KR20130042140A - Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool - Google Patents

Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool Download PDF

Info

Publication number
KR20130042140A
KR20130042140A KR1020110106270A KR20110106270A KR20130042140A KR 20130042140 A KR20130042140 A KR 20130042140A KR 1020110106270 A KR1020110106270 A KR 1020110106270A KR 20110106270 A KR20110106270 A KR 20110106270A KR 20130042140 A KR20130042140 A KR 20130042140A
Authority
KR
South Korea
Prior art keywords
ball screw
pitch
correction
feed shaft
torque
Prior art date
Application number
KR1020110106270A
Other languages
Korean (ko)
Other versions
KR101847214B1 (en
Inventor
김기홍
Original Assignee
두산인프라코어 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산인프라코어 주식회사 filed Critical 두산인프라코어 주식회사
Priority to KR1020110106270A priority Critical patent/KR101847214B1/en
Priority to PCT/KR2012/007535 priority patent/WO2013058481A1/en
Publication of KR20130042140A publication Critical patent/KR20130042140A/en
Application granted granted Critical
Publication of KR101847214B1 publication Critical patent/KR101847214B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/34Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission
    • B23Q5/38Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously
    • B23Q5/40Feeding other members supporting tools or work, e.g. saddles, tool-slides, through mechanical transmission feeding continuously by feed shaft, e.g. lead screw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0961Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0966Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring a force on parts of the machine other than a motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37357Force, pressure, weight or deflection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/41Servomotor, servo controller till figures
    • G05B2219/41055Kind of compensation such as pitch error compensation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49198Using lookup table, map, position and corresponding quasi static error

Abstract

PURPOSE: A method and a device for correcting position due to deformation of a ball screw of a machine tool in real time are provided to improve precision of processing and transferring by correcting pitch errors. CONSTITUTION: A device for correcting position due to deformation of a ball screw of a machine tool(100) in real time comprises a transfer shaft, a pitch variation detection unit(114), a transfer shaft nut position calculation unit(115), and a pitch error correction unit(116). The transfer shaft transfers a transfer table by elastic deformation of the ball screw rotated by driving a servo motor. The pitch variation detection unit senses torque, and detects pitch variation amount per screw thread due to the elastic deformation of the ball screw. The transfer shaft nut position calculation unit calculates the center position of a nut by the rotation variation amount. [Reference numerals] (111) Correcting function selection input unit; (112a) Pitch variation lookup table; (112b) Pitch error correction table; (113) Algorithm processing unit; (114) Pitch variation detection unit; (115) Transfer shaft nut position calculation unit; (116) Pitch error correction unit; (117) Servo controller; (120) Encoder; (130) Servo motor; (18) Servo amplifier; (AA) Torque data; (BB) Position data; (CC) Correction;

Description

공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치{METHOD FOR CORRECTING POSITION CAUSED BY DEFORMATION OF BALLSCREW OF MACHINE TOOL IN REAL-TIME AND MACHINE TOOL}METHOD FOR CORRECTING POSITION CAUSED BY DEFORMATION OF BALLSCREW OF MACHINE TOOL IN REAL-TIME AND MACHINE TOOL}

본 발명은 공작기계의 볼스크류 변형에 의한 위치 보정에 관한 것으로, 더욱 상세하게는 공작기계의 이송 및 가공시 이송축의 서보모터에 작용하는 토크데이터를 이용하여 이송축의 볼스크류에 가해지는 힘을 검출하고 검출된 힘에 의해 발생하는 볼스크류 변형 및 이로 인한 피치의 오차를 계산하여 피치 오차에 따라 이송 위치를 실시간으로 보정함으로써 이송 및 가공의 정밀도를 향상시킨 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치에 관한 것이다. The present invention relates to a position correction by deformation of a ball screw of a machine tool, and more particularly to detecting a force applied to a ball screw of a feed shaft by using torque data acting on a servo motor of a feed shaft during feed and machining of a machine tool. And calculates the ball screw deformation caused by the detected force and the resulting pitch error, and corrects the feed position in real time according to the pitch error, thereby real-time position correction by ball screw deformation of the machine tool which improves the precision of feed and machining. A method and apparatus are disclosed.

일반적인 공작기계의 이송축에 사용되는 볼스크류 및 커플링(coupling)은 고유의 축(thrust) 방향 및 비틀림(radial 방향)에 대한 강성 값을 가지고 있어서, 이송 및 가공시 마찰력(이송하고자 하는 반대 방향으로 작용하는 마찰력), 가공 절삭력, 가감속 관성력 등에 의해 상기의 강성에 반비례한 축 방향 및 비틀림 변형이 일어나게 된다. The ball screw and coupling used in the feed shaft of a general machine tool have their own stiffness values for their axial and torsional directions, so that the friction force (the opposite direction to feed) Axial and torsional deformation inversely proportional to the above stiffness due to the frictional force acting as a force), the machining cutting force, the acceleration and deceleration force, and the like.

이러한 현상에 기인한 볼스크류의 변형으로 인해 볼스크류 피치간의 간격이 변하게 되고, 이송 위치가 지령 위치로부터 벗어나 오차가 발생한다. 따라서, 오차를 실시간으로 적절히 보상하지 못하면 이송 시 위치 정확도가 떨어지고 가공 후 공작물의 치수 오차가 발생하는 문제점이 있다.Due to the deformation of the ball screw due to this phenomenon, the spacing between the ball screw pitch is changed, and the transfer position is out of the command position and an error occurs. Therefore, if the error is not properly compensated in real time, there is a problem in that the positioning accuracy during the transfer and the dimension error of the workpiece after machining.

이로 인해 종래에는 이송축에 리니어 스케일(linear scale)이나 로터리 엔코더(rotary encoder)와 같이 부가적인 위치 피드백 장치를 장착하여 이송 위치를 파악하고 파악한 이송 위치에 따라 보정을 수행하였다. 그러나, 상기한 위치 피드백 장치는 장비의 단가가 비교적 고가인 문제점이 있다. For this reason, in the related art, an additional position feedback device such as a linear scale or a rotary encoder is mounted on the feed shaft to identify the feed position and to perform correction according to the recognized feed position. However, the above position feedback apparatus has a problem that the unit cost of the equipment is relatively expensive.

이의 대안으로서, 위치 피드백 장치를 장착하지 않은 공작 기계는 공작기계를 제어하는 수치제어기(NC) 내부에 피치오차 보정기능을 포함한 프로그램을 탑재하여 볼스크류의 피치에 대한 오차를 보상하는 방법을 적용하고 있다. 그런데, 종래 보정 방법은 단순히 볼스크류 나사산 각각의 피치에 존재하는 길이 오차를 보상하는 기능이므로 실시간으로 해당 피치오차 테이블을 수정할 필요도 없으며 수정하지도 않는다. 따라서, 이송 및 가공시 볼스크류에 가해지는 힘에 의해 발생하는 볼스크류 변형 및 이로 인한 피치오차의 변동에 대하여 대응이 불가능한 문제점이 있다. 이러한 문제점은 이송 및 가공의 정밀도를 저하하는 주 원인이 되고 있다. As an alternative, a machine tool without a position feedback device is equipped with a program including a pitch error correction function inside a numerical controller (NC) that controls the machine tool. have. However, the conventional correction method simply compensates for the length error existing in the pitch of each ball screw thread, and thus does not need to modify the pitch error table in real time. Therefore, there is a problem in that it is impossible to cope with the deformation of the ball screw caused by the force applied to the ball screw during the feeding and processing, and the variation of the pitch error. This problem is a major cause of deterioration of the accuracy of the feeding and processing.

또한, 이송 반전 시 발생하는 백래쉬(backlash)에 대해서도 정확한 보정이 불가능하다. In addition, accurate correction is not possible even for a backlash that occurs during transfer reversal.

