;图4b所示的电流走向对应二分之一波长谐振,其覆盖频段的中心频率为1.85千兆赫(GHz);图4c所示的电流走向对应四分之三波长谐振,其覆盖频段的中心频率为2.2GHz;图4d所示的电流走向对应单波长谐振,其覆盖频段的中心频率为2.5GHz;图4e所示的电流走向对应四分之三波长谐振,其覆盖频段的中心频率为3.3GHz。
需要说明的是,图2中的天线装置2仅以两个电感为例进行说明,可以看出,在实际中,若是需要其在低频模式覆盖更多不同频段时,则可以在单刀三掷开关200的第一活动端连接更多电感即可实现。
在应用该天线装置时,可以用终端的金属外壳作为其天线体,即天线体的形状与金属外壳相匹配,这样的设置方式通常只需小于3毫米的净空区域即可。
本发明实施例提供的天线装置,包括:天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端,电连接至馈电端子与天线体的第一开路端之间的连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为天线装置的一设定工作频率所对应波长的二分之一,短截线的长度为该设定工作频率对应波长的四分之一。与现有的终端天线相比,该天线装置在使用时可以充分利用终端的外形设计,在保证性能的同时,只需占用较小的净空间,即实现整机高屏占比。
图5为本发明实施例三提供的一种终端。如图5所示,该终端3包括:印刷电路板40和天线装置41。
具体的,印刷电路板40上设置有馈电装置400,天线装置41可以是如实施例一和实施例二中描述的任一种天线装置。以天线装置41为实施例一中的天线装置1为例,该天线装置41中的馈电端子12与馈电装置400电连接。
当然,以天线装置41为实施例二中的天线装置2为例,由于天线装置包括第一接地端子,故此时印刷电路板40上还设置有接地端,该接地端与第一接地端子电连接,若天线装置还包括第二接地端子,那么该接地端也与第二接地端子电连接,此处不再绘示和赘述。
本发明实施例提供的终端,包括:印刷电路板和天线装置,印刷电路板上设置有馈电装置;天线装置中馈电端子与馈电装置电连接。其中,天线装 置可以包括天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端,电连接至馈电端子与天线体的第一开路端之间的连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为天线装置的设定工作频率所对应波长的二分之一,短截线的长度为设定工作频率对应波长的四分之一。与现有的终端相比,该天线装置在使用时可以充分利用终端的外形设计,在保证性能的同时,只需占用较小的净空间。
图6为本发明实施例四提供的一种终端。如图6所示,该终端4包括:印刷电路板50、接地金属外壳51以及天线装置52。
具体的,印刷电路板50位于接地金属外壳51内部,印刷电路板50上设置有馈电装置500,印刷电路板50与接地金属外壳51电连接,即印制电路板50与接地金属外壳51连接并接地(图中未示出该连接关系)。
接地金属外壳51为中空结构。
天线装置52可以是如实施例一和实施例二中描述的任一种天线装置。以天线装置52为实施例一中的天线装置1为例,该天线装置52中的馈电端子12与馈电装置500电连接,该天线装置52中天线体10与接地金属外壳51之间形成间隙53,此处未示出间隙53,后面将在其他附图中示出。
需要说明的是,以天线装置52为实施例二中的天线装置为例,由于天线装置包括第一接地端子,故此时印刷电路板50上还设置有接地端,该接地端与第一接地端子电连接,若天线装置还包括第二接地端子,那么该接地端也与第二接地端子电连接,此处不再绘示和赘述。
图7a所示为终端4的正视图,由图可见,所述终端4的正面包括显示屏54、塑料部分55、接地金属外壳51,还有区域G0,所述区域G0的宽度如图7a所示为L。其中,所述显示屏54可以是液晶显示屏、触摸屏等;所述塑料部分55位于显示屏54的一侧,所述区域G0位于显示屏54的另一侧。在区域G0中,包括天线设置区域(虚线框出的区域)以及设置显示屏模块的区域。在天线设置区域中包括了天线装置52和设置天线所需的净空区域G1。所述区域G1在所述终端正面的材料可选为塑料,区域G0中G1以外的区域可以选用非塑料的材料,例如金属。图7b、7c、8a~8g所示终端的正视图均可以参考图7a。
进一步的,终端包括两组天线装置52,一组天线装置52设置在图7a所 示区域G1,另一组天线装置52设置在图7a所示塑料部分55。即,在终端内上下对称的设置两组天线装置52,这两组天线装置52还可以通过终端另外设置的切换电路交替工作。
图7b示出终端4的一种背视图,包括接地金属外壳51和净空区域G1,事实上,由于天线体10与接地金属外壳51之间相对形成间隙53,因而其可以让电磁波通过该间隙53辐射出去,可选的,可以在间隙53中以嵌入、填满或注塑成型的方式填充非导体材料如塑料等。此时,天线装置52即位于图7b的背视图所示的虚线框区域,其净空区域背面间隙G1的宽度通常是小于3毫米的,而其侧面间隙G2的宽度则一般在1.5毫米到2.0毫米之间。由于典型的显示模块通常是占用约5毫米的空间,所以L的总宽度小于8毫米,因此,采用本发明实施例的终端,其G1小于3毫米,在保证高屏占比的同时,只需占用较小的净空间。
可选的,可在该间隙53中填充高介电系数常数,从而将低频带宽拓展到超低频,例如覆盖到LTE 700的频带,从而提供更宽频的覆盖。此外,可选的,从材质上来说,间隙53中的填充物可以用塑料材质制成,该塑料材质可为透明或不透明的样态,亦可在其上涂装不同的颜色或图案,以达成美观及装饰的效果。
从形状上来说,从所述终端4的背部看,所述间隙53可以为U型(如图7b、图8a、图8f、图8g),也可以为直线型(如图7c、图8b、图8c、图8d、图8e),所述间隙53可以从终端背部通过终端侧边延伸到终端前部(如图8b,图8d,图8g),所述间隙53也可以从终端背部通过终端底边向终端前部延伸(如图8c,图8e,图8f),或者所述间隙53从终端背部既通过侧边也通过底边向终端前部延伸(如图8a),此处并不限制间隙53的具体形状,本发明附图中示出的间隙53的形状也仅为示例。
需要说明的是,图8a~图8g中仅示出了终端间隙部分的设计,并非终端的整体示意图,天线装置的形状可以参考其他附图,其中的开口可以为USB口,斜条纹所示即为间隙53。
本发明实施例提供的终端,包括:印刷电路板、接地金属外壳以及天线装置。其中,天线装置可以包括天线体和至少一根短截线,天线体上设置有馈电端子;短截线的一端,电连接至馈电端子与天线体的第一开路端之间的 连接点上,短截线的另一端为开路端;连接点与馈电端子之间的天线体长度为天线装置的一设定工作频率所对应波长的二分之一,短截线的长度为该设定工作频率对应波长的四分之一。与现有的终端相比,该天线装置在使用时可以充分利用终端的外形设计,在保证性能的同时,只需占用较小的净空间。
需要说明的是,除非特别说明,本发明的附图并非成比例绘制。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种天线装置,其特征在于,包括:天线体和至少一根短截线,所述天线体上设置有馈电端子;
    所述短截线的一端,电连接至所述馈电端子与所述天线体的第一开路端之间的连接点上,所述短截线的另一端为开路端;
    所述连接点与所述馈电端子之间的天线体长度为所述天线装置的一设定工作频率对应波长的二分之一,所述短截线的长度为所述设定工作频率对应波长的四分之一。
  2. 根据权利要求1所述的天线装置,其特征在于,还包括:低频切换网络和第一接地端子;
    所述低频切换网络的一端电连接于所述馈电端子与所述连接点之间,所述低频切换网络的另一端与所述第一接地端子电连接。
  3. 根据权利要求2所述的天线装置,其特征在于,所述低频切换网络包括:单刀多掷开关和低频匹配器件;
    所述单刀多掷开关的固定端连接于所述馈电端子与所述连接点之间;
    所述低频匹配器件电连接于所述单刀多掷开关的第一活动端与所述第一接地端子之间,所述单刀多掷开关的第二活动端与所述第一接地端子电连接。
  4. 根据权利要求3所述的天线装置,其特征在于,所述低频匹配器件包括电感或电容。
  5. 根据权利要求1-4任一项所述的天线装置,其特征在于,所述天线装置工作于第一频段、第二频段、第三频段、第四频段和第五频段;
    所述第一频段介于698MHz和960MHz之间;
    所述第二频段、所述第三频段、所述第四频段以及所述第五频段介于1710MHz和3600MHz之间。
  6. 根据权利要求5所述的天线装置,其特征在于,所述第二频段、所述第三频段、所述第四频段以及所述第五频段介于1710MHz和2690MHz之间。
  7. 根据权利要求1-4任一项所述的天线装置,其特征在于,所述天线装置工作于第一频段、第二频段、第三频段、第四频段和第五频段;
    所述第一频段介于698MHz和960MHz之间;
    所述第二频段为预设频段,所述预设频段为1427MHz~1495MHz或1448MHz~1511MHz,或者,所述预设频段用于支持全球定位系统或全球导航卫星系统;
    所述第三频段、所述第四频段以及所述第五频段介于1710MHz和2690MHz之间。
  8. 根据权利要求7所述的天线装置,其特征在于,所述第一频段介于880MHz和960MHz之间。
  9. 一种终端,其特征在于,包括:印刷电路板和如权利要求1-8任一项所述的天线装置,所述印刷电路板上设置有馈电装置;
    所述天线装置中所述馈电端子与所述馈电装置电连接。
  10. 一种终端,其特征在于,包括:印刷电路板、接地金属外壳以及如权利要求1-8任一项所述的天线装置;
    所述印刷电路板位于所述接地金属外壳内部,所述印刷电路板与所述接地金属外壳电连接,所述印刷电路板上设置有馈电装置;
    所述接地金属外壳为中空结构;
    所述天线装置中所述天线体与所述接地金属外壳之间相对形成间隙,所述天线装置中所述馈电端子与所述馈电装置电连接。
  11. 根据权利要求10所述的终端,其特征在于,在所述终端背部的所述间隙呈U型。
  12. 根据权利要求10或11所述的终端,其特征在于,所述间隙宽度小于或等于3毫米。
PCT/CN2015/100065 2015-12-31 2015-12-31 天线装置和终端 WO2017113270A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/067,500 US11264725B2 (en) 2015-12-31 2015-12-31 Antenna apparatus and terminal
PCT/CN2015/100065 WO2017113270A1 (zh) 2015-12-31 2015-12-31 天线装置和终端
CN201580081834.2A CN108140929B (zh) 2015-12-31 2015-12-31 天线装置和终端
EP15911898.3A EP3386030B1 (en) 2015-12-31 2015-12-31 Antenna apparatus and terminal
JP2018534653A JP6701351B2 (ja) 2015-12-31 2015-12-31 アンテナ装置及び端末

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/100065 WO2017113270A1 (zh) 2015-12-31 2015-12-31 天线装置和终端

Publications (1)

Publication Number Publication Date
WO2017113270A1 true WO2017113270A1 (zh) 2017-07-06

Family

ID=59224031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100065 WO2017113270A1 (zh) 2015-12-31 2015-12-31 天线装置和终端

Country Status (5)

Country Link
US (1) US11264725B2 (zh)
EP (1) EP3386030B1 (zh)
JP (1) JP6701351B2 (zh)
CN (1) CN108140929B (zh)
WO (1) WO2017113270A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709441B1 (en) * 2017-12-28 2023-11-01 Huawei Technologies Co., Ltd. Multi-frequency antenna and mobile terminal
CN109193129B (zh) * 2018-08-31 2021-04-27 北京小米移动软件有限公司 天线系统及终端
CN110011025B (zh) * 2018-12-29 2021-03-26 瑞声科技(新加坡)有限公司 一种天线系统及移动终端
CN112421211B (zh) * 2019-08-23 2022-01-14 华为技术有限公司 天线及电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1808768A (zh) * 2005-01-20 2006-07-26 索尼爱立信移动通信日本株式会社 天线装置和配置该天线装置的移动终端设备
US7260424B2 (en) * 2002-05-24 2007-08-21 Schmidt Dominik J Dynamically configured antenna for multiple frequencies and bandwidths
CN101084604A (zh) * 2004-10-13 2007-12-05 诺基亚西门子网络公司 用于移动终端的半波长和四分之一波长印刷缝隙超宽带(uwb)天线

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754801B1 (en) * 1977-10-27 2014-06-17 Unisys Corporation Anti-jam apparatus for baseband radar systems
US4209790A (en) * 1979-02-21 1980-06-24 Butternut Electronics Co. Vertical antenna with stub cancellation means
US4945912A (en) * 1988-11-25 1990-08-07 Sensor Electronics, Inc. Catheter with radiofrequency heating applicator
US5706016A (en) * 1996-03-27 1998-01-06 Harrison, Ii; Frank B. Top loaded antenna
US6466180B2 (en) * 2000-03-30 2002-10-15 Sti-Co Industries Inc. Multiple stub tuner for disguised vehicle antenna
FI113813B (fi) * 2001-04-02 2004-06-15 Nokia Corp Sähköisesti viritettävä monikaistainen tasoantenni
TWI240450B (en) * 2003-10-31 2005-09-21 Wistron Neweb Corp Antenna set
JP4359921B2 (ja) * 2004-01-23 2009-11-11 京セラ株式会社 多周波表面実装アンテナとそれを用いたアンテナ装置ならびに無線通信装置
US7061441B2 (en) * 2004-05-19 2006-06-13 Spx Corporation Stripline fed stub-loop doublet antenna system and method
US8000737B2 (en) * 2004-10-15 2011-08-16 Sky Cross, Inc. Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness
US7663555B2 (en) * 2004-10-15 2010-02-16 Sky Cross Inc. Method and apparatus for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness
US7834813B2 (en) * 2004-10-15 2010-11-16 Skycross, Inc. Methods and apparatuses for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness
US7742005B2 (en) 2006-12-28 2010-06-22 Agc Automotive Americas R&D, Inc. Multi-band strip antenna
FI20096134A0 (fi) * 2009-11-03 2009-11-03 Pulse Finland Oy Säädettävä antenni
SE534431C2 (sv) 2009-12-21 2011-08-23 Lite On Mobile Oyj En antennanordning
US9564677B2 (en) 2009-12-23 2017-02-07 Beijing Lenovo Software Ltd. Mobile terminal
JP5017461B2 (ja) * 2011-01-25 2012-09-05 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
JP5060629B1 (ja) * 2011-03-30 2012-10-31 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
JP6000620B2 (ja) * 2012-04-26 2016-09-28 株式会社東芝 アンテナ装置とこのアンテナ装置を備えた電子機器
JP5965550B2 (ja) 2012-08-20 2016-08-10 ノキア テクノロジーズ オーユー アンテナ装置及びその製造方法
US20140057578A1 (en) * 2012-08-24 2014-02-27 Shih-Yi CHAN Mobile Device and Antenna Structure Therein
CN103633419B (zh) * 2012-08-24 2016-06-08 詹诗怡 移动装置
CN104347927B (zh) * 2013-07-25 2018-09-07 广州光宝移动电子部件有限公司 天线和手持通讯设备
US9865922B2 (en) * 2013-08-21 2018-01-09 Qorvo Us, Inc. Antenna tuning circuitry with reduced interference
CN203466294U (zh) * 2013-08-22 2014-03-05 深圳富泰宏精密工业有限公司 可调式天线及具有该可调式天线的无线通信装置
JP6290410B2 (ja) * 2013-11-22 2018-03-07 華為終端(東莞)有限公司 可調アンテナ及び端末
CN110299618B (zh) 2014-01-23 2022-09-30 荣耀终端有限公司 一种天线系统以及终端
CN105409058B (zh) 2014-04-28 2018-08-14 华为终端(东莞)有限公司 一种天线装置和终端
US10177462B2 (en) * 2016-04-15 2019-01-08 Electronics Research, Inc. Broadband four-bay antenna array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260424B2 (en) * 2002-05-24 2007-08-21 Schmidt Dominik J Dynamically configured antenna for multiple frequencies and bandwidths
CN101084604A (zh) * 2004-10-13 2007-12-05 诺基亚西门子网络公司 用于移动终端的半波长和四分之一波长印刷缝隙超宽带(uwb)天线
CN1808768A (zh) * 2005-01-20 2006-07-26 索尼爱立信移动通信日本株式会社 天线装置和配置该天线装置的移动终端设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3386030A4 *

Also Published As

Publication number Publication date
EP3386030A1 (en) 2018-10-10
CN108140929A (zh) 2018-06-08
EP3386030B1 (en) 2022-08-10
CN108140929B (zh) 2020-01-21
US11264725B2 (en) 2022-03-01
JP2019506790A (ja) 2019-03-07
EP3386030A4 (en) 2019-02-13
US20190027830A1 (en) 2019-01-24
JP6701351B2 (ja) 2020-05-27

Similar Documents

Publication Publication Date Title
US10749246B2 (en) Wireless handheld devices, radiation systems and manufacturing methods
US9219305B2 (en) Built-in antenna for electronic device
JP3864127B2 (ja) デュアルフィーディングポートを有するマルチバンドチップアンテナ及びこれを用いる移動通信装置
TWI363451B (en) Low profile smart antenna for wireless applications and associated methods
CN103311641B (zh) 电子设备的内置天线
CN104885296B (zh) 环形天线及移动终端
KR101257093B1 (ko) 이동 단말기
TWI691117B (zh) 天線結構及具有該天線結構的無線通訊裝置
CN106972254A (zh) 移动终端
US10903549B2 (en) Reconfigurable antenna device suitable for three-segment type metal back cover
KR20010020104A (ko) 비대칭 다이폴 안테나 어셈블리
CN109193153A (zh) 天线系统、方法以及移动通信装置
TWI599093B (zh) 具有窄接地面淨空區之天線元件的通訊裝置
WO2017113270A1 (zh) 天线装置和终端
TWI648906B (zh) 行動裝置和天線結構
TWI446626B (zh) 寬頻行動通訊天線
CN108400427A (zh) 天线系统
EP3709441B1 (en) Multi-frequency antenna and mobile terminal
JPH1168453A (ja) 複合アンテナ
TWI637557B (zh) 天線結構及具有該天線結構之無線通訊裝置
CN109309284A (zh) 天线装置和移动装置
JP2004242165A (ja) 携帯無線機
CN116130947A (zh) 天线装置和电子设备
US20130093631A1 (en) Mobile wireless terminal
CN103117456B (zh) 一种增强带宽重构天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911898

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015911898

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015911898

Country of ref document: EP

Effective date: 20180703