WO2017113055A1 - Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device - Google Patents

Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device Download PDF

Info

Publication number
WO2017113055A1
WO2017113055A1 PCT/CN2015/099193 CN2015099193W WO2017113055A1 WO 2017113055 A1 WO2017113055 A1 WO 2017113055A1 CN 2015099193 W CN2015099193 W CN 2015099193W WO 2017113055 A1 WO2017113055 A1 WO 2017113055A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement
spindle
actual
axis
command
Prior art date
Application number
PCT/CN2015/099193
Other languages
French (fr)
Chinese (zh)
Inventor
龚丽辉
Original Assignee
深圳配天智能技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳配天智能技术研究院有限公司 filed Critical 深圳配天智能技术研究院有限公司
Priority to CN201580080138.XA priority Critical patent/CN107615195B/en
Priority to PCT/CN2015/099193 priority patent/WO2017113055A1/en
Publication of WO2017113055A1 publication Critical patent/WO2017113055A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/16Thread cutting; Automatic machines specially designed therefor in holes of workpieces by taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia

Definitions

  • Rigid tapping is proposed to solve the above problems.
  • the CNC system can feedback the pitch according to the position of the spindle motor encoder and calculate the Z-axis command position in real time. This ensures the synchronization of the spindle and Z-axis position.
  • another technical solution adopted by the present invention is to provide a computer storage medium for storing computer program code, when executed by a processor, causes the processor to execute a processing method.
  • the processing method comprises the steps of: acquiring the spindle command displacement, and transmitting the spindle command displacement to the spindle motor driver; using the spindle displacement sensor to obtain the actual spindle displacement; using the difference between the spindle actual displacement and the spindle command displacement to the actual spindle displacement.
  • the compensation calculation is performed to obtain the Z-axis command feed displacement; the Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis and then drives the spindle to process the tapped hole.
  • Step 203 Perform compensation calculation on the actual displacement of the spindle by using a difference between the actual displacement of the spindle and the displacement of the spindle command to obtain a Z-axis command feed displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

A hole tapping method and a numerically-controlled machine tool. The method comprises: obtaining instructed main shaft displacement and sending same to a main shaft motor driver (1105); obtaining actual main shaft displacement by using a main shaft displacement sensor (1106); performing compensation calculation on the actual main shaft displacement according to a difference between the actual main shaft displacement and the instructed main shaft displacement, to obtain instructed Z shaft feed displacement; and sending the instructed Z shaft feed displacement to a Z shaft motor driver (1104) so that the Z shaft motor driver (1104) drives a Z shaft (1102) and a main shaft (1103) to machine a hole to be tapped.

Description

一种攻螺纹孔的方法、数控机床及数控加工装置Method for tapping threaded hole, numerical control machine tool and numerical control processing device 【技术领域】[Technical Field]
本发明涉及数控加工领域,特别是涉及一种攻螺纹孔的方法、数控机床及数控加工装置。The invention relates to the field of numerical control machining, in particular to a method for tapping a threaded hole, a numerical control machine tool and a numerical control processing device.
【背景技术】【Background technique】
在攻丝的加工过程中,数控系统通过给定主轴一个转速,然后根据F=螺距*主轴转速得到Z轴进给速度,这样通过主轴和Z轴的配合,由丝锥加工出想要的螺孔。虽然这种方法表面上看主轴转速和Z轴进给速度是根据螺距配合运行的,但实际过程中,主轴转速需要经过正转、停止、反转、停止的过程,所以主轴和角度和Z轴位置不可能完全同步。During the tapping process, the numerical control system obtains the Z-axis feed speed by giving a spindle a speed, and then according to the F=pitch* spindle speed, so that the desired screw hole is machined by the tap through the cooperation of the spindle and the Z-axis. . Although this method looks at the spindle speed and the Z-axis feed speed on the surface according to the pitch, in the actual process, the spindle speed needs to go through the process of forward, stop, reverse, and stop, so the spindle and angle and the Z-axis The location cannot be fully synchronized.
刚性攻丝就是为解决上述问题而提出的,刚性攻丝时数控系统根据主轴电机编码器的位置实时反馈螺距,实时计算Z轴的指令位置,这样就严格保证了主轴和Z轴位置的同步。Rigid tapping is proposed to solve the above problems. When the rigid tapping is performed, the CNC system can feedback the pitch according to the position of the spindle motor encoder and calculate the Z-axis command position in real time. This ensures the synchronization of the spindle and Z-axis position.
虽然刚性攻丝在数控系统内保证了主轴和Z轴的指令位置同步,但由于主轴和Z轴驱动器性能的不一致(例如延时、刚性等),在高速刚性攻丝时,主轴和Z轴的实际运动位置还是不能完全同步。这就需要数控系统对两者之间的同步误差进行补偿。Although the rigid tapping ensures the synchronization of the command position of the spindle and the Z axis in the numerical control system, due to the inconsistency of the performance of the spindle and the Z-axis drive (such as delay, rigidity, etc.), in the high-speed rigid tapping, the spindle and the Z-axis The actual motion position is still not fully synchronized. This requires the CNC system to compensate for the synchronization error between the two.
目前业界普遍的做法是通过调整主轴和Z轴的驱动器参数来解决此问题,例如提高Z轴驱动器的刚性,从而减少Z轴的响应延时,使得两者之间的同步误差减小。At present, it is common practice in the industry to solve this problem by adjusting the spindle and Z-axis drive parameters, such as increasing the rigidity of the Z-axis drive, thereby reducing the response delay of the Z-axis, so that the synchronization error between the two is reduced.
【发明内容】[Summary of the Invention]
本发明主要解决的技术问题是提供一种攻螺纹孔的方法、数控机床及数控加工装置,能够提高数控系统刚性攻丝的精度和效率。The technical problem mainly solved by the invention is to provide a method for tapping a threaded hole, a numerical control machine tool and a numerical control processing device, which can improve the precision and efficiency of the rigid tapping of the numerical control system.
为解决上述技术问题,本发明采用的一个技术方案是:提供一种攻螺纹孔 的方法,该方法包括:获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。In order to solve the above technical problem, a technical solution adopted by the present invention is to provide a tapped hole The method comprises: acquiring a spindle command displacement, and transmitting the spindle command displacement to the spindle motor driver; using the spindle displacement sensor to obtain the actual spindle displacement; and using the difference between the spindle actual displacement and the spindle command displacement to perform the spindle actual displacement The compensation calculation is to obtain the Z-axis command feed displacement; the Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis and then drives the spindle to process the tapped hole.
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种数控机床,该数控机床包括:主轴以及安装于主轴上的主轴电机驱动器和主轴位移传感器,Z轴以及安装于Z轴上的Z轴电机驱动器,以及数控系统;数控系统连接主轴电机驱动器和Z轴电机驱动器;数控系统用于获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;以及用于利用主轴位移传感器获取主轴实际位移;以及用于利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;以及用于将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a numerical control machine tool including: a spindle and a spindle motor driver and a spindle displacement sensor mounted on the spindle, a Z-axis and a Z-axis mounted on the Z-axis The Z-axis motor driver and the numerical control system; the numerical control system is connected to the spindle motor driver and the Z-axis motor driver; the numerical control system is used for acquiring the spindle command displacement, and transmitting the spindle command displacement to the spindle motor driver; and for acquiring by the spindle displacement sensor Actual displacement of the spindle; and used to compensate the actual displacement of the spindle by the difference between the actual displacement of the spindle and the displacement of the spindle command, to obtain the Z-axis command feed displacement; and to send the Z-axis command feed displacement to the Z-axis The motor driver is used to drive the Z-axis motor drive to drive the Z-axis and then drive the spindle to process the tapped hole.
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种数控加工装置,包括处理器、存储器、输入装置以及输出装置;其中,该处理器用于执行如下步骤:获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a numerical control processing apparatus, including a processor, a memory, an input device, and an output device; wherein the processor is configured to perform the following steps: acquiring a spindle command displacement, The spindle command displacement is sent to the spindle motor driver; the spindle displacement sensor is used to obtain the actual spindle displacement; the actual displacement of the spindle is compensated by the difference between the actual spindle displacement and the spindle command displacement, and the Z-axis command feed displacement is obtained; The Z-axis command feed displacement is sent to the Z-axis motor drive so that the Z-axis motor drive drives the Z-axis and drives the spindle to machine the tapped hole.
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种计算机存储介质,该存储介质用于存储计算机程序代码,该计算机程序代码被处理器执行时使得处理器执行一种加工方法,该加工方法包括如下步骤:获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移 进行补偿计算,得到Z轴指令进给位移;将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。In order to solve the above technical problem, another technical solution adopted by the present invention is to provide a computer storage medium for storing computer program code, when executed by a processor, causes the processor to execute a processing method. The processing method comprises the steps of: acquiring the spindle command displacement, and transmitting the spindle command displacement to the spindle motor driver; using the spindle displacement sensor to obtain the actual spindle displacement; using the difference between the spindle actual displacement and the spindle command displacement to the actual spindle displacement The compensation calculation is performed to obtain the Z-axis command feed displacement; the Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis and then drives the spindle to process the tapped hole.
本发明的有益效果是:区别于现有技术的情况,本发明通过获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。根据主轴和Z轴实际位置的差值与主轴的实际位置和指令位置的差值之间成一定比例的原理,根据这个比例计算出补偿值对Z轴的指令位置进行补偿使得主轴的实际位置和Z轴的实际位置更加靠拢,使在攻螺纹孔加工过程中的加工精度和效率均有所提高。The invention has the beneficial effects that the invention is different from the prior art, and the invention transmits the spindle command displacement and transmits the spindle command displacement to the spindle motor driver; the spindle displacement sensor is used to obtain the actual spindle displacement; and the spindle actual displacement and the spindle command are utilized. The difference between the displacements is compensated for the actual displacement of the spindle, and the Z-axis command feed displacement is obtained. The Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis and then drives the spindle processing. Tap the threaded hole. According to the principle that the difference between the actual position of the main shaft and the Z-axis is proportional to the difference between the actual position of the main shaft and the command position, the compensation value is calculated according to this ratio to compensate the Z-axis command position so that the actual position of the main shaft and The actual position of the Z-axis is closer together, which improves the machining accuracy and efficiency during the tapping hole machining process.
【附图说明】[Description of the Drawings]
图1是数控攻螺纹孔设备的结构示意图;Figure 1 is a schematic structural view of a CNC tapping hole device;
图2是本发明攻螺纹孔的方法一实施方式的流程图;2 is a flow chart of an embodiment of a method for tapping a threaded hole according to the present invention;
图3是传统攻螺纹孔加工中未进行误差补偿时主轴和Z轴的位置关系示意图;3 is a schematic view showing the positional relationship between the main shaft and the Z-axis when the error compensation is not performed in the conventional tapping hole processing;
图4是传统攻螺纹孔加工中未进行误差补偿时的误差分析示意图;4 is a schematic diagram of error analysis when error compensation is not performed in conventional tapping hole processing;
图5是传统攻螺纹孔加工中主轴速度的示意图;Figure 5 is a schematic view of the spindle speed in the conventional tapping hole machining;
图6是本发明攻螺纹孔的方法一实施方式中误差补偿系数K=0.4时主轴和Z轴的位置关系示意图;6 is a schematic view showing the positional relationship between the main shaft and the Z-axis when the error compensation coefficient K=0.4 in the method for tapping the threaded hole according to the present invention;
图7是本发明攻螺纹孔的方法一实施方式中误差补偿系数K=0.4时的误差分析示意图;7 is a schematic diagram of error analysis when the error compensation coefficient K=0.4 in the method for tapping a threaded hole according to the present invention;
图8是本发明攻螺纹孔的方法中步骤200的具体流程图;Figure 8 is a detailed flow chart of step 200 of the method for tapping a hole according to the present invention;
图9是本发明攻螺纹孔的方法另一实施方式中误差补偿系数K=0.6时主轴和Z轴的位置关系示意图; 9 is a schematic view showing the positional relationship between the main shaft and the Z-axis when the error compensation coefficient K=0.6 in another embodiment of the method for tapping the hole according to the present invention;
图10是本发明攻螺纹孔的方法另一实施方式中误差补偿系数K=0.6时的误差分析示意图;10 is a schematic diagram of error analysis when the error compensation coefficient K=0.6 in another embodiment of the method for tapping a hole according to the present invention;
图11是本发明数控机床一实施方式的结构示意图;11 is a schematic structural view of an embodiment of a numerical control machine tool according to the present invention;
图12是本发明数控加工装置一实施方式的结构示意图。Figure 12 is a schematic view showing the structure of an embodiment of the numerical control processing apparatus of the present invention.
【具体实施方式】【detailed description】
参阅图1,数控攻螺纹孔设备的结构示意图,数控攻螺纹孔设备主要包括主轴和Z轴,主轴上装有丝锥101,用于对待加工零件102进行攻螺纹孔加工,主轴旋转带动丝锥101旋转,Z轴在Z坐标方向上移动带动丝锥101沿Z轴向进给以进行攻螺纹加工,也称为进给轴。主轴和Z轴上均安装有电机驱动器以接收数控系统的指令而分别驱动主轴和Z轴工作,主轴上还安装有主轴位移传感器。由于本发明并不是对加工设备的结构作出改进,这里对设备的具体结构不再赘述。Referring to Figure 1, the schematic diagram of the CNC tapping hole device, the CNC tapping hole device mainly includes a spindle and a Z-axis, and the spindle is provided with a tap 101 for tapping the hole to be processed, and the spindle rotates the tap 101 to rotate. The Z axis moves in the Z coordinate direction to drive the tap 101 to feed in the Z axis for tapping, also referred to as the feed axis. A motor driver is mounted on both the main shaft and the Z-axis to receive commands from the numerical control system to drive the spindle and the Z-axis respectively, and a spindle displacement sensor is also mounted on the spindle. Since the present invention is not intended to improve the structure of the processing apparatus, the specific structure of the apparatus will not be described herein.
参阅图2,本发明攻螺纹孔的方法一实施方式的流程图,该方法包括:Referring to FIG. 2, a flowchart of an embodiment of a method for tapping a threaded hole according to the present invention includes:
步骤201:获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器。Step 201: Acquire a spindle command displacement, and send the spindle command displacement to the spindle motor driver.
举例来说,主轴指令位移可以是由用户输入到数控系统中的,当然也可以是数控系统从加工文件中导入的;主轴指令位移是根据需要加工的螺纹孔的深度、螺距等因素决定的,在接收到用户输入的指令时即可获取。For example, the spindle command displacement can be input by the user into the numerical control system, or it can be imported from the machining file by the numerical control system; the spindle command displacement is determined according to factors such as the depth of the threaded hole to be processed, the pitch, and the like. Obtained when an instruction entered by the user is received.
步骤202:利用主轴位移传感器获取主轴实际位移。Step 202: Acquire the actual displacement of the spindle by using a spindle displacement sensor.
在其他实施方式中,利用主轴位移传感器获取主轴实际位移可以通过如下方法获得:In other embodiments, the actual displacement of the spindle using the spindle displacement sensor can be obtained by:
利用安装在主轴上的旋转编码器测量主轴的实际角位移,从而根据以下公式计算得到主轴实际位移:主轴实际位移=主轴的实际角位移*待攻螺纹孔的螺距。The actual angular displacement of the spindle is measured by a rotary encoder mounted on the spindle, and the actual displacement of the spindle is calculated according to the following formula: actual spindle displacement = actual angular displacement of the spindle * pitch of the tapped hole to be tapped.
步骤203:利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移。 Step 203: Perform compensation calculation on the actual displacement of the spindle by using a difference between the actual displacement of the spindle and the displacement of the spindle command to obtain a Z-axis command feed displacement.
具体地,可以利用如下公式对主轴实际位移进行补偿计算,得到Z轴指令进给位移:M1=S2+K*(S1-S2),其中M1为Z轴指令进给位移,S1为主轴指令位移,S2为主轴实际位移,K为预先确定的补偿系数。Specifically, the following formula can be used to compensate the actual displacement of the spindle, and the Z-axis command feed displacement is obtained: M 1 =S 2 +K*(S 1 -S 2 ), where M 1 is the Z-axis command feed displacement. S 1 is the spindle command displacement, S 2 is the actual spindle displacement, and K is the predetermined compensation coefficient.
值得注意的是,上述公式是作为例子提出的基于本实施方式特定原理的一数学式,如果有根据本实施方式相同原理得出的其它公式,或者根据本数学式经过推导、变形得出的其它公式均应当包括在本实施方式的范围之内。It should be noted that the above formula is a mathematical formula based on the specific principle of the present embodiment as an example, if there are other formulas obtained according to the same principle of the present embodiment, or other derivation or deformation according to the mathematical formula. Formulas should be included in the scope of the present embodiment.
参阅图3,这里以加工孔深为10mm的螺纹孔为例,图3中纵坐标是位移量,单位mm,横坐标是数据点序号。具体参阅图3中的局部放大部分(为数据点序号在500-800之间的一段),其中,Z轴指令位置(线条3)和主轴实际位置(线条2)比较接近,这是由于Z轴的指令位置是通过主轴的实际位置计算得到的,但由于Z轴驱动器的响应延时,Z轴实际位置(线条4)和主轴实际位置相比要明显的滞后,此时两个轴的实际位置之间的误差如图4所示,图4中的纵坐标是误差值,单位mm,横坐标是数据点序号。可以看到的误差最大有0.1mm,对比参阅图4和图5,图5的纵坐标是主轴的转速,横坐标是数据点序号。在图4中误差最大时的数据点序号大致为500-800期间,对应在图5中正好是主轴转速最大的时间,因此,Z轴实际位置的误差的大小跟主轴的转速成正比关系,当主轴的转速越快,误差越大。Referring to Fig. 3, here, for example, a threaded hole having a hole depth of 10 mm is processed. In Fig. 3, the ordinate is the displacement amount, the unit is mm, and the abscissa is the data point number. Refer specifically to the partially enlarged part of Figure 3 (for a section of data point number between 500 and 800), where the Z-axis command position (line 3) and the actual spindle position (line 2) are relatively close, due to the Z-axis. The command position is calculated from the actual position of the spindle, but due to the response delay of the Z-axis drive, the actual position of the Z-axis (line 4) is significantly delayed compared to the actual position of the spindle. The actual position of the two axes at this time. The error between them is shown in Fig. 4. The ordinate in Fig. 4 is the error value in mm, and the abscissa is the data point number. The error that can be seen is at most 0.1 mm. For comparison, referring to Fig. 4 and Fig. 5, the ordinate of Fig. 5 is the rotational speed of the main shaft, and the abscissa is the data point number. In Figure 4, the data point number when the error is maximum is approximately 500-800, which corresponds to the time when the spindle rotation speed is the largest in Fig. 5. Therefore, the error of the actual position of the Z-axis is proportional to the rotation speed of the spindle. The faster the spindle speed, the greater the error.
由于Z轴驱动器响应延时是稳定的,那么Z轴实际位置和指令位置曲线之间的差值也是稳定的,我们把Z轴指令位置曲线整体向主轴指令位置曲线靠拢,那么Z轴实际位置也必然向主轴实际位置曲线靠拢。Since the Z-axis driver response delay is stable, the difference between the Z-axis actual position and the command position curve is also stable. We close the Z-axis command position curve toward the spindle command position curve, then the Z-axis actual position is also It is inevitable to move closer to the actual position of the spindle.
通过上述原理,我们在数控系统内添加了调节参数“误差补偿系数”,这里命名为K,在每个插补周期,由于Z轴指令进给位移与主轴实际位移相同,主轴实际位移与主轴旋转周数的变化量的比值即为螺距,因此通过此关系即可由主轴实际角位移计算得到主轴实际位移S2,在未进行误差补偿时,Z轴指令位移M1=S2,主轴实际位移S2与主轴的指令位移S1之间的差值即为此时两个轴指令位移的差值,将此差值乘以补偿系数K,即得到此时的补偿值C=K*(S1-S2), 将Z轴的指令位移加上此补偿值即得到最后的Z轴指令位移M1=S2+K*(S1-S2)。Through the above principle, we added the adjustment parameter "error compensation coefficient" in the numerical control system, here named K. In each interpolation cycle, since the Z-axis command feed displacement is the same as the actual spindle displacement, the actual spindle displacement and spindle rotation The ratio of the change of the number of weeks is the pitch, so the actual displacement S 2 of the spindle can be calculated from the actual angular displacement of the spindle through this relationship. When the error compensation is not performed, the Z-axis command displacement M 1 =S 2 , the actual spindle displacement S 2 and displacement of the spindle S command and both the difference is the difference between the displacement axis command 1, this difference value is multiplied by the compensation coefficient K, i.e., the compensation value obtained in this case C = K * (S 1 -S 2 ), adding the compensation displacement of the Z axis to this compensation value gives the final Z axis command displacement M 1 =S 2 +K*(S 1 -S 2 ).
步骤204:将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。Step 204: Send the Z-axis command feed displacement to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis to drive the spindle to process the tapped hole.
参阅图6和图7,其中,图6中纵坐标是位移量,单位mm,横坐标是数据点序号。图7中的纵坐标是误差值,单位mm,横坐标是数据点序号。这里仍以加工孔深为10mm的螺纹孔,误差补偿系数K取值为K=0.4为例,从图6中的局部放大部分可以明确的看出,Z轴的实际位置(线条4)和主轴的实际位置(线条2)相比于图3中有明显的靠拢。再参阅图7,此时两个轴的实际位置误差最大值减小到0.04mm左右,相比未进行误差补偿时的0.1mm,进行误差补偿后误差降低了60%,这说明我们加入的补偿是有效的。Referring to Figures 6 and 7, wherein the ordinate in Figure 6 is the displacement amount, in mm, and the abscissa is the data point number. The ordinate in Fig. 7 is the error value in mm, and the abscissa is the data point number. Here, the threaded hole with a hole depth of 10 mm is still processed, and the error compensation coefficient K is taken as K=0.4. As can be clearly seen from the partial enlarged part in Fig. 6, the actual position of the Z axis (line 4) and the main axis The actual position (line 2) is clearly closer to that in Figure 3. Referring to Figure 7, the maximum position error of the two axes is reduced to about 0.04mm, which is 60% lower than the error of 0.1mm when the error compensation is not performed. This shows the compensation we added. It is vaild.
区别于现有技术,本实施方式通过获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;将Z轴指令进给位移发送给Z轴电机驱动器,以使Z轴电机驱动器驱动Z轴进而带动主轴加工待攻螺纹孔。根据主轴和Z轴实际位置的差值与主轴的实际位置和指令位置的差值之间成一定比例的原理,根据这个比例计算出补偿值对Z轴的指令位置进行补偿使得主轴的实际位置和Z轴的实际位置更加靠拢,使在攻螺纹孔加工过程中的加工精度和效率均有所提高。Different from the prior art, the present embodiment obtains the spindle command displacement and transmits the spindle command displacement to the spindle motor driver; uses the spindle displacement sensor to obtain the actual spindle displacement; and uses the difference between the spindle actual displacement and the spindle command displacement to the spindle. The actual displacement is compensated and calculated, and the Z-axis command feed displacement is obtained. The Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis and then drives the spindle to process the tapped hole. According to the principle that the difference between the actual position of the main shaft and the Z-axis is proportional to the difference between the actual position of the main shaft and the command position, the compensation value is calculated according to this ratio to compensate the Z-axis command position so that the actual position of the main shaft and The actual position of the Z-axis is closer together, which improves the machining accuracy and efficiency during the tapping hole machining process.
本实施例中,在步骤201之前,本发明提供的攻螺纹孔的方法还可包括:In this embodiment, before the step 201, the method for tapping the hole provided by the present invention may further include:
步骤200:计算误差补偿系数K。参阅图8,本发明攻螺纹孔的方法中步骤200的具体流程图,具体来说,步骤200可以包括:Step 200: Calculate the error compensation coefficient K. Referring to FIG. 8, a specific flowchart of step 200 in the method for tapping a hole in the present invention, specifically, step 200 may include:
参阅图8,本发明攻螺纹孔的方法另一实施方式的流程图,该方法包括:Referring to FIG. 8, a flow chart of another embodiment of a method for tapping a threaded hole according to the present invention includes:
步骤2001:获取初始误差补偿系数K0,并取K的值为K0Step 2001: Obtain an initial error compensation coefficient K 0 and take the value of K as K 0 .
在一个实施方式中,初始误差补偿系数K0可以是默认值,取值范围为0≤K0≤1,具体数值可以根据经验值来确定;在另一实施方式中,该初始误差补偿系数K0还可以通过如下方式确定: In one embodiment, the initial error compensation coefficient K 0 may be a default value, in the range of 0≤K 0 ≤1, the specific value may be empirically determined value; In another embodiment, the initial error compensation coefficient K 0 can also be determined as follows:
对待攻螺纹孔进行非补偿试加工,获取主轴指令位移S5,并将主轴指令位移S5发送给主轴电机驱动器;Perform uncompensated trial processing on the tapped hole, obtain the spindle command displacement S 5 , and send the spindle command displacement S 5 to the spindle motor driver;
利用主轴位移传感器获取主轴实际位移S6By the spindle shaft displacement sensor acquires the actual displacement S 6;
将Z轴指令进给位移M5发送给Z轴电机驱动器,其中,M5=S6The Z-axis feed command to the Z-axis drive motor to a displacement of M 5, wherein, M 5 = S 6;
利用Z轴位移传感器获取Z轴的实际进给位移M6The Z-axis displacement sensor is used to obtain the actual feed displacement M 6 of the Z-axis;
根据下面的公式计算初始补偿系数K0:K0=(M5-M6)/(S5-M5)。The initial compensation coefficient K 0 is calculated according to the following formula: K 0 = (M 5 - M 6 ) / (S 5 - M 5 ).
步骤2002:对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移。Step 2002: Perform compensation trial processing on the tapped hole, and obtain the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing.
在一个实施方式中,该步骤2002具体可以是:In an embodiment, the step 2002 may specifically be:
获取补偿试加工过程中主轴指令位移S3、并将主轴指令位移S3发送给主轴电机驱动器;Acquiring the spindle command displacement S 3 during the compensation trial machining process, and transmitting the spindle command displacement S 3 to the spindle motor driver;
利用主轴位移传感器获取主轴实际位移S4Using the spindle displacement sensor to obtain the actual spindle displacement S 4 ;
根据如下公式计算得到补偿试加工过程中的Z轴指令进给位移M3:M3=S4+K0*(S3-S4);Calculate the Z-axis command feed displacement M 3 during the compensation trial machining according to the following formula: M 3 = S 4 + K 0 * (S 3 - S 4 );
将指令进给位移M3发送给Z轴电机驱动器;Sending the command feed displacement M 3 to the Z-axis motor drive;
利用Z轴位移传感器获取Z轴实际进给位移M4The Z-axis actual feed displacement M 4 is obtained using a Z-axis displacement sensor.
步骤2003:判断补偿试加工过程中主轴实际位移和Z轴实际进给位移之差是否在预定误差值w范围内,如果在,则进行步骤2004,如果不在,则进行步骤2005。Step 2003: Determine whether the difference between the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing is within a predetermined error value w. If yes, proceed to step 2004, and if not, proceed to step 2005.
W的具体取值可以根据对加工精度的需求来确定,例如可以确定为0.005mm、0.01mm、0.02mm、0.05mm或者其它合适的数值,本实施例优选的取W的值为0.01mm。The specific value of W can be determined according to the demand for processing precision, for example, it can be determined to be 0.005 mm, 0.01 mm, 0.02 mm, 0.05 mm or other suitable values. The preferred value of W in this embodiment is 0.01 mm.
步骤2004:将当前的K值确定为误差补偿系数。Step 2004: Determine the current K value as an error compensation coefficient.
具体地,若初始误差补偿系数K0就令步骤2003中的判断过程满足要求,则将误差补偿系统K的值确定为初始误差补偿系数K0Specifically, if the initial error compensation coefficient K 0 makes the determination process in step 2003 satisfy the requirement, the value of the error compensation system K is determined as the initial error compensation coefficient K 0 .
步骤2005:调整误差补偿系数K的值,并重新进行步骤2002。 Step 2005: Adjust the value of the error compensation coefficient K and repeat step 2002.
其中,在一实施方式中,调整调整误差补偿系数K的值的方法为:Wherein, in an embodiment, the method for adjusting the value of the adjustment error compensation coefficient K is:
根据如下的公式进行计算得到,K=K0+K1,其中,K1根据如下公式计算得到:K1=(S4-M4)/(S3-S4)。Calculated according to the following formula, K = K 0 + K 1 , where K 1 is calculated according to the following formula: K 1 = (S 4 - M 4 ) / (S 3 - S 4 ).
参阅图9和图10,其中,图9中纵坐标是位移量,单位mm,横坐标是数据点序号。图10中的纵坐标是误差值,单位mm,横坐标是数据点序号。这里仍以加工孔深为10mm的螺纹孔为例,误差补偿系数K取值则通过上述的方式调整为K=0.6,从图9中的局部放大部分可以明确的看出,Z轴的实际位置(线条4)和主轴的实际位置(线条2)相比于图6则更加的靠拢,几近重合。再参阅图10,此时两个轴的实际位置误差最大值减小到0.01mm以内,满足攻螺纹孔的同步误差要求。Referring to Figures 9 and 10, wherein the ordinate in Figure 9 is the displacement amount, in mm, and the abscissa is the data point number. The ordinate in Fig. 10 is the error value in mm, and the abscissa is the data point number. For example, the threaded hole with a hole depth of 10 mm is taken as an example. The value of the error compensation coefficient K is adjusted to K=0.6 by the above method. The actual position of the Z axis can be clearly seen from the partial enlarged part in FIG. (Line 4) and the actual position of the main axis (line 2) are closer together than in Figure 6, almost coincident. Referring again to Figure 10, the maximum position error of the two axes is reduced to within 0.01 mm, which satisfies the synchronization error requirements of the tapped hole.
通过上述的方式可以不断地改变获取到的误差补偿系数K的取值,直到主轴的实际位移P*A和Z轴的实际进给位移N之差在预定误差值W范围内,从而增加了上述实施方式攻螺纹的精度,进一步减小误差。Can be continuously changed to the acquired value of the compensation factor K by the above-described manner, until the difference between the actual displacement test N into the actual displacement of the spindle P * A sample of the Z-axis and to within a predetermined error range value W, thus increasing The accuracy of the tapping of the above embodiment is further reduced.
值得注意的是,由于主轴的旋转和Z轴的进给均是一个加速-匀速-减速的过程,因此优选的,在上述补偿试加工过程中,主轴的实际位移S4和Z轴实际进给位移M4均是在主轴指令位移S3在H/3至2H/3之间获取的,其中H为所攻螺纹孔的孔深。同时优选的,在上述非补偿试加工过程中,主轴的实际角位移S6和Z轴实际进给位移M6均是在主轴指令位移S5在H/3至2H/3之间获取的。It is worth noting that since the rotation of the main shaft and the feed of the Z-axis are both an acceleration-constant-deceleration process, it is preferable that the actual displacement of the main shaft S 4 and the Z-axis are actually fed during the above-described compensation trial machining. The displacement M 4 is obtained between the spindle command displacement S 3 between H/3 and 2H/3, where H is the hole depth of the tapped hole. Meanwhile Preferably, in the non-test compensation processing, the actual angular displacement of the spindle S 6 and Z actual feed M 6 are displaced in the displacement S 5 spindle command acquired between H / 3 to 2H / 3 in.
区别于现有技术,本实施方式可以快速定量的描述刚性攻丝时主轴和Z轴的同步误差,并快速通过调整补偿系数的方式实现主轴和Z轴的完全同步。一般只需要进行1到2次刚性攻丝即可得到最后的补偿系数。而且通过本发明的方法可以最大程度的同步主轴和Z轴的实际位置,能够大幅提高刚性攻丝同步性能,从而提高刚性攻丝主轴转速,提高刚性攻丝加工效率。Different from the prior art, the present embodiment can quickly and quantitatively describe the synchronization error of the spindle and the Z-axis during rigid tapping, and quickly realize the complete synchronization of the spindle and the Z-axis by adjusting the compensation coefficient. Generally, only one or two rigid tappings are required to obtain the final compensation coefficient. Moreover, the actual position of the main shaft and the Z-axis can be synchronized to the greatest extent by the method of the present invention, and the rigid tapping synchronization performance can be greatly improved, thereby increasing the rotational speed of the rigid tapping spindle and improving the efficiency of the rigid tapping process.
参阅图11,本发明数控机床一实施方式的结构示意图,该设备包括:主轴1103以及安装于主轴1103上的主轴电机驱动器1105和主轴位移传感器1106,Z轴1102以及安装于Z轴1102上的Z轴电机驱动器1104,以及数控系统1101; 数控系统1101连接主轴电机驱动器1105、主轴位移传感器1106及Z轴电机驱动器1104。Referring to FIG. 11, a schematic structural view of an embodiment of a numerically controlled machine tool according to the present invention includes: a spindle 1103 and a spindle motor driver 1105 and a spindle displacement sensor 1106 mounted on the spindle 1103, a Z-axis 1102, and a Z mounted on the Z-axis 1102. Axis motor driver 1104, and numerical control system 1101; The numerical control system 1101 is connected to a spindle motor driver 1105, a spindle displacement sensor 1106, and a Z-axis motor driver 1104.
数控系统1101用于获取主轴指令位移,并将主轴指令位移发送给主轴电机驱动器1105;以及用于利用主轴位移传感器1106获取主轴实际位移;以及用于利用主轴实际位移与主轴指令位移之间的差值对主轴实际位移进行补偿计算,得到Z轴指令进给位移;以及用于将Z轴指令进给位移发送给Z轴电机驱动器1104,以使Z轴电机驱动器1104驱动Z轴1102进而带动主轴1103加工待攻螺纹孔。The numerical control system 1101 is configured to acquire a spindle command displacement, and send the spindle command displacement to the spindle motor driver 1105; and to obtain the actual spindle displacement by using the spindle displacement sensor 1106; and to utilize the difference between the actual spindle displacement and the spindle command displacement The value is compensated for the actual displacement of the spindle to obtain the Z-axis command feed displacement; and the Z-axis command feed displacement is sent to the Z-axis motor driver 1104, so that the Z-axis motor driver 1104 drives the Z-axis 1102 to drive the spindle 1103. Machining the tapped hole to be tapped.
具体地,所述数控系统1101具体利用如下公式对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移:M1=S2+K*(S1-S2),其中M1为Z轴指令进给位移,S1为主轴指令位移,S2为主轴实际位移,K为预先确定的补偿系数。Specifically, the numerical control system 1101 specifically calculates the actual displacement of the spindle by using the following formula to obtain a Z-axis command feed displacement: M 1 =S 2 +K*(S 1 -S 2 ), where M 1 is Z axis command feed displacement, S 1 is the spindle command displacement, S 2 is the actual spindle displacement, and K is the predetermined compensation coefficient.
在另一实施方式中,数控系统1101还用于获取初始误差补偿系数K0,并取K的值为K0;对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移;判断补偿试加工过程中主轴实际位移和Z轴实际进给位移之差是否在预定误差值W范围内,如果在,则将误差补偿系数K的值确定为初始误差补偿系数K0,如果不在,则调整误差补偿系数K的值,并返回对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移。In another embodiment, the numerical control system 1101 is further configured to obtain an initial error compensation coefficient K 0 and take the value of K as K 0 ; perform a trial processing on the tapped hole, and obtain an actual displacement of the spindle during the compensation trial process. And the actual feed displacement of the Z axis; determine whether the difference between the actual spindle displacement and the Z axis actual feed displacement during the compensation trial machining is within a predetermined error value W, and if so, the value of the error compensation coefficient K is determined as the initial error The compensation coefficient K 0 , if not, adjusts the value of the error compensation coefficient K, and returns to the tapping of the tapped hole to perform the trial machining, and obtains the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial machining.
其中,数控系统1101还用于获取补偿试加工过程中的主轴指令位移S3、并将所述主轴指令位移S3发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移S4;根据如下公式计算得到补偿试加工过程中的Z轴指令进给位移M3:M3=S4+K0*(S3-S4);将所述指令进给位移M3发送给Z轴电机驱动器;利用Z轴位移传感器获取Z轴实际进给位移M4The numerical control system 1101 is further configured to acquire a spindle command displacement S 3 during the compensation trial machining process, and send the spindle command displacement S 3 to the spindle motor driver; use the spindle displacement sensor to obtain the spindle actual displacement S 4 ; according to the following formula Calculating the Z-axis command feed displacement M 3 during the trial machining process: M 3 = S 4 + K 0 * (S 3 - S 4 ); sending the command feed displacement M 3 to the Z-axis motor driver; The Z-axis actual feed displacement M 4 is obtained using a Z-axis displacement sensor.
其中,数控系统1101还用于对待攻螺纹孔进行非补偿试加工,获取主轴指令位移S5,并将所述主轴指令位移S5发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移S6;将Z轴指令进给位移M5发送给Z轴电机驱动器, 其中M5=S6;利用Z轴位移传感器获取Z轴的实际进给位移M6;根据下面的公式计算初始补偿系数K0:K0=(M5-M6)/(S5-M5)。The numerical control system 1101 is further configured to perform uncompensated trial processing on the tapped hole, obtain the spindle command displacement S 5 , and send the spindle command displacement S 5 to the spindle motor driver; use the spindle displacement sensor to obtain the spindle actual displacement S 6 The Z-axis command feed displacement M 5 is sent to the Z-axis motor drive, where M 5 =S 6 ; the Z-axis displacement sensor is used to obtain the actual feed displacement M 6 of the Z-axis; the initial compensation coefficient K 0 is calculated according to the following formula ; : K 0 = (M 5 - M 6 ) / (S 5 - M 5 ).
其中,数控系统1101还用于在根据如下的公式计算得到调整后的误差补偿系数K:K=K0+K1;其中,K1根据如下公式计算得到:K1=(S4-M4)/(S3-S4)。Wherein the numerical control system 1101 is further configured to calculate the error compensation coefficient adjusted according to the following formula K: K = K 0 + K 1; wherein, K 1 is calculated according to the formula: K 1 = (S 4 -M 4 ) / (S 3 - S 4 ).
值得注意的是,由于主轴的旋转和Z轴的进给均是一个加速-匀速-减速的过程,因此在上述补偿试加工过程中,主轴的实际位移S4和Z轴实际进给位移M4均是在主轴指令位移S3在H/3至2H/3之间获取的,其中H为所攻螺纹孔的孔深。同时在上述非补偿试加工过程中,主轴的实际角位移S6和Z轴实际进给位移M6均是在主轴指令位移S5在H/3至2H/3之间获取的。It is worth noting that since the rotation of the main shaft and the feed of the Z-axis are both an acceleration-constant-deceleration process, the actual displacement S 4 of the main shaft and the actual feed displacement of the Z-axis during the above-mentioned compensation trial machining M 4 Both are obtained between the spindle command displacement S 3 between H/3 and 2H/3, where H is the hole depth of the tapped hole. At the same time, in the above uncompensated trial machining process, the actual angular displacement S 6 of the main shaft and the actual feed displacement M 6 of the Z-axis are obtained between the spindle command displacement S 5 and H/3 to 2H/3.
另外,所述主轴位移传感器为安装在主轴上的旋转编码器,所述旋转编码器用于测量主轴的实际角位移;所述数控系统利用所述主轴的实际角位移计算得到主轴实际位移=主轴的实际角位移*待攻螺纹孔的螺距。In addition, the spindle displacement sensor is a rotary encoder mounted on a spindle, and the rotary encoder is used to measure the actual angular displacement of the spindle; the numerical control system calculates the actual displacement of the spindle by using the actual angular displacement of the spindle. Actual angular displacement * Pitch of the tapped hole to be tapped.
该实施方式是基于以上攻螺纹孔的方法的实施方式的设备,其实施方式类似,这里不再赘述。This embodiment is an apparatus based on the above embodiment of the method of tapping a hole, and its implementation is similar, and will not be described again here.
区别于现有技术,本实施方式根据主轴和Z轴实际位置的差值与主轴的实际位置和指令位置的差值之间成一定比例的原理,根据这个比例计算出补偿值对Z轴的指令位置进行补偿使得主轴的实际位置和Z轴的实际位置更加靠拢,使在攻螺纹孔加工过程中的加工精度和效率均有所提高。Different from the prior art, the present embodiment calculates a compensation value to the Z-axis according to the ratio of the difference between the actual position of the main shaft and the Z-axis and the difference between the actual position of the main shaft and the command position. The position compensation makes the actual position of the main shaft and the actual position of the Z axis closer together, so that the machining accuracy and efficiency during the tapping hole processing are improved.
参阅图12,为解决上述技术问题,本发明采用的另一个技术方案是:提供一种数控加工装置1200,包括处理器1201、存储器1202、输入装置1203以及输出装置1204;其中,处理器1201、存储器1202、输入装置1203以及输出装置1204均可以是一个或多个,图12中以一个为例,它们可以通过总线连接。Referring to FIG. 12, in order to solve the above technical problem, another technical solution adopted by the present invention is to provide a numerical control processing apparatus 1200, including a processor 1201, a memory 1202, an input device 1203, and an output device 1204. The memory 1202, the input device 1203, and the output device 1204 may each be one or more, and one of them is exemplified in FIG. 12, and they may be connected through a bus.
具体地,存储器1102用于存储操作系统、计算机程序以及其他的必要程序;输入装置1203用于接收用户输入指令(如通过键盘、鼠标或触摸屏等装置接收用户指令)或其他装置(如数控车床)发送的数据或命令;输出装置1204用于向其他设备或装置(如显示屏或数控车床)发送数据或命令。 Specifically, the memory 1102 is used to store an operating system, a computer program, and other necessary programs; the input device 1203 is configured to receive user input instructions (such as receiving user instructions through a device such as a keyboard, a mouse, or a touch screen) or other devices (such as a CNC lathe). Data or commands sent; output device 1204 is used to send data or commands to other devices or devices, such as display screens or CNC lathes.
处理器1201用于执行如下步骤:获取主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移;将所述Z轴指令进给位移发送给Z轴电机驱动器,以使所述Z轴电机驱动Z轴带动主轴加工所述待攻螺纹孔。The processor 1201 is configured to: perform a spindle command displacement, and send the spindle command displacement to a spindle motor driver; use a spindle displacement sensor to obtain a spindle actual displacement; and use the spindle actual displacement and the spindle command displacement The difference is calculated by compensating the actual displacement of the spindle to obtain a Z-axis command feed displacement; the Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor drives the Z-axis to drive the spindle machining The thread to be tapped.
其中,处理器1021具体用于利用如下公式对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移:M1=S2+K*(S1-S2),其中M1为Z轴指令进给位移,S1为主轴指令位移,S2为主轴实际位移,K为预先确定的补偿系数。The processor 1021 is specifically configured to perform compensation calculation on the actual displacement of the spindle by using the following formula to obtain a Z-axis command feed displacement: M 1 =S 2 +K*(S 1 -S 2 ), where M 1 is Z The axis command feeds the displacement, S 1 is the spindle command displacement, S 2 is the actual spindle displacement, and K is the predetermined compensation coefficient.
处理器1201还用于执行如下步骤:获取初始误差补偿系数K0,并取K的值为K0;对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移;判断补偿试加工过程中主轴实际位移和Z轴实际进给位移之差是否在预定误差值W范围内,如果在,则将误差补偿系数K的值确定为初始误差补偿系数K0,如果不在,则调整误差补偿系数K的值,并返回对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移。The processor 1201 is further configured to: obtain an initial error compensation coefficient K 0 , and take a value of K as K 0 ; perform a trial processing on the tapped hole, and obtain an actual spindle displacement and a Z-axis during the compensation trial processing. Actual feed displacement; determine whether the difference between the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial machining is within the predetermined error value W. If so, the value of the error compensation coefficient K is determined as the initial error compensation coefficient K. 0, if not, adjusting the value of the compensation factor K, and returns the treated tapped hole compensate trial machining, and obtain the actual displacement of the spindle and the Z-axis offset trial machining process actual feed displacement.
其中,处理器1201还用于执行如下步骤:获取补偿试加工过程中的主轴指令位移S3、并将所述主轴指令位移S3发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移S4;根据如下公式计算得到补偿试加工过程中的Z轴指令进给位移M3:M3=S4+K0*(S3-S4);将所述指令进给位移M3发送给Z轴电机驱动器;利用Z轴位移传感器获取Z轴实际进给位移M4The processor 1201 is further configured to: perform a process of acquiring a spindle command displacement S 3 during the compensation trial machining process, and transmitting the spindle command displacement S 3 to the spindle motor driver; and acquiring the spindle actual displacement S 4 by using the spindle displacement sensor Calculate the Z-axis command feed displacement M 3 during the compensation trial machining according to the following formula: M 3 = S 4 + K 0 * (S 3 - S 4 ); send the command feed displacement M 3 to Z Axis motor driver; Z-axis actual feed displacement M 4 is obtained by Z-axis displacement sensor.
其中,处理器1201还用于执行如下步骤:对待攻螺纹孔进行非补偿试加工,获取主轴指令位移S5,并将所述主轴指令位移S5发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移S6;将Z轴指令进给位移M5发送给Z轴电机驱动器,其中M5=S6;利用Z轴位移传感器获取Z轴的实际进给位移M6;根据下面的公式计算初始补偿系数K0:K0=(M5-M6)/(S5-M5)。The processor 1201 is further configured to perform the following steps: performing uncompensated trial processing on the tapped hole, acquiring the spindle command displacement S 5 , and transmitting the spindle command displacement S 5 to the spindle motor driver; acquiring the spindle by using the spindle displacement sensor Actual displacement S 6 ; The Z-axis command feed displacement M 5 is sent to the Z-axis motor drive, where M 5 =S 6 ; the Z-axis displacement sensor is used to obtain the actual feed displacement M 6 of the Z-axis; the initial calculation is performed according to the following formula The compensation coefficient K 0 : K 0 = (M 5 - M 6 ) / (S 5 - M 5 ).
其中,处理器1201还用于执行如下步骤:在根据如下的公式计算得到调整 后的误差补偿系数K:K=K0+K1;其中,K1根据如下公式计算得到:K1=(S4-M4)/(S3-S4)。Wherein, the processor 1201 is further configured to perform the steps of: calculating error compensation coefficient adjusted according to the following formula K: K = K 0 + K 1; wherein, K 1 is calculated according to the formula: K 1 = (S 4 -M 4 )/(S 3 -S 4 ).
在本发明所提供的几个实施方式中,应该理解到,所揭露的方法以及终端,可以通过其它的方式实现。例如,以上所描述的装置实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。In the several embodiments provided by the present invention, it should be understood that the disclosed method and terminal may be implemented in other manners. For example, the device implementations described above are merely illustrative. For example, the division of the modules or units is only a logical function division. In actual implementation, there may be another division manner, for example, multiple units or components may be used. Combinations can be integrated into another system, or some features can be ignored or not executed.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。The units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the present embodiment.
另外,在本发明各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
在其他实施方式中,本发明还提供一种计算机存储介质,该存储介质用于存储计算机程序代码,该计算机程序代码被处理器执行时使得处理器执行一种加工方法,该加工方法包括如下步骤:In other embodiments, the present invention also provides a computer storage medium for storing computer program code, when executed by a processor, causes the processor to perform a processing method, the processing method comprising the following steps :
获取主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器;利用主轴位移传感器获取主轴实际位移;利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移;将所述Z轴指令进给位移发送给Z轴电机驱动器,以使所述Z轴电机驱动Z轴带动主轴加工所述待攻螺纹孔。Obtaining a spindle command displacement, and transmitting the spindle command displacement to a spindle motor driver; acquiring a spindle actual displacement by using a spindle displacement sensor; and utilizing a difference between the spindle actual displacement and the spindle command displacement to actually shift the spindle The compensation calculation is performed to obtain a Z-axis command feed displacement; the Z-axis command feed displacement is sent to the Z-axis motor driver, so that the Z-axis motor drives the Z-axis to drive the spindle to machine the to-be-trimmed hole.
上述其他实施方式中的集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该 技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。The integrated units of the other embodiments described above, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium. Based on such understanding, the technical solution of the present invention is essential or the part contributing to the prior art or All or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including instructions for causing a computer device (which may be a personal computer, a server, a network device, etc.) or A processor performs all or part of the steps of the method of various embodiments of the present invention. The foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。 The above is only the embodiment of the present invention, and is not intended to limit the scope of the invention, and the equivalent structure or equivalent process transformations made by the description of the invention and the drawings are directly or indirectly applied to other related technologies. The fields are all included in the scope of patent protection of the present invention.

Claims (14)

  1. 一种攻螺纹孔的方法,其特征在于,包括:A method for tapping a threaded hole, comprising:
    获取主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器;Obtaining a spindle command displacement and transmitting the spindle command displacement to the spindle motor driver;
    利用主轴位移传感器获取主轴实际位移;The spindle displacement sensor is used to obtain the actual displacement of the spindle;
    利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移;Using the difference between the actual displacement of the spindle and the displacement of the spindle command to compensate the actual displacement of the spindle to obtain a Z-axis command feed displacement;
    将所述Z轴指令进给位移发送给Z轴电机驱动器,以使所述Z轴电机驱动器驱动所述Z轴进而带动所述主轴加工所述待攻螺纹孔。And transmitting the Z-axis command feed displacement to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis to drive the spindle to machine the to-be-trimmed hole.
  2. 根据权利要求1所述的方法,其特征在于,所述利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移包括:The method according to claim 1, wherein said calculating a Z-axis command feed displacement by using a difference between said spindle actual displacement and said spindle command displacement to compensate said spindle actual displacement :
    利用如下公式对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移:The actual displacement of the spindle is compensated by the following formula to obtain the Z-axis command feed displacement:
    M1=S2+K*(S1-S2),其中M1为Z轴指令进给位移,S1为主轴指令位移,S2为主轴实际位移,K为预先确定的补偿系数。M 1 =S 2 +K*(S 1 -S 2 ), where M 1 is the Z-axis command feed displacement, S 1 is the spindle command displacement, S 2 is the spindle actual displacement, and K is the predetermined compensation coefficient.
  3. 根据权利要求2所述的方法,其特征在于,在所述获取所述主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器之前,所述方法还包括:The method of claim 2, wherein before the acquiring the spindle command displacement and transmitting the spindle command displacement to the spindle motor driver, the method further comprises:
    获取初始误差补偿系数K0,并取K的值为K0Obtaining an initial error compensation coefficient K 0, K and taking the value of K is 0;
    对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移;Compensate the trial tapping of the tapped hole, and obtain the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing;
    判断补偿试加工过程中的主轴实际位移和Z轴实际进给位移之差是否在预定误差值W范围内,如果在,则将误差补偿系数K的值确定为所述初始误差补偿系数K0,如果不在,则调整误差补偿系数K的值,并返回所述对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移。Determining whether the difference between the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing is within a predetermined error value W, and if so, determining the value of the error compensation coefficient K as the initial error compensation coefficient K 0 , If not, adjust the value of the error compensation coefficient K, and return to the tapping hole for compensation trial processing, and obtain the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial machining.
  4. 根据权利要求3所述的方法,其特征在于,所述对待攻螺纹孔进行补偿试 加工,并获取补偿试加工过程中的主轴的实际位移和Z轴实际进给位移包括:The method according to claim 3, wherein the compensation for the tapped hole is compensated Machining and obtaining the actual displacement of the spindle during the trial machining process and the actual Z-axis feed displacement include:
    获取补偿试加工过程中的主轴指令位移S3、并将所述主轴指令位移S3发送给主轴电机驱动器;Get command compensation trial machining spindle during the displacement of S 3, and S 3 of the spindle displacement instruction to a spindle motor driver;
    利用主轴位移传感器获取主轴实际位移S4Using the spindle displacement sensor to obtain the actual spindle displacement S 4 ;
    根据如下公式计算得到补偿试加工过程中的Z轴指令进给位移M3:M3=S4+K0*(S3-S4);Calculate the Z-axis command feed displacement M 3 during the compensation trial machining according to the following formula: M 3 = S 4 + K 0 * (S 3 - S 4 );
    将所述指令进给位移M3发送给Z轴电机驱动器;Sending the command feed displacement M 3 to the Z-axis motor driver;
    利用Z轴位移传感器获取Z轴实际进给位移M4The Z-axis actual feed displacement M 4 is obtained using a Z-axis displacement sensor.
  5. 根据权利要求4所述的方法,其特征在于,所述补偿试加工过程中的主轴实际位移S4和Z轴实际进给位移M4均是在主轴指令位移S3在H/3至2H/3之间获取的,其中H为所攻螺纹孔的孔深。The method according to claim 4, wherein the actual spindle displacement S 4 and the Z-axis actual feed displacement M 4 during the compensation trial machining are both at the spindle command displacement S 3 at H/3 to 2H/ Obtained between 3, where H is the hole depth of the tapped hole.
  6. 根据权利要求3所述的方法,其特征在于,所述获取初始误差补偿系数K0包括:The method according to claim 3, wherein said obtaining an initial error compensation coefficient K 0 comprises:
    对待攻螺纹孔进行非补偿试加工,获取主轴指令位移S5,并将所述主轴指令位移S5发送给主轴电机驱动器;Performing uncompensated trial processing on the tapped hole, obtaining the spindle command displacement S 5 , and transmitting the spindle command displacement S 5 to the spindle motor driver;
    利用主轴位移传感器获取主轴实际位移S6Using the spindle displacement sensor to obtain the actual spindle displacement S 6 ;
    将Z轴指令进给位移M5发送给Z轴电机驱动器,其中M5=S6The Z axis command feed displacement M 5 is sent to the Z axis motor driver, where M 5 =S 6 ;
    利用Z轴位移传感器获取Z轴的实际进给位移M6The Z-axis displacement sensor is used to obtain the actual feed displacement M 6 of the Z-axis;
    根据下面的公式计算初始补偿系数K0:K0=(M5-M6)/(S5-M5)。The initial compensation coefficient K 0 is calculated according to the following formula: K 0 = (M 5 - M 6 ) / (S 5 - M 5 ).
  7. 根据权利要求6所述的方法,其特征在于,所述非补偿试加工过程中的主轴实际位移S6和Z轴实际进给位移M6均是在主轴指令位移S5在H/3至2H/3之间获取的,其中H为所攻螺纹孔的孔深。The method according to claim 6, wherein said non-actual displacement spindle S 6 and Z-axis offset during the actual trial machining feed displacements M 6 are displaced in the spindle command in S 5 H / 3 to 2H Obtained between /3, where H is the hole depth of the tapped hole.
  8. 根据权利要求4所述的方法,其特征在于,所述调整误差补偿系数K的值包括:The method according to claim 4, wherein the value of the adjustment error compensation coefficient K comprises:
    根据如下的公式计算得到调整后的误差补偿系数K:The adjusted error compensation coefficient K is calculated according to the following formula:
    K=K0kK1;其中,所述K1根据如下公式计算得到:K1=(S4-M4)/(S3-S4)。 K = K 0 kK 1 ; wherein K 1 is calculated according to the following formula: K 1 = (S 4 - M 4 ) / (S 3 - S 4 ).
  9. 根据权利要求1所述的方法,其特征在于,所述利用主轴位移传感器获取主轴实际位移包括:利用安装在所述主轴上的旋转编码器测量所述主轴的实际角位移,从而计算得到主轴实际位移=主轴的实际角位移*待攻螺纹孔的螺距。The method according to claim 1, wherein the obtaining the actual displacement of the spindle by using the spindle displacement sensor comprises: measuring the actual angular displacement of the spindle by using a rotary encoder mounted on the spindle, thereby calculating the actual spindle Displacement = actual angular displacement of the spindle * pitch of the tapped hole to be tapped.
  10. 一种数控机床,其特征在于,包括:主轴以及安装于所述主轴上的主轴电机驱动器和主轴位移传感器,Z轴以及安装于所述Z轴上的Z轴电机驱动器,以及数控系统;A numerical control machine tool, comprising: a spindle and a spindle motor driver and a spindle displacement sensor mounted on the spindle, a Z-axis and a Z-axis motor driver mounted on the Z-axis, and a numerical control system;
    所述数控系统连接所述主轴电机驱动器和Z轴电机驱动器;The numerical control system is connected to the spindle motor driver and the Z-axis motor driver;
    所述数控系统用于获取主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器;以及用于利用所述主轴位移传感器获取主轴实际位移;以及用于利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移;以及用于将所述Z轴指令进给位移发送给Z轴电机驱动器,以使所述Z轴电机驱动器驱动所述Z轴进而带动所述主轴加工所述待攻螺纹孔。The numerical control system is configured to acquire a spindle command displacement, and send the spindle command displacement to a spindle motor driver; and to obtain an actual spindle displacement by using the spindle displacement sensor; and to utilize the spindle actual displacement and the The difference between the spindle command displacements is compensated for the actual displacement of the spindle to obtain a Z-axis command feed displacement; and the Z-axis command feed displacement is sent to the Z-axis motor driver to make the Z The shaft motor driver drives the Z axis to drive the spindle to machine the thread to be tapped.
  11. 根据权利要求10所述的方法,其特征在于,所述数控系统具体用于利用如下公式对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移:The method according to claim 10, wherein the numerical control system is specifically configured to perform compensation calculation on the actual displacement of the spindle by using the following formula to obtain a Z-axis command feed displacement:
    M1=S2+K*(S1-S2),其中M1为Z轴指令进给位移,S1为主轴指令位移,S2为主轴实际位移,K为预先确定的补偿系数。M 1 =S 2 +K*(S 1 -S 2 ), where M 1 is the Z-axis command feed displacement, S 1 is the spindle command displacement, S 2 is the spindle actual displacement, and K is the predetermined compensation coefficient.
  12. 根据权利要求11所述的方法,其特征在于,所述数控系统还用于:The method of claim 11 wherein said numerical control system is further configured to:
    获取初始误差补偿系数K0,并取K的值为K0Obtain an initial error compensation coefficient K 0 and take the value of K as K 0 ;
    对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移;Compensate the trial tapping of the tapped hole, and obtain the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing;
    判断补偿试加工过程中的主轴实际位移和Z轴实际进给位移之差是否在预定误差值W范围内,如果在,则将误差补偿系数K的值确定为所述初始误差补偿系数K0,如果不在,则调整误差补偿系数K的值,并返回所述对待攻螺纹孔进行补偿试加工,并获取补偿试加工过程中的主轴实际位移和Z轴实际进给位移的步骤。 Determining whether the difference between the actual spindle displacement and the Z-axis actual feed displacement during the compensation trial processing is within a predetermined error value W, and if so, determining the value of the error compensation coefficient K as the initial error compensation coefficient K 0 , If not, adjust the value of the error compensation coefficient K, and return to the tapping hole to perform the compensation trial processing, and obtain the steps of compensating the actual spindle displacement and the Z-axis actual feed displacement during the trial machining.
  13. 根据权利要求10所述的数控机床,其特征在于,所述主轴位移传感器为安装在主轴上的旋转编码器,所述旋转编码器用于测量主轴的实际角位移;所述数控系统利用所述主轴的实际角位移计算得到主轴实际位移=主轴的实际角位移*待攻螺纹孔的螺距。A numerically controlled machine tool according to claim 10, wherein said spindle displacement sensor is a rotary encoder mounted on a spindle, said rotary encoder is for measuring an actual angular displacement of the spindle; said numerical control system utilizing said spindle The actual angular displacement is calculated to obtain the actual displacement of the spindle = the actual angular displacement of the spindle * the pitch of the tapped hole to be tapped.
  14. 一种数控加工装置,包括处理器、存储器、输入装置以及输出装置;其中,所述处理器用于执行如下步骤:A numerical control processing device includes a processor, a memory, an input device, and an output device; wherein the processor is configured to perform the following steps:
    获取主轴指令位移,并将所述主轴指令位移发送给主轴电机驱动器;Obtaining a spindle command displacement and transmitting the spindle command displacement to the spindle motor driver;
    利用主轴位移传感器获取主轴实际位移;The spindle displacement sensor is used to obtain the actual displacement of the spindle;
    利用所述主轴实际位移与所述主轴指令位移之间的差值对所述主轴实际位移进行补偿计算,得到Z轴指令进给位移;Using the difference between the actual displacement of the spindle and the displacement of the spindle command to compensate the actual displacement of the spindle to obtain a Z-axis command feed displacement;
    将所述Z轴指令进给位移发送给Z轴电机驱动器,以使所述Z轴电机驱动器驱动所述Z轴进而带动所述主轴加工所述待攻螺纹孔。 And transmitting the Z-axis command feed displacement to the Z-axis motor driver, so that the Z-axis motor driver drives the Z-axis to drive the spindle to machine the to-be-trimmed hole.
PCT/CN2015/099193 2015-12-28 2015-12-28 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device WO2017113055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580080138.XA CN107615195B (en) 2015-12-28 2015-12-28 Method for tapping threaded hole, numerical control machine tool and numerical control machining device
PCT/CN2015/099193 WO2017113055A1 (en) 2015-12-28 2015-12-28 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099193 WO2017113055A1 (en) 2015-12-28 2015-12-28 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device

Publications (1)

Publication Number Publication Date
WO2017113055A1 true WO2017113055A1 (en) 2017-07-06

Family

ID=59224033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099193 WO2017113055A1 (en) 2015-12-28 2015-12-28 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device

Country Status (2)

Country Link
CN (1) CN107615195B (en)
WO (1) WO2017113055A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3756824A4 (en) * 2018-03-26 2021-10-13 Siemens Aktiengesellschaft Turning thread automatic diagnosing method and system, data processing system, and storage medium
CN116795041A (en) * 2023-08-16 2023-09-22 通用技术集团机床工程研究院有限公司 Debugging data processing method and device and related equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112621198B (en) * 2020-12-16 2022-05-24 歌尔光学科技有限公司 Screw locking machine control method, device, equipment and storage medium
CN113031525B (en) * 2021-03-03 2022-06-21 福州大学 Polynomial acceleration and deceleration motion control method and device applied to numerical control machining

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632610A (en) * 1986-06-21 1988-01-07 Fuaasuto Giken:Kk Thread cutting control method
JPS63245325A (en) * 1987-03-31 1988-10-12 Brother Ind Ltd Thread cutting device
JPS6458425A (en) * 1987-08-28 1989-03-06 Brother Ind Ltd Screw working device
JP2003181722A (en) * 2001-12-18 2003-07-02 Toyoda Mach Works Ltd Tapping machining device and tapping machining method
CN1892523A (en) * 2005-07-08 2007-01-10 发那科株式会社 Servo controller
CN101261509A (en) * 2007-03-08 2008-09-10 发那科株式会社 Servo controller
CN104698974A (en) * 2015-02-11 2015-06-10 北京配天技术有限公司 Numeric control machine tool and debugging method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2629728B2 (en) * 1987-08-28 1997-07-16 ブラザー工業株式会社 Screw processing equipment
JP2005216135A (en) * 2004-01-30 2005-08-11 Fanuc Ltd Threading/tapping controller
CN201437172U (en) * 2009-07-28 2010-04-14 广西玉柴机器股份有限公司 Tapping device for machine tool
CN101758422B (en) * 2009-12-10 2011-01-26 华中科技大学 Detection analysis device for technical indexes of numerical control device
CN101844317B (en) * 2010-03-25 2011-12-14 合肥工业大学 Device and method for correcting transmission error of precise numerical control machine closed loop servo system
JP5325949B2 (en) * 2011-08-08 2013-10-23 ファナック株式会社 Tapping machine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632610A (en) * 1986-06-21 1988-01-07 Fuaasuto Giken:Kk Thread cutting control method
JPS63245325A (en) * 1987-03-31 1988-10-12 Brother Ind Ltd Thread cutting device
JPS6458425A (en) * 1987-08-28 1989-03-06 Brother Ind Ltd Screw working device
JP2003181722A (en) * 2001-12-18 2003-07-02 Toyoda Mach Works Ltd Tapping machining device and tapping machining method
CN1892523A (en) * 2005-07-08 2007-01-10 发那科株式会社 Servo controller
CN101261509A (en) * 2007-03-08 2008-09-10 发那科株式会社 Servo controller
CN104698974A (en) * 2015-02-11 2015-06-10 北京配天技术有限公司 Numeric control machine tool and debugging method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3756824A4 (en) * 2018-03-26 2021-10-13 Siemens Aktiengesellschaft Turning thread automatic diagnosing method and system, data processing system, and storage medium
US11550294B2 (en) 2018-03-26 2023-01-10 Siemens Aktiengesellschaft Automatic diagnosis method and system for thread turning, data processing system and storage medium
CN116795041A (en) * 2023-08-16 2023-09-22 通用技术集团机床工程研究院有限公司 Debugging data processing method and device and related equipment
CN116795041B (en) * 2023-08-16 2023-12-08 通用技术集团机床工程研究院有限公司 Debugging data processing method and device and related equipment

Also Published As

Publication number Publication date
CN107615195A (en) 2018-01-19
CN107615195B (en) 2021-02-26

Similar Documents

Publication Publication Date Title
US9513619B2 (en) Numerical control device which performs tapping operation by using a main spindle and a feed shaft
WO2017113055A1 (en) Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device
JP4581096B2 (en) Friction compensation method, friction compensator, and motor control device
US9846428B2 (en) Controller for spindle motor
US7656106B2 (en) Servo controller
US8299743B2 (en) Machine tool and controlling method thereof
JP3703664B2 (en) Backlash correction device
US9715225B2 (en) Numerical controller for smoothing tool path in operation based on table format data
US9304504B2 (en) Servo controller for reducing interference between axes in machining
Kato et al. Analysis of circular trajectory equivalent to cone-frustum milling in five-axis machining centers using motion simulator
CN105320059B (en) The control device of servomotor
US8970156B2 (en) Path display apparatus considering correction data
US9298177B2 (en) Machine tool and control method therefor
WO2019043852A1 (en) Numerical control system and motor controller
JPS6116568B2 (en)
JP6892070B2 (en) How to adjust control parameters of machine tool control device, how to machine work and machine tool
JP2005313280A (en) Numerical control device
KR20130042140A (en) Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool
JPWO2004087359A1 (en) Threading control method and apparatus
KR102182826B1 (en) Method for Compensating Vertical Angle Error by Thermal Deformation of Machine Tool and Numerical Control Apparatus
JP2008041011A (en) Position correcting method in machine tool
JPS5981705A (en) Compensating method of nc machine tool
TW201631427A (en) Correction system and method for thermal displacement of CNC machine tool
JP2016038674A (en) Correction value computing method and correction value computing program for machine tool
CN110587378B (en) Numerical control system machining online detection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911687

Country of ref document: EP

Kind code of ref document: A1