종래 백래쉬 오차는 무부하 조건에서 측정된 백래쉬 량을 보정 파라미터에 기입하여 대응하고 있는데, 실제 백래쉬에 작용하는 소재무게 및 윤활조건, 이송면 마찰계수 등에 대해서는 보정이 이루어지지 않으므로 백래쉬의 오차를 보상하지 못하는 문제점이 있다. Conventionally, the backlash error corresponds to the backlash amount measured under no-load conditions in the correction parameter, but the material weight, lubrication condition, and transfer surface friction coefficient that act on the actual backlash cannot be compensated. There is a problem.

본 발명은 상기한 문제점을 해결하기 위해 창안된 것으로서, 공작기계의 이송 및 가공시 이송축의 서보모터에 작용하는 토크데이터를 이용하여 볼스크류에 가해지는 힘을 검출하고 검출된 힘과 볼스크류를 포함하는 이송축의 기계적 강성을 고려하여 볼스크류가 변형되어 발생하는 피치의 오차를 계산하며 계산한 피치의 오차를 이용하여 기 저장된 피치 오차 테이블에 수정하고 수정된 데이터만큼 보정함으로써 이송 및 가공의 정밀도를 향상시킨 공작기계의 볼스크류 변형에 의한 실시간 위치 보정 방법 및 장치를 제공하는 데 그 목적이 있다. The present invention has been made to solve the above problems, and detects the force applied to the ball screw using the torque data acting on the servo motor of the feed shaft during the transfer and machining of the machine tool, and includes the detected force and the ball screw It calculates the pitch error caused by the deformation of the ball screw considering the mechanical rigidity of the feed shaft, and corrects it in the pre-stored pitch error table by using the calculated pitch error and improves the precision of the feed and machining by correcting the corrected data. It is an object of the present invention to provide a real-time position correction method and apparatus by the ball screw deformation of the machine tool.

이를 위하여 본 발명의 제1 측면에 따르면, 본 발명의 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치는, 서보모터의 구동에 의해 회전하는 볼스크류의 탄성 변형으로 이송 테이블을 이송시키는 이송축; 상기 이송축의 서보모터로부터 발생하는 토크를 감지하여 상기 볼스크류의 탄성 변형으로 인한 나사산당 피치 변화량을 검출하는 피치 변화량 검출부; 상기 이송축의 서보모터로부터 감지한 회전 변화량에 따라 상기 이송 테이블을 이송시키는 너트의 중심 위치를 계산하는 이송축 너트 위치 계산부; 및 상기 피치 변화량 검출부를 통해 검출한 볼스크류의 나사산 당 피치 변화량과 상기 이송축 너트 위치 계산부를 통해 계산한 너트의 중심 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하고, 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 피치 오차 보정부를 포함하는 것을 특징으로 한다.To this end, according to the first aspect of the present invention, the real-time position correction device by the ball screw elastic deformation of the machine tool of the present invention, the feed shaft for transferring the transfer table by the elastic deformation of the ball screw rotating by the drive of the servo motor ; A pitch change amount detecting unit detecting a torque generated from the servo motor of the feed shaft to detect a pitch change amount per thread due to elastic deformation of the ball screw; A feed shaft nut position calculator for calculating a center position of a nut for feeding the feed table according to the rotational change amount detected from the servo motor of the feed shaft; And calculating a correction value according to the thread pitch error of the ball screw using the pitch change per thread of the ball screw detected by the pitch change amount detecting unit and the center position of the nut calculated through the feed shaft nut position calculation unit. And a pitch error correction unit correcting the driving of the servo motor by one correction value to compensate the position of the feed shaft in real time.

본 발명의 제2 측면에 따르면, 본 발명의 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법은, 이송축의 서보모터에 대하여 회전 변화량을 감지하여 상기 서보모터의 토크를 검출하는 단계; 상기 검출한 서보모터의 토크를 이용하여 상기 서보모터의 구동에 의해 회전하는 볼스크류의 나사산 당 피치 변화량을 검출하는 단계; 상기 서보모터의 회전 변화량으로부터 상기 이송축의 위치를 계산하는 단계; 상기 볼스크류의 나사산 당 피치 변화량과 상기 이송축의 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하는 단계; 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 단계를 포함하는 것을 특징으로 한다. According to a second aspect of the present invention, a real-time position correction method by elastically elastic ball screw of the machine tool of the present invention, detecting the torque change of the servo motor of the servo motor of the feed shaft by detecting the torque of the servo motor; Detecting a pitch change amount per thread of a ball screw rotating by driving the servomotor by using the detected torque of the servomotor; Calculating a position of the feed shaft from the rotation change amount of the servomotor; Calculating a correction value according to the thread pitch error of the ball screw using the pitch change amount per thread of the ball screw and the position of the feed shaft; Compensating the drive of the servo motor by the calculated correction value to compensate for the position of the feed shaft in real time.

본 발명에 따르면, 볼스크류의 탄성 변형에 비례하는 모터의 토크데이터를 이용하여 나사산 당 피치 변화량을 계산하고, 계산된 결과를 바탕으로 피치오차 보정 테이블을 수정함으로써 수정된 피치오차 보정 테이블에 따라 이송 및 가공시 발생하는 이송축의 위치 오차를 실시간으로 보정하는 것이 가능하다. 따라서, 이송 및 가공의 정밀도를 향상시키는 효과를 제공한다. According to the present invention, the pitch change per thread is calculated using the torque data of the motor proportional to the elastic deformation of the ball screw, and based on the calculated result, the pitch error correction table is modified to feed according to the corrected pitch error correction table. And it is possible to correct in real time the position error of the feed shaft generated during processing. Thus, it provides an effect of improving the accuracy of the feeding and processing.

또한, 현재의 수치제어기는 내부의 특정 메모리 영역에 각종 내부 정보를 실시간으로 기록하기 때문에 이송 오차 및 이송계 탄성 변형량과 비례하는 이송축의 토크 데이터도 메모리의 해당 주소를 참조하여 실시간으로 획득하는 것이 가능하다. 따라서 고가의 장비 추가없이도 구현이 가능한 효과가 있다. In addition, the current numerical controller records various internal information in a specific memory area in real time so that torque data of the feed shaft proportional to the feed error and the amount of elastic deformation of the feed system can be obtained in real time by referring to the corresponding address of the memory. Do. Therefore, there is an effect that can be implemented without the addition of expensive equipment.

도 1은 본 발명의 이송축에서 볼스크류 변형 및 이로 인해 피치 오차가 발생하는 개념을 설명하기 위한 이송축 블록도이다.
도 2는 공작기계의 이송축에 대한 속도 및 토크 관계를 나타낸 그래프이다.
도 3은 본 발명의 공작 기계에서 볼스크류 탄성 변형에 의한 실시간 위치 보정을 위한 장치를 나타낸 구성도이다.
도 4는 이송축의 서보모터에 대한 토크와 나사산 당 피치 변화량 간의 관계를 정의하는 룩업 테이블을 나타낸 도면이다.
도 5는 선형 보간을 이용하여 서보모터의 토크와 나사산 당 피치 변화량 간의 관계를 나타낸 도면이다.
도 6은 본 발명의 피치오차 보정량을 나타낸 그래프이다.
도 7은 본 발명의 공작기계에서 볼스크류 변형에 의한 실시간 위치 보정 방법을 설명하는 흐름도이다.
도 8은 도 7의 상세 흐름도이다.
1 is a block diagram illustrating a feed shaft for explaining the concept of a ball screw deformation and a pitch error caused by the feed shaft of the present invention.
2 is a graph showing a relationship between speed and torque with respect to a feed shaft of a machine tool.
Figure 3 is a block diagram showing an apparatus for real-time position correction by the ball screw elastic deformation in the machine tool of the present invention.
4 is a view showing a lookup table that defines the relationship between the torque for the servomotor of the feed shaft and the pitch change amount per thread.
5 is a diagram illustrating a relationship between torque of a servomotor and a pitch change amount per thread using linear interpolation.
6 is a graph showing the pitch error correction amount of the present invention.
7 is a flowchart illustrating a real-time position correction method by the ball screw deformation in the machine tool of the present invention.
8 is a detailed flowchart of FIG. 7.

이하, 첨부된 도면을 참조하여 본 발명에 따른 실시 예를 상세하게 설명한다. 본 발명의 구성 및 그에 따른 작용 효과는 이하의 상세한 설명을 통해 명확하게 이해될 것이다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The configuration of the present invention and the operation and effect thereof will be clearly understood through the following detailed description.

본 발명의 상세한 설명에 앞서, 동일한 구성요소에 대해서는 다른 도면 상에 표시되더라도 가능한 동일한 부호로 표시하며, 공지된 구성에 대해서는 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 구체적인 설명은 생략하기로 함에 유의한다. 또한, 어떤 부분이 어떤 구성요소를 포함한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Prior to the detailed description of the present invention, the same components will be denoted by the same reference numerals even if they are displayed on different drawings, and the detailed description will be omitted when it is determined that the well-known configuration may obscure the gist of the present invention. do. In addition, when a part includes an element, it does not exclude other elements unless specifically stated otherwise, but may include other elements.

도 1은 본 발명의 이송축에서 볼스크류 변형 및 이로 인해 피치 오차가 발생하는 개념을 설명하기 위한 이송축 블록도이고, 도 2는 공작기계의 이송축에 대한 속도 및 토크 관계를 나타낸 그래프이다. 1 is a block diagram showing a feed shaft for explaining the concept of the ball screw deformation and the resulting pitch error in the feed shaft of the present invention, Figure 2 is a graph showing the relationship between the speed and torque for the feed shaft of the machine tool.

본 발명의 공작기계에서 이송축은 가공 소재를 가공하기 위해 이송 테이블(17)을 X축, Y축 및 Z축으로 이송시키는 볼스크류(14)와, 볼스크류(14)의 일측을 지지하는 엔드 베어링(15)과, 엔드 베어링(15)과 대향되고 볼스크큐(14)의 타측에 연결되어 서보모터(10)로부터 공급되는 동력을 전달하는 모터측 베어링(13), 이송 테이블(17)을 설치하기 위한 너트(16)를 포함하고 있다. In the machine tool of the present invention, the feed shaft is an end bearing supporting one side of the ball screw 14 and a ball screw 14 for feeding the feed table 17 to the X, Y, and Z axes to process the workpiece. (15), a motor side bearing (13) and a transfer table (17) which are opposed to the end bearing (15) and connected to the other side of the ball skew (14) to transfer power supplied from the servomotor (10). It includes a nut 16 for the purpose.

이러한 이송축을 이용하여 가공 소재를 a 방향으로 이송시키려면, 서보모터(10)는 볼스크류(14)에 가해지는 가공 소재의 무게 및 가속도에 비례한 관성력, 이송 테이블의 마찰력, 그리고 절삭력 등을 포함한 힘만큼 토크를 발생하여 모터측 베어링(13)을 통해 볼스크류(14)로 전달한다. 그러면, 이송 테이블(17)이 서보모터(10) 쪽으로 이동하게 되면서 모터측 베어링(13)과 너트(16) 사이의 볼스크류(14)는 이송 테이블(17)을 끌어오는 데 필요한 힘에 비례하여 ΔL1만큼 늘어나게 되고, 너트(16)와 엔드 베어링(15) 사이의 볼스크류(14)는 ΔL2만큼 줄어든다. 이때, ΔL1, ΔL2는 볼스크류 탄성 변형에 의한 피치 변화가 된다. In order to transfer the workpiece in the a direction using the feed shaft, the servomotor 10 includes an inertial force proportional to the weight and acceleration of the workpiece applied to the ball screw 14, frictional force of the transfer table, cutting force, and the like. Torque is generated by the force and transmitted to the ball screw 14 through the motor side bearing (13). Then, the transfer table 17 is moved toward the servomotor 10 so that the ball screw 14 between the motor side bearing 13 and the nut 16 is proportional to the force required to pull the transfer table 17. It is increased by ΔL 1, and the ballscrew 14 between the nut 16 and the end bearing 15 is reduced by ΔL 2. At this time, ΔL1 and ΔL2 become pitch changes due to ball screw elastic deformation.

이처럼, 볼스크류(14)에 가해지는 힘은 가공 절삭력(F1), 가감속 관성력(F2), 이송 마찰력(F3) 등을 포함할 수 있으나, 본 발명에서는 이 세 가지 힘(F1, F2, F3)에 의해 발생하는 볼스크류 탄성 변형에 대해서만 고려한다. As such, the force applied to the ball screw 14 may include a machining cutting force (F1), acceleration and deceleration force (F2), feed friction force (F3), etc., in the present invention, these three forces (F1, F2, F3) Only the ball screw elastic deformation caused by) is considered.

볼스크류(14)에 가해지는 힘(F1, F2, F3)은 볼스크류(14)를 통해 서보모터(10)에 전달되고, 서보모터(10)는 볼스크류(14)에 가해지는 힘에 대응하는 토크를 생성함으로써, 생성된 토크가 볼스크류(14) 및 너트(16)를 통해 이송 테이블(17)에 전달되면 토크에 비례하여 볼스크류(14)가 탄성 변형을 일으킨다. Forces F1, F2, F3 applied to the ball screw 14 are transmitted to the servomotor 10 through the ball screw 14, and the servomotor 10 corresponds to the force applied to the ball screw 14. By generating torque, the generated torque is transferred to the transfer table 17 through the ball screw 14 and the nut 16, the ball screw 14 causes elastic deformation in proportion to the torque.

일 예로, 이송축의 볼스크류에 가해지는 힘에 대응하여 5,000kg 정도의 부하를 걸고, 이송축을 +, - 방향으로 왕복 이송시키면서 속도에 따른 서보모터의 토크를 측정하였다. 측정한 결과는 도 2의 그래프와 같다. For example, a load of about 5,000 kg was applied in response to the force applied to the ball screw of the feed shaft, and the torque of the servomotor according to the speed was measured while reciprocating the feed shaft in the + and − directions. The measurement result is the same as the graph of FIG.

빨간색으로 표기된 그래프선(G1)은 시간에 따라 +, - 방향으로 이송한 속도를 나타낸 그래프이고, 연두색으로 표기된 그래프선(G2)은 부하에 따른 서보모터의 토크를 나타낸 그래프이다. The graph line G1 indicated in red is a graph showing the speeds transferred in the + and − directions with time, and the graph line G2 indicated in green is a graph showing the torque of the servomotor according to the load.

상기의 그래프에서, 속도가 0인 구간 즉, 이송축이 정지한 구간에서 서보모터의 토크는 0이 아닌 -5 정도인 것을 확인할 수 있다. 이는 볼스크류가 이송 중 마찰력에 의해 강성에 반비례하는 탄성 변형을 일으키는데 이송축이 정지하더라도 이송 중에 발생하는 운동 마찰력에 비해 상대적으로 큰 정지 마찰력이 발생하여 이로 인해 볼스크류의 탄성 변형이 유지되거나 혹은 더 커지기 때문이다. In the above graph, it can be seen that the torque of the servomotor is about -5 instead of 0 in the section where the speed is zero, that is, the section in which the feed shaft stops. The ball screw causes elastic deformation inversely proportional to the stiffness due to the frictional force during the transfer. Even if the feed shaft stops, a relatively large static frictional force is generated compared to the kinetic friction generated during the transfer, thereby maintaining the elastic deformation of the ball screw or more. Because it grows.

그런데, 이러한 탄성 변형은 이송축을 지령 위치(이송하고자 하는 위치)로부터 벗어나게 하고 이로부터 오차를 발생한다. 따라서, 볼스크류의 탄성 변형으로 인한 이송 오차는 서보모터의 토크 및 이로 인한 볼스크류의 탄성 변형량에 비례한다고 볼 수 있다.However, such elastic deformation causes the feed shaft to deviate from the command position (position to be transferred) and generates an error therefrom. Therefore, the feed error due to the elastic deformation of the ball screw can be seen to be proportional to the torque of the servomotor and thus the amount of elastic deformation of the ball screw.

또한, 볼스크류의 탄성 변형량은 이송축에 가해지는 토크에 비례하고 이송축의 강성에 반비례하며, 서보모터의 출력 토크는 서보모터를 가속하는데 필요한 초기 토크를 제외하고는 거의 모두 이송축인 볼스크류에 가해지므로 아래의 수학식 1 및 2와 같이 서로 간의 관계를 가진다. In addition, the amount of elastic deformation of the ball screw is proportional to the torque applied to the feed shaft and inversely proportional to the rigidity of the feed shaft. The output torque of the servo motor is almost entirely applied to the ball screw, which is the feed shaft except for the initial torque required to accelerate the servo motor. Since they are added to each other, as shown in Equations 1 and 2 below.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

따라서, 본 발명은 볼스크류의 탄성 변형에 비례하는 서보모터의 토크를 이용하여 볼스크류의 나사산 당 피치변화량을 계산하고, 피치 변화량에 따른 이송 오차를 계산하여 보상하고자 한다. Accordingly, the present invention is to compensate for the pitch change amount per thread of the ball screw using the torque of the servo motor proportional to the elastic deformation of the ball screw, and to calculate the transfer error according to the pitch change amount to compensate.

이를 위한 공작기계의 실시간 위치 보정 장치는 하기의 도 3 내지 도 6과 같다.The real-time position correction device of the machine tool for this is as shown in Figures 3 to 6 below.

도 3은 본 발명의 공작 기계에서 볼스크류 탄성 변형에 의한 실시간 위치 보정을 위한 장치를 나타낸 구성도이고, 도 4는 이송축의 서보모터에 대한 토크와 나사산 당 피치 변화량 간의 관계를 정의하는 룩업 테이블을 나타낸 도면이며, 도 5는 선형 보간을 이용하여 서보모터의 토크와 나사산 당 피치 변화량 간의 관계를 나타낸 도면이다. 그리고, 도 6은 본 발명의 피치오차 보정량을 나타낸 그래프이다. 3 is a block diagram showing a device for real-time position correction by elastically elastic ball screw in the machine tool of the present invention, Figure 4 is a look-up table that defines the relationship between the torque and the amount of pitch change per thread for the servo motor of the feed shaft FIG. 5 is a diagram illustrating a relationship between a torque of a servomotor and a pitch change amount per thread by using linear interpolation. 6 is a graph showing the pitch error correction amount of the present invention.

먼저 도 3을 참조하면, 본 발명의 장치(100)는 엔코더(120), 서보모터(130), 볼스크류(140), 이송 테이블을 설치하는 너트(150)를 포함한 이송축과, 이송축의 동작을 제어하여 가공 소재를 가공하는 수치제어장치(110)를 포함하여 구성된다. First, referring to FIG. 3, the apparatus 100 of the present invention includes a feed shaft including an encoder 120, a servo motor 130, a ball screw 140, and a nut 150 for installing a feed table, and an operation of the feed shaft. It is configured to include a numerical control device 110 for processing the workpiece by controlling the.

이송축의 엔코더(120)는 이송축의 회전 변화량(위치)을 감지한다. 이송축의 회전 변화량은 볼스크류 너트의 중심 위치를 추출하기 위한 데이터로 이용한다. 이러한 엔코더(120)는 서보모터(130)와 연결하여 장착함으로써 서보모터(130)의 회전 동작을 감지하여 이송축의 회전 변화량을 측정한다. The encoder 120 of the feed shaft detects a rotation change amount (position) of the feed shaft. The rotation change amount of the feed shaft is used as data for extracting the center position of the ball screw nut. The encoder 120 is connected to the servo motor 130 and mounted to detect the rotational motion of the servo motor 130 to measure the rotational change amount of the feed shaft.

서보모터(130)는 수치제어장치(110)의 서보 제어기(117)로부터 인가되는 제어 신호에 따라 구동하며, 이송축에 가해지는 힘에 대하여 대응할 수 있는 토크를 발생하여 이송축으로 전달한다. The servo motor 130 is driven according to a control signal applied from the servo controller 117 of the numerical controller 110, and generates a torque corresponding to the force applied to the feed shaft and transmits it to the feed shaft.

이때, 서보모터(130)로부터 발생하는 토크는 하기의 수학식 3과 같이 정의할 수 있다.In this case, the torque generated from the servo motor 130 may be defined as in Equation 3 below.

Figure pat00003
Figure pat00003

볼스크류(140)는 서보모터(130)로부터 발생한 토크에 비례하여 탄성 변형을 일으키며 이를 통해 이송 테이블을 이송시킨다. The ball screw 140 causes an elastic deformation in proportion to the torque generated from the servo motor 130 to thereby transfer the transfer table.

이러한 볼스크류(140)는 일측에 엔드 베어링이 구비되고, 타측에 서보모터(130)로부터 공급되는 동력을 전달하는 모터측 베어링이 구비되며, 엔드 베어링과 모터측 베어링 사이에서 이송 테이블을 이송시키는 너트(150)가 결합되어 있다. The ball screw 140 is provided with an end bearing on one side and a motor side bearing for transmitting power supplied from the servo motor 130 to the other side, and a nut for transferring a transfer table between the end bearing and the motor side bearing. 150 is coupled.

수치제어장치(110)는 보정 기능 선택입력부(111), 저장부(112), 알고리즘 처리부(113), 서보 제어기(117), 서보 앰프(118)로 구성된다. The numerical controller 110 includes a correction function selection input unit 111, a storage unit 112, an algorithm processing unit 113, a servo controller 117, and a servo amplifier 118.

서보 앰프(118)는 엔코더(120)로부터 서보모터의 회전 변화량을 피드백받아 서보 제어기(117)로 전달하고, 서보 제어기(117)로부터 서보 모터(130)의 구동을 제어하는 제어 신호(PWM 신호)를 전달받는다. The servo amplifier 118 receives the rotational change amount of the servo motor from the encoder 120 and transmits it to the servo controller 117, and a control signal (PWM signal) for controlling the driving of the servo motor 130 from the servo controller 117. Received.

서보 제어기(117)는 서보모터(130)의 구동을 제어하며 서보 앰프(118)로부터 피드백받은 서보모터의 회전 변화량을 근거로 서보모터(130)에 대한 위치제어를 수행한다. The servo controller 117 controls the driving of the servo motor 130 and performs position control on the servo motor 130 based on the rotation change amount of the servo motor fed back from the servo amplifier 118.

또한, 서보 제어기(117)는 서보 앰프(118)로부터 피드백받은 회전 변화량을 알고리즘 처리부(113)의 이송축 너트 위치 계산부(115)로 전달한다. In addition, the servo controller 117 transmits the rotation change amount fed back from the servo amplifier 118 to the feed shaft nut position calculation unit 115 of the algorithm processing unit 113.

보정 기능 선택입력부(111)는 작업의 형태 및 작업자의 임의 설정에 따라 보정 기능을 수행할 것인지에 대한 온(on), 오프(off)를 선택적으로 입력 받는다. 보정 기능을 온(on)으로 선택하면 본 발명의 실시간 위치 보정을 수행하는 것으로 알고리즘 처리부(113)에 설정 요청하고, 오프(off)를 선택하면 실시간 위치 보정을 수행하지 않는 것으로 알고리즘 처리부(113)에 설정 요청한다. The correction function selection input unit 111 selectively receives on and off whether to perform the correction function according to the type of work and the arbitrary setting of the operator. If the correction function is set to on, the algorithm processing unit 113 requests setting to perform the real-time position correction of the present invention, and if off is selected, the algorithm processing unit 113 does not perform the real-time position correction. Ask for configuration.

