WO2017111489A1 - Austenitic steel material having excellent hydrogen-embrittlement resistance - Google Patents

Austenitic steel material having excellent hydrogen-embrittlement resistance Download PDF

Info

Publication number
WO2017111489A1
WO2017111489A1 PCT/KR2016/015085 KR2016015085W WO2017111489A1 WO 2017111489 A1 WO2017111489 A1 WO 2017111489A1 KR 2016015085 W KR2016015085 W KR 2016015085W WO 2017111489 A1 WO2017111489 A1 WO 2017111489A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
embrittlement resistance
steel
hydrogen
austenitic
Prior art date
Application number
PCT/KR2016/015085
Other languages
French (fr)
Korean (ko)
Inventor
이순기
김성규
강상덕
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CA3009463A priority Critical patent/CA3009463C/en
Priority to CN201680075016.6A priority patent/CN108431275A/en
Priority to EP16879356.0A priority patent/EP3395989B1/en
Priority to KR1020187019341A priority patent/KR20180085797A/en
Priority to JP2018533257A priority patent/JP6703608B2/en
Priority to US16/065,062 priority patent/US20190010590A1/en
Publication of WO2017111489A1 publication Critical patent/WO2017111489A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to an austenitic steel having excellent hydrogen embrittlement resistance, and more particularly, to an austenitic steel having excellent hydrogen embrittlement resistance, which can be preferably applied to a high pressure hydrogen gas storage tank, a pipe and a transportation facility. .
  • Hydrogen vehicles have been most commonly used in the form of compressing hydrogen at high pressure and storing it in a high-pressure gas, and such a container has to withstand high pressure, and therefore high strength and especially to minimize hydrogen loss due to hydrogen permeation.
  • the hydrogen permeability must be low and the hydrogen embrittlement resistance must be excellent to suppress embrittlement by hydrogen infiltration.
  • Typical FCC-based materials used for this purpose are austenitic stainless steels of Cr-Ni. These austenitic stainless steels are used in high pressure gas storage containers or liners and piping materials because of their excellent hydrogen embrittlement resistance under high pressure hydrogen gas environments.
  • Japanese Laid-Open Patent Publication No. 5-98391 and International Publication No. 2014-111285 disclose a technique of increasing the strength of austenitic stainless steel by cold working, but by cold working. The increase is not suitable as a container for storing hydrogen because the increase in ductility and toughness and the stability of austenite can be reduced to generate an organic martensite.
  • Korean Patent Publication No. 10-2006-0018250 discloses a technique for securing the stability of austenite by performing two cold working in different directions, but to increase the stability of austenite Since a large amount of Cr, Ni is added as an element, this is disadvantageous in terms of cost.
  • Ni an expensive alloy element of the conventional austenitic stainless steel, is replaced with a low-cost alloy element Mn.
  • a technique is still contained, which also contains a large amount of expensive alloying elements, which is an obstacle to commercialization.
  • One of several objects of the present invention is to provide an austenitic steel having excellent hydrogen embrittlement resistance without the addition of expensive alloying elements.
  • one aspect of the present invention by weight, C: 0.1 ⁇ 0.5%, Cu: 5% or less (excluding 0%), N: 1% or less (excluding 0%) Mn content satisfies Mn ⁇ -10.7C + 24.5, Cr: 10% or less, Ni: 5% or less, Mo: 5% or less, Si: 4% or less, Al: 5% or less, balance Fe And elongation at break (T-El 2 ) according to tensile test under high pressure hydrogen conditions of 25 ° C. and 70 MPa to breakdown elongation (T-El 1 ) according to tensile test under atmospheric conditions of 25 ° C. and 1 atm, including unavoidable impurities. It provides an austenitic steel having excellent hydrogen embrittlement resistance of the ratio (T-El 2 / T-El 1 ) of 0.5 or more.
  • the austenitic steel of the present invention has an advantage of having excellent hydrogen embrittlement resistance without the addition of expensive alloying elements.
  • 1 is a graph showing the composition range of carbon and manganese of the present invention.
  • Figure 2 is a photograph of the fracture surface after the room temperature tensile test for the specimen according to Inventive Example 1.
  • Containers for storing or transporting hydrogen should basically have a low transmittance of hydrogen. Therefore, in the case of steel materials, it is essential to secure an FCC structure with a low transmittance of hydrogen.
  • the FCC structure needs to be stably maintained even for external deformation such as plastic deformation.
  • the present inventors attempted to improve the hydrogen embrittlement resistance of steel materials by appropriately controlling the relationship between carbon and manganese content while relatively lowering the carbon content, and as a result, the present invention has been derived.
  • the alloy component and the preferred content range of the austenitic steels will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
  • Carbon is an element that stabilizes austenite and improves the strength of steel, and in particular, serves to lower Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing. If the carbon content is insufficient, the austenite stability may be insufficient, and the hydrogen embrittlement resistance may be drastically deteriorated because it is not easy to maintain the FCC structure due to the process organic transformation into epsilon or alpha martensite due to external stress. Therefore, in the present invention, the carbon content is preferably controlled to 0.1% or more, more preferably 0.15% or more, and even more preferably 0.2% or more.
  • the carbon content is preferably controlled to 0.5% or less, more preferably 0.45% or less.
  • the content of manganese is preferably determined by paying attention to the relationship between the carbon and other elements added together, and after the room temperature tensile test to ensure a stable austenitic or epsilon martensite with a low permeability of hydrogen stable hydrogen Manganese content range that can improve the chemical conversion is shown in FIG.
  • the graph of FIG. 1 is a result derived by various experiments of the present inventors.
  • Copper is an element that stabilizes the austenite structure for obtaining hydrogen embrittlement resistance and promotes slippage by increasing stacking defect energy.
  • copper when high carbon is added, copper has a very low solid solubility in carbides and a slow diffusion in austenite, concentrating at the interface between austenite and nucleated carbides. It is effectively slowed down and consequently serves to suppress the production of carbides. The suppression of the formation of carbides reduces the diffusion sites of carbon to improve hydrogen embrittlement resistance, and also to improve the ductility and toughness of steel materials.
  • the copper content is preferably controlled to 5% or less, and more preferably to 3.5% or less.
  • nitrogen is an element that stabilizes austenite to improve the toughness of steel.
  • nitrogen is a very advantageous element for enhancing the strength of steel through solid solution strengthening, such as carbon.
  • it is well known as an element that promotes the slip effectively by increasing the stacking defect energy.
  • the content is excessive, since the surface quality and physical properties of the steel may be degraded by forming coarse nitride, in the present invention, it is preferable to control the content of nitrogen to 1% or less, 0.5% or less This is more preferable.
  • the austenitic steels of the present invention may include Cr, Ni, Mo, Si, and Al.
  • Chromium stabilizes austenite up to the range of the proper addition amount, thereby increasing hydrogen embrittlement resistance, and is dissolved in austenite to increase the strength of steel.
  • chromium is also an element for improving the corrosion resistance of steel materials.
  • chromium is a carbide forming element, when the content thereof is excessive, it forms a carbide at the austenite grain boundary to provide a place for easy hydrogen diffusion and deteriorates the toughness of the steel. Therefore, in the present invention, the content of chromium is preferably controlled to 10% or less, more preferably 8% or less.
  • Nike is a very effective austenite stabilizing element and serves to lower Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • Ms and Md transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • it is well known as an element that promotes the slip effectively by increasing the stacking defect energy.
  • nickel is an expensive alloy element, when the content is excessive, there is a problem that the economic efficiency is lowered. Therefore, in the present invention, it is preferable to control the content of nickel to 5% or less.
  • Molybdenum stabilizes austenite in an appropriate amount range, and serves to improve hydrogen embrittlement resistance of steel by lowering Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • Ms and Md transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • it is dissolved in the steel to increase the strength of the steel, it is organized in the austenite grain boundary to increase the stability of the grain boundary to reduce the energy, thereby acting to suppress the grain boundary precipitation of carbonitride.
  • Equation 1 it is well known as an element that promotes the slip effectively by increasing the stacking defect energy.
  • it is well known as an element that promotes the slip effectively by increasing the stacking defect energy.
  • molybdenum even if molybdenum is not added, there is no major problem in terms of securing physical properties.
  • molybdenum is an expensive alloying element, and when its content is excessive, there is a problem that the economical efficiency is lowered. Therefore, in the present invention, the content of molybdenum is preferably controlled to 5% or less, more preferably 4% or less.
  • Silicon is an element that improves the castability of molten steel and, in particular, when added to an austenitic steel, is dissolved in the steel to effectively increase the strength of the steel.
  • silicon even if silicon is not added, there is no major problem in terms of securing physical properties.
  • the content is excessive, the stacking defect energy is reduced to encourage the generation of partial potential and cause stress concentration, thereby reducing the hydrogen embrittlement resistance of the steel. Therefore, in the present invention, it is preferable to control the content of silicon to 4% or less.
  • Aluminum stabilizes austenite in an appropriate amount range, and serves to improve hydrogen embrittlement resistance of steel by lowering Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • Ms and Md transformation points of austenite into epsilon or alpha martensite by cooling or processing.
  • it is employed in the steel material to increase the strength of the steel, affect the activity of the carbon in the steel to effectively suppress the formation of carbides, and serves to increase the toughness of the steel.
  • it is an element that greatly increases the stacking defect energy of steel to induce cross-slip, suppress partial stress generation, reduce stress concentration, and increase hydrogen embrittlement resistance.
  • even if aluminum is not added, there is no major problem in terms of securing physical properties.
  • the rest is Fe.
  • impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, not all of them are specifically mentioned in the present specification. On the other hand, addition of an effective component other than the said composition is not excluded.
  • the austenitic steel of the present invention may have a stacking defect energy (SFE) of 30mJ / m 2 or more, which is defined by Equation 1 below.
  • SFE stacking defect energy
  • the lamination defect energy is relatively low, so that a partial potential is relatively easily generated, and the slip of the partial potential is limited to a specific slip surface. Accumulation and stress concentration are likely to be caused. However, such concentration of stress facilitates the diffusion of hydrogen. In high-manganese steels such as the present invention, there is a possibility that the fracture strength of the material decreases due to the diffusion of hydrogen, that is, embrittlement by hydrogen may occur. Very high.
  • the degree of work hardening by stress concentration of the steel can be measured by the work hardening rate according to the tensile test.
  • the austenitic steel of the present invention may have a strain hardening rate of 14000 N / mm 2 or less according to a tensile test under atmospheric conditions of 25 ° C. and 1 atm. This work hardening rate can be calculated from true strain and true stress. If the maximum value of the work hardening rate by the tensile test exceeds 14000 N / mm 2 , the stress concentration due to the electric potential becomes too large to facilitate the diffusion and accumulation of hydrogen, which may cause hydrogen embrittlement.
  • the austenitic steel of the present invention may be a tensile strength of 800MPa or less according to the tensile test under the atmospheric conditions of 25 °C and 1 atm. If the tensile strength exceeds 800 MPa, hydrogen embrittlement resistance may be inferior due to high work hardening caused by stress concentration.
  • the austenitic steel of the present invention may include an austenite structure of 95 area% or more as its microstructure. If the area fraction of the austenitic structure is less than 95%, there is a fear that the target hydrogen embrittlement resistance may not be secured.
  • the austenitic steels of the present invention may be made of austenite tissue or epsilon martensite tissue and austenite tissue after the tensile test under the atmospheric conditions of 25 °C and 1 atm. If the microstructure includes a ferrite structure after the tensile test, there is a fear that the target hydrogen embrittlement resistance may not be secured.
  • the austenitic steels of the present invention can be manufactured according to a conventional method for producing steel using steel slabs satisfying the above-described component system, and for example, reheating steel slabs satisfying the above-described component system and rough rolling And after finishing rolling, it can manufacture by cooling.
  • the finishing rolling finish temperature needs to be controlled to a temperature exceeding the unrecrystallized temperature.
  • the strength of the steel is excessively increased due to the generation and accumulation of excessive dislocations, thereby facilitating stress concentration and breakdown by hydrogen, and also causing fermentation of hydrogen during tensile deformation. Can be generated early, which in turn makes it difficult to achieve the desired hydrogen embrittlement resistance.
  • the microstructure of the rolled material was observed, and the austenite fraction was measured. Thereafter, the rolled material was subjected to a tensile test under atmospheric conditions of 25 and 1 atm, and then tensile strength, work hardening rate, and elongation at break (T-El 1 ) were measured, and the ferrite fraction was measured. In addition, the tensile elongation (T-El 2 ) was measured after a tensile test was performed on the rolled material under high pressure hydrogen conditions of 25 and 70 MPa. The results are shown in Table 3 below.
  • Inventive Examples 1 to 5 satisfying the component range of the present invention is obtained a stable austenite in which no ferrite is produced after the tensile deformation at room temperature, low work hardening rate and tensile strength is controlled, in particular finishing finishing The temperature is rolled beyond the recrystallization temperature to suppress the generation and scale of dislocations, and the cooling rate satisfies the range controlled by the present invention, thereby effectively suppressing carbide formation, resulting in excellent hydrogen embrittlement resistance with a very high ratio of break elongation. It shows that austenitic steels can be obtained.
  • Comparative Example 1 the content of carbon and manganese did not satisfy the range controlled by the present invention, and it was found that the ratio of fracture elongation was low, that is, the hydrogen embrittlement resistance was inferior due to the high content of carbon. Can be.
  • Comparative Example 4 it is found that the addition of carbon in excess of the range controlled by the present invention results in a high work hardening rate and inferior hydrogen embrittlement resistance due to excessive precipitation of carbides at the austenite grain boundary.
  • Comparative Example 5 can be seen that the hydrogen embrittlement resistance is inferior because the content of manganese does not fall within the range controlled by the present invention does not obtain the target microstructure.
  • Figure 2 is a photograph observing the fracture surface after the room temperature tensile test for the specimen according to Inventive Example 1, the fracture form appeared dimples typical of ductile failure.

Abstract

Disclosed is an austenitic material having excellent hydrogen-embrittlement resistance, comprising, by weight, 0.1-0.5% of C, 5% or less (0% exclusive) of Cu, 1% or less (0% exclusive) of N, a content of Mn satisfying Mn≥-10.7C+24.5, 10% or less of Cr, 5% or less of Ni, 5% or less of Mo, 4% or less of Si, 5% or less of Al, and a balance amount of Fe and inevitable impurities, with a T-El2/T-El1 ratio of 0.5 or higher, wherein T-El1 is an elongation at break according to a tensile test at 25ºC under an atmospheric condition of 1 atm and T-El2is an elongation at break according to a tensile test at 25 ºC under a hydrogen condition of 70 MPa.

Description

내수소취화성이 우수한 오스테나이트계 강재Austenitic steels with excellent hydrogen embrittlement resistance
본 발명은 내수소취화성이 우수한 오스테나이트계 강재에 관한 것으로, 보다 상세하게는, 고압 수소 가스 저장 탱크, 배관 및 수송 설비 등으로 바람직하게 적용될 수 있는 내수소취화성이 우수한 오스테나이트계 강재에 관한 것이다.The present invention relates to an austenitic steel having excellent hydrogen embrittlement resistance, and more particularly, to an austenitic steel having excellent hydrogen embrittlement resistance, which can be preferably applied to a high pressure hydrogen gas storage tank, a pipe and a transportation facility. .
지구 온난화 및 환경 오염 방지 측면에서 환경 오염 물질 및 온실 가스 배출을 줄이기 위한 많은 노력이 진행되어 왔으며 그 중 수소를 에너지원으로써 사용하는 기술이 최근 많은 진보를 거듭해왔다. 수소는 가장 친환경적인 에너지원으로써 석탄, 석유 등의 화석 연료와는 달리 오염 물질 배출이 거의 없는 미래의 신에너지원으로써 주목받고 있으며 특히, 연료전지를 사용한 수소자동차의 연료로 큰 각광을 받고 있다.In terms of global warming and pollution prevention, many efforts have been made to reduce environmental pollutants and greenhouse gas emissions, and technology using hydrogen as an energy source has recently made great progress. Hydrogen is attracting attention as a new energy source of the future as it is the most environmentally friendly energy source, unlike fossil fuels such as coal and petroleum.
수소자동차는 수소를 고압으로 압축하여 고압 가스화하여 용기에 저장하는 형태가 가장 일반적으로 사용되어 오고 있으며, 이러한 용기는 고압의 압력을 견뎌야 하므로 높은 강도와 함께 특히 수소의 투과에 의한 수소 손실을 최소화 하기 위해 수소 투과율이 낮아야 하며 수소 침투에 의한 취화를 억제하기 위해 내수소 취화성이 우수하여야 한다.Hydrogen vehicles have been most commonly used in the form of compressing hydrogen at high pressure and storing it in a high-pressure gas, and such a container has to withstand high pressure, and therefore high strength and especially to minimize hydrogen loss due to hydrogen permeation. To this end, the hydrogen permeability must be low and the hydrogen