WO2017113144A1 - 机器人示教系统、方法及机器人 - Google Patents

机器人示教系统、方法及机器人 Download PDF

Info

Publication number
WO2017113144A1
WO2017113144A1 PCT/CN2015/099748 CN2015099748W WO2017113144A1 WO 2017113144 A1 WO2017113144 A1 WO 2017113144A1 CN 2015099748 W CN2015099748 W CN 2015099748W WO 2017113144 A1 WO2017113144 A1 WO 2017113144A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
driving
robot
control
motor
Prior art date
Application number
PCT/CN2015/099748
Other languages
English (en)
French (fr)
Inventor
王春晓
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to PCT/CN2015/099748 priority Critical patent/WO2017113144A1/zh
Priority to CN201580080084.7A priority patent/CN107735227A/zh
Publication of WO2017113144A1 publication Critical patent/WO2017113144A1/zh

Links

Definitions

  • the present invention relates to the field of robots, and in particular to a robot teaching system, method and robot.
  • the robot teach pendant is a handheld unit used to program the robot or connect the robot to the control system.
  • the robot can be operated remotely, the teach point is recorded and programmed according to the teach point.
  • the on-site user uses the teach pendant to operate the robot to reach the point on the motion track, and records the point for programming, repeating the process. Teaching.
  • the teaching method requires the operator to hold the teaching device and visually operate the robotic arm to approach the motion trajectory. This requires the teaching operator to be familiar with the coordinate system such as the workpiece and the tool coordinate system and have a good spatial imagination. In order to quickly operate the robot to move and rotate along various coordinate systems to achieve the specified position, this teaching method has high requirements for the operator.
  • an embodiment of the present invention provides a robot teaching system, including:
  • a driving unit configured to set a driving parameter and an output driving signal, wherein the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • Executing unit moving under the action of an external force, the execution unit further connecting the driving unit to receive a driving signal from the driving unit and moving according to the driving signal;
  • An acquisition unit is connected to the execution unit for collecting position and posture data of the execution unit
  • control unit connected to the collecting unit, for sequentially receiving position and posture data from the collecting unit and processing the position and posture data into a motion track;
  • the control unit sequentially stores the motion trajectory in the storage unit, and after teaching, the control unit acquires the motion trajectory from the storage unit and outputs the motion trajectory
  • the driving unit is configured to cause the driving unit to output a driving signal according to the received motion trajectory to control the motion of the executing unit.
  • the driving unit includes a driver, an encoder, and a motor, and the encoder is disposed in the motor, the driver includes a driving portion and a control portion connected to the driving portion, and the control portion connects the code
  • the driving unit is connected to the motor, the driving unit outputs a driving signal to control the movement of the motor, the encoder acquires a rotational speed of the motor, and outputs the correction to the control unit for correction, the control unit
  • the correction result is output to the driving portion to cause the driving portion to output a driving signal to control the motor to perform a correcting motion.
  • the driving part controls the motor to output a first moment, and the first moment is equal to a torque generated by the gravity of the robot.
  • the external force is external manpower
  • the execution unit is a mechanical arm
  • the position and posture data are coordinates and angles.
  • the external force moves the robot arm to the starting point and records the coordinates and the angle, and then moves the arm to the end point and records the coordinates and the angle.
  • the external force moves the robot arm to the starting point and records the coordinates and the angle Then move the arm to the auxiliary point and record the coordinates and angle. Finally, move the arm to the end point and record the coordinates and angle.
  • an embodiment of the present invention provides a robot, where the robot includes a robot teaching system, and the robot teaching system includes:
  • a driving unit configured to set a driving parameter and an output driving signal, wherein the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • Executing unit moving under external force, the execution unit further connecting the driving unit to receive a driving signal from the driving unit and performing motion according to the driving signal;
  • An acquisition unit connected to the execution unit, to collect position and posture data of the execution unit
  • control unit connected to the collecting unit, to sequentially receive position and posture data from the collecting unit and process the position and posture data into a motion track;
  • a storage unit configured to connect the control unit, the control unit sequentially stores the motion track in the storage unit, and after the teaching, the control unit acquires the motion track from the storage unit and outputs
  • the drive unit is caused to cause the drive unit to output a drive signal according to the received motion trajectory to control the motion of the execution unit.
  • the driving unit includes a driver, an encoder, and a motor, and the encoder is disposed in the motor, the driver includes a driving portion and a control portion connected to the driving portion, and the control portion connects the code
  • the driving unit is connected to the motor, the driving unit outputs a driving signal to control the movement of the motor, the encoder acquires a rotational speed of the motor, and outputs the correction to the control unit for correction, the control unit
  • the correction result is output to the driving portion to cause the driving portion to output a driving signal to control the motor to perform a correcting motion.
  • the driving part controls the motor to output a first moment, and the first moment is equal to a torque generated by the gravity of the robot.
  • the external force is external manpower
  • the execution unit is a mechanical arm
  • the position and posture data are coordinates and angles.
  • the motion trajectory is a straight line
  • the starting point and the end point of the motion trajectory are acquired
  • the external force moves the robot arm to the starting point and records the coordinates and the angle
  • the mechanical arm is sequentially moved to the end point and the coordinates are recorded. angle.
  • the external force moves the robot arm to the starting point and records the coordinates and Angle, then move the arm to the auxiliary point and record the coordinates and angle. Finally, move the arm to the end point and record the coordinates and angle.
  • an embodiment of the present invention provides a robot teaching method, where the robot teaching method includes:
  • the driving parameter is set by the driving unit, the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • the motion track is sequentially stored in the storage unit by the control unit, and after the teaching, the motion track is acquired from the storage unit by the control unit and output to the driving unit, so that the driving The unit outputs a drive signal according to the received motion trajectory to control the motion of the execution unit.
  • the driving unit includes a driver, an encoder, and a motor, and the encoder is disposed in the motor, the driver includes a driving portion and a control portion connected to the driving portion, and the control portion connects the code
  • the driving unit is connected to the motor, the driving unit outputs a driving signal to control the movement of the motor, the encoder acquires a rotational speed of the motor, and outputs the correction to the control unit for correction, the control unit
  • the correction result is output to the driving portion to cause the driving portion to output a driving signal to control the motor to perform a correcting motion.
  • the driving part controls the motor to output a first moment, and the first moment is equal to a torque generated by the gravity of the robot.
  • the external force is external manpower
  • the execution unit is a mechanical arm
  • the position and posture data are coordinates and angles.
  • the steps of "execution unit movement by external force” include:
  • the steps of "execution unit movement by external force” include:
  • the robot teaching system and method provided by the embodiment of the present invention sets a driving parameter of the motor to a speed mode with a torque control by the driving unit, and sets the speed to zero, by operation.
  • the external force of the person directly moves the execution unit to the designated position, and records the movement track of the execution unit through the collection unit, the control unit and the storage unit, so that the operator does not need to be familiar with each coordinate system and has good
  • the space imagination can teach the robot.
  • FIG. 1 is a block diagram of a robot teaching system of the present invention
  • FIG. 2 is a block diagram of the drive unit of Figure 1;
  • FIG. 3 is a schematic structural view of a robot of the present invention.
  • a robot teaching system comprising:
  • a driving unit configured to set a driving parameter and an output driving signal, wherein the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • Executing unit moving under the action of an external force, the execution unit further connecting the driving unit to receive a driving signal from the driving unit and moving according to the driving signal;
  • An acquisition unit is connected to the execution unit for collecting position and posture data of the execution unit
  • control unit connected to the collecting unit, for sequentially receiving position and posture data from the collecting unit and processing the position and posture data into a motion track;
  • the control unit sequentially stores the motion trajectory in the storage unit, and after teaching, the control unit acquires the motion trajectory from the storage unit and outputs the motion trajectory a driving unit, so that the driving unit outputs a driving signal according to the received motion trajectory to control the motion of the executing unit; by setting the driving parameter and the external force to control the motion of the executing unit, the operator does not need to be familiar with each coordinate system and The robot can be taught with a good spatial imagination.
  • a robot comprising a robot teaching system, the robot teaching system comprising:
  • a driving unit configured to set a driving parameter and an output driving signal, wherein the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • Executing unit moving under the action of an external force, the execution unit further connecting the driving unit to receive a driving signal from the driving unit and moving according to the driving signal;
  • An acquisition unit is connected to the execution unit for collecting position and posture data of the execution unit
  • control unit connected to the collecting unit, for sequentially receiving position and posture data from the collecting unit and processing the position and posture data into a motion track;
  • the control unit sequentially stores the motion trajectory in the storage unit, and after teaching, the control unit acquires the motion trajectory from the storage unit and outputs the motion trajectory a driving unit, so that the driving unit outputs a driving signal according to the received motion trajectory to control the motion of the executing unit; by setting the driving parameter and the external force to control the motion of the executing unit, the operator does not need to be familiar with each coordinate system and The robot can be taught with a good spatial imagination.
  • a robot teaching method includes:
  • the driving parameter is set by the driving unit, the driving parameter is a speed mode with torque control and the moving speed is set to zero;
  • the motion track is sequentially stored in the storage unit by the control unit, and after the teaching, the motion track is acquired from the storage unit by the control unit and output to the driving unit, so that the driving
  • the unit outputs a driving signal according to the received motion trajectory to control the motion of the executing unit; by setting the driving parameter and the external force to control the movement of the executing unit, the operator does not need to be familiar with each coordinate system and has a good spatial imagination to Teaching.
  • FIG. 1 is a block diagram of a robot teaching system of the present invention.
  • the robot teaching system 1 includes a driving unit 10 for setting driving parameters and outputting a driving signal, and an executing unit 20 for moving under an external force, and the executing unit 20 is further connected to the driving unit 10 .
  • the collecting unit 30 is connected to the execution unit 20 to collect position and posture data of the executing unit 20; and the control unit 40 is connected to the The collecting unit 30 is configured to sequentially receive the position and posture data from the collecting unit 30 and process the position and posture data into a motion track; the storage unit 50 is connected to the control unit 40, and the control unit 40 moves the motion
  • the tracks are sequentially stored in the storage unit 50, and after teaching, the control unit 40 acquires the motion track from the storage unit 50 and outputs the motion track to the drive unit 10, so that the drive unit 10 receives according to the The resulting motion trajectory outputs a drive signal to control the motion of the execution unit 20.
  • the driving unit 10 includes a driver 11 , an encoder 12 , and a motor 13 .
  • the encoder 12 is disposed in the motor 13 .
  • the driver 11 includes a driving portion 111 and is connected to the driving portion 111 .
  • the control unit 112 is connected to the encoder 12, and the driving unit 111 is connected to the motor 13, and the driving unit 111 outputs a driving signal to control the motion of the motor 13, and the encoder 12 acquires
  • the rotational speed of the motor 13 is output to the control unit 112 for correction, and the control unit 112 outputs a correction result to the drive unit 111 to cause the drive unit 111 to output a drive signal to control the motor 13 to perform a corrective motion. .
  • the drive parameter is a speed mode with torque control and the motion speed is set to zero.
  • the number of the motors 13 is set according to the needs of the robot, and each motor 13 is used to drive one shaft, which is disposed at one joint of the robot.
  • the external force is external manpower
  • the execution unit 20 is a mechanical arm
  • the position and posture data are coordinates and an angle
  • the coordinates are an X axis, a Y axis, and a Z axis
  • the angle is alpha ( ⁇ ), beta. ( ⁇ ) and gamma ( ⁇ ).
  • the driving part 111 controls the motor 13 to output a first moment, and the first moment is equal to the torque generated by the gravity of the robot. Because the robot moves, the brake of each axis of the robot needs to be opened, and the brake torque can no longer be overcome by the brake torque. Gravity torque, to prevent a certain axis of the robot from falling freely under the action of gravity, causing damage to the machine or even personal injury. Therefore, in the speed mode, the speed of each axis is always near zero, and the operator can directly push the various axes of the robot. To overcome the torque generated by the gravity of the robot, the robot's robot arm reaches the specified position on the trajectory in a desired posture.
  • the motion of the arm is a linear motion from Pi(xi, yi, zi) to Pi+1(xi+1, yi+1, zi+1); and in most cases,
  • the motion trajectory is a combination of some lines and arcs.
  • the starting point Pi and the end point Pi+1 of the linear motion trajectory are first acquired, and then recorded by the collecting unit 30, the control unit 40, and the storage unit 50.
  • Position and attitude data of the arm at the starting point Pi such as coordinates and angles, manually move the arm to the end point Pi+1, and record the position and attitude data of Pi+1, and then save it.
  • the starting point Pi, the end point Pi+1 of the circular arc motion track, and the auxiliary point between the starting point Pi and the ending point Pi+1 are first acquired, and then passed through the collecting unit. 30.
  • the control unit 40 and the storage unit 50 record the position and posture data of the arm at the starting point Pi, such as coordinates and angles, and then manually move the arm to the auxiliary point to record the position of the arm at the auxiliary point and At the attitude data, finally move the arm to the end point Pi+1 manually, and also record the position and posture data of Pi+1, and then save it.
  • FIG. 3 is a schematic structural view of the robot of the present invention.
  • the robot 2 includes the robot teaching system 1 and is taught by the robot teaching system 1.
  • FIG. 4 is a flow chart of the robot teaching method of the present invention.
  • the robot teaching method includes the following steps:
  • Step S1 setting a driving parameter by the driving unit 10, the driving parameter is a speed mode with torque control and setting the moving speed to zero;
  • Step S2 moving by the external force control execution unit 20;
  • Step S3 collecting the position and posture data of the execution unit 20 by the collecting unit 30;
  • Step S4 sequentially receiving position and posture data from the collection unit 30 through the control unit 40 and processing the position and posture data into a motion trajectory;
  • Step S5 the motion track is sequentially stored in the storage unit 50 by the control unit 40, and after the teaching, the motion track is acquired from the storage unit 50 by the control unit 40 and output to the drive.
  • the unit 10 is configured to cause the drive unit 10 to output a drive signal according to the received motion trajectory to control the motion of the execution unit 20.
  • step S2 includes:
  • Step S21 acquiring a starting point and an ending point of the linear motion track
  • Step S22 moving the robot arm to the starting point by an external force and recording the coordinates and angles;
  • Step S23 The mechanical arm is sequentially moved to the end point by an external force and the coordinates and the angle are recorded.
  • step S2 includes:
  • Step S21 acquiring a starting point, an ending point, and an auxiliary point between the starting point and the ending point of the circular motion track;
  • Step S22 moving the robot arm to the starting point by an external force and recording the coordinates and angles;
  • Step S23 moving the robot arm to the auxiliary point by an external force and recording the coordinates and the angle;
  • Step S24 Finally, the robot arm is moved to the end point by an external force and the coordinates and angles are recorded.
  • the robot teaching system and method set the driving parameter of the motor to a speed mode with torque control by the driving unit and set the speed to zero, and directly move the execution unit to a specified position by an external force of an operator. And the movement track of the execution unit is recorded by the collection unit, the control unit and the storage unit, so that the operator can teach the robot without being familiar with each coordinate system and having a good spatial imagination.

Abstract

一种机器人示教系统、方法及机器人。机器人示教系统(1)包括驱动单元(10),设置驱动参数及输出驱动信号;执行单元(20),在外力作用下移动,执行单元(20)还接收驱动信号并运动;采集单元(30),连接执行单元,以采集执行单元(20)的位置及姿态数据;控制单元(40),连接采集单元(30),以从采集单元(30)依次接收位置及姿态数据并处理为运动轨迹;存储单元(50),连接控制单元(40),控制单元(40)将运动轨迹依次存储在存储单元(50)中,在示教后,控制单元(40)从存储单元(50)获取运动轨迹并输出给驱动单元(10),以使得驱动单元(10)根据接收到的运动轨迹输出驱动信号来控制执行单元(20)的运动,以此实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。

Description

机器人示教系统、方法及机器人
【技术领域】
本发明涉及机器人领域,特别涉及一种机器人示教系统、方法及机器人。
【背景技术】
目前市场上大多数机器人在应用过程中,多采用示教器来示教编程操作机器人运动,机器人的示教器是用来对机器人进行编程或使机器人运动并与控制系统相连的手持式单元,可以远程操控机器人运行,记录示教点并根据示教点编程。为了确保机器人能够根据用户现场的实际情况按照指定的运动运行,并保证运动轨迹的精度要求,现场用户使用示教器操作机器人到达运动轨迹上的点,并记录该点以进行编程,重复如此过程进行示教。
该示教方法必须操作人员手持示教器,目测操作机器人机械臂接近运动轨迹,这就要求示教操作人员对工件和工具坐标系等各个坐标系非常熟悉且具有有较好的空间想象力,才能快速操作机器人沿各个坐标系移动和旋转以达到指定位置,这种示教方法对操作人员的要求高。
【发明内容】
为了解决上述问题,本发明实施例提供一种机器人示教系统,包括:
驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号运动;
采集单元,连接所述执行单元,用于采集所述执行单元的位置及姿态数据;
控制单元,连接所述采集单元,用于从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
存储单元,连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
其中,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
其中,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
其中,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
其中,所述运动轨迹为直线时,获取所述运动轨迹的起点及终点,外力将机械臂移动至起点并记录下所述坐标及角度,之后再将机械臂移动至终点并记录坐标及角度。
其中,所述运动轨迹为圆弧时,获取所述运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点,外力将机械臂移动至起点并记录下所述坐标及角度,再将机械臂移动至辅助点并记录下所述坐标及角度,最后再将机械臂移动至终点并记录坐标及角度。
为了解决上述问题,本发明实施例提供一种机器人,所述机器人包括机器人示教系统,所述机器人示教系统包括:
驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号进行运动;
采集单元,连接所述执行单元,以采集所述执行单元的位置及姿态数据;
控制单元,连接所述采集单元,以从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
存储单元,用于连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
其中,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
其中,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
其中,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
其中,在所述运动轨迹为直线时,获取所述运动轨迹的起点及终点,外力将机械臂移动至起点并记录下所述坐标及角度,之后再将机械臂依次移动至终点并记录坐标及角度。
其中,在所述运动轨迹为圆弧时,获取所述运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点,外力将机械臂移动至起点并记录下所述坐标及角度,再将机械臂移动至辅助点并记录下所述坐标及角度,最后再将机械臂依次移动至终点并记录坐标及角度。
为了解决上述问题,本发明实施例提供一种机器人示教方法,所述机器人示教方法包括:
通过驱动单元设置驱动参数,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
通过外力控制执行单元移动;
通过采集单元采集所述执行单元移动的位置及姿态数据;
通过控制单元从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;及
通过所述控制单元将所述运动轨迹依次存储在存储单元中,在示教后,通过所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
其中,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
其中,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
其中,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
其中,“通过外力控制执行单元运动”的步骤包括:
获取直线运动轨迹的起点及终点;
通过外力将机械臂移动至起点并记录下所述坐标及角度;及
再通过外力将机械臂移动至终点并记录坐标及角度。
其中,“通过外力控制执行单元运动”的步骤包括:
获取圆弧运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点;
通过外力将机械臂移动至起点并记录下所述坐标及角度;
再通过外力将机械臂移动至辅助点并记录下所述坐标及角度;及
最后通过外力将机械臂移动至终点并记录坐标及角度。
与现有技术相比,本发明实施例提供的所述机器人示教系统及方法通过所述驱动单元将所述电机的驱动参数设置成带力矩控制的速度模式并将速度设置为零,通过操作人员的外力直接移动所述执行单元到达指定位置,并通过所述采集单元、控制单元及存储单元对所述执行单元的运动轨迹进行记录,以此实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。
【附图说明】
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图:
图1是本发明的机器人示教系统的方框图;
图2是图1中的驱动单元的方框图;
图3是本发明的机器人的结构示意图;
图4至图6是本发明的机器人示教方法的流程图。
【具体实施方式】
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种机器人示教系统,所述机器人示教系统包括:
驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号运动;
采集单元,连接所述执行单元,用于采集所述执行单元的位置及姿态数据;
控制单元,连接所述采集单元,用于从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
存储单元,连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动;通过设置驱动参数及外力控制执行单元的运动来实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。
一种机器人,所述机器人包括机器人示教系统,所述机器人示教系统包括:
驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号运动;
采集单元,连接所述执行单元,用于采集所述执行单元的位置及姿态数据;
控制单元,连接所述采集单元,用于从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
存储单元,连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动;通过设置驱动参数及外力控制执行单元的运动来实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。
一种机器人示教方法,所述机器人示教方法包括:
通过驱动单元设置驱动参数,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
通过外力控制执行单元移动;
通过采集单元采集所述执行单元移动的位置及姿态数据;
通过控制单元从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;及
通过所述控制单元将所述运动轨迹依次存储在存储单元中,在示教后,通过所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动;通过设置驱动参数及外力控制执行单元的运动来实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。
下面将结合具体实施例对本发明进行详细描述。
请参阅图1,是本发明的机器人示教系统的方框图。如图1所示,所述机器人示教系统1包括驱动单元10,用于设置驱动参数及输出驱动信号;执行单元20,在外力作用下移动,所述执行单元20还连接所述驱动单元10以从所述驱动单元10接收驱动信号并根据所述驱动信号进行运动;采集单元30,连接所述执行单元20,以采集所述执行单元20的位置及姿态数据;控制单元40,连接所述采集单元30,以从所述采集单元30依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;存储单元50,连接所述控制单元40,所述控制单元40将所述运动轨迹依次存储在所述存储单元50中,在示教后,所述控制单元40从所述存储单元50获取所述运动轨迹并输出给所述驱动单元10,以使得所述驱动单元10根据接收到的运动轨迹输出驱动信号来控制所述执行单元20的运动。
请参阅图2,所述驱动单元10包括驱动器11、编码器12及电机13,所述编码器12设置在所述电机13内,所述驱动器11包括驱动部111及与所述驱动部111连接的控制部112,所述控制部112连接所述编码器12,所述驱动部111连接所述电机13,所述驱动部111输出驱动信号控制所述电机13的运动,所述编码器12获取所述电机13的转角转速并输出给所述控制部112进行校正,所述控制部112输出校正结果给所述驱动部111以使所述驱动部111输出驱动信号控制所述电机13进行校正运动。
在本实施例中,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零。所述电机13的数量根据所述机器人的需要进行设定,每一电机13用于驱动一个轴,设置在所述机器人的一个关节处。所述外力为外部人力,所述执行单元20为机械臂,所述位置及姿态数据为坐标及角度,所述坐标为X轴、Y轴及Z轴,所述角度为alpha(α)、beta(β)及gamma(γ)。
所述驱动部111控制所述电机13输出第一力矩,且所述第一力矩等于机器人重力产生的力矩,因为操作机器人运动,需打开机器人各个轴的抱闸,不能再依靠抱闸力矩来克服重力力矩,以防止机器人的某个轴在重力作用下发生自由下落,造成机器损坏甚至人员伤害,因此在速度模式下保证各个轴的速度始终在零附近,操作人员可以直接推动机器人的各个轴旋转以克服机器人重力产生的力矩,使机器人的机械臂以需要的姿态到达轨迹上的指定位置。当机械臂整个运动是一条直线时,机械臂的运动就是从Pi(xi,yi,zi)到Pi+1(xi+1,yi+1,zi+1)的直线运动;而大多情况下,运动轨迹是一些直线与圆弧的组合。当点Pi移动到点Pi+1是直线时,是通过直线插补实现;当点Pi移动到点Pi+1是圆弧时,通过圆弧插补实现。
要实现点Pi到Pi+1的直线运动,首先要获取所述直线运动轨迹的起点Pi及终点Pi+1,然后通过所述采集单元30、所述控制单元40及所述存储单元50记录下机械臂在起点Pi的位置及姿态数据,如坐标及角度,再手动将机械臂移动到终点Pi+1,同样记录下Pi+1的位置及姿态数据,然后将其保存。
类似的,圆弧运动时,首先要获取所述圆弧运动轨迹的起点Pi、终点Pi+1及位于所述起点Pi与所述终点Pi+1之间的辅助点,然后通过所述采集单元30、所述控制单元40及所述存储单元50记录下机械臂在起点Pi的位置及姿态数据,如坐标及角度,再手动将机械臂移动到辅助点记录下机械臂在辅助点的位置及姿态数据,最后手动将机械臂移动到终点Pi+1,同样记录下Pi+1的位置及姿态数据,然后将其保存。
请参阅图3,是本发明的机器人的结构示意图。如图3所示,所述机器人2包括所述机器人示教系统1,并通过所述机器人示教系统1进行示教。
请参阅图4,是本发明机器人示教方法的流程图。所述机器人示教方法包括如下步骤:
步骤S1:通过驱动单元10设置驱动参数,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
步骤S2:通过外力控制执行单元20移动;
步骤S3:通过采集单元30采集所述执行单元20的位置及姿态数据;
步骤S4:通过控制单元40从所述采集单元30依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;及
步骤S5:通过所述控制单元40将所述运动轨迹依次存储在存储单元50中,在示教后,通过所述控制单元40从所述存储单元50获取所述运动轨迹并输出给所述驱动单元10,以使所述驱动单元10根据接收到的运动轨迹输出驱动信号来控制所述执行单元20的运动。
请参阅图5,步骤S2包括:
步骤S21:获取直线运动轨迹的起点及终点;
步骤S22:通过外力将机械臂移动至起点并记录下所述坐标及角度;及
步骤S23:再通过外力将机械臂依次移动至终点并记录坐标及角度。
请参阅图6,步骤S2包括:
步骤S21:获取圆弧运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点;
步骤S22:通过外力将机械臂移动至起点并记录下所述坐标及角度;
步骤S23:在通过外力将机械臂移动至辅助点并记录下所述坐标及角度;
步骤S24:最后通过外力将机械臂移动至终点并记录下所述坐标及角度。
所述机器人示教系统及方法通过所述驱动单元将所述电机的驱动参数设置成带力矩控制的速度模式并将速度设置为零,通过操作人员的外力直接移动所述执行单元到达指定位置,并通过所述采集单元、控制单元及存储单元对所述执行单元的运动轨迹进行记录,以此实现操作人员不需要熟悉各个坐标系以及具有良好空间想象力即可对机器人进行示教。
在上述实施例中,仅对本发明实施例进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明实施例的精神和范围的情况下对本发明实施例进行各种修改。

Claims (18)

  1. 一种机器人示教系统,其特征在于,所述机器人示教系统包括:
    驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
    执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号运动;
    采集单元,连接所述执行单元,用于采集所述执行单元的位置及姿态数据;
    控制单元,连接所述采集单元,用于从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
    存储单元,连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
  2. 根据权利要求1所述的机器人示教系统,其特征在于,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
  3. 根据权利要求2所述的机器人示教系统,其特征在于,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
  4. 根据权利要求1所述的机器人示教系统,其特征在于,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
  5. 根据权利要求4所述的机器人示教系统,其特征在于,所述运动轨迹为直线时,获取所述运动轨迹的起点及终点,外力将机械臂移动至起点并记录下所述坐标及角度,之后再将机械臂移动至终点并记录坐标及角度。
  6. 根据权利要求4所述的机器人示教系统,其特征在于,所述运动轨迹为圆弧时,获取所述运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点,外力将机械臂移动至起点并记录下所述坐标及角度,再将机械臂移动至辅助点并记录下所述坐标及角度,最后再将机械臂移动至终点并记录坐标及角度。
  7. 一种机器人,所述机器人包括机器人示教系统,其特征在于,所述机器人示教系统包括:
    驱动单元,用于设置驱动参数及输出驱动信号,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
    执行单元,在外力作用下移动,所述执行单元还连接所述驱动单元以从所述驱动单元接收驱动信号并根据所述驱动信号进行运动;
    采集单元,连接所述执行单元,以采集所述执行单元的位置及姿态数据;
    控制单元,连接所述采集单元,以从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;
    存储单元,用于连接所述控制单元,所述控制单元将所述运动轨迹依次存储在所述存储单元中,在示教后,所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使得所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
  8. 根据权利要求7所述的机器人,其特征在于,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
  9. 根据权利要求8所述的机器人,其特征在于,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
  10. 根据权利要求7所述的机器人,其特征在于,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
  11. 根据权利要求10所述的机器人,其特征在于,在所述运动轨迹为直线时,获取所述运动轨迹的起点及终点,外力将机械臂移动至起点并记录下所述坐标及角度,之后再将机械臂依次移动至终点并记录坐标及角度。
  12. 根据权利要求10所述的机器人,其特征在于,在所述运动轨迹为圆弧时,获取所述运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点,外力将机械臂移动至起点并记录下所述坐标及角度,再将机械臂移动至辅助点并记录下所述坐标及角度,最后再将机械臂依次移动至终点并记录坐标及角度。
  13. 一种机器人示教方法,其特征在于,所述机器人示教方法包括:
    通过驱动单元设置驱动参数,所述驱动参数为带力矩控制的速度模式并将运动速度设置为零;
    通过外力控制执行单元移动;
    通过采集单元采集所述执行单元移动的位置及姿态数据;
    通过控制单元从所述采集单元依次接收位置及姿态数据并将所述位置及姿态数据处理为运动轨迹;及
    通过所述控制单元将所述运动轨迹依次存储在存储单元中,在示教后,通过所述控制单元从所述存储单元获取所述运动轨迹并输出给所述驱动单元,以使所述驱动单元根据接收到的运动轨迹输出驱动信号来控制所述执行单元的运动。
  14. 根据权利要求13所述的机器人示教方法,其特征在于,所述驱动单元包括驱动器、编码器及电机,所述编码器设置在所述电机内,所述驱动器包括驱动部及与所述驱动部连接的控制部,所述控制部连接所述编码器,所述驱动部连接所述电机,所述驱动部输出驱动信号控制所述电机的运动,所述编码器获取所述电机的转角转速并输出给所述控制部进行校正,所述控制部输出校正结果给所述驱动部以使所述驱动部输出驱动信号控制所述电机进行校正运动。
  15. 根据权利要求14所述的机器人示教方法,其特征在于,所述驱动部控制所述电机输出第一力矩,且所述第一力矩等于机器人重力产生的力矩。
  16. 根据权利要求13所述的机器人示教方法,其特征在于,所述外力为外部人力,所述执行单元为机械臂,所述位置及姿态数据为坐标及角度。
  17. 根据权利要求16所述的机器人示教方法,其特征在于,“通过外力控制执行单元运动”的步骤包括:
    获取直线运动轨迹的起点及终点;
    通过外力将机械臂移动至起点并记录下所述坐标及角度;及
    再通过外力将机械臂移动至终点并记录坐标及角度。
  18. 根据权利要求16所述的机器人示教方法,其特征在于,“通过外力控制执行单元运动”的步骤包括:
    获取圆弧运动轨迹的起点、终点及位于所述起点与所述终点之间的辅助点;
    通过外力将机械臂移动至起点并记录下所述坐标及角度;
    再通过外力将机械臂移动至辅助点并记录下所述坐标及角度;及
    最后通过外力将机械臂移动至终点并记录坐标及角度。
PCT/CN2015/099748 2015-12-30 2015-12-30 机器人示教系统、方法及机器人 WO2017113144A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/099748 WO2017113144A1 (zh) 2015-12-30 2015-12-30 机器人示教系统、方法及机器人
CN201580080084.7A CN107735227A (zh) 2015-12-30 2015-12-30 机器人示教系统、方法及机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099748 WO2017113144A1 (zh) 2015-12-30 2015-12-30 机器人示教系统、方法及机器人

Publications (1)

Publication Number Publication Date
WO2017113144A1 true WO2017113144A1 (zh) 2017-07-06

Family

ID=59224161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099748 WO2017113144A1 (zh) 2015-12-30 2015-12-30 机器人示教系统、方法及机器人

Country Status (2)

Country Link
CN (1) CN107735227A (zh)
WO (1) WO2017113144A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773756A (zh) * 2019-02-20 2019-05-21 苏州科技大学 一种多自由度机械手及控制方法
CN113125463A (zh) * 2021-04-25 2021-07-16 济南大学 一种用于汽车轮毂焊缝缺陷检测的示教方法及装置
CN113946156A (zh) * 2021-12-20 2022-01-18 广州朗国电子科技股份有限公司 一种轮式机器人的运动路径示教控制方法及控制系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019222968A1 (zh) * 2018-05-24 2019-11-28 深圳配天智能技术研究院有限公司 一种智能上下料系统及其工作方法
CN114693808B (zh) * 2022-05-31 2022-08-12 中国空气动力研究与发展中心低速空气动力研究所 一种风洞试验中降落伞的姿态测量方法、装置及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046113A (zh) * 1989-04-03 1990-10-17 三菱重工业株式会社 直接教授型机器人
CN101327590A (zh) * 2008-07-26 2008-12-24 河北理工大学 施釉机器人离线示教装置及示教方法
CN104742120A (zh) * 2015-03-31 2015-07-01 佛山市新鹏机器人技术有限公司 一种具备动力的拖动示教机械手
WO2015178377A1 (ja) * 2014-05-20 2015-11-26 株式会社日立製作所 組立教示装置及び方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425100B (zh) * 2013-07-23 2015-10-21 南京航空航天大学 基于力矩平衡的机器人直接示教控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046113A (zh) * 1989-04-03 1990-10-17 三菱重工业株式会社 直接教授型机器人
CN101327590A (zh) * 2008-07-26 2008-12-24 河北理工大学 施釉机器人离线示教装置及示教方法
WO2015178377A1 (ja) * 2014-05-20 2015-11-26 株式会社日立製作所 組立教示装置及び方法
CN104742120A (zh) * 2015-03-31 2015-07-01 佛山市新鹏机器人技术有限公司 一种具备动力的拖动示教机械手

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109773756A (zh) * 2019-02-20 2019-05-21 苏州科技大学 一种多自由度机械手及控制方法
CN113125463A (zh) * 2021-04-25 2021-07-16 济南大学 一种用于汽车轮毂焊缝缺陷检测的示教方法及装置
CN113125463B (zh) * 2021-04-25 2023-03-10 济南大学 一种用于汽车轮毂焊缝缺陷检测的示教方法及装置
CN113946156A (zh) * 2021-12-20 2022-01-18 广州朗国电子科技股份有限公司 一种轮式机器人的运动路径示教控制方法及控制系统

Also Published As

Publication number Publication date
CN107735227A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2017113144A1 (zh) 机器人示教系统、方法及机器人
WO2020215386A1 (zh) 基于绳索驱动的二自由度大转角柔性机器人关节、机器人
WO2020057142A1 (zh) 一种基于涡卷弹簧的多指柔性机械手
WO2018126605A1 (zh) 一种机器人的移动控制方法及机器人
JP5741617B2 (ja) ロボット装置
WO2019109744A1 (zh) 用于样本分析仪的转盘的控制系统及方法、样本分析仪
JP2014217913A (ja) パラレルリンクロボットの動作教示方法およびパラレルリンクロボット
WO2015194806A1 (ko) 로봇 손가락 구조체
WO2020037641A1 (zh) 涂胶机器人及涂胶方法
JP7238523B2 (ja) ロボット及びハンドの制御装置
WO2023249266A1 (ko) 협동 로봇을 위한 티칭 방법 및 기기
WO2019084881A1 (zh) 机器人系统、驱动器、存储装置及控制模式的切换方法
JPS61236487A (ja) 産業用ロボツトの制御装置
WO2018112851A1 (zh) 一种手势控制工业机器人方法以及工业机器人手持控制器
WO2020037567A1 (zh) 多轴驱动器的性能测试系统及方法、测试用多轴驱动器
JP3379988B2 (ja) ロボットの制御状態表示方法及び表示制御装置
JPS6149212A (ja) ロボツトのテイ−チング装置
JPS58125110A (ja) ロボツト制御方式
CN111923036B (zh) 一种工业机器人的驱动控制系统
JPH1199492A (ja) 産業用ロボット
CN104669272A (zh) 机器人
JPS6351282B2 (zh)
JPS62166987A (ja) 産業用ロボツト制御装置
JPH10202572A (ja) ロボット装置
Yumei et al. R&D of 4 DOF dual-arm cooperative robot-cooperation of location (position orientation) and motion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911773

Country of ref document: EP

Kind code of ref document: A1