저장부(112)는 보정 구간, 볼스크류의 나사산 피치 간격, 서보모터의 토크에 따른 볼스크류의 피치 변화량, 지령 위치, 피치 오차 테이블 등 실시간 위치 보정에 필요한 각종 데이터를 저장한다. The storage unit 112 stores various data necessary for real-time position correction, such as a correction section, a thread pitch interval of the ball screws, a pitch change amount of the ball screw according to the torque of the servomotor, a command position, a pitch error table, and the like.

특히, 저장부(112)의 피치 변화량 룩업 테이블(112a)은 볼스크류에 가해지는 힘에 따라 변하는 볼스크류의 나사산 피치 변화량을 서보모터의 토크에 근거하여 기록한다. 예를 들면 도 4에 나타낸 바와 같이 서보모터의 토크에 따라 볼스크류의 나사산 피치 변화량을 각각 매핑하여 테이블화할 수 있다. In particular, the pitch change amount lookup table 112a of the storage unit 112 records the thread pitch change amount of the ball screw, which changes according to the force applied to the ball screw, based on the torque of the servomotor. For example, as shown in FIG. 4, the thread pitch change amount of the ball screw can be mapped to the table according to the torque of the servomotor.

이러한 피치 변화량 룩업 테이블(112a)은 사전 테스트를 통해 미리 구축할 수 있다. 예를 들어, 동일한 서보모터 및 이송축을 사용하는 공작기계의 경우 이송축의 강성에 따라 룩업 테이블이 동일하므로 한 번의 테스트으로 피치 변화량 룩업 테이블(112a)을 구축하는 것이 가능하다. The pitch change amount lookup table 112a may be constructed in advance through a pre-test. For example, in the case of a machine tool using the same servomotor and the feed shaft, the lookup table is the same according to the rigidity of the feed shaft, so it is possible to construct the pitch change amount lookup table 112a in one test.

피치 오차 보정 테이블(112b)은 피치 오차에 따른 보정값을 기록한다. 보정값은 알고리즘 처리부(113)의 피치 오차 보정부(116)를 통해 계산된 값으로, 피치 오차에 따라 계산된 보정값이 기 저장된 피치 오차 보정 테이블(112b)과 다른 경우 최신 보정값으로 갱신한다. The pitch error correction table 112b records the correction value according to the pitch error. The correction value is a value calculated by the pitch error correction unit 116 of the algorithm processing unit 113. When the correction value calculated according to the pitch error is different from the previously stored pitch error correction table 112b, the correction value is updated. .

알고리즘 처리부(113)는 보정 기능 선택입력부(111)로부터 입력받은 선택 여부에 따라 보정 기능을 수행하도록 동작하며, 서보 제어기(117)로부터 볼스크류의 탄성 변형에 대응하는 토크 데이터 및 위치 데이터를 인가받아 볼스크류의 피치 변화량 및 피치 변화량에 따른 보정값을 계산하고, 계산한 보정값을 피치 오차 테이블에 수정하여 수정한 피치 오차 테이블을 근거로 서보모터의 구동을 보정한다. The algorithm processing unit 113 operates to perform a correction function according to the selection received from the correction function selection input unit 111, and receives torque data and position data corresponding to elastic deformation of the ball screw from the servo controller 117. The correction value according to the pitch change amount and pitch change amount of the ball screw is calculated, and the calculated correction value is corrected to the pitch error table to correct the drive of the servomotor based on the corrected pitch error table.

이를 위해 구체적으로 알고리즘 처리부(113)는 피치 변화량 검출부(114), 이송축 너트 위치 계산부(115), 피치 오차 보정부(116)로 구분할 수 있다. 이러한 구분은 설명의 편의상 각 기능별로 독립적으로 구성된 것을 예시하였으나, 하나 또는 그 이상의 기능들이 통합되어 구비될 수도 있을 것이다. To this end, the algorithm processing unit 113 may be specifically divided into a pitch change detector 114, a feed shaft nut position calculator 115, and a pitch error corrector 116. This division has been illustrated to be configured independently for each function for convenience of description, it may be provided with one or more functions integrated.

피치 변화량 검출부(114)는 서보 제어기(117)로부터 볼스크류의 탄성 변형에 대응하는 토크 데이터를 인가받아 저장부(112)에 기 저장된 피치 변화량 룩업 테이블을 근거로 볼스크류의 나사산 당 피치 변화량(δ)을 검출한다. The pitch change amount detecting unit 114 receives torque data corresponding to the elastic deformation of the ball screw from the servo controller 117, and the pitch change amount per thread of the ball screw on the basis of the pitch change amount lookup table previously stored in the storage unit 112 (δ). ).

이때, 피치 변화량 검출부(114)는 기 저장된 피치 변화량 룩업 테이블과 도 5의 선형 보간(linear interpolation)을 이용하면 서보모터의 토크에 대응하는 나사산 당 피치 변화량(δ)을 실시간으로 계산하는 것이 가능하다. In this case, the pitch change detection unit 114 may calculate the pitch change amount δ per thread corresponding to the torque of the servo motor in real time by using the pre-stored pitch change lookup table and linear interpolation of FIG. 5. .

이송축 너트 위치 계산부(115)는 서보 제어기(117)로부터 전달받은 서보모터의 회전 변화량(위치)로부터 이송축 너트(150)가 위치한 중심 위치를 계산한다. The feed shaft nut position calculator 115 calculates a center position at which the feed shaft nut 150 is located from the rotation change amount (position) of the servo motor received from the servo controller 117.

피치 오차 보정부(116)는 피치 변화량 검출부(114)를 통해 검출한 볼스크류의 나사산 당 피치 변화량(δ)과, 이송축 너트 위치 계산부(115)를 통해 계산한 너트의 중심 위치를 이용하여 피치 오차에 따른 보정값을 산출한다. The pitch error correction unit 116 uses the pitch change amount δ per thread of the ball screw detected by the pitch change amount detection unit 114 and the center position of the nut calculated by the feed shaft nut position calculation unit 115. The correction value according to the pitch error is calculated.

그리고, 피치 오차 보정부(116)는 산출한 보정값을 피치 오차 보정 테이블(112b)에 전달하여 피치 오차에 따른 보정값을 최신 정보로 수정하고 기설정한 보정 구간마다 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 서보 제어기(117)로 보정값에 대응하는 제어 신호를 전달한다. 따라서, 피치 오차 보정부(116)는 보정 구간마다 최신 보정값만큼 서보모터의 구동을 보정한다. The pitch error correction unit 116 transmits the calculated correction value to the pitch error correction table 112b to correct the correction value according to the pitch error with the latest information, and the latest stored in the pitch error correction table for each preset correction section. The correction value is extracted and the control signal corresponding to the correction value is transmitted to the servo controller 117. Therefore, the pitch error correction unit 116 corrects the drive of the servomotor by the latest correction value for each correction section.

피치 오차에 따른 보정값은 하기의 수학식을 이용한 알고리즘을 통해 산출할 수 있다. The correction value according to the pitch error may be calculated through an algorithm using the following equation.

Figure pat00004
Figure pat00004

여기서, δ는 볼스크류의 나사산 당 피치 변화량, p는 볼스크류의 나사산 당 피치 간격이다. 그리고, 너트 중심 위치와 모터측 베어링 위치간 간격은 이송축 위치에 해당되며 또는 보정 구간(보정 간격)이 될 수 있다. Here, δ is the pitch change amount per thread of the ball screw, p is the pitch interval per thread of the ball screw. The gap between the nut center position and the motor side bearing position corresponds to the feed shaft position or may be a correction section (correction interval).

상기의 수학식에 의한 보정값을 이송축의 위치에 따라 검출하면 도 6에 도시한 바와 같은 그래프의 기울기에 대응된다. Detecting the correction value according to the above equation according to the position of the feed shaft corresponds to the inclination of the graph as shown in FIG.

그래프 ①은 서보모터의 토크가 a일 때 이송축의 위치에 따른 보정값을 나타낸 것이다. ②는 서보모터의 토크가 a이고 이송축의 위치가 m1에서 m2로 이송할 경우의 보정값을 나타낸 것이고, ③은 서보모터의 토크가 a보다 큰 경우 이송축의 위치에 따른 보정값을 나타낸 것이다. The graph ① shows the compensation value according to the position of the feed shaft when the torque of the servomotor is a. ② shows the correction value when the torque of the servo motor is a and the position of the feed shaft is transferred from m1 to m2, and ③ shows the correction value according to the position of the feed shaft when the torque of the servo motor is larger than a.

예를 들어, 너트의 중심위치가 모터측 베어링의 위치로부터 160mm 정도 떨어져 있고 모터측 베어링 위치로부터 30mm 간격으로 피치 오차를 보정하며 볼스크류의 나사산 당 피치가 15mm라고 가정한다. 만일 이송 테이블을 서보모터 쪽으로 이송하면 모터측 베어링과 너트 사이의 볼스크류는 이송 테이블을 끌어오는 데 필요한 힘에 비례하여 늘어나게 되고, 서보모터는 이송 테이블을 끌어오는 데 드는 힘을 토크로 느끼게 된다. 이때의 서보모터의 토크 데이터를 검출하고 계산된 나사산 당 피치 변화량 δ이 2.3미크론 이라면, 피치오차 보정구간(30mm 간격) 당 보정값은 수학식 4에 의해 4.6미크론(2.3*30/15)이 되므로 피치 오차 보정 테이블은 아래와 같이 수정된다.For example, it is assumed that the center position of the nut is about 160 mm away from the position of the motor side bearing, the pitch error is corrected at an interval of 30 mm from the position of the motor side bearing, and the pitch per thread of the ball screw is 15 mm. If the transfer table is moved to the servomotor, the ball screw between the motor side bearing and the nut is increased in proportion to the force required to pull the transfer table, and the servomotor feels the force to pull the transfer table as torque. When the torque data of the servo motor is detected at this time and the calculated pitch variation δ per thread is 2.3 microns, the correction value per pitch error correction interval (30 mm interval) becomes 4.6 microns (2.3 * 30/15) by equation (4). The pitch error correction table is modified as follows.

- 모터측 베어링에서 30mm 떨어진 피치오차 첫번째 보정점에서의 보정값 = 기존값 + 1*4.6-Correction value at the first correction point of the pitch error 30mm away from the bearing on the motor side = conventional value + 1 * 4.6

- 모터측 베어링에서 60mm 떨어진 피치오차 두번째 보정점에서의 보정값 = 기존값 + 2*4.6-Correction value at the second correction point of the pitch error 60 mm away from the bearing on the motor side = conventional value + 2 * 4.6

- 모터측 베어링에서 90mm 떨어진 피치오차 세번째 보정점에서의 보정값 = 기존값 + 3*4.6-Correction value at the third correction point of the pitch error 90 mm away from the bearing on the motor side = conventional value + 3 * 4.6

- 모터측 베어링에서 120mm 떨어진 피치오차 네번째 보정점에서의 보정값 = 기존값 + 4*4.6-Correction value at the 4th correction point of the pitch error 120mm away from the bearing on the motor side = conventional value + 4 * 4.6

- 모터측 베어링에서 150mm 떨어진 피치오차 다섯번째 보정점에서의 보정값 = 기존값 + 5*4.6
-Correction value at the 5th correction point of the pitch error 150 mm away from the bearing on the motor side = conventional value + 5 * 4.6

따라서, 피치 오차 보정부(116)는 이송축 너트의 위치에 따라 피치 오차 보정 테이블에 설정된 보정값만큼 서보모터를 더 이송시키거나 덜 이송시키므로, 볼스크류의 나사산 당 피치 변화량과 너트의 중심 위치에 따라 보정값을 계산하고 계산된 보정값에 따라 피치 오차 보정 테이블을 수정하면 수정된 피치 오차 보정 테이블에 의해 너트의 중심 위치에 대한 오차를 보상하는 방향으로 이동하게 된다. Therefore, since the pitch error correction unit 116 further moves the servomotor more or less by the correction value set in the pitch error correction table according to the position of the feed shaft nut, the pitch error amount per thread of the screw thread and the center position of the nut. When the correction value is calculated and the pitch error correction table is modified according to the calculated correction value, the corrected pitch error correction table is moved in the direction of compensating for the error of the center position of the nut.

따라서, 알고리즘 처리부(113)를 통한 본 발명은 서모보터의 토크로부터 볼스크류 탄성 변형에 의한 피치 오차를 계산하고 이를 통해 피치 오차 보정 테이블을 수정함으로써 이송축의 이송 오차 및 서보모터의 반전시 발생하는 백래쉬 오차를 실시간으로 보정하는 것이 가능하다. Therefore, the present invention through the algorithm processing unit 113 calculates the pitch error due to the elastic deformation of the ball screw from the torque of the thermovotor and through this to modify the pitch error correction table through which the feed error of the feed shaft and the inversion of the servo motor It is possible to correct the backlash error in real time.

그러면, 이와 같이 구성되는 공작기계에서 볼스크류 탄성 변형에 의한 이송 오차를 보정하는 과정을 구체적으로 설명한다. Then, the process of correcting the feed error caused by the ball screw elastic deformation in the machine tool configured as described above will be described in detail.

도 7은 본 발명의 공작기계에서 볼스크류 변형에 의한 실시간 위치 보정 방법을 설명하는 흐름도이고, 도 8은 도 7의 상세 흐름도이다. 7 is a flowchart illustrating a real-time position correction method by the ball screw deformation in the machine tool of the present invention, Figure 8 is a detailed flowchart of FIG.

먼저, 실시간 보정을 위해 공작 기계는 모터측 베어링으로부터 보정할 지점의 보정 구간을 설정하고, 볼스크류의 나사산 당 피치 간격, 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량에 대한 데이터를 사전에 구축한다. First of all, for real-time correction, the machine tool sets the correction interval of the point to be corrected from the bearing on the motor side, and in advance, the data about the pitch change per thread of the ball screw and the amount of pitch change per thread of the screw according to the torque of the servo motor Build.

이후, 공작 기계의 수치제어장치는 보정 기능 선택입력부를 통해 설정된 보정 기능의 온, 오프에 따라 피치 보정을 수행할 것인지를 확인한다(S100).Thereafter, the numerical control apparatus of the machine tool determines whether to perform pitch correction according to the on / off of the correction function set through the correction function selection input unit (S100).

예를 들어, 도 8에 도시한 바와 같이 보정 기능에 대한 온, 오프 여부를 확인하고(S102), 오프(off)로 설정되어 있으면 피치 보정 기능을 종료하고 온(on)으로 설정되어 있으면 기설정된 보정 구간(보정점)에 따라 또는 작업자의 요청에 따라 직접 발생하는 실시간 보정 지령에 따라 보정 기능을 수행한다.For example, as shown in FIG. 8, whether the correction function is turned on or off is checked (S102), if it is set to off, the pitch correction function is terminated, and if it is set to on, the preset function is set to on. The correction function is performed according to the correction section (correction point) or according to the real-time correction command that occurs directly at the request of the operator.

이후, 공작 기계의 수치제어장치는 실시간 보정을 위해 서보제어기로부터 현재 서보모터의 토크 데이터를 실시간으로 검출한다(S110).Subsequently, the numerical control apparatus of the machine tool detects torque data of the current servomotor from the servo controller in real time for real-time correction (S110).

이후, 공작 기계의 수치제어장치는 피치 변화량 검출부에서 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 이용하여 상기의 S110단계에서 검출한 서보모터의 토크로부터 볼스크류의 나사산 당 피치 변화량을 검출한다(S120). Then, the numerical control apparatus of the machine tool uses the relationship between the torque of the servomotor and the pitch change per thread of the ball screw in the pitch change amount detecting unit to calculate the pitch change per thread of the ball screw from the torque of the servomotor detected in step S110. It is detected (S120).

검출 방법으로는 상기의 구성에서 설명한 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 데이터 값으로 테이블화한 피치 변화량 룩업 테이블을 이용하여, 검출한 서보모터의 토크에 대응되는 볼스크류의 나사산 당 피치 변화량을 검출하는 방식을 이용할 수 있다.As a detection method, a ball screw corresponding to the torque of the detected servomotor is detected by using a pitch change amount look-up table in which the relationship between the torque of the servomotor described in the above configuration and the pitch change per thread of the ball screw is tabled as a data value. A method of detecting the amount of pitch change per thread can be used.

또는, 서보모터의 토크와 볼스크류의 나사산 당 피치 변화량간 관계를 정의한 수학식 및 알고리즘을 통해 검출하는 방식을 이용할 수도 있다. Alternatively, a method of detecting through a mathematical equation and algorithm defining a relationship between the torque of the servomotor and the pitch change per thread of the ball screw may be used.

이후, 공작 기계의 수치제어장치는 이송축 너트 위치 계산부에서 서보모터의 회전 변화량으로부터 이송축 너트의 중심 위치를 계산하여 너트가 위치한 위치 데이터를 검출한다(S130).Thereafter, the numerical control apparatus of the machine tool calculates the center position of the feed shaft nut from the rotation change amount of the servomotor in the feed shaft nut position calculation unit to detect the position data where the nut is located (S130).

이후, 공작 기계의 수치제어장치는 피치 오차 보정부에서 볼스크류의 나사산 당 피치 변화량과 너트의 중심 위치를 이용하여 피치 오차에 따른 보정값을 계산한다(S140).Thereafter, the numerical control apparatus of the machine tool calculates a correction value according to the pitch error using the pitch change per thread of the ball screw and the center position of the nut in the pitch error correcting unit (S140).

보정값은 상기의 수학식 4에서 언급한 바와 같이 모터측 베어링과 너트간 간격(이동 거리)에서 또는 보정 구간에서의 볼스크류의 나사산 당 피치에 대한 변화량을 산출한 것이다. The correction value is calculated as the amount of change in pitch per thread of the ball screw at the interval (moving distance) between the motor side bearing and the nut or in the correction section as mentioned in Equation 4 above.

이후, 공작 기계의 수치제어장치는 계산한 보정값을 토대로 피치오차 보정 테이블에 수정하여 갱신한다(S150).Subsequently, the numerical control apparatus of the machine tool modifies and updates the pitch error correction table based on the calculated correction value (S150).

이후, 공작 기계의 수치제어장치는 피치 오차 보정 테이블에 근거하여 수정된 보정값만큼 이송 위치를 보정한다(S160).Thereafter, the numerical control apparatus of the machine tool corrects the transfer position by the corrected correction value based on the pitch error correction table (S160).

본 발명에서의 이송 위치의 보정 방법은 수정된 보정값만큼 서보모터의 구동을 조절하여 이송 위치를 보상하는 것이다. 따라서, 이송 및 가공시 지령 위치로 이송하면서 보정 구간마다 피치 오차에 따라 계산한 보정값을 반영하여 볼스크류의 탄성 변형에 따른 이송축의 위치를 너트의 중심 위치에 대한 오차 보상을 통해 보상한다. 이로써, 볼스크류 탄성 변형에 의한 이송축의 위치 오차를 실시간으로 보상하는 것이 가능하다. The correction method of the transfer position in the present invention is to compensate the transfer position by adjusting the drive of the servomotor by the corrected correction value. Accordingly, the position of the feed shaft according to the elastic deformation of the ball screw is compensated by the error compensation for the center position of the nut by reflecting the correction value calculated according to the pitch error for each correction section while transferring to the command position during the feeding and processing. Thereby, it is possible to compensate the position error of the feed shaft by the ball screw elastic deformation in real time.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서 본 발명의 명세서에 개시된 실시 예들은 본 발명을 한정하는 것이 아니다. 본 발명의 범위는 아래의 특허청구범위에 의해 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술도 본 발명의 범위에 포함되는 것으로 해석해야 할 것이다.The foregoing description is merely illustrative of the present invention, and various modifications may be made by those skilled in the art without departing from the spirit of the present invention. Accordingly, the embodiments disclosed in the specification of the present invention are not intended to limit the present invention. The scope of the present invention should be construed according to the following claims, and all the techniques within the scope of equivalents should be construed as being included in the scope of the present invention.

100: 공작 기계 110: 수치제어장치
111: 보정기능 선택입력부 112: 저장부
112a: 피치 변화량 룩업테이블 112b: 피치 오차 보정 테이블
113: 알고리즘 처리부 114: 피치 변화량 검출부
115: 이송축 너트 위치 계산부 116: 피치 오차 보정부
117: 서보 제어기 118: 서보 앰프
120: 엔코더 130: 서보모터
140: 볼스크류 150: 너트
100: machine tool 110: numerical control device
111: correction function selection input unit 112: storage unit
112a: pitch change amount lookup table 112b: pitch error correction table
113: algorithm processing unit 114: pitch change amount detecting unit
115: feed shaft nut position calculation unit 116: pitch error correction unit
117: servo controller 118: servo amplifier
120: encoder 130: servo motor
140: ball screw 150: nut

Claims (6)

서보모터의 구동에 의해 회전하는 볼스크류의 탄성 변형으로 이송 테이블을 이송시키는 이송축;
상기 이송축의 서보모터로부터 발생하는 토크를 감지하여 상기 볼스크류의 탄성 변형으로 인한 나사산 당 피치 변화량을 검출하는 피치 변화량 검출부;
상기 이송축의 서보모터로부터 감지한 회전 변화량에 따라 상기 이송 테이블을 이송시키는 너트의 중심 위치를 계산하는 이송축 너트 위치 계산부;
상기 피치 변화량 검출부를 통해 검출한 볼스크류의 나사산 당 피치 변화량과 상기 이송축 너트 위치 계산부를 통해 계산한 너트의 중심 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하고, 계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 피치 오차 보정부
를 포함하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
A feed shaft for feeding the feed table with elastic deformation of the ball screw rotating by the drive of the servomotor;
A pitch change amount detecting unit detecting a torque generated from the servo motor of the feed shaft to detect a pitch change amount per thread due to elastic deformation of the ball screw;
A feed shaft nut position calculator for calculating a center position of a nut for feeding the feed table according to the rotational change amount detected from the servo motor of the feed shaft;
The correction value according to the thread pitch error of the ball screw is calculated by using the pitch change per thread of the ball screw detected by the pitch change amount detecting unit and the center position of the nut calculated by the feed shaft nut position calculating unit. Pitch error correction unit for compensating the drive of the servo motor by a correction value to compensate the position of the feed shaft in real time
Real-time position correction device by the ball screw elastic deformation of the machine tool comprising a.
제 1 항에 있어서,
상기 피치 변화량 검출부는
상기 서보모터의 토크에 대응하는 볼스크류의 나사산 당 피치 변화량의 관계를 정의한 룩업 테이블 또는 수학식 알고리즘을 이용하여 상기 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량을 검출하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
The method of claim 1,
The pitch change amount detecting unit
The method for detecting the pitch change per thread of the ball screw according to the torque of the servo motor using a look-up table or a mathematical algorithm that defines the relationship between the pitch change per thread of the ball screw corresponding to the torque of the servo motor. Real-time position correction device by elastic deformation of ball screw of machine.
제 1 항에 있어서,
상기 피치 오차 보정부는
상기 계산한 보정값을 피치 오차 보정 테이블에 수정하여 최신 보정값으로 갱신하고, 기설정한 보정 구간마다 상기 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 보상하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 장치.
The method of claim 1,
The pitch error correction unit
The ball screw of the machine tool, characterized in that the correction value is corrected in the pitch error correction table and updated to the latest correction value, and the latest correction value stored in the pitch error correction table is compensated for each preset correction section. Real-time position correction device by elastic deformation.
이송축의 서보모터에 대하여 회전 변화량을 감지하여 상기 서보모터의 토크를 검출하는 단계;
상기 검출한 서보모터의 토크를 이용하여 상기 서보모터의 구동에 의해 회전하는 볼스크류의 나사산 당 피치 변화량을 검출하는 단계;
상기 서보모터의 회전 변화량으로부터 상기 이송축의 위치를 계산하는 단계;
상기 볼스크류의 나사산 당 피치 변화량과 상기 이송축의 위치를 이용하여 상기 볼스크류의 나사산 피치 오차에 따른 보정값을 계산하는 단계;
계산한 보정값만큼 상기 서보모터의 구동을 보정하여 상기 이송축의 위치를 실시간 보상하는 단계
를 포함하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형으로 인한 실시간 위치 보정 장치.
Detecting torque of the servomotor by detecting an amount of rotational change with respect to a servomotor of a feed shaft;
Detecting a pitch change amount per thread of a ball screw rotating by driving the servomotor by using the detected torque of the servomotor;
Calculating a position of the feed shaft from the rotation change amount of the servomotor;
Calculating a correction value according to the thread pitch error of the ball screw using the pitch change amount per thread of the ball screw and the position of the feed shaft;
Compensating the drive of the servo motor by the calculated correction value to compensate the position of the feed shaft in real time
Real-time position correction device due to the elastic deformation of the ball screw of the machine tool comprising a.
제 4 항에 있어서,
상기 볼스크류의 나사산 당 피치 변화량을 검출하는 단계는,
상기 서보모터의 토크에 대응하는 볼스크류의 나사산 당 피치 변화량의 관계를 정의한 룩업 테이블 또는 수학식 알고리즘을 이용하여 상기 서보모터의 토크에 따른 볼스크류의 나사산 당 피치 변화량을 검출하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법.
The method of claim 4, wherein
Detecting the pitch change amount per thread of the ball screw,
The method for detecting the pitch change per thread of the ball screw according to the torque of the servo motor using a look-up table or a mathematical algorithm that defines the relationship between the pitch change per thread of the ball screw corresponding to the torque of the servo motor. Real time position correction method by elastic deformation of ball screw of machine.
제 4 항에 있어서,
상기 이송축의 위치를 실시간 보상하는 단계는,
상기 계산한 보정값을 피치 오차 보정 테이블에 수정하여 최신 보정값으로 갱신하고, 기설정한 보정 구간마다 상기 피치 오차 보정 테이블에 저장된 최신 보정값을 추출하여 보상하는 것을 특징으로 하는 공작기계의 볼스크류 탄성 변형에 의한 실시간 위치 보정 방법.
The method of claim 4, wherein
Compensating the position of the feed shaft in real time,
The ball screw of the machine tool, characterized in that the correction value is corrected in the pitch error correction table and updated to the latest correction value, and the latest correction value stored in the pitch error correction table is compensated for each preset correction section. Real-time position correction method by elastic deformation.
KR1020110106270A 2011-10-18 2011-10-18 Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool KR101847214B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110106270A KR101847214B1 (en) 2011-10-18 2011-10-18 Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool
PCT/KR2012/007535 WO2013058481A1 (en) 2011-10-18 2012-09-20 Method and device for real time position correction by deformation of ball screw of machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110106270A KR101847214B1 (en) 2011-10-18 2011-10-18 Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool

Publications (2)

Publication Number Publication Date
KR20130042140A true KR20130042140A (en) 2013-04-26
KR101847214B1 KR101847214B1 (en) 2018-04-09

Family

ID=48141094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110106270A KR101847214B1 (en) 2011-10-18 2011-10-18 Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool

Country Status (2)

Country Link
KR (1) KR101847214B1 (en)
WO (1) WO2013058481A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396481A1 (en) * 2017-04-25 2018-10-31 Dr. Johannes Heidenhain GmbH Method for compensating for the push of a milling cutter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103358182A (en) * 2013-07-02 2013-10-23 国家电网公司 System for monitoring stress state of cutter bar of deep hole drilling machine
CN107091630A (en) * 2017-01-18 2017-08-25 浙江精久轴承工业有限公司 A kind of ball screw pitch detection and uniform decision maker and method
CN107515117B (en) * 2017-09-25 2023-12-08 山东博特精工股份有限公司 Precise measuring device and measuring method for transmission efficiency of screw pair
CN111215965A (en) * 2019-11-28 2020-06-02 华中科技大学 Device and method for measuring dynamic torque of alternating current permanent magnet synchronous motor of machine tool feeding system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970061439A (en) * 1996-02-27 1997-09-12 김광호 Method of correcting the pitch error of a machine tool
JPH10100043A (en) * 1996-09-26 1998-04-21 Mitsubishi Heavy Ind Ltd Pitch error correction control device
JP3297643B2 (en) * 1997-10-14 2002-07-02 東芝機械株式会社 Servo control method and servo control device for feed drive system
PL1989019T3 (en) * 2006-03-02 2009-12-31 Mikron Agie Charmilles Ag Method and apparatus for a displacement correction for a machine tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3396481A1 (en) * 2017-04-25 2018-10-31 Dr. Johannes Heidenhain GmbH Method for compensating for the push of a milling cutter
US10788807B2 (en) 2017-04-25 2020-09-29 Dr. Johannes Heidenhain Gmbh Method for compensating milling cutter deflection

Also Published As

Publication number Publication date
WO2013058481A1 (en) 2013-04-25
KR101847214B1 (en) 2018-04-09

Similar Documents

Publication Publication Date Title
US20150051846A1 (en) Bearing life determination device
EP2708322B1 (en) Apparatus and method for automatically detecting and compensating for a backlash of a machine tool
TWI435517B (en) Load inertia estimation method and control parameter adjustment method
WO2012057235A1 (en) Numerical control method
US9304504B2 (en) Servo controller for reducing interference between axes in machining
KR20130042140A (en) Method for correcting position caused by deformation of ballscrew of machine tool in real-time and machine tool
US9152142B2 (en) Servo controller for correcting position error when moving member reverses
JP6592143B2 (en) Electric motor control device
US20140156080A1 (en) Servo control system with position compensation function for driven member
KR910007054B1 (en) Numerical control device
JP2010120150A (en) Estimation method for thermal deformation compensation of machine tool
CN109257940A (en) Control parameter adjusts device
KR100450455B1 (en) Servo control method
CN107615195B (en) Method for tapping threaded hole, numerical control machine tool and numerical control machining device
CN111624940B (en) Information processing apparatus and information processing method
JP2003005838A (en) Method for servo control
CN109324568A (en) Position control
JP4503148B2 (en) Compensator for feeding mechanism of numerically controlled machine tool and numerically controlled machine tool
WO2020217282A1 (en) Servo control device
US10698383B1 (en) Method of load characteristic identification and acceleration adjustment for machine tool
US11566666B2 (en) Processing machine and pressure adjustment method
JP5334932B2 (en) Parameter setting method and parameter setting device
CN111399559B (en) Method for judging load characteristics and adjusting acceleration of workpiece of machine tool
JP2003157114A (en) Method and device for lost motion correction
KR20050067684A (en) Servo moter speed loop gain control unit of cnc and method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant