WO2017111557A1 - 실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법 - Google Patents

실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2017111557A1
WO2017111557A1 PCT/KR2016/015237 KR2016015237W WO2017111557A1 WO 2017111557 A1 WO2017111557 A1 WO 2017111557A1 KR 2016015237 W KR2016015237 W KR 2016015237W WO 2017111557 A1 WO2017111557 A1 WO 2017111557A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
conjugated diene
alkyl group
alkyl
Prior art date
Application number
PCT/KR2016/015237
Other languages
English (en)
French (fr)
Inventor
이희승
김노마
손해성
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160177039A external-priority patent/KR101874718B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018506536A priority Critical patent/JP6552716B2/ja
Priority to CN201680043802.8A priority patent/CN107922514B/zh
Priority to EP16879424.6A priority patent/EP3296324B1/en
Priority to US15/736,005 priority patent/US10538128B2/en
Publication of WO2017111557A1 publication Critical patent/WO2017111557A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a silyl group-containing compound useful for polymer modification, a modified conjugated diene-based polymer comprising a functional group derived from the compound, and a preparation method thereof.
  • conjugated diene-based (co) polymers such as styrene-butadiene rubber (hereinafter referred to as SBR) or butadiene rubber (hereinafter referred to as BR) have been produced by emulsion polymerization or solution polymerization and used as rubber for tires. .
  • SBR styrene-butadiene rubber
  • BR butadiene rubber
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be adjusted by coupling or modification. It can be adjusted. Therefore, it is easy to change the structure of the final manufactured SBR or BR rubber, and the movement of the chain ends can be reduced by the binding or modification of the chain ends, and the bonding strength with fillers such as silica or carbon black can be increased. It is widely used as a rubber material for tires.
  • the vinyl content in the SBR is increased to increase the glass transition temperature of the rubber, thereby controlling tire required properties such as running resistance and braking force, and properly adjusting the glass transition temperature. By adjusting the fuel consumption can be reduced.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers.
  • US Pat. No. 4,397,994 discloses a technique in which the active anion at the chain end of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, a monofunctional initiator, using a binder such as a tin compound. It was.
  • carbon black and silica are used as reinforcing fillers for tire treads.
  • silica is used as reinforcing fillers, low hysteresis loss and wet skid resistance are improved.
  • the hydrophilic surface silica has a disadvantage of poor dispersibility due to low affinity with rubber compared to the hydrophobic surface carbon black, so that a separate silane coupler may be used to improve dispersibility or to impart a bond between silica and rubber. It is necessary to use a ring agent.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to provide a compound comprising a structural unit represented by the formula (1) useful for polymer modification.
  • Another object of the present invention is to provide a modified conjugated diene-based polymer comprising a functional group derived from the compound.
  • Still another object of the present invention is to provide a method for producing a modified conjugated diene polymer using the compound.
  • the present invention provides a compound comprising a structural unit represented by the formula (1):
  • R 1 to R 3 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms, wherein at least one of R 1 to R 3 is an alkoxy group having 1 to 20 carbon atoms ,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • the present invention provides a modified conjugated diene-based polymer comprising a functional group derived from the compound represented by the following formula (4) or (5):
  • R 5 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms,
  • R 7 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • P is a conjugated diene polymer chain
  • a and b are each independently an integer of 1 or 2, a + b is 2 or 3,
  • R 10 and R 13 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms,
  • R 15 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 16 is a hetero atom of N, O or S, and when R 16 is O or S, R 15 is absent;
  • P is a conjugated diene polymer chain
  • c to f are each independently an integer of 0 to 3
  • c + e is 1 to 5
  • d + f is 1 to 3
  • n and m are each independently an integer from 1 to 1000,
  • A is a substituent represented by the following formula (6),
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • the present invention is to prepare an active polymer in which an alkali metal is bonded to at least one end by polymerizing a conjugated diene monomer or an aromatic vinyl monomer and a conjugated diene monomer in the presence of an organometallic compound in a hydrocarbon solvent (step 1). ; Firstly reacting the active polymer with a compound represented by Formula 2 or Formula 3 (Step 2); And it provides a method for producing the modified conjugated diene-based polymer comprising the step (step 3) of the second reaction with the compound comprising a structural unit represented by the formula (1) after the first reaction.
  • R 5 , R 6 and R 8 Independently from each other an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms, wherein at least one of R 5 , R 6 and R 8 is an alkoxy group having 1 to 20 carbon atoms,
  • R 7 is either an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 9 to R 14 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms, and at least one of R 9 to R 14 has 1 to C carbon atoms. 20 alkoxy groups,
  • R 15 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 16 is a hetero atom of N, O or S, and when R 16 is O or S, R 15 is absent;
  • n and m are each independently an integer from 1 to 1000,
  • R 1 to R 3 may be independently of each other allyl odd having 1 to 20 carbon alkyl, alkoxy or 3 to 20 carbon atoms having 1 to 20 carbon atoms, at least one of R 1 to R 3 is an alkoxy group having 1 to 20 carbon atoms and ,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • the modified conjugated diene-based polymer according to the present invention is combined with a hydroxyl group and a silyl group may be excellent in affinity with the silica-based filler.
  • the processability of the rubber composition comprising the modified conjugated diene-based polymer may be excellent, and as a result, the processed product (eg, a tire) manufactured using the rubber composition may have excellent tensile strength and viscoelastic properties.
  • the present invention provides a silyl group-containing compound which can be usefully used as a modifier of a polymer such as a conjugated diene polymer.
  • the compound according to an embodiment of the present invention is characterized by including a structural unit represented by the following Chemical Formula 1.
  • R 1 to R 3 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms, wherein at least one of R 1 to R 3 is an alkoxy group having 1 to 20 carbon atoms ,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • R 1 to R 3 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, at least one of R 1 to R 3 is an alkoxy group having 1 to 10 carbon atoms
  • R 4 may be an alkylene group having 1 to 10 carbon atoms as a linking group connecting the silane group and the isocyanate group.
  • the compound according to an embodiment of the present invention may be a modifier for a polymer, and specifically, may be a modifier for a conjugated diene polymer.
  • the compound comprising the structural unit represented by the formula (1) according to the present invention can easily modify the conjugated diene polymer at a high modification rate by including a hydroxyl group and an alkoxysilane group, from the rubber composition and the same Abrasion resistance, viscoelastic properties, and the like of a molded article such as a manufactured tire can be improved.
  • the compound may have a hydroxyl group and an alkoxysilane group in the molecule and thus exhibit high reactivity with respect to the active site of the conjugated diene-based polymer, thereby denaturing the conjugated diene-based polymer with high modification rate.
  • the modified conjugated diene-based polymer having a functional group substituted by a modifier may improve affinity with the filler, thereby improving workability.
  • the compound including the structural unit represented by Chemical Formula 1 may be prepared by polymerizing a saponified polyvinylacetate (PVA) and a monomer containing a silyl group, for example, saponified
  • PVA polyvinylacetate
  • the polyvinyl acetate may be prepared by reacting a monomer containing a silyl group with 0.1 mol to 10 mol equivalents, more specifically 1 mol to 2 mol equivalents, relative to the saponified polyvinyl acetate.
  • the saponified polyvinyl acetate is prepared by saponification of polyvinylacetate, containing 1 mol% to 99 mol% of hydroxyl groups relative to the total number of moles, and a weight of 100 g / mol to 50,000 g / mol It may represent an average molecular weight.
  • the saponified polyvinyl acetate may include 1 mol% to 80 mol% of hydroxyl groups relative to the total number of moles, and may exhibit a weight average molecular weight of 1000 g / mol to 30,000 g / mol.
  • the compound including a structural unit represented by Formula 1 may be prepared through the following Scheme 1.
  • the present invention also provides a modified conjugated diene-based polymer having excellent affinity with reinforcing fillers, particularly silica fillers, and having improved processability.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention is represented by the following formula (4) or (5), characterized in that it comprises a compound-derived functional group containing a structural unit represented by the formula (1).
  • R 5 is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms,
  • R 7 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • P is a conjugated diene polymer chain
  • a and b are each independently an integer of 1 or 2, a + b is 2 or 3,
  • R 10 and R 13 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms,
  • R 15 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 16 is a hetero atom of N, O or S, and when R 16 is O or S, R 15 is absent;
  • P is a conjugated diene polymer chain
  • c to f are each independently an integer of 0 to 3
  • c + e is 1 to 5
  • d + f is 1 to 3
  • n and m are each independently an integer from 1 to 1000,
  • A is a substituent represented by the following formula (6),
  • R 1 and R 2 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • R 1 , R 2 , R 5 , R 10 and R 13 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and R 4 is 1 carbon atom.
  • An alkylene group of 10 to 10, and R 7 and R 15 are each independently an alkyl group having 1 to 10 carbon atoms;
  • R 7 and R 15 may be each independently a substituent represented by formula (X 1 ) j -H 1- (X 2 ) h- j , wherein X 1 and X 2 are independently of each other An alkyl group, -NR'R “, -SiR'R” R “', [-Y-SiR'R” R “'] or [-YH 2- (Z) k- 1 ], wherein X 1 and X 2 May combine with each other to form a ring, wherein Y may be an alkylene group as a divalent linking group, and Z may independently represent a hydrogen atom, an alkyl group, -NR'R "or -SiR'R” R " Can be '.
  • H 1 and H 2 may be independently of each other N or S
  • R ', R "and R"' may be independently a hydrogen atom or an alkyl group
  • h is the valence number of H 1
  • k Is the valence number of H 2
  • j may be an integer from 0 to 2.
  • R 7 and R 15 may be a substituent represented by the following formulas (i) to (vii), in which TMS may represent trimethylsilane and R may represent an alkyl group.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by the manufacturing method described below, and includes a functional group derived from Formula 2 or Formula 3 described later and the structural unit represented by Formula 1 It may be to include a compound-derived functional group, specifically, may include a hydroxyl group and a silyl group.
  • the bonding ratio of the hydroxyl group and the silyl group in the modified conjugated diene-based polymer may vary depending on the compound including the structural unit represented by Formula 1 used in the secondary reaction.
  • the modified conjugated diene-based polymer has a hydroxyl group and a silyl group bonded to the polymer chain may be excellent in affinity with the filler, in particular silica filler. Accordingly, the physical properties of the rubber composition including the modified conjugated diene-based polymer may be excellent, and consequently, the tensile strength of a molded article, such as a tire, manufactured using the rubber composition may be excellent. Abrasion resistance and wet road resistance can be improved.
  • the modified conjugated diene polymer may be a conjugated diene monomer homopolymer or a copolymer of a conjugated diene monomer and an aromatic vinyl monomer.
  • the modified conjugated diene polymer is a copolymer of a conjugated diene monomer and an aromatic vinyl monomer
  • the copolymer may be a random copolymer
  • the "random copolymer” may indicate that the structural units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer when the modified conjugated diene-based polymer is a copolymer of a conjugated diene-based monomer and an aromatic vinyl monomer, the modified conjugated diene-based polymer may be 40% by weight or less, specifically 10 to 40% by weight of units derived from aromatic vinyl monomers. For example, the content may be 15 wt% to 40 wt%.
  • the "derived unit” may refer to a component, a structure, or the substance itself resulting from a substance.
  • the modified conjugated diene-based polymer may have a number average molecular weight of 1,000 g / mol to 5,000,000 g / mol, specifically 10,000 g / mol to 1,000,000 g / mol.
  • the modified conjugated diene-based polymer may have a weight average molecular weight of 2,000 g / mol to 10,000,000 g / mol, specifically 20,000 g / mol to 2,000,000 g / mol.
  • the weight average molecular weight and the number average molecular weight are polystyrene reduced molecular weights analyzed by gel permeation chromatography (GPC), respectively.
  • the modified conjugated diene-based polymer may have a vinyl content of 5% by weight or more, specifically 10% by weight or more, more specifically 10% by weight to 50% by weight, and the glass transition temperature when the vinyl content is in the above range. Can be adjusted to an appropriate range, and when applied to a tire, not only the properties required for the tire such as driving resistance and braking force are excellent, but also it has an effect of reducing fuel consumption.
  • the vinyl content represents the content of the 1,2-added conjugated diene monomer instead of 1,4-addition based on 100% by weight of the conjugated diene polymer composed of a monomer having a vinyl group or a conjugated diene monomer.
  • the present invention also provides a method for producing the modified conjugated diene polymer.
  • the production method according to an embodiment of the present invention is to polymerize a conjugated diene monomer or an aromatic vinyl monomer and a conjugated diene monomer in the presence of an organometallic compound in a hydrocarbon solvent to form an active polymer having an alkali metal bonded to at least one end thereof.
  • R 5 , R 6 and R 8 Independently from each other an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms, wherein at least one of R 5 , R 6 and R 8 is an alkoxy group having 1 to 20 carbon atoms,
  • R 7 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 9 to R 14 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an allyl group having 3 to 20 carbon atoms, and at least one of R 9 to R 14 has 1 to C carbon atoms. 20 alkoxy groups,
  • R 15 is an alkyl group having 1 to 20 carbon atoms; C1 having at least one hetero atom selected from N, O and S, which is unsubstituted or substituted with mono-, di- or tri-substituted alkyl silyl groups having 1 to 20 carbon atoms or alkyl groups having 1 to 20 carbon atoms.
  • R 16 is a hetero atom of N, O or S, and when R 16 is O or S, R 15 is absent;
  • n and m are each independently an integer from 1 to 1000,
  • R 1 to R 3 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms or an allyl group having 3 to 20 carbon atoms, wherein at least one of R 1 to R 3 is an alkoxy group having 1 to 20 carbon atoms ,
  • R 4 is an alkylene group having 1 to 20 carbon atoms
  • x, y and z represent the molar ratio of repeating units constituting the structural unit x x y + z is 1,
  • x is from 0.1 to 0.8
  • y is 0.1 to 0.8
  • z is from 0.1 to 0.8.
  • R 1 to R 3 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and at least one of R 1 to R 3 is an alkoxy group having 1 to 10 carbon atoms.
  • R 4 may be an alkylene group having 1 to 10 carbon atoms.
  • R 5 , R 6 and R 8 are Independently from each other an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, at least one of R 5 , R 6 and R 8 is an alkoxy group having 1 to 10 carbon atoms, and R 7 is an alkyl group having 1 to 10 carbon atoms ;
  • An alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms may be a substituted or unsubstituted alkyl silyl group having 1 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms including N or S.
  • R 9 to R 14 are each independently an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, at least one of R 9 to R 14 is an alkoxy group having 1 to 10 carbon atoms, R 15 is an alkyl group having 1 to 10 carbon atoms; An alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms substituted or unsubstituted with an alkyl silyl group which is substituted or unsubstituted, an alkyl group having 1 to 10 carbon atoms including N or S, and R 16 is N And n and m may be each independently an integer of 1 to 50.
  • Step 1 is a step for preparing an active polymer having an alkali metal bonded to at least one end thereof, and may be performed by polymerizing a conjugated diene monomer or a conjugated diene monomer and an aromatic vinyl monomer in the presence of an organometallic compound in a hydrocarbon solvent.
  • the polymerization of step 1 may be one using a conjugated diene monomer alone or a conjugated diene monomer and an aromatic vinyl monomer together as described above. That is, the polymer prepared by the above production method according to an embodiment of the present invention may be a homopolymer derived from a conjugated diene monomer or a copolymer derived from a conjugated diene monomer and an aromatic vinyl monomer.
  • the conjugated diene monomer is not particularly limited, but for example, 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene and 2-phenyl It may be one or more selected from the group consisting of -1,3-butadiene.
  • the aromatic vinyl monomer is not particularly limited, but for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p It may be one or more selected from the group consisting of -methylphenyl) styrene and 1-vinyl-5-hexylnaphthalene.
  • the conjugated diene-based monomer When the modified conjugated diene-based polymer is a copolymer derived from a conjugated diene-based monomer and an aromatic vinyl-based monomer, the conjugated diene-based monomer has a unit derived from conjugated diene monomer in the prepared modified conjugated diene-based polymer, specifically, May be used in an amount to include from 60% to 90% by weight, more specifically from 60% to 85% by weight.
  • the hydrocarbon solvent is not particularly limited but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organometallic compound may be used in an amount of 0.01 mmol to 10 mmol based on 100 g of the total monomer.
  • the organometallic compound is not particularly limited, but for example, methyllithium, ethyllithium, propyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n-decyllithium, t-octylithium, phenyl Lithium, 1-naphthyllithium, n-eicosilium, 4-butylphenyllithium, 4-tolyllithium, cyclohexyllithium, 3,5-di-n-heptylcyclohexyllithium, 4-cyclopentyllithium, naphthyl It may be one or more selected from the group consisting of sodium, naphthyl potassium, lithium alkoxide, sodium alkoxide, potassium alkoxide, lithium sulfonate, sodium sulfonate, potassium sulfonate, lithium amide, sodium amide, potassium amide, lithium
  • the polymerization of step 1 may be performed by further adding a polar additive as needed, the polar additive may be added to 0.001 parts by weight to 10 parts by weight based on 100 parts by weight of the total monomer. Specifically, the content may be added in an amount of 0.001 part by weight to 1 part by weight, more specifically 0.005 part by weight to 0.1 part by weight, based on 100 parts by weight of the total monomers.
  • the polar additives include tetrahydrofuran, ditetrahydrofurylpropane, diethyl ether, cycloamal ether, dipropyl ether, ethylene dimethyl ether, ethylene dimethyl ether, diethyl glycol, dimethyl ether, tert-butoxyethoxyethane, bis It may be one or more selected from the group consisting of (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine and tetramethylethylenediamine.
  • the reaction rate can be easily compensated for by forming a random copolymer. Can be induced.
  • step 1 may be carried out through adiabatic polymerization, or isothermal polymerization.
  • the adiabatic polymerization refers to a polymerization method including the step of polymerizing with a self-heating reaction without adding heat after the addition of the multifunctional anion polymerization initiator, and the isothermal polymerization is optionally after adding the polyfunctional anion polymerization initiator It refers to a polymerization method in which the temperature of the polymer is kept constant by applying heat or taking away heat.
  • the polymerization may be performed at a temperature range of -20 ° C to 200 ° C, specifically 0 ° C to 150 ° C, and more specifically 10 ° C to 120 ° C.
  • Step 2 is a step for firstly reacting the active polymer with a compound represented by Formula 2 or 3 to bind a functional group derived from the compound represented by Formula 2 or 3 to a polymer chain.
  • the compound represented by Formula 2 or Formula 3 may be used in a ratio of 0.01 mol to 5 mol with respect to 1 mol of the organometallic compound.
  • Step 3 is a step for preparing a modified conjugated diene-based polymer in which the compound-derived functional group including the compound-derived functional group represented by Formula 2 or Formula 3 and the structural unit represented by Formula 1 is bonded. It is a step of secondary reaction with a compound containing a structural unit represented by the formula (1).
  • the denaturant including the structural unit represented by Formula 1 may be combined with the unreacted alkoxy group in the polymer chain after the first reaction, and used in a ratio of 0.01 mol to 5 mol with respect to 1 mol of the organometallic compound. It may be.
  • the first and second reactions of steps 2 and 3 are a modification reaction for introducing a functional group into the polymer
  • the primary reaction may be a coupling reaction or a modification reaction.
  • the secondary reaction may be a denaturation reaction.
  • Each reaction may be performed for 10 minutes to 5 hours in a temperature range of 10 °C to 120 °C.
  • the secondary reaction may be carried out by adding a denaturant containing the structural unit represented by the formula (1) in the step of recovering the polymer produced after the first reaction.
  • the production method according to an embodiment of the present invention may further include one or more steps of recovering and drying the solvent and the unreacted monomer, if necessary after step 3 above.
  • the present invention provides a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition according to an embodiment of the present invention may be a modified conjugated diene-based polymer containing 10 wt% or more, specifically 10 wt% to 100 wt%, more specifically 20 wt% to 90 wt%. have. If the content of the modified conjugated diene-based polymer is less than 10% by weight, the effect of improving the wear resistance and crack resistance of a molded article, for example, a tire manufactured using the rubber composition may be insignificant.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the rubber component may be natural rubber or synthetic rubber, for example, the rubber component may include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), solution polymerization styrene-butadiene copolymer (SSBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co Isoprene, neoprene, poly (ethylene-co-propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoopre
  • the rubber composition according to an embodiment of the present invention may include 0.1 to 200 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene-based polymer, the filler is a silica-based filler, carbon black-based filler Or a combination thereof.
  • the silica-based filler when used as the filler, dispersibility is greatly improved, and the hysteresis loss is greatly reduced by combining the silica particles of the filler with the modified conjugated diene-based polymer terminal.
  • the rubber composition according to an embodiment of the present invention may be used with a silane coupling agent to improve the reinforcement and low heat generation when using a silica-based filler as a filler.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane , 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasul Feed, 3-triethoxysilylpropyl-N, N
  • the silane coupling agent may be bis (3-triethoxysilylpropyl) polysulfide or 3-trimethoxysilylpropylbenzothiazyl tetrasulfide.
  • a modified conjugated diene-based polymer having a functional group having a high affinity with a silica-based filler in an active site is used as a rubber component.
  • the compounding amount can be reduced than usual.
  • the silane coupling agent may be used in an amount of 1 to 20 parts by weight based on 100 parts by weight of the silica-based filler. When used in the above range, the gelation of the rubber component can be prevented while the effect as a coupling agent is sufficiently exhibited. More specifically, the silane coupling agent may be used in 5 parts by weight to 15 parts by weight based on 100 parts by weight of silica.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and thus may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight based on 100 parts by weight of the rubber component. When included in the content range, it is possible to ensure the required elastic modulus and strength of the vulcanized rubber composition, and at the same time obtain a low fuel consumption.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, in particular, vulcanization accelerators, process oils, plasticizers, anti-aging agents, anti-scoring agents, zinc white (zinc white) ), Stearic acid, a thermosetting resin, or a thermoplastic resin may be further included.
  • the said vulcanization accelerator is not specifically limited, Specifically, M (2-mercapto benzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2- benzothiazyl sulfenamide), etc. Thiazole compounds, or guanidine compounds such as DPG (diphenylguanidine) can be used.
  • the vulcanization accelerator may be included in an amount of 0.1 parts by weight to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, specifically, may be a paraffinic, naphthenic, or aromatic compound, and more specifically, aromatic process oil, hysteresis loss in consideration of tensile strength and wear resistance.
  • naphthenic or paraffinic process oils may be used when considering low temperature properties.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, for example, 10 parts by weight to 100 parts by weight, specifically 20 parts by weight to 80 parts by weight, based on 100 parts by weight of the conjugated diene polymer. May be included. If, when the process oil is included in the content, it is possible to prevent the degradation of the tensile strength, low heat generation (low fuel efficiency) of the vulcanized rubber.
  • the anti-aging agent specifically N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6- Methoxy-2,2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone.
  • the anti-aging agent may be used in an amount of 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention can be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the above formulation, and also has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire made using the rubber composition.
  • the tire according to an embodiment of the present invention may include a tire or a tire tread.
  • x is 0.2, y is 0.1 and z is 0.7.
  • x is 0.2
  • y is 0.1
  • z is 0.7.
  • a modified styrene-butadiene copolymer was prepared in the same manner as in Example 1 except that the modification reaction was performed using the compound prepared in Preparation Example 2 instead of the compound prepared in Preparation Example 1.
  • a modified styrene-butadiene copolymer was prepared in the same manner as in Example 1 except that the modification reaction was performed using the compound prepared in Preparation Example 3 instead of the compound prepared in Preparation Example 1.
  • the polymerization was stopped using ethanol, and 45 ml of a solution in which 0.3 wt% of BHT (butylated hydroxytoluene), an antioxidant, was dissolved in hexane was added.
  • BHT butylated hydroxytoluene
  • the resulting polymer was poured into hot water heated with steam, stirred to remove the solvent, and then roll dried to remove the residual solvent and water to prepare a styrene-butadiene copolymer.
  • the dichlorodimethylsilane is used to obtain a styrene-butadiene copolymer having a molecular weight similar to that of Example 1.
  • the styrene-derived unit vinyl content, weight average molecular weight (Mw), The number average molecular weight (Mn), polydispersity index (PDI), and Mooney viscosity (MV) were measured, respectively.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • PDI polydispersity index
  • MV Mooney viscosity
  • SM Styrene derived units
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of each copolymer were measured by gel permeation chromatograph (GPC) analysis under 40 conditions. At this time, the column (column) was used in combination with two bags of PLgel Olexis of Polymer Laboratories Co., Ltd. and one PLgel mixed-C column, all of the newly replaced column was a mixed bed column. In addition, PS (polystyrene) was used as the GPC standard material in the molecular weight calculation.
  • the polydispersity index (PDI) was calculated as the ratio (Mw / Mn) of the weight average molecular weight and the number average molecular weight measured by the above method.
  • the Mooney viscosity of each copolymer was measured by MV-2000 (Alpha Technologies Co., Ltd.) for 15 minutes or more of each sample weight 15g or more for 1 minute and then at 100 °C for 4 minutes.
  • the styrene-butadiene copolymer of Comparative Example 1 was prepared through the same conditions as the modified styrene-butadiene copolymer of Examples 1 to 4, except that the modification was not performed.
  • Table 1 shows that the modified styrene-butadiene copolymer of Example 4 has an increase in Mooney viscosity compared to the styrene-butadiene copolymer of Comparative Example 1 shows that the modified styrene-butadiene copolymer of Examples 1 to 4 It indicates that denaturation has been made.
  • Each rubber composition was prepared through a first stage kneading process and a second stage kneading process. At this time, the amount of the substance except the modified conjugated diene copolymer is shown based on 100 parts by weight of the modified conjugated diene copolymer.
  • the first stage kneading 137.5 parts by weight of each modified conjugated diene copolymer, 70 parts by weight of silica, bis (3-triethoxysilylpropyl) tetrasulfate as a silane coupling agent using a half-variety mixer equipped with a temperature controller.
  • Tensile properties were prepared in accordance with the tensile test method of ASTM 412 and measured the tensile strength at the cutting of the test piece and the tensile stress (300% modulus) at 300% elongation. Specifically, tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron Co., Ltd.) tensile tester to obtain tensile strength and tensile stress at 300% elongation.
  • the viscoelastic properties were measured by using a dynamic mechanical analyzer (TA, Inc.) at a frequency of 10 Hz in a torsion mode and varying the strain at each measurement temperature (-60 to 60 ° C.).
  • TA, Inc. dynamic mechanical analyzer
  • the modified styrene-butadiene copolymer of Examples 1 to 4 prepared using the compound prepared in Preparation Example 1 or Preparation Example 2 according to an embodiment of the present invention as a modifier It was confirmed that the tensile properties and viscoelasticity of the rubber composition to be superior to the rubber composition comprising the copolymers of Comparative Examples 1 and 2.
  • the rubber composition comprising the modified styrene-butadiene copolymer of Examples 1 to 4 prepared by using the compound prepared in Preparation Example 1 or Preparation Example 2 according to an embodiment of the present invention as a modifier While the tensile strength and 300% tensile stress are significantly increased compared to the rubber composition comprising the styrene-butadiene copolymer of Comparative Example 1, the Tan ⁇ value at 0 ° C. is increased up to a level of 116%, and Tan at 60 ° C. It was confirmed that the ⁇ value decreased to the lowest 64% level.
  • the modified styrene-butadiene copolymer of Comparative Example 2 and the modified styrene- of Example 1 to 4 prepared by performing a modification reaction using only one modification reaction using a compound corresponding to Formula 2 of the present invention.
  • the modified styrene-butadiene copolymers of Examples 1 to 4 showed significantly increased tensile strength and 300% tensile stress at 0 ° C, compared to the modified styrene-butadiene copolymers of Comparative Example 2. It was confirmed that the Tan ⁇ value of increased up to a level of 108%, and the Tan ⁇ value at 60 ° C decreases to the lowest 75% level.
  • the modified styrene-butadiene copolymer prepared using the compound containing the structural unit represented by Formula 1 according to one embodiment of the present invention as a modifier is unmodified styrene-butadiene copolymer and other modified styrene-butadiene Compared to the copolymer, the wet road surface has excellent resistance and rolling resistance, and shows that fuel efficiency may be high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 중합체 변성에 유용한 변성제, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 이를 통하여 제조된 변성 공액디엔계 중합체에 관한 것이다. 이에 따른 변성 공액디엔계 중합체는 수산기 및 실릴기가 결합되어 있어 실리카계 충진제와의 친화성이 우수할 수 있다. 따라서, 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 가공품(예컨대, 타이어)는 인장강도, 내마모성 및 점탄성 특성이 우수할 수 있다.

Description

실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법
[관련출원과의 상호인용]
본 출원은 2015.12.24자 한국 특허 출원 제10-2015-0186332호 및 2016.12.22자 한국 특허 출원 제10-2016-0177039호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
[기술분야]
본 발명은 중합체 변성에 유용한 실릴기 함유 화합물, 상기 화합물 유래 작용기를 포함하는 변성 공액디엔계 중합체 및 이의 제조방법에 관한 것이다.
최근 자동차에 대한 저연비화의 요구에 따라, 타이어용 고무 재료로서 주행 저항이 적고, 내마모성, 인장 특성이 우수하며, 웨트 스키드 저항으로 대표되는 조정 안정성도 겸비한 공액디엔계 중합체가 요구되고 있다.
타이어의 주행 저항을 감소시키기 위해서는 가황 고무의 히스테리시스 손실을 작게하는 방안이 있으며, 이러한 가황 고무의 평가 지표로서는 50℃ 내지 80℃의 반발탄성, tan δ, 굿리치 발열 등이 이용된다. 즉, 상기 온도에서의 반발탄성이 크거나 tan δ 또는 굿리치 발열이 작은 고무 재료가 바람직하다.
히스테리시스 손실이 작은 고무 재료로서는, 천연 고무, 폴리이소프렌고무 또는 폴리부타디엔 고무 등이 알려져 있지만, 이들은 웨트 스키드 저항성이 작은 문제가 있다. 이에 최근에는 스티렌-부타디엔 고무(이하, SBR이라 함) 또는 부타디엔 고무(이하, BR이라 함)와 같은 공액디엔계 (공)중합체가 유화중합이나 용액중합에 의해 제조되어 타이어용 고무로서 이용되고 있다. 이 중, 유화중합에 비해 용액중합이 갖는 최대의 장점은 고무 물성을 규정하는 비닐 구조 함량 및 스티렌 함량을 임의로 조절할 수 있고, 커플링(coupling)이나, 변성(modification) 등에 의해 분자량 및 물성 등을 조절할 수 있다는 점이다. 따라서, 최종 제조된 SBR 이나 BR 고무의 구조 변화가 용이하고, 사슬 말단의 결합이나 변성으로 사슬 말단의 움직임을 줄이고 실리카 또는 카본블랙 등의 충진제와의 결합력을 증가시킬 수 있어 용액 중합 의한 SBR 고무가 타이어용 고무 재료로 많이 사용된다.
이러한 용액중합 SBR이 타이어용 고무 재료로 사용되는 경우 상기 SBR 내의 비닐 함량을 증가시킴으로써 고무의 유리전이온도를 상승시켜 주행저항 및 제동력과 같은 타이어 요구 물성을 조절할 수 있을 뿐만 아니라, 유리전이온도를 적절히 조절함으로써 연료소모를 줄일 수 있다.
상기 용액중합 SBR은 음이온 중합 개시제를 사용하여 제조하며, 형성된 중합체의 사슬 말단을 여러 가지 변성제를 이용하여 결합시키거나, 변성시켜 사용되고 있다.
예를 들어, 미국특허 제4,397,994호에는 일관능성 개시제인 알킬리튬을 이용하여 비극성 용매하에서 스티렌-부타디엔을 중합하여 얻어진 중합체의 사슬 말단의 활성 음이온을 주석화합물과 같은 결합제를 사용하여 결합시킨 기술을 제시하였다.
한편, 타이어 트레드의 보강성 충진제로서 카본블랙 및 실리카 등이 사용되고 있는데, 보강성 충진제로서 실리카를 이용하는 경우 저히스테리시스 손실성 및 웨트 스키드 저항성이 향상된다는 장점이 있다. 그러나, 소수성 표면의 카본블랙 대비 친수성 표면의 실리카는 고무와의 친화성이 낮아 분산성이 나쁘다는 결점을 가지고 있어, 분산성을 개선시키거나 실리카-고무 간의 결합 부여를 행하기 위해 별도의 실란 커플링제를 사용할 필요가 있다.
이에, 고무 분자 말단부에 실리카와의 친화성이나 반응성을 갖는 관능기를 도입하는 방안이 이루어지고 있으나, 그 효과가 충분하지 않은 실정이다.
따라서, 실리카를 비롯한 충진제와의 친화성이 높은 고무의 개발이 필요한 실정이다.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 중합체 변성에 유용한 화학식 1로 표시되는 구성단위를 포함하는 화합물을 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은 상기 화합물을 유래의 작용기를 포함하는 변성 공액디엔계 중합체를 제공하는 것이다.
본 발명의 또 다른 목적은 상기의 화합물을 이용한 변성 공액디엔계 중합체의 제조방법을 제공하는 것이다.
상기의 과제를 해결하기 위하여, 본 발명은 하기 화학식 1로 표시되는 구성단위를 포함하는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2016015237-appb-I000001
상기 화학식 1에서,
R1 내지 R3은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
또한, 본 발명은 하기 화학식 4 또는 화학식 5로 표시되는 상기의 화합물 유래 작용기를 포함하는 변성 공액디엔계 중합체를 제공한다:
[화학식 4]
Figure PCTKR2016015237-appb-I000002
상기 화학식 4에서,
R5는 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
P는 공액디엔계 중합체 사슬이고,
a 및 b는 서로 독립적으로 1 또는 2의 정수이되, a+b는 2 또는 3이고,
[화학식 5]
Figure PCTKR2016015237-appb-I000003
상기 화학식 5에서,
R10 및 R13은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
P는 공액디엔계 중합체 사슬이고,
c 내지 f는 서로 독립적으로 0 내지 3의 정수이되, c+e는 1 내지 5이고, d+f는 1 내지 3이고,
n 및 m은 서로 독립적으로 1 내지 1000의 정수이며,
상기 화학식 4 및 화학식 5에서, A는 하기 화학식 6으로 표시되는 치환기이며,
[화학식 6]
Figure PCTKR2016015237-appb-I000004
상기 화학식 6에서,
R1 및 R2는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
아울러, 본 발명은 탄화수소 용매 중에서, 유기금속 화합물 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 적어도 일 말단에 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체를 하기 화학식 2 또는 화학식 3으로 표시되는 화합물과 1차 반응시키는 단계(단계 2); 및 상기 1차 반응 후 하기 화학식 1로 표시되는 구성단위를 포함하는 화합물과 2차 반응시키는 단계(단계 3)를 포함하는 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다.
[화학식 2]
Figure PCTKR2016015237-appb-I000005
상기 화학식 2에서,
R5, R6 및 R8 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R5, R6 및 R8 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
[화학식 3]
Figure PCTKR2016015237-appb-I000006
상기 화학식 3에서, R9 내지 R14는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R9 내지 R14 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
n 및 m은 서로 독립적으로 1 내지 1000의 정수이고,
[화학식 1]
Figure PCTKR2016015237-appb-I000007
상기 화학식 1에서,
R1 내지 R3는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
본 발명에 따른 변성 공액디엔계 중합체는 수산기 및 실릴기가 결합되어 있어 실리카계 충진제와의 친화성이 우수할 수 있다. 이에, 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 가공품(예컨대, 타이어)은 인장강도, 점탄성 특성이 우수할 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 중합체, 예컨대 공액디엔계 중합체의 변성제로 유용하게 사용할 수 있는 실릴기 함유 화합물을 제공한다.
본 발명의 일 실시예에 따른 상기 화합물은 하기 화학식 1로 표시되는 구성단위를 포함하는 것을 특징으로 한다.
[화학식 1]
Figure PCTKR2016015237-appb-I000008
상기 화학식 1에서,
R1 내지 R3은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
구체적으로, 상기 화학식 1에 있어서, R1 내지 R3는 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고, R4는 실란기와 이소시아네이트기를 연결하는 연결기로서 탄소수 1 내지 10의 알킬렌기인 것일 수 있다.
본 발명의 일 실시예에 따른 상기 화합물은 중합체용 변성제일 수 있고, 구체적으로는 공액디엔계 중합체용 변성제인 것일 수 있다.
또한, 본 발명에 따른 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물은 수산기 및 알콕시실란기를 포함함으로써 공액디엔계 중합체를 고변성율로 용이하게 변성시킬 수 있으며, 이를 포함하는 고무 조성물 및 이로부터 제조된 타이어 등의 성형품의 내마모성, 점탄성 특성 등이 개선될 수 있다. 구체적으로, 상기 화합물은 분자 내에 수산기 및 알콕시실란기를 가지고 있어 공액디엔계 중합체의 활성 부위에 대해 높은 반응성을 나타냄으로써 공액디엔계 중합체를 높은 변성율로 변성시킬 수 있다. 또한, 변성제에 의하여 치환된 관능성 작용기를 갖는 변성 공액디엔계 중합체는 충진제와의 친화도가 개선될 수 있으며, 이에 가공성이 개선될 수 있다.
한편, 본 발명의 일 실시예에 따른 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물은 검화시킨 폴리비닐아세테이트(PVA)와 실릴기를 함유하는 단량체를 중합반응시켜 제조된 것일 수 있으며, 예컨대 검화시킨 폴리비닐아세테이트에 실릴기를 함유하는 단량체를 상기 검화시킨 폴리비닐아세테이트 대비 0.1 mol 내지 10 mol 당량, 더욱 구체적으로는 1 mol 내지 2 mol 당량으로 반응시켜 제조된 것일 수 있다. 이때, 상기 검화시킨 폴리비닐아세테이트(PVA)는 폴리비닐아세테이트를 검화반응시켜 제조된 것으로, 전체몰수 대비 1 mol% 내지 99 mol%의 수산기를 포함하고, 100 g/mol 내지 50,000 g/mol의 중량평균분자량을 나타내는 것일 수 있다. 구체적으로는, 상기 검화시킨 폴리비닐아세테이트는 전체몰수 대비 1 mol% 내지 80 mol%의 수산기를 포함하고, 1000 g/mol 내지 30,000 g/mol의 중량평균분자량을 나타내는 것일 수 있다.
일 구체적인 예로, 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물은 하기 반응식 1을 통하여 제조된 것일 수 있다.
[반응식 1]
Figure PCTKR2016015237-appb-I000009
상기 반응식 1에서, 화학식 1, 화학식 7 및 화학식 8의 R1 내지 R4 및 x, y 및 z는 전술한 화학식 1에서 정의한 바와 같고, 화학식 7에서 x1 및 y1은 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x1+y1=1이고, x1은 0.1 내지 0.9이며, y1은 0.1 내지 0.9이다.
또한, 본 발명은 보강성 충진제, 특히 실리카계 충진제와의 친화성이 우수하여 가공성이 개선된 변성 공액디엔계 중합체를 제공한다.
본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 하기 화학식 4 또는 화학식 5로 표시되고, 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물 유래 작용기를 포함하는 것을 특징으로 한다.
[화학식 4]
Figure PCTKR2016015237-appb-I000010
상기 화학식 4에서,
R5는 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
P는 공액디엔계 중합체 사슬이고,
a 및 b는 서로 독립적으로 1 또는 2의 정수이되, a+b는 2 또는 3이고,
[화학식 5]
Figure PCTKR2016015237-appb-I000011
상기 화학식 5에서,
R10 및 R13은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
P는 공액디엔계 중합체 사슬이고,
c 내지 f는 서로 독립적으로 0 내지 3의 정수이되, c+e는 1 내지 5이고, d+f는 1 내지 3이고,
n 및 m은 서로 독립적으로 1 내지 1000의 정수이며,
상기 화학식 4 및 화학식 5에서, A는 하기 화학식 6으로 표시되는 치환기이며,
[화학식 6]
Figure PCTKR2016015237-appb-I000012
상기 화학식 6에서,
R1 및 R2는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
구체적으로, 상기 화학식 4 내지 화학식 6에서, R1, R2, R5, R10 및 R13은 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이고, R4는 탄소수 1 내지 10의 알킬렌기이고, R7 및 R15는 서로 독립적으로 탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기이고, R16은 N인 것일 수 있다.
더욱 구체적으로, 상기 R7 및 R15는 서로 독립적으로 화학식 (X1)j-H1-(X2)h- j 로 표시되는 치환기일 수 있으며, 여기에서 X1 및 X2는 서로 독립적으로 알킬기, -NR'R", -SiR'R"R"', [-Y-SiR'R"R"'] 또는 [-Y-H2-(Z)k- 1]이고, 상기 X1 및 X2는 서로 결합하여 하나의 고리를 형성할 수 있으며, 상기 Y는 2가의 연결기로 알킬렌기일 수 있고, 상기 Z는 서로 독립적으로 수소원자, 알킬기, -NR'R" 또는 -SiR'R"R"'일 수 있다. 이때, 상기 H1 및 H2는 서로 독립적으로 N 또는 S일 수 있고, R', R" 및 R"'는 서로 독립적으로 수소원자 또는 알킬기일 수 있고, h는 H1의 원자가 수이고, k은 H2의 원자가 수이며, j는 0 내지 2의 정수일 수 있다.
상기 R7 및 R15의 더욱 구체적인 예로는 하기 화학식 (i) 내지 (vii)로 표시되는 치환기일 수 있으며, 하기 화학식에서 TMS는 트리메틸실란, R은 알킬기를 나타내는 것일 수 있다.
Figure PCTKR2016015237-appb-I000013
상기 화학식 (i) 내지 (vii)에서 *는 치환기의 결합위치를 나타내는 것이다.
한편, 본 발명의 일 실시예에 따른 상기 변성 공액디엔계 중합체는 후술하는 제조방법에 의하여 제조된 것일 수 있으며, 이에 후술하는 화학식 2 또는 화학식 3 유래 작용기 및 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물 유래 작용기를 포함하는 것일 수 있으며, 구체적으로 수산기 및 실릴기를 포함하고 있는 것일 수 있다. 또한, 상기 변성 공액디엔계 중합체 내 수산기 및 실릴기의 결합비율은 2차 반응시 사용되는 화학식 1로 표시되는 구성단위를 포함하는 화합물에 따라 상이할 수 있다.
상기 변성 공액디엔계 중합체는 중합체 사슬에 수산기와 실릴기가 결합되어 있어 충진제, 특히 실리카계 충진제와의 친화성이 우수할 수 있다. 이에, 상기 충진제와의 배합 물성이 우수할 수 있어 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물의 가공성이 우수할 수 있으며, 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 인장강도, 내마모성 및 젖은 노면 저항성이 개선될 수 있다.
한편, 상기 변성 공액디엔계 중합체는 공액디엔계 단량체 단독 중합체 또는 공액디엔계 단량체와 방향족 비닐계 단량체의 공중합체인 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체일 경우에는 상기 공중합체는 랜덤 공중합체일 수 있다.
여기에서, 상기 "랜덤 공중합체(random copolymer)"는 공중합체를 이루는 구성 단위가 무질서하게 배열된 것을 나타내는 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체의 공중합체인 경우, 상기 변성 공액디엔계 중합체는 방향족 비닐계 단량체 유래 단위를 40 중량% 이하, 구체적으로는 10 중량% 내지 40 중량%, 더욱 구체적으로는 15 중량% 내지 40 중량%로 포함하는 것일 수 있다.
여기에서, 상기 "유래 단위"는 어떤 물질로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있다.
또한, 상기 변성 공액디엔계 중합체는 수평균분자량이 1,000 g/mol 내지 5,000,000 g/mol인 것일 수 있으며, 구체적으로는 10,000 g/mol 내지 1,000,000 g/mol인 것일 수 있다.
상기 변성 공액디엔계 중합체는 중량평균분자량이 2,000 g/mol 내지 10,000,000 g/mol인 것일 수 있으며, 구체적으로는 20,000 g/mol 내지 2,000,000 g/mol인 것일 수 있다.
여기에서, 상기 중량평균분자량 및 수평균분자량은 각각 겔 투과형 크로마토그래피(GPC)로 분석되는 폴리스티렌 환산 분자량이다.
또한, 상기 변성 공액디엔계 중합체는 비닐 함량이 5 중량% 이상, 구체적으로는 10 중량% 이상, 보다 구체적으로는 10 중량% 내지 50 중량%일 수 있고, 비닐 함량이 상기 범위일 경우 유리전이온도가 적절한 범위로 조절될 수 있어 타이어에 적용 시 주행저항 및 제동력과 같은 타이어에 요구되는 물성이 우수할 뿐 아니라 연료소모를 줄이는 효과가 있다.
이때, 상기 비닐 함량은 비닐기를 갖는 단량체 또는 공액디엔계 단량체로 이루어진 공액디엔계 중합체 100 중량%에 대하여 1,4-첨가가 아닌 1,2-첨가된 공액디엔계 단량체의 함량을 나타내는 것이다.
또한, 본 발명은 상기의 변성 공액디엔계 중합체의 제조방법을 제공한다.
본 발명의 일 실시예에 따른 상기 제조방법은 탄화수소 용매 중에서, 유기금속 화합물 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 적어도 일 말단에 알칼리 금속이 결합된 활성 중합체를 제조하는 단계(단계 1); 상기 활성 중합체를 하기 화학식 2 또는 화학식 3으로 표시되는 화합물과 1차 반응시키는 단계(단계 2); 및 상기 1차 반응 후 하기 화학식 1로 표시되는 구성단위를 포함하는 상기의 화합물과 2차 반응시키는 단계(단계 3)를 포함하는 것을 특징으로 한다.
[화학식 2]
Figure PCTKR2016015237-appb-I000014
상기 화학식 2에서,
R5, R6 및 R8 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R5, R6 및 R8 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
[화학식 3]
Figure PCTKR2016015237-appb-I000015
상기 화학식 3에서, R9 내지 R14는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R9 내지 R14 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
n 및 m은 서로 독립적으로 1 내지 1000의 정수이고,
[화학식 1]
Figure PCTKR2016015237-appb-I000016
상기 화학식 1에서,
R1 내지 R3는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
R4는 탄소수 1 내지 20의 알킬렌기이고,
x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
x는 0.1 내지 0.8이고,
y는 0.1 내지 0.8이며,
z는 0.1 내지 0.8이다.
구체적으로는, 상기 화학식 1에서 R1 내지 R3는 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고, R4는 탄소수 1 내지 10의 알킬렌기인 것일 수 있다.
또한, 상기 화학식 2에서, R5, R6 및 R8 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R5, R6 및 R8 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고, R7은 탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기인 것일 수 있다.
또한, 상기 화학식 3에서, R9 내지 R14는 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R9 내지 R14 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고, R15는 탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기이고, R16은 N이고, n 및 m은 서로 독립적으로 1 내지 50의 정수인 것일 수 있다.
상기 단계 1은 적어도 일 말단에 알칼리 금속이 결합된 활성 중합체를 제조하기 위한 단계로, 탄화수소 용매 중에서 유기금속 화합물 존재 하 공액디엔계 단량체 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 중합함으로써 수행할 수 있다.
상기 단계 1의 중합은 단량체로서 전술한 바와 같이 공액디엔계 단량체 단독 또는 공액디엔계 단량체 및 방향족 비닐계 단량체를 함께 사용하는 것일 수 있다. 즉, 본 발명의 일 실시예에 따른 상기 제조방법을 통해 제조된 중합체는 공액디엔계 단량체 유래의 단독 중합체이거나, 공액디엔계 단량체 및 방향족 비닐계 단량체 유래의 공중합체일 수 있다.
상기 공액디엔계 단량체는 특별히 제한되는 것은 아니나, 예컨대 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 방향족 비닐계 단량체는 특별히 제한되는 것은 아니나, 예컨대 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-사이클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 변성 공액디엔계 중합체가 공액디엔계 단량체 및 방향족 비닐계 단량체유래의 공중합체인 경우, 상기 공액디엔계 단량체는 제조된 변성 공액디엔계 중합체 내 공액디엔게 단량체 유래 단위가 60 중량% 이상, 구체적으로는 60 중량% 내지 90 중량%, 더 구체적으로는 60 중량% 내지 85 중량%로 포함되도록 하는 양으로 사용하는 것일 수 있다.
상기 탄화수소 용매는 특별히 제한되는 것은 아니나 예컨대 n-펜탄, n-헥산, n-헵탄, 이소옥탄, 사이클로 헥산, 톨루엔, 벤젠 및 크실렌으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 유기금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol로 사용하는 것일 수 있다.
상기 유기금속 화합물은 특별히 제한되는 것은 아니나, 예컨대 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드, 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
상기 단계 1의 중합은 필요에 따라 극성 첨가제를 더 첨가하여 수행하는 것일 수 있으며, 상기 극성 첨가제는 단량체 총 100 중량부에 대하여 0.001 중량부 내지 10 중량부로 첨가하는 것일 수 있다. 구체적으로는, 단량체 총 100 중량부에 대하여 0.001 중량부 내지 1 중량부, 더욱 구체적으로는 0.005 중량부 내지 0.1 중량부로 첨가하는 것일 수 있다.
상기 극성 첨가제는 테트라하이드로퓨란, 디테트라하이드로퓨릴프로판, 디에틸에테르, 시클로아말에테르, 디프로필에테르, 에틸렌디메틸에테르, 에틸렌디메틸에테르, 디에틸글리콜, 디메틸에테르, 3차 부톡시에톡시에탄, 비스(3-디메틸아미노에틸)에테르, (디메틸아미노에틸)에틸에테르, 트리메틸아민, 트리에틸아민, 트리프로필아민 및 테트라메틸에틸렌디아민으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따른 제조방법은 상기의 극성 첨가제를 사용함으로써 공액디엔계 단량체 및 방향족 비닐계 단량체를 공중합시키는 경우 이들의 반응속도 차이를 보완해줌으로써 랜덤 공중합체를 용이하게 형성할 수 있도록 유도할 수 있다.
상기 단계 1의 중합은 단열중합을 통해 수행하거나, 등온중합을 통해 수행하는 것일 수 있다.
여기에서, 단열중합은 다관능성 음이온 중합 개시제를 투입한 이후 임의로 열을 가하지 않고 자체 반응열로 중합시키는 단계를 포함하는 중합방법을 나타내는 것이고, 상기 등온중합은 상기 다관능성 음이온 중합 개시제를 투입한 이후 임의로 열을 가하거나 열을 뺏어 중합물의 온도를 일정하게 유지하는 중합방법을 나타내는 것이다.
상기 중합은 -20℃ 내지 200℃의 온도범위에서 수행하는 것일 수 있으며, 구체적으로는 0℃ 내지 150℃, 더욱 구체적으로는 10℃ 내지 120℃의 온도범위에서 수행하는 것일 수 있다.
상기 단계 2는 상기 활성 중합체와 상기 화학식 2 또는 화학식 3으로 표시되는 화합물과 1차 반응시켜 중합체 사슬에 상기 화학식 2 또는 화학식 3으로 표시되는 화합물 유래 작용기를 결합시키기 위한 단계이다.
상기 화학식 2 또는 화학식 3으로 표시되는 화합물은 유기금속 화합물 1 mol 대비 0.01 mol 내지 5 mol이 되는 비율로 사용하는 것일 수 있다.
상기 단계 3은 상기 화학식 2 또는 화학식 3으로 표시되는 화합물 유래 작용기 및 화학식 1로 표시되는 구성단위를 포함하는 화합물 유래 작용기가 결합된 변성 공액디엔계 중합체를 제조하기 위한 단계로, 상기 1차 반응 후 상기 화학식 1로 표시되는 구성단위를 포함하는 화합물과 2차 반응시키는 단계이다.
구체적으로, 상기 화학식 1로 표시되는 구성단위를 포함하는 변성제는 상기 1차 반응 후 중합체 사슬 내 미반응 알콕시기와 결합되는 것일 수 있으며, 유기금속 화합물 1 mol 대비 0.01 mol 내지 5 mol이 되는 비율로 사용하는 것일 수 있다.
본 발명의 일 실시예에 따른 상기 단계 2 및 단계 3의 1차 반응 및 2차 반응은 중합체에 관능기를 도입시키기 위한 변성반응으로, 구체적으로는 1차 반응은 커플링 반응 또는 변성반응인 것일 수 있고, 2차 반응은 변성반응일 수 있다. 상기 각 반응은 10℃ 내지 120℃의 온도범위에서 10분 내지 5시간 동안 수행하는 것일 수 있다.
한편, 상기 2차 반응은 1차 반응 후 제조된 중합물을 회수하는 단계에서 상기 화학식 1로 표시되는 구성단위를 포함하는 변성제를 투입함으로써 수행하는 것일 수도 있다.
본 발명의 일 실시예에 따른 제조방법은 상기 단계 3 이후 필요에 따라 용매 및 미반응 단량체 회수 및 건조 중 1 이상의 단계를 더 포함할 수 있다.
아울러, 본 발명은 상기 변성 공액디엔계 중합체를 포함하는 고무 조성물을 제공한다.
본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체를 10 중량% 이상, 구체적으로는 10 중량% 내지 100 중량%, 더욱 구체적으로는 20 중량% 내지 90 중량%로 포함하는 것일 수 있다. 만약, 상기 변성 공액디엔계 중합체의 함량이 10 중량% 미만인 경우 결과적으로 상기 고무 조성물을 이용하여 제조된 성형품, 예컨대 타이어의 내마모성 및 내균열성 등의 개선효과가 미미할 수 있다.
또한, 상기 고무 조성물은 상기 변성 공액디엔계 중합체 외에 필요에 따라 다른 고무 성분을 더 포함할 수 있으며, 이때 상기 고무 성분은 고무 조성물 총 중량에 대하여 90 중량% 이하의 함량으로 포함될 수 있다.
구체적으로, 상기 고무 성분은 천연고무 또는 합성고무일 수 있으며, 예컨대 상기 고무 성분은 시스-1,4-폴리이소프렌을 포함하는 천연고무(NR); 상기 일반적인 천연고무를 변성 또는 정제한, 에폭시화 천연고무(ENR), 탈단백 천연고무(DPNR), 수소화 천연고무 등의 변성 천연고무; 스티렌-부타디엔 공중합체(SBR), 용액중합 스티렌-부타디엔 공중합체(SSBR), 폴리부타디엔(BR), 폴리이소프렌(IR), 부틸고무(IIR), 에틸렌-프로필렌 공중합체, 폴리이소부틸렌-코-이소프렌, 네오프렌, 폴리(에틸렌-코-프로필렌), 폴리(스티렌-코-부타디엔), 폴리(스티렌-코-이소프렌), 폴리(스티렌-코-이소프렌-코-부타디엔), 폴리(이소프렌-코-부타디엔), 폴리(에틸렌-코-프로필렌-코-디엔), 폴리설파이드 고무, 아크릴 고무, 우레탄 고무, 실리콘 고무, 에피클로로히드린 고무, 부틸 고무, 할로겐화 부틸 고무 등과 같은 합성고무일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은 변성 공액디엔계 중합체 100 중량부에 대하여 0.1 중량부 내지 200 중량부의 충진제를 포함하는 것일 수 있으며, 상기 충진제는 실리카계 충진제, 카본블랙계 충진제 또는 이들 조합인 것일 수 있다.
한편, 상기 충진제로서 실리카계 충진제가 사용될 경우 분산성이 크게 개선되고, 상기 충진제의 실리카 입자가 변성 공액디엔계 중합체 말단과 결합함으로써 히스테리시스 손실이 크게 감소되는 효과가 있다. 또한, 본 발명의 일 실시예에 따른 상기 고무 조성물은 충진제로서 실리카계 충진제를 사용할 경우 보강성 및 저발열성 개선을 위해 실란 커플링제가 함께 사용하는 것일 수 있다.
상기 실란 커플링제로는 구체적으로 비스(3-트리에톡시실릴프로필)테트라술피드, 비스(3-트리에톡시실릴프로필)트리술피드, 비스(3-트리에톡시실릴프로필)디술피드, 비스(2-트리에톡시실릴에틸)테트라술피드, 비스(3-트리메톡시실릴프로필)테트라술피드, 비스(2-트리메톡시실릴에틸)테트라술피드, 3-머캅토프로필트리메톡시실란, 3-머캅토프로필트리에톡시실란, 2-머캅토에틸트리메톡시실란, 2-머캅토에틸트리에톡시실란, 3-트리메톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 3-트리에톡시실릴프로필-N,N-디메틸티오카르바모일테트라술피드, 2-트리에톡시실릴에틸-N,N-디메틸티오카르바모일테트라술피드, 3-트리메톡시실릴프로필벤조티아졸릴테트라술피드, 3-트리에톡시실릴프로필벤졸릴테트라술피드, 3-트리에톡시실릴프로필메타크릴레이트모노술피드, 3-트리메톡시실릴프로필메타크릴레이트모노술피드, 비스(3-디에톡시메틸실릴프로필)테트라술피드, 3-머캅토프로필디메톡시메틸실란, 디메톡시메틸실릴프로필-N,N-디메틸티오카르바모일테트라술피드 또는 디메톡시메틸실릴프로필벤조티아졸릴테트라술피드 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 보다 구체적으로는 보강성 개선 효과를 고려할 때 상기 실란 커플링제는 비스(3-트리에톡시실릴프로필)폴리술피드 또는 3-트리메톡시실릴프로필벤조티아질테트라술피드일 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 상기 고무 조성물에 있어서는, 고무 성분으로서 활성 부위에 실리카계 충진제와의 친화성이 높은 관능기가 도입된 변성 공액디엔계 중합체가 사용되고 있기 때문에, 실란 커플링제의 배합량은 통상의 경우보다 저감될 수 있다. 구체적으로, 상기 실란 커플링제는 실리카계 충진제 100 중량부에 대하여 1 중량부 내지 20 중량부로 사용될 수 있다. 상기한 범위로 사용될 때, 커플링제로서의 효과가 충분히 발휘되면서도 고무 성분의 겔화를 방지할 수 있다. 보다 구체적으로는 상기 실란 커플링제는 실리카 100 중량부에 대하여 5 중량부 내지 15 중량부로 사용될 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 황 가교성일 수 있으며, 이에 따라 가황제를 더 포함할 수 있다.
상기 가황제는 구체적으로 황분말일 수 있으며, 고무 성분 100 중량부에 대하여 0.1 중량부 내지 10 중량부로 포함될 수 있다. 상기 함량범위로 포함될 때, 가황 고무 조성물의 필요한 탄성률 및 강도를 확보할 수 있으며, 동시에 저연비성을 얻을 수 있다.
또한, 본 발명에 따른 일 실시예에 따른 고무 조성물은 상기한 성분들 외에, 통상 고무 공업계에서 사용되는 각종 첨가제, 구체적으로는 가황 촉진제, 공정유, 가소제, 노화 방지제, 스코치 방지제, 아연화(zinc white), 스테아르산, 열경화성 수지, 또는 열가소성 수지 등을 더 포함할 수 있다.
상기 가황 촉진제는 특별히 한정되는 것은 아니며, 구체적으로는 M(2-머캅토벤조티아졸), DM(디벤조티아질디술피드), CZ(N-시클로헥실-2-벤조티아질술펜아미드) 등의 티아졸계 화합물, 혹은 DPG(디페닐구아니딘) 등의 구아니딘계 화합물이 사용될 수 있다. 상기 가황 촉진제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함될 수 있다.
또한, 상기 공정유는 고무 조성물내 연화제로서 작용하는 것으로, 구체적으로는 파라핀계, 나프텐계, 또는 방향족계 화합물일 수 있으며, 보다 구체적으로는 인장 강도 및 내마모성을 고려할 때 방향족계 공정유가, 히스테리시스 손실 및 저온 특성을 고려할 때 나프텐계 또는 파라핀계 공정유가 사용될 수 있다. 상기 공정유는 고무 성분 100 중량부에 대하여 100 중량부 이하의 함량으로 포함될 수 있으며, 예컨대 공액디엔계 중합체 100 중량부에 대하여 10 중량부 내지 100 중량부, 구체적으로는 20 중량부 내지 80 중량부로 포함될 수 있다. 만약, 공정유가 상기 함량으로 포함될 때, 가황 고무의 인장 강도, 저발열성(저연비성)의 저하를 방지할 수 있다.
또한, 상기 노화방지제로는 구체적으로 N-이소프로필-N'-페닐-p-페닐렌디아민, N-(1,3-디메틸부틸)-N'-페닐-p-페닐렌디아민, 6-에톡시-2,2,4-트리메틸-1,2-디히드로퀴놀린, 또는 디페닐아민과 아세톤의 고온 축합물 등을 들 수 있다. 상기 노화방지제는 고무 성분 100 중량부에 대하여 0.1 중량부 내지 6 중량부로 사용될 수 있다.
본 발명의 일 실시예에 따른 고무 조성물은 상기 배합 처방에 의해 밴버리 믹서, 롤, 인터널 믹서 등의 혼련기를 사용하여 혼련함으로써 수득될 수 있으며, 또 성형 가공 후 가황 공정에 의해 저발열성이며 내마모성이 우수한 고무 조성물이 수득될 수 있다.
이에 따라 상기 고무 조성물은 타이어 트레드, 언더 트레드, 사이드 월, 카카스 코팅 고무, 벨트 코팅 고무, 비드 필러, 췌이퍼, 또는 비드 코팅 고무 등의 타이어의 각 부재나, 방진고무, 벨트 컨베이어, 호스 등의 각종 공업용 고무 제품의 제조에 유용할 수 있다.
더 나아가, 본 발명은 상기 고무 조성물을 이용하여 제조된 타이어를 제공한다.
본 발명의 일 실시예에 따른 상기 타이어는 타이어 또는 타이어 트레드를 포함하는 것일 수 있다.
이하, 실시예 및 실험예에 의하여 본 발명을 더욱 상세하게 설명하고자 한다. 그러나, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로 이들 만으로 본 발명의 범위가 한정되는 것은 아니다.
제조예 1
에탄올 중에서 검화된 폴리비닐아세테이트(검화도 85 mol%, 중량평균분자량 4,000 g/mol) 1 mmol에 (디메틸메톡시실릴)프로필이소시아네이트((dimethylmethoxysilyl)propylisocyanate) 10 mmol을 교반하여 혼합하고 80℃에서 24시간 동안 반응시켜 하기 화학식 (viii)로 표시되는 구성단위를 포함하는 화합물을 제조하였다. 제조된 하기 화학식 (viii)로 표시되는 구성단위를 포함하는 화합물은 핵자기공명 분광학적 분석(HNMR)을 통하여 확인하였다.
Figure PCTKR2016015237-appb-I000017
(viii)
상기 화학식 (viii)에서, x는 0.2, y 는 0.1이고, z는 0.7이다.
1H NMR (500 MHz, C2H5OH_d6) δ 0.1(broad, Si-CH3), 0.7(broad, CH2-CH2), 0.9(broad, CH2-CH2), 1.5(broad, CH2-CH2), 2.0(broad, OCO-CH3), 3.5(broad, Si-OCH3), 4.0(broad, CH2-CH), 4.5(broad, CH-OH), 6.7(broad, 1H).
분석 결과 δ 6.7(broad, 1H)가 발생하였고, 이를 통하여 검화된 폴리비닐아세테이트의 -OH에 (디메틸메톡시실릴)프로필이소시아네이트의 -NCO가 결합되었음을 확인하였다.
제조예 2
에탄올 중에서 검화된 폴리비닐아세테이트(검화도 40 mol%, 중량평균분자량 4,000 g/mol) 1 mmol에 (디메틸메톡시실릴)프로필이소시아네이트((dimethylmethoxysilyl)propylisocyanate) 10 mmol을 교반하여 혼합하고 80℃에서 24시간 동안 반응시켜 하기 화학식 (ix)로 표시되는 구성단위를 포함하는 화합물을 제조하였다. 제조된 하기 화학식 (ix)로 표시되는 구성단위를 포함하는 화합물은 핵자기공명 분광학적 분석(HNMR)을 통하여 확인하였다.
Figure PCTKR2016015237-appb-I000018
(ix)
상기 화학식 (ix)에서, x는 0.24, y 는 0.49이고, z는 0.27이다.
1H NMR (500 MHz, C2H5OH_d6) δ 0.1(broad, Si-CH3), 0.7(broad, CH2-CH2), 0.9(broad, CH2-CH2), 1.5(broad, CH2-CH2), 2.0(broad, OCO-CH3), 3.5(broad, Si-OCH3), 4.0(broad, CH2-CH), 4.5(broad, CH-OH), 6.7(broad, 1H).
분석 결과 δ 6.7(broad, 1H)가 발생하였고, 이를 통하여 검화된 폴리비닐아세테이트의 -OH에 (디메틸메톡시실릴)프로필이소시아네이트의 -NCO가 결합되었음을 확인하였다.
제조예 3
에탄올 중에서 검화된 폴리비닐아세테이트(검화도 85 mol%, 중량평균분자량 4,000 g/mol) 1 mmol에 (디메톡시메틸실릴)프로필이소시아네이트((dimethoxymethylsilyl)propylisocyanate) 10 mmol을 교반하여 혼합하고 80℃에서 24시간 동안 반응시켜 하기 화학식 (x)로 표시되는 구성단위를 포함하는 화합물을 제조하였다. 제조된 하기 화학식 (x)로 표시되는 구성단위를 포함하는 화합물은 핵자기공명 분광학적 분석(HNMR)을 통하여 확인하였다.
Figure PCTKR2016015237-appb-I000019
(x)
상기 화학식 (ix)에서, x는 0.2, y 는 0.1이고, z는 0.7이다.
1H NMR (500 MHz, C2H5OH_d6) δ 0.1(broad, Si-CH3), 0.7(broad, CH2-CH2), 0.9(broad, CH2-CH2), 1.5(broad, CH2-CH2), 2.0(broad, OCO-CH3), 3.5(broad, Si-OCH3), 4.0(broad, CH2-CH), 4.5(broad, CH-OH), 6.7(broad, 1H).
분석 결과 δ 6.7(broad, 1H)가 발생하였고, 이를 통하여 검화된 폴리비닐아세테이트의 -OH에 (디메톡시메틸실릴)프로필이소시아네이트 의 -NCO가 결합되었음을 확인하였다.
실시예 1
20 L 오토클레이브 반응기에 스티렌 270 g, 1,3 부타디엔 710 g 및 노말헥산 5000 g, 극성첨가제로 DTP(2,2-디(2-테트라히드로퓨릴)프로판) 0.86 g을 넣은 후 반응기 내부온도를 40로 승온하였다. 반응기 내부 온도가 40에 도달했을 때, n-부틸리튬 4 mmol을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후 (N,N-디메틸아미노프로필)트리메톡시실란((N,N-dimethylaminopropyl)trimethoxysilane) 4 mmol을 투입 후 30분간 반응을 진행시키고, 이후 상기 제조예 1에서 제조한 화합물 4 mmol 을 투입 후 15분간 변성 반응을 진행하였다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 스티렌-부타디엔 공중합체를 제조하였다.
실시예 2
제조예 1에서 제조한 화합물 대신에 제조예 2에서 제조된 화합물을 사용하여 변성 반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 스티렌-부타디엔 공중합체를 제조하였다.
실시예 3
제조예 1에서 제조한 화합물 대신에 제조예 3에서 제조된 화합물을 사용하여 변성 반응을 진행한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 스티렌-부타디엔 공중합체를 제조하였다.
실시예 4
(N,N-디메틸아미노프로필)트리메톡시실란 대신에 비스(3-디메톡시메틸실릴프로필)-N-메틸아민(bis(3-dimethoxymethylsilylpropyl)-N-methylamine) 을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법을 통하여 변성 스티렌-부타디엔 공중합체를 제조하였다.
비교예 1
20 L 오토클레이브 반응기에 스티렌 270 g, 1,3 부타디엔 710 g 및 노말헥산 5000 g, 극성첨가제로 DTP(2,2-디(2-테트라히드로퓨릴)프로판) 0.86 g을 넣은 후 반응기 내부온도를 40로 승온하였다. 반응기 내부 온도가 40에 도달했을 때, n-부틸리튬 4 mmol을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후 클로로디메틸실란(chlorodimethylsilane) 4 mmol 을 투입 후 15분간 반응을 더 진행하였다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 스티렌-부타디엔 공중합체를 제조하였다. 여기에서, 상기 디클로로디메틸실란은 상기 실시예 1과 유사 수준의 분자량을 갖는 스티렌-부타디엔 공중합체를 얻기 위하여 사용된 것이다.
비교예 2
20 L 오토클레이브 반응기에 스티렌 270 g, 1,3 부타디엔 710 g 및 노말헥산 5000 g, 극성첨가제로 DTP(2,2-디(2-테트라히드로퓨릴)프로판) 0.86 g을 넣은 후 반응기 내부온도를 40로 승온하였다. 반응기 내부 온도가 40에 도달했을 때, n-부틸리튬 4 mmol을 반응기에 투입하여 단열 승온 반응을 진행시켰다. 20여분 경과 후 1,3-부타디엔 20 g을 투입하여 중합체 말단을 부타디엔으로 캡핑(capping)하였다. 5분 후 (N,N-디메틸아미노프로필)트리메톡시실란 4 mmol을 투입한 후 30분간 반응을 진행시켰다. 이후 에탄올을 이용하여 중합반응을 정지시키고, 산화방지제인 BHT(부틸레이티드하이드록시톨루엔)가 헥산에 0.3 중량% 녹아있는 용액 45 ml를 첨가하였다. 그 결과 얻어진 중합물을 스팀으로 가열된 온수에 넣고 교반하여 용매를 제거한 다음, 롤 건조하여 잔량의 용매와 물을 제거하여, 변성 스티렌-부타디엔 공중합체를 제조하였다.
실험예 1
상기 실시예 1 내지 실시예 3과 비교예 2의 각 변성 스티렌-부타디엔 공중합체 및 비교예 1의 스티렌-부타디엔 공중합체에 대하여 각각 공중합체 내 스티렌 유래단위 및 비닐 함량, 중량평균분자량(Mw), 수평균분자량(Mn), 다분산 지수(PDI), 및 무니점도(MV)를 각각 측정하였다. 결과를 하기 표 1에 나타내었다.
1) 스티렌 유래단위(SM) 비닐 함량 분석
각 공중합체 내 스티렌 유래단위(SM) 및 비닐 함량은 NMR을 이용하여 측정하였다.
2) 분자량 분석
각 공중합체의 중량평균분자량(Mw), 수평균분자량(Mn)은 40의 조건 하에서 GPC(gel permeation chromatograph) 분석으로 측정하였다. 이때, 컬럼(column)은 Polymer Laboratories 社의 PLgel Olexis 두 자루와 PLgel mixed-C 컬럼 한자루를 조합하여 사용하였고, 새로 교체한 컬럼은 모두 mixed bed 타입의 컬럼을 사용하였다. 또한, 분자량 계산시 GPC 기준물질(sTandard material)로서 PS(polystyrene)을 사용하였다. 다분산지수(PDI)는 상기 방법으로 측정된 중량평균분자량과 수평균분자량의 비(Mw/Mn)으로 계산하였다.
3) 무니점도 분석
각 공중합체의 무니점도는 MV-2000(Alpha Technologies 社)를 이용하여 각 시료 무게 15 g 이상 2개를 1분동안 예열한 후 100℃에서 4분 동안 측정하였다.
구분 스티렌(wt%) 비닐(wt%) GPC 무니점도(MV)
Mw(g/mol, X104) Mn(g/mol, X104) PDI
실시예 1 27.1 43.1 30 20 1.5 50
실시예 2 26.5 42.5 34 22 1.6 55
실시예 3 27.3 44.1 31 21 1.5 53
실시예 4 27.3 44.1 31 21 1.5 53
비교예 1 26.2 43.1 28 20 1.4 47
비교예 2 27.1 43.0 29 18 1.6 45
상기 표 1에 나타난 바와 같이, 본 발명의 일 실시예에 따른 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체의 무니점도가 비교예 1 및 비교예 2의 공중합체 대비 무니점도가 상승하는 것을 확인하였다.
특히, 비교예 1의 스티렌-부타디엔 공중합체는 변성반응을 수행하지 않은 것을 제외하고는 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체와 동일한 조건을 통해 제조된 것으로, 상기 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체가 비교예 1의 스티렌-부타디엔 공중합체 대비 무니점도가 상승함을 나타내는 상기 표 1의 결과는 상기 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체가 변성이 이루어 졌음을 나타내는 것이다.
실험예 2
상기 실시예 1 내지 실시예 4와 비교예 2의 각 변성 스티렌-부타디엔 공중합체 및 비교예 1의 스티렌-부타디엔 공중합체 각각을 포함하는 고무 조성물 및 이로부터 제조된 성형품의 물성을 비교분석하기 위하여, 인장특성 및 점탄성 특성을 측정하였다. 결과를 하기 표 2에 나타내었다.
1) 고무 조성물의 제조
각 고무 조성물은 제1단 혼련과 제2단 혼련과정을 거쳐 제조하였다. 이때, 변성 공액디엔계 공중합체를 제외한 물질의 사용량은 변성 공액디엔계 공중합체 100 중량부를 기준으로 하여 나타낸 것이다. 제1단 혼련에서는 온도제어장치를 부속한 반바리믹서를 사용하여 상기 각 변성 공액디엔계 공중합체 137.5 중량부, 실리카 70 중량부, 실란 커플링제로서 비스(3-트리에톡시실릴프로필)테트라술피드 11.2 중량부, 공정오일(process oil, TDAE) 25 중량부, 노화방지제(TMDQ) 2 중량부, 산화아연(ZnO) 3 중량부 및 스테아린산(stearic acid) 2 중량부, 왁스 1 중량부를 배합하여 혼련하였다. 이때, 혼련기의 온도를 제어하고 145~155℃의 배출온도에서 1차 배합물을 얻었다. 제2단 혼련에서는 상기 1차 배합물을 실온까지 냉각한 후 혼련기에 고무 촉진제(CZ) 1.75 중량부, 황분말 1.5 중량부, 및 가황 촉진제 2 중량부를 첨가하고 100℃ 이하의 온도에서 믹싱하여 2차 배합물을 얻었다. 이후 100℃에서 20분 동안 큐어링 공정을 거쳐 각 고무 조성물을 제조하였다.
2) 인장특성
인장특성은 ASTM 412의 인장시험법에 준하여 각 시험편을 제조하고 상기 시험편의 절단시의 인장강도 및 300% 신장시의 인장응력(300% 모듈러스)를 측정하였다. 구체적으로, 인장특성은 Universal Test Machin 4204(Instron 社) 인장 시험기를 이용하여 실온에서 50 cm/min의 속도로 측정하여 인장강도 및 300% 신장시의 인장응력 값을 얻었다.
3) 점탄성 특성
점탄성 특성은 동적 기계 분석기(TA 社)를 이용하여 비틀림 모드로 주파수 10 Hz, 각 측정온도(-60~60℃)에서 변형을 변화시켜 Tan δ를 측정하였다. 저온 0℃ Tan δ가 높은 것일수록 젖은 노면저항성이 우수하고, 고온 60℃ Tan δ가 낮을수록 히스테리시스 손실이 적고, 저구름 저항성(연비성)이 우수함을 나타낸다.
구분 실시예 1 실시예 2 실시예 3 실시예 4 비교예 1 비교예 2
인장특성 인장강도(kgf/cm2) 135 130 135 140 120 128
300% 인장응력(kgf/cm2) 125 122 127 130 100 110
점탄성 Tan δ at 0℃(Index) 1.39 1.32 1.35 1.42 1.29 1.31
Tan δ at 60℃(Index) 0.055 0.060 0.055 0.051 0.080 0.068
상기 표 2에 나타난 바와 같이, 본 발명의 일 실시예에 따른 제조예 1 또는제조예 2에서 제조된 화합물을 변성제로 사용하여 제조된 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물의 인장특성 및 점탄성이 비교예 1 및 비교예 2의 공중합체를 포함하는 고무 조성물 대비 우수한 것을 확인하였다.
구체적으로, 본 발명의 일 실시예에 따른 제조예 1 또는 제조예 2에서 제조된 화합물을 변성제로 사용하여 제조된 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체를 포함하는 고무 조성물이 변성되지 않은 비교예 1의 스티렌-부타디엔 공중합체를 포함하는 고무 조성물 대비 인장강도 및 300% 인장응력이 크게 증가하면서, 0℃에서의 Tan δ 값이 최대 116% 수준까지 증가하고, 60℃에서의 Tan δ 값이 최저 64% 수준까지 감소하는 것을 확인하였다.
또한, 변성반응을 진행하되 본원발명 화학식 2에 해당되는 화합물을 이용하여 한번의 변성반응만을 진행하여 제조된 비교예 2의 변성 스티렌-부타디엔 공중합체와 상기 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체를 비교한 결과, 실시예 1 내지 실시예 4의 변성 스티렌-부타디엔 공중합체가 비교예 2의 변성 스티렌-부타디엔 공중합체 대비 크게 증가된 인장강도 및 300% 인장응력을 나타내면서, 0℃에서의 Tan δ 값이 최대 108% 수준까지 증가하고, 60℃에서의 Tan δ 값이 최저 75% 수준까지 감소하는 것을 확인하였다.
상기의 결과는 본 발명의 일 실시예에 따른 화학식 1로 표시되는 구성단위를 포함하는 화합물을 변성제로 사용하여 제조된 변성 스티렌-부타디엔 공중합체가 미변성 스티렌-부타디엔 공중합체 및 다른 변성 스티렌-부타디엔 공중합체 대비 젖은 노면에서의 저항성 및 구름저항 특성이 우수하고, 연비 효율이 높을 수 있음을 나타내는 결과이다.

Claims (18)

  1. 하기 화학식 1로 표시되는 구성단위를 포함하는 화합물:
    [화학식 1]
    Figure PCTKR2016015237-appb-I000020
    상기 화학식 1에서,
    R1 내지 R3은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
    R4는 탄소수 1 내지 20의 알킬렌기이고,
    x, y 및 z는 서로 독립적으로 구성단위를 구성하는 반복 단위체의 몰비율을나타내는 것으로 x+y+z는 1이고,
    x는 0.1 내지 0.8이고,
    y는 0.1 내지 0.8이며,
    z는 0.1 내지 0.8이다.
  2. 청구항 1에 있어서,
    상기 화학식 1에서,
    R1 내지 R3은 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 10의 알콕시기고,
    R4는 탄소수 1 내지 10의 알킬렌기인 것인 화합물.
  3. 청구항 1에 있어서,
    상기 화합물은 공액디엔계 중합체용 변성제인 것인 화합물.
  4. 청구항 1에 기재된 화합물 유래 작용기를 포함하는 하기 화학식 4 또는 화학식 5로 표시되는 변성 공액디엔계 중합체:
    [화학식 4]
    Figure PCTKR2016015237-appb-I000021
    상기 화학식 4에서,
    R5는 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
    R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
    P는 공액디엔계 중합체 사슬이고,
    a 및 b는 서로 독립적으로 1 또는 2의 정수이되, a+b는 2 또는 3이고,
    [화학식 5]
    Figure PCTKR2016015237-appb-I000022
    상기 화학식 5에서,
    R10 및 R13은 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
    R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
    R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
    P는 공액디엔계 중합체 사슬이고,
    c 내지 f는 서로 독립적으로 0 내지 3의 정수이되, c+e는 1 내지 5이고, d+f는 1 내지 3이고,
    n 및 m은 서로 독립적으로 1 내지 1000의 정수이며,
    상기 화학식 4 및 화학식 5에서, A는 하기 화학식 6으로 표시되는 치환기이며,
    [화학식 6]
    Figure PCTKR2016015237-appb-I000023
    상기 화학식 6에서,
    R1 및 R2는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이고,
    R4는 탄소수 1 내지 20의 알킬렌기이고,
    x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
    x는 0.1 내지 0.8이고,
    y는 0.1 내지 0.8이며,
    z는 0.1 내지 0.8이다.
  5. 청구항 4에 있어서,
    상기 화학식 4 내지 화학식 6에서,
    R1, R2, R5, R10 및 R13은 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이고,
    R4는 탄소수 1 내지 10의 알킬렌기이고,
    R7 및 R15는 서로 독립적으로 탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기이고,
    R16은 N이며,
    n 및 m은 서로 독립적으로 1 내지 50의 정수인 것인 변성 공액디엔계 중합체.
  6. 청구항 4에 있어서,
    상기 중합체는 방향족 비닐계 단량체 유래 단위를 40 중량% 이하로 포함하는 것인 변성 공액디엔계 중합체.
  7. 청구항 4에 있어서,
    상기 중합체는 수평균분자량이 1,000 g/mol 내지 5,000,000 g/mol인 것인 변성 공액디엔계 중합체.
  8. 청구항 4에 있어서,
    상기 중합체는 비닐 함량이 5 중량% 이상인 것인 변성 공액디엔계 중합체.
  9. 1) 탄화수소 용매 중에서, 유기금속 화합물 존재 하 공액디엔계 단량체 또는 방향족 비닐계 단량체 및 공액디엔계 단량체를 중합하여 적어도 일 말단에 유기금속이 결합된 활성 중합체를 제조하는 단계;
    2) 상기 활성 중합체를 하기 화학식 2 또는 화학식 3으로 표시되는 화합물과 1차 반응시키는 단계; 및
    3) 상기 1차 반응 후, 하기 화학식 1로 표시되는 구성단위를 포함하는 화합물과 2차 반응시키는 단계를 포함하는 청구항 4에 기재된 변성 공액디엔계 중합체의 제조방법:
    [화학식 2]
    Figure PCTKR2016015237-appb-I000024
    상기 화학식 2에서,
    R5, R6 및 R8 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R5, R6 및 R8 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
    R7은 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬 실릴기이고,
    [화학식 3]
    Figure PCTKR2016015237-appb-I000025
    상기 화학식 3에서, R9 내지 R14는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R9 내지 R14 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
    R15는 탄소수 1 내지 20의 알킬기이거나; 탄소수 1 내지 20의 알킬기 또는 탄소수 1 내지 20의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N, O 및 S 중에서 선택되는 적어도 하나의 헤테로 원자를 포함하는 탄소수 1 내지 20의 알킬기 또는 알킬실릴기이고,
    R16은 N, O 또는 S의 헤테로 원자이되, R16이 O 또는 S인 경우 R15는 존재하지 않고,
    n 및 m은 서로 독립적으로 1 내지 1000의 정수이고,
    [화학식 1]
    Figure PCTKR2016015237-appb-I000026
    상기 화학식 1에서,
    R1 내지 R3는 서로 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 또는 탄소수 3 내지 20의 알릴기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 20의 알콕시기이고,
    R4는 탄소수 1 내지 20의 알킬렌기이고,
    x, y 및 z는 구성단위를 구성하는 반복 단위체의 몰비율을 나타내는 것으로 x+y+z는 1이고,
    x는 0.1 내지 0.8이고,
    y는 0.1 내지 0.8이며,
    z는 0.1 내지 0.8이다.
  10. 청구항 9에 있어서,
    상기 화학식 1에서,
    R1 내지 R3는 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R1 내지 R3 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고,
    R4는 탄소수 1 내지 10의 알킬렌기인 것인 변성 공액디엔계 중합체의 제조방법.
  11. 청구항 9에 있어서,
    상기 화학식 2에서,
    R5, R6 및 R8 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R5, R6 및 R8 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고,
    탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기인 것인 변성 공액디엔계 중합체의 제조방법.
  12. 청구항 9에 있어서,
    상기 화학식 3에서,
    R9 내지 R14는 서로 독립적으로 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알콕시기이되, R9 내지 R14 중 적어도 하나는 탄소수 1 내지 10의 알콕시기이고,
    R15는 탄소수 1 내지 10의 알킬기이거나; 탄소수 1 내지 10의 알킬기 또는 탄소수 1 내지 10의 알킬기로 1치환, 2치환 또는 3치환된 알킬 실릴기로 치환 또는 비치환되고, N 또는 S를 포함하는 탄소수 1 내지 10의 알킬기이고,
    R16은 N이고,
    n 및 m은 서로 독립적으로 1 내지 50의 정수인 것인 변성 공액디엔계 중합체의 제조방법.
  13. 청구항 9에 있어서,
    상기 유기금속 화합물은 단량체 총 100 g을 기준으로 0.01 mmol 내지 10 mmol로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  14. 청구항 9에 있어서,
    상기 유기금속 화합물은 메틸리튬, 에틸리튬, 프로필리튬, n-부틸리튬, s-부틸리튬, t-부틸리튬, 헥실리튬, n-데실리튬, t-옥틸리튬, 페닐리튬, 1-나프틸리튬, n-에이코실리튬, 4-부틸페닐리튬, 4-톨릴리튬, 사이클로헥실리튬, 3,5-디-n-헵틸사이클로헥실리튬, 4-사이클로펜틸리튬, 나프틸나트륨, 나프틸칼륨, 리튬 알콕사이드, 나트륨 알콕사이드, 칼륨 알콕사이드, 리튬 술포네이트, 나트륨 술포네이트, 칼륨 술포네이트, 리튬 아미드, 나트륨 아미드, 칼륨아미드, 리튬 이소프로필아미드로 이루어진 군으로부터 선택된 1종 이상인 것인 변성 공액디엔계 중합체의 제조방법.
  15. 청구항 9에 있어서,
    상기 단계 1)의 중합은 극성 첨가제를 더 첨가하여 수행하는 것인 변성 공액디엔계 중합체의 제조방법.
  16. 청구항 15에 있어서,
    상기 극성 첨가제는 단량체 총 100 중량부 대비 0.001 중량부 내지 10 중량부로 첨가하는 것인 변성 공액디엔계 중합체의 제조방법.
  17. 청구항 9에 있어서,
    상기 화학식 2 또는 화학식 3으로 표시되는 화합물은 유기금속 화합물 1 mol 대비 0.01 mol 내지 5 mol이 되는 비율로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
  18. 청구항 9에 있어서,
    상기 화학식 1로 표시되는 화합물은 유기금속 화합물 1 mol 대비 0.01 mol 내지 5 mol이 되는 비율로 사용하는 것인 변성 공액디엔계 중합체의 제조방법.
PCT/KR2016/015237 2015-12-24 2016-12-23 실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법 WO2017111557A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018506536A JP6552716B2 (ja) 2015-12-24 2016-12-23 シリル基含有新規化合物、変性共役ジエン系重合体及びその製造方法
CN201680043802.8A CN107922514B (zh) 2015-12-24 2016-12-23 含有甲硅烷基的新型化合物、改性共轭二烯类聚合物及其制备方法
EP16879424.6A EP3296324B1 (en) 2015-12-24 2016-12-23 Novel compound containing silyl group, modified conjugated diene-based polymer, and method for preparing same
US15/736,005 US10538128B2 (en) 2015-12-24 2016-12-23 Silyl group-containing novel compound, modified and conjugated diene-based polymer, and method for preparing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0186332 2015-12-24
KR20150186332 2015-12-24
KR10-2016-0177039 2016-12-22
KR1020160177039A KR101874718B1 (ko) 2015-12-24 2016-12-22 실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2017111557A1 true WO2017111557A1 (ko) 2017-06-29

Family

ID=59089636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015237 WO2017111557A1 (ko) 2015-12-24 2016-12-23 실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2017111557A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248247A (ja) * 1993-02-25 1994-09-06 Kuraray Co Ltd 無機物用バインダー
JP2013127064A (ja) * 2011-12-16 2013-06-27 Chi Mei Corp 変性ハイシス共役ジエンポリマー及びその製造方法
KR20140127716A (ko) * 2013-04-25 2014-11-04 주식회사 엘지화학 변성 공액 디엔계 중합체의 연속 제조방법, 이로부터 수득된 중합체 및 이를 포함하는 고무 조성물
KR20150037671A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 개질 공액 디엔계 중합체, 그 제조방법 및 이를 포함하는 고무 조성물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248247A (ja) * 1993-02-25 1994-09-06 Kuraray Co Ltd 無機物用バインダー
JP2013127064A (ja) * 2011-12-16 2013-06-27 Chi Mei Corp 変性ハイシス共役ジエンポリマー及びその製造方法
KR20140127716A (ko) * 2013-04-25 2014-11-04 주식회사 엘지화학 변성 공액 디엔계 중합체의 연속 제조방법, 이로부터 수득된 중합체 및 이를 포함하는 고무 조성물
KR20150037671A (ko) * 2013-09-30 2015-04-08 주식회사 엘지화학 개질 공액 디엔계 중합체, 그 제조방법 및 이를 포함하는 고무 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NADEEM,U. U. ET AL.: "Co-poly (Vinyl Chloride-vinyl Acetate-vinyl Alcohol)-silica Nanocomposites from Sol-gel Process: Morphological, Mechanical, and Thermal Investigations", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 126, no. 6, 2012, pages 1814 - 1821, XP055393456 *
See also references of EP3296324A4 *

Similar Documents

Publication Publication Date Title
WO2017217720A1 (ko) 변성 공액디엔계 중합체의 제조방법 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2018128288A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019112260A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128285A1 (ko) 변성 공액디엔계 중합체 제조방법
WO2019216645A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2019216636A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017191921A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2020013638A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128290A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2018128291A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017105012A1 (ko) 변성 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2017188641A2 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2018105845A1 (ko) 변성제, 변성 공액디엔계 중합체 및 이들의 제조방법
WO2018128289A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017150852A1 (ko) 아자실란계 변성제 및 이를 이용한 변성 공액디엔계 중합체의 제조방법
WO2019112262A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2021107434A1 (ko) 변성제 및 이를 이용하여 제조된 변성 공액디엔계 중합체
WO2021066543A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물
WO2018128330A1 (ko) 아민 화합물, 이로부터 유래된 작용기를 포함하는 변성 공액디엔계 중합체 및 변성 공액디엔계 중합체의 제조방법
WO2017111463A1 (ko) 변성 공액디엔계 중합체, 이의 제조방법 및 변성제
WO2017111499A1 (ko) 고분자 화합물, 이를 이용한 변성 공액디엔계 중합체의 제조방법 및 변성 공액디엔계 중합체
WO2019225824A1 (ko) 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
WO2017111557A1 (ko) 실릴기 함유 신규 화합물, 변성 공액디엔계 중합체 및 이의 제조방법
WO2020130738A1 (ko) 변성 공액디엔계 중합체 및 이의 제조방법
WO2022080826A1 (ko) 유전 변성 공액디엔계 중합체, 이의 제조방법 및 이를 포함하는 고무 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15736005

Country of ref document: US

Ref document number: 2016879424

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018506536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE