JPS63245325A - Thread cutting device - Google Patents

Thread cutting device

Info

Publication number
JPS63245325A
JPS63245325A JP62080524A JP8052487A JPS63245325A JP S63245325 A JPS63245325 A JP S63245325A JP 62080524 A JP62080524 A JP 62080524A JP 8052487 A JP8052487 A JP 8052487A JP S63245325 A JPS63245325 A JP S63245325A
Authority
JP
Japan
Prior art keywords
feed
command value
deviation
rotation
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62080524A
Other languages
Japanese (ja)
Other versions
JPH07112646B2 (en
Inventor
Takenori Matsumoto
剛典 松本
Koichi Asakura
朝倉 功市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP62080524A priority Critical patent/JPH07112646B2/en
Priority to KR1019880001398A priority patent/KR930001093B1/en
Priority to US07/174,508 priority patent/US4879660A/en
Priority to DE3811183A priority patent/DE3811183C2/en
Publication of JPS63245325A publication Critical patent/JPS63245325A/en
Publication of JPH07112646B2 publication Critical patent/JPH07112646B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the followability of a spindle rotational position to a feed position so better and perform highly precision high speed thread cutting by means of a tap, by installing a device which operates a rotational command value from a feed deviation on the basis of a screw pitch, and making a rotating motor perform synchronized operation. CONSTITUTION:A variation E (Z) is operated by a deviation counter 23 with a feed command value Z out of an input unit 21 and a feed position pulse (z) of a pulse generator 9, while a speed signal v (z) out of a tachometer generator 8 is inputted and a servoamplifier 24 drives a feed motor 7. A rotational command value R is operated from the deviation E (Z) to be inputted into a computing element 25 and a pitch command value P out of the input unit 21. A rotation compensating value r (z) equivalent to a feed rate (z) is operated by a computing element 29 with the feed position pulse (z) and the pitch command value P, and a rotational deviation E (r) is operated by a deviation counter 28 with a rotational position pulse (r) of a pulse generator 14, then the rotational command value R is compensated by an adder 26, a rotational command value R (E) is outputted to a servoamplifier 27, and a speed signal v (r) of a tacho- generator 13 is inputted, thus a rotating motor 12 is driven.

Description

【発明の詳細な説明】 「産業上の利用分葺」 本発明はタップ盤に代表されるねし加工装置に関する。[Detailed description of the invention] "Industrial use partition roof" TECHNICAL FIELD The present invention relates to a threading device typified by a tap board.

「従来の技術」 従来、NC装置24用したねじ加工装置におけるタッピ
ング動作の制御は、ftu工しよっとするねじのピッチ
に合わせて送り↑指令と回転指令とをNC装置内で生成
するのみで行い、送り七〜りと主軸回転モータとはそれ
ぞれ独立のサーボ系として制御されていた。そして、回
転モータの反転時などに生ずる送り量と回転社とのずれ
は、タップ工具と主軸との間にタッパ−を介在させ、そ
のタッパーの機械的な伸縮により吸収していた。このた
め、ねじ加工の速度がタッパ−の性能により制限された
り、タッパ−の伸縮による力のためねじの精度が低下し
たりするという問題点があった。
``Prior Art'' Conventionally, tapping operation control in a screw machining device using an NC device 24 involves simply generating a feed ↑ command and a rotation command within the NC device in accordance with the pitch of the screw to be ftu machined. The feed speed and spindle rotation motor were each controlled as independent servo systems. A tapper is interposed between the tap tool and the main shaft, and the deviation between the feed amount and the rotating shaft, which occurs when the rotary motor is reversed, is absorbed by mechanical expansion and contraction of the tapper. For this reason, there have been problems in that the speed of thread machining is limited by the performance of the tapper, and the precision of the thread is reduced due to the force caused by expansion and contraction of the tapper.

そこで、主軸の実際の回転基を検出し、その検出された
回転基に従って送りモータを駆動するもの(特1m昭5
6 33249号)とか、実際ノ送す量を検出し、その
送り足に従って回転モータを駆動するもの(特開昭60
−155319号)など、送りモータと回転モータとを
同期させて制御する装置が提案されているにれらの装置
は送りと回転との同期精度が高いため、はとんどの場合
タッパ−を用いることなくねじ加工を行うことができる
Therefore, a device that detects the actual rotation base of the spindle and drives the feed motor according to the detected rotation base (Special 1m
6 33249), or one that detects the actual feed amount and drives a rotary motor according to the feed rate (Japanese Patent Laid-Open No. 60
Devices that synchronize and control the feed motor and rotation motor have been proposed, such as No. 155319).These devices have high synchronization accuracy between feed and rotation, so in most cases a tapper is used. Thread processing can be performed without any problems.

「発明が解決しようとする問題点」 しかしながら、近年、加工時間の短縮化がさらに要請さ
れ、ねじ加工においてもタップ工具の限界に近い高速加
工が行なわれる場合がある。このような場合、たとえば
送り量に従って回転モータを駆動する従来の装置では、
送り軸が実際に移動しなことを検出した後に回転モータ
への指令が出るため、追従遅れを生じ、ねじ加工精度の
向上に限界を生ずるという問題点があった。特に、ねじ
加工深さの浅い加工、又は工具を小さなステップ幅でス
テップさせながら行う加工では、送り及び回転の速度が
一定になる以前の過渡状態における加工が多くなるため
、追従遅れによる誤差が大きな問題点になる。
"Problems to be Solved by the Invention" However, in recent years, there has been a demand for further reduction in machining time, and even in thread machining, high-speed machining is sometimes performed close to the limit of tap tools. In such cases, for example, with conventional devices that drive a rotary motor according to the feed rate,
Since the command to the rotary motor is issued after it is detected that the feed shaft actually moves, there is a delay in follow-up, which poses a problem in that there is a limit to the improvement of thread machining accuracy. In particular, when threading is performed with a shallow depth or when the tool is stepped in small steps, the machining is often performed in a transient state before the feed and rotation speeds become constant, resulting in large errors due to tracking delays. It becomes a problem.

本発明は上記の問題点を解決するためなされたものであ
り、送り軸に対する主軸回転の追従性を向上させ、タッ
プ工具の限界に近いような高速タップ加工時においても
、精度の高いねじ加工を行うことができるねし加工装置
を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and improves the followability of the spindle rotation to the feed axis, allowing highly accurate thread machining even during high-speed tapping, which is close to the limit of tap tools. The purpose of the present invention is to provide a sushi processing device that can perform sushi processing.

r問題点を解決するための手段」 このための本発明では、対応する実施例図面を参照して
示せば、主軸11の回転位置を検出する回転位置検出手
段14と、機械の送り位置を検出する送り位置検出手段
9とを備え、主軸11を回転する回転モータ12と送り
を駆動する送りモータ7とを同期運転してタッピング加
工動作を行うねじ加工装置において、送り指令値と検出
された機械の送り位置との送り偏差を演算する送り偏差
演算手段23と、その送り偏差に従って、送りモータ7
を駆動する送り駆動手段24と、前記送り偏差からねじ
ピッチに基づいて相当する回転指令値を演算する回転指
令値演算手段25と、検出された機械の送り量からねじ
ピッチに基づいて相当する回転補正値を演算する回転補
正値演算手段2つと、その回転補正値と検出された主軸
11の回転位置との回転(1差を演算する回転偏差演算
手段28と、その回転偏差により首記回転指令値を補正
する補正手段26と、その補正手段26により補正され
た回転指令値に従って回転モータ12を駆動する回転駆
動手段27とを備えることを特徴とするねし加工装置が
提供される。
To this end, the present invention, as shown with reference to the corresponding drawings, includes a rotational position detection means 14 for detecting the rotational position of the main shaft 11, and a rotational position detection means 14 for detecting the rotational position of the main shaft 11, and a rotational position detection means 14 for detecting the feeding position of the machine. In a screw processing device that performs a tapping operation by synchronizing a rotary motor 12 that rotates a main shaft 11 and a feed motor 7 that drives feed, the machine is equipped with a feed position detection means 9 that detects a feed command value. A feed deviation calculation means 23 calculates the feed deviation with respect to the feed position of the feed position, and according to the feed deviation, the feed motor 7
a rotation command value calculation means 25 that calculates a corresponding rotation command value based on the screw pitch from the feed deviation, and a rotation command value calculation means 25 that calculates a corresponding rotation command value based on the screw pitch from the detected machine feed amount. Two rotation correction value calculation means for calculating a correction value, a rotation deviation calculation means 28 for calculating the rotation (1 difference) between the rotation correction value and the detected rotation position of the main shaft 11, and a rotation command according to the rotation deviation. There is provided a threading device characterized by comprising a correction means 26 for correcting the value, and a rotation drive means 27 for driving the rotary motor 12 in accordance with the rotation command value corrected by the correction means 26.

「作用」 上記の構成によれば、送りは通常の位置フィードバック
がかけられ、送り指令値により独立して制御される。
"Operation" According to the above configuration, the feed is subjected to normal position feedback and is independently controlled by the feed command value.

一方、主軸の回転は送りに追従して同期するように制御
され、その回転指令値は送り偏差に従って演算される。
On the other hand, the rotation of the main shaft is controlled to follow and synchronize with the feed, and the rotation command value is calculated according to the feed deviation.

送り偏差は送り駆動手段に送り速度を指令する値と考え
られるから、送りの実際の移動量ではなく送り指令速度
に従って回転指令値が出力されることになる。それ故、
回転指令値は送りのこれからの移動量を予測した値とな
るため、回転の送りへの過渡的な追従性が向上する。ま
た、回転補正値演算手段、回転偏差演算手段、及び補正
手段により、首記回転指令値が実際の送り量に従って補
正されるから、回転位置と送り位置との定常的な誤差が
開くことがなく、精度を向上させることができる。
Since the feed deviation is considered to be a value that commands the feed speed to the feed driving means, the rotation command value is output according to the feed command speed rather than the actual amount of movement of the feed. Therefore,
Since the rotation command value is a value that predicts the amount of future movement of the feed, the transient followability of rotation to the feed is improved. In addition, the rotation correction value calculation means, rotation deviation calculation means, and correction means correct the rotation command value according to the actual feed amount, so there is no steady error between the rotation position and the feed position. , accuracy can be improved.

「実施例J 本発明の実施例について図面に従って具体的に説明する
Embodiment J An embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明に係るねじ加工装置を示すブロック図で
ある。
FIG. 1 is a block diagram showing a thread processing device according to the present invention.

ねじ加工装置の機械本体1はたて型のタップ盤をなすも
のであり、基台2に直立配置したコラム3にスライダ4
を介して主軸ヘッド5が上下に摺動自在に支持され、主
軸ヘッド5はボールねじ6に係合されている6ボールね
じ6はACサーボモータからなる送りモータ7に連結さ
れて回転駆動され、主軸ヘッド5を昇降する。送りモー
タ7には、回転速度を検出するタコゼネレータ8と、回
転位置を検出するパルスゼネレータ9とが設けられてい
る。パルスゼネレータ9は主軸ヘッド5の送り位置を検
出する送り位置検出手段をなす。
The machine body 1 of the screw processing device is a vertical tap board, and a slider 4 is mounted on a column 3 that is arranged upright on a base 2.
The spindle head 5 is supported to be slidable up and down through the spindle head 5, and the spindle head 5 is engaged with a ball screw 6. The ball screw 6 is connected to a feed motor 7 consisting of an AC servo motor and is rotationally driven. The spindle head 5 is raised and lowered. The feed motor 7 is provided with a tacho generator 8 that detects the rotational speed and a pulse generator 9 that detects the rotational position. The pulse generator 9 constitutes a feed position detection means for detecting the feed position of the spindle head 5.

主軸ヘッド5には主軸11が回転自在に軸支され、回転
モータ12により回転駆動される。回転モータ12はA
Cサーボモータからなり、回転速度を検出するタコゼネ
レータ13と、回転位置を検出するパルスゼネレータ1
4が設けられている。
A main shaft 11 is rotatably supported on the main shaft head 5 and is rotationally driven by a rotary motor 12 . The rotating motor 12 is A
Consisting of a C servo motor, a tacho generator 13 detects rotational speed and a pulse generator 1 detects rotational position.
4 is provided.

パルスゼネレータ14は主軸11の回転位置を検出する
回転位置検出手段をなす。
The pulse generator 14 constitutes a rotational position detection means for detecting the rotational position of the main shaft 11.

主ll1l111の下端にはタップ工具15がタッパ−
を介することなく直接取付けられ、下孔16の明けられ
た被加工物17にねじ加工を施す。
A tap tool 15 is attached to the lower end of the main ll1l111.
The work piece 17 is directly attached without going through a hole, and the workpiece 17 with the pilot hole 16 drilled therein is threaded.

主軸ヘッド5を上下する送り系(Z軸と称する)の制御
回路について説明する。
A control circuit for a feed system (referred to as the Z axis) that moves the spindle head 5 up and down will be explained.

入力装置2]から入力されたデータに基づき、演算器2
2において送り指令値2が演算され、送り速度に応じた
パルス列として送り偏差カウンタ23に出力される6送
り偏差カウンタ23には位置フィードバックパルスとし
て、送りモータ7の回転角に応じたパルスがパルスゼネ
レータ9から入力される。送り偏差カウンタ23では送
り指令値Zとパルスゼネレータっで検出された機械の送
り位置2との偏差E(Z)=Z−zを演算し、その送り
偏差E(Zンを速度指令として送りサーボアンプ24に
出力する。送りサーボアンプ24には速度フィードバッ
ク信号としてタコゼネレータ8からの実際の速度に応じ
た信号v(z)が入力され、速度ループ系を構成して送
りモータ7を駆動する。
Based on the data input from the input device 2], the arithmetic unit 2
2, the feed command value 2 is calculated and output to the feed deviation counter 23 as a pulse train according to the feed speed. 6 The feed deviation counter 23 receives a pulse according to the rotation angle of the feed motor 7 as a position feedback pulse. It is input from 9. The feed deviation counter 23 calculates the deviation E (Z) = Z - Z between the feed command value Z and the machine feed position 2 detected by the pulse generator, and calculates the feed deviation E (Z) by using the feed servo as the speed command. It is output to the amplifier 24. A signal v(z) corresponding to the actual speed from the tacho generator 8 is inputted as a speed feedback signal to the feed servo amplifier 24, forming a speed loop system to drive the feed motor 7.

上記の送り系(Z軸)の制御回路は通常の送り制御に用
いられる回路構成と同じである。
The control circuit for the feed system (Z-axis) described above has the same circuit configuration as that used for normal feed control.

次に、主軸11を回転制御する回転系(R軸と称する)
の制御回路について説明する0回転系では、回転指令値
Rが入力装置21からのデータではなく、送り偏差カウ
ンタ23からの送り偏差E(Z)に基づいて演算され制
御される。
Next, a rotation system (referred to as R axis) that rotationally controls the main shaft 11
In the 0-rotation system described with respect to the control circuit, the rotation command value R is calculated and controlled based on the feed deviation E(Z) from the feed deviation counter 23 rather than the data from the input device 21.

送り偏差カウンタ23からの送り偏差E(Z)は回転指
令値演算器25に入力される1回転指令値演算器25で
は予かしめ入力装置21から入力され演算器22を経由
して与えられるねじ加工のねじピッチPとボールねじ6
のリードLとから、送り偏差E(Z)をL/P倍し、送
り偏差E(2月ご相当する回転指令値R= E (Z 
)・L/Pを演算する。
The feed deviation E(Z) from the feed deviation counter 23 is input to the rotation command value calculator 25. In the 1-rotation command value calculator 25, the feed deviation E(Z) is input from the pre-swage input device 21 and given via the calculator 22. Thread pitch P and ball screw 6
From the lead L of
)・Calculate L/P.

そして、この回転指令値Rを加算器26を経由して回転
サーボアンプ27に出力する。回転指令値Rは送り偏差
E(Z)、即ち、送りサーボアンプ24への速度指令値
に相当するものとされるから、この回転指令値Rは主軸
ヘッド5の移動を予測したものとなる。
Then, this rotation command value R is outputted to the rotation servo amplifier 27 via the adder 26. Since the rotation command value R corresponds to the feed deviation E(Z), that is, the speed command value to the feed servo amplifier 24, this rotation command value R predicts the movement of the spindle head 5.

加′!X、器26では回転指令値Rの補正が行なわれる
6すなわち、主軸11の回転位置、rを検出するパルス
ゼネレータ14からのパルスは回転偏差カウンタ28に
入力される。一方、送りMzを検出するパルスゼネレー
タ9からのパルスは回転補正値演算器2つに入力され、
ねじ加工のねじピッチPとボールねしのり−ドLとから
送りMzをL/P倍し、送りizに相当する回転補正値
r(z)を演算して回転偏差カウンタ28に出力する6
回転偏差カウンタ28では、上記回転補正値r(z)と
主軸11の回転位置rとの回転偏差E(r)を演算し、
加算器26に出力する。加算器26では、回転指令値演
算器25からの回転指令値Rを回転偏差E(r)により
補正し、補正された回転指令値R(E)=R+E(r)
を回転サーボアンプ27に出力する。
Add'! In other words, the pulse from the pulse generator 14 that detects the rotational position r of the main shaft 11 is input to the rotational deviation counter 28. On the other hand, the pulse from the pulse generator 9 that detects the feed Mz is input to two rotation correction value calculators,
Multiply the feed Mz by L/P from the thread pitch P of thread machining and the ball screw thread L, calculate the rotation correction value r(z) corresponding to the feed iz, and output it to the rotation deviation counter 28 6
The rotational deviation counter 28 calculates the rotational deviation E(r) between the rotational correction value r(z) and the rotational position r of the main shaft 11,
Output to adder 26. The adder 26 corrects the rotation command value R from the rotation command value calculator 25 by the rotation deviation E(r), and calculates the corrected rotation command value R(E)=R+E(r).
is output to the rotary servo amplifier 27.

回転サーボアンプ27には速度フィードバック信号とし
て、タコゼネレータ13からの速度に応じた信号v(r
)が入力され、速度ループ系を構成して回転モータ12
含補正された回転指令値R(E)に従って駆動する。
The rotary servo amplifier 27 receives a signal v(r
) is input, forms a speed loop system, and rotates the rotary motor 12.
It is driven in accordance with the corrected rotation command value R(E).

上記の制御回路は、サーボアンプ24.27を除き、デ
ィジタル演算を行う回路であり、?l1in器22、偏
差カウンタ23,28、回転指令値演算器251回転回
転指令値演算器、加算器26等は、マイクロコンピュー
タを用いた内部演算処理として実現される。
The above control circuit, except for the servo amplifiers 24 and 27, is a circuit that performs digital calculations. The l1in unit 22, the deviation counters 23 and 28, the rotation command value calculation unit 251, the rotation command value calculation unit, the adder 26, etc. are realized as internal calculation processing using a microcomputer.

入力装置21からねじのピッチ、送りのストローク(タ
ップ深さ)、送り速度などのデータを入力することによ
り、送りモータ7が駆動され、送りモータ7に従動して
回転モータ12が同期して回転駆動され、ねじ加工が行
なわれる。
By inputting data such as screw pitch, feed stroke (tap depth), and feed speed from the input device 21, the feed motor 7 is driven, and the rotary motor 12 rotates in synchronization with the feed motor 7. It is driven and thread processing is performed.

本実施例は、送り偏差E(Z)を基礎にして、回転モー
タ】2を同期運転するものであるから、送り景Zを基礎
にして同期運転を行う従来の装置に比べて、過渡的な追
従遅れを大幅に減少させることができた。
In this embodiment, the rotary motor 2 is operated synchronously based on the feed deviation E(Z), so compared to a conventional device that performs synchronous operation based on the feed angle Z, transient We were able to significantly reduce the tracking delay.

たとえば、径6IIII11、ピッチ1.0(M6.P
L。
For example, diameter 6III11, pitch 1.0 (M6.P
L.

0)、タ’7プン朶さ12nuoのねじ力■工を300
0 rpmという高速回転で行った場合の実験結果によ
れば、ねじの回転位置を基礎としたねじの送り方向(Z
軸)の進み遅れの誤差を、従来の装置に対して本実施例
装置では、約25%減少させることができた。
0), the screw force of 12nuo is 300mm.
According to the experimental results when the rotation was performed at a high speed of 0 rpm, the screw feeding direction (Z
The apparatus of this embodiment was able to reduce the lead/lag error of the shaft by about 25% compared to the conventional apparatus.

「発明の効果」 以上説明したように、本発明は上記の構成を有し、送り
偏差からねじピッチに基づいて相当する回転指令値を演
算する手段を備え、その回転指令値に基づいて回転モー
タを同期運転するものであるから、送り位置に対する主
軸の回転位置の追従性がよく、精度の高い高速ねし加工
を行うことができるという優れた効果がある。
"Effects of the Invention" As explained above, the present invention has the above configuration, and includes means for calculating a corresponding rotation command value based on the screw pitch from the feed deviation, and the rotation motor is controlled based on the rotation command value. Since the spindles are operated synchronously, the rotational position of the spindle can follow the feed position well, and has the excellent effect of being able to perform highly accurate high-speed welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るねじ加工装置の制御回路を示すブ
ロック図である。 311.コラム、 510.主軸ヘッド、 710.送
りモータ、  919.パルスゼネレータ(送り位置検
出手段)、 11 、、、主軸、 12.、、回転モー
タ、14、、、パルスゼネレータ(回転位置検出手段)
、241.、送りサーボアンプ、 25.、、回転指令
値演算器、 26 、、、加算器く補正手段)、 27
 、、。 回転サーボアンプ、 2 つ、、、回転補正値演算器。
FIG. 1 is a block diagram showing a control circuit of a thread processing apparatus according to the present invention. 311. Column, 510. Spindle head, 710. feed motor, 919. Pulse generator (feeding position detection means), 11. Main shaft, 12. ,,rotary motor, 14,,pulse generator (rotational position detection means)
, 241. , feed servo amplifier, 25. , , Rotation command value calculator, 26 , , Adder (correction means), 27
,,. Two rotary servo amplifiers, rotation correction value calculator.

Claims (1)

【特許請求の範囲】 主軸の回転位置を検出する回転位置検出手段と、機械の
送り位置を検出する送り位置検出手段とを備え、主軸を
回転する回転モータと送りを駆動する送りモータとを同
期運転してタッピング加工動作を行うねじ加工装置にお
いて、 送り指令値と検出された機械の送り位置との送り偏差を
演算する送り偏差演算手段と、 その送り偏差に従って、送りモータを駆動する送り駆動
手段と、 前記送り偏差からねじピッチに基づいて相当する回転指
令値を演算する回転指令値演算手段と、検出された機械
の送り量からねじピッチに基づいて相当する回転補正値
を演算する回転補正値演算手段と、 その回転補正値と検出された主軸の回転位置との回転偏
差を演算する回転偏差演算手段と、その回転偏差により
首記回転指令値を補正する補正手段と、 その補正手段により補正された回転指令値に従つて回転
モータを駆動する回転駆動手段と を備えることを特徴とするねじ加工装置。
[Claims] Comprising a rotational position detection means for detecting the rotational position of the spindle and a feed position detection means for detecting the feed position of the machine, the rotary motor that rotates the spindle and the feed motor that drives the feed are synchronized. A screw processing device that operates to perform tapping operations includes a feed deviation calculation means for calculating a feed deviation between a feed command value and a detected feed position of the machine, and a feed drive means for driving a feed motor according to the feed deviation. and a rotation command value calculating means for calculating a corresponding rotation command value based on the screw pitch from the feed deviation, and a rotation correction value for calculating a corresponding rotation correction value based on the screw pitch from the detected feed amount of the machine. a calculation means; a rotation deviation calculation means for calculating a rotation deviation between the rotation correction value and the detected rotational position of the main shaft; a correction means for correcting the rotation command value based on the rotation deviation; and correction by the correction means. 1. A screw processing device comprising: rotational drive means for driving a rotational motor according to a rotational command value.
JP62080524A 1987-03-31 1987-03-31 Screw processing equipment Expired - Fee Related JPH07112646B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62080524A JPH07112646B2 (en) 1987-03-31 1987-03-31 Screw processing equipment
KR1019880001398A KR930001093B1 (en) 1987-03-31 1988-02-16 Thread cutting machine with synchronized feed and rotation motors
US07/174,508 US4879660A (en) 1987-03-31 1988-03-28 Thread cutting machine with synchronized feed and rotation motors
DE3811183A DE3811183C2 (en) 1987-03-31 1988-03-31 Tapping machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62080524A JPH07112646B2 (en) 1987-03-31 1987-03-31 Screw processing equipment

Publications (2)

Publication Number Publication Date
JPS63245325A true JPS63245325A (en) 1988-10-12
JPH07112646B2 JPH07112646B2 (en) 1995-12-06

Family

ID=13720705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62080524A Expired - Fee Related JPH07112646B2 (en) 1987-03-31 1987-03-31 Screw processing equipment

Country Status (1)

Country Link
JP (1) JPH07112646B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035095A (en) * 2011-08-08 2013-02-21 Fanuc Ltd Tapping apparatus
WO2017113055A1 (en) * 2015-12-28 2017-07-06 深圳配天智能技术研究院有限公司 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device
WO2022009822A1 (en) * 2020-07-10 2022-01-13 ファナック株式会社 Control device and control method for machine tool, and slave shaft control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127908A (en) * 1983-12-15 1985-07-08 Amada Co Ltd Control method of cutting in drilling machine
JPS60155319A (en) * 1984-01-24 1985-08-15 Brother Ind Ltd Screw thread cutting machine
JPS632610A (en) * 1986-06-21 1988-01-07 Fuaasuto Giken:Kk Thread cutting control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127908A (en) * 1983-12-15 1985-07-08 Amada Co Ltd Control method of cutting in drilling machine
JPS60155319A (en) * 1984-01-24 1985-08-15 Brother Ind Ltd Screw thread cutting machine
JPS632610A (en) * 1986-06-21 1988-01-07 Fuaasuto Giken:Kk Thread cutting control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013035095A (en) * 2011-08-08 2013-02-21 Fanuc Ltd Tapping apparatus
US8662799B2 (en) 2011-08-08 2014-03-04 Fanuc Corporation Tapping machine
WO2017113055A1 (en) * 2015-12-28 2017-07-06 深圳配天智能技术研究院有限公司 Hole tapping method, numerically-controlled machine tool, and numerically-controlled machining device
CN107615195A (en) * 2015-12-28 2018-01-19 深圳配天智能技术研究院有限公司 A kind of method of tapping female bore, Digit Control Machine Tool and numerical control processing apparatus
CN107615195B (en) * 2015-12-28 2021-02-26 深圳配天智能技术研究院有限公司 Method for tapping threaded hole, numerical control machine tool and numerical control machining device
WO2022009822A1 (en) * 2020-07-10 2022-01-13 ファナック株式会社 Control device and control method for machine tool, and slave shaft control device

Also Published As

Publication number Publication date
JPH07112646B2 (en) 1995-12-06

Similar Documents

Publication Publication Date Title
KR930001093B1 (en) Thread cutting machine with synchronized feed and rotation motors
JPH0569275A (en) Numerical control device
JP2629729B2 (en) Screw processing equipment
WO1988003451A1 (en) Tapping controller
JP4193799B2 (en) Threading control method and apparatus
JP2555593B2 (en) Screw processing equipment
JPS63245325A (en) Thread cutting device
JP3426779B2 (en) Backlash compensation device for numerically controlled machine tools
JP2629728B2 (en) Screw processing equipment
JPH0885022A (en) Threading device
JPH0438525B2 (en)
JP3097182B2 (en) Screw processing equipment
JP3097181B2 (en) Screw processing equipment
JPH0223285B2 (en)
KR890002434B1 (en) Numerical control apparatus
JP2750959B2 (en) NC non-circular processing machine
JP3141711B2 (en) Screw processing device and screw processing method
JPH0295189A (en) Controller for synchronized operation of motor
US20230229135A1 (en) Control device and control method for machine tool, and slave shaft control device
JP2624771B2 (en) Arbitrary direction tapping method
JPS62188623A (en) Thread-cutting device
JPS632610A (en) Thread cutting control method
JPH05265522A (en) Screw cutting device
JPH05146948A (en) Screw machining device
JPH0546236A (en) Numerical controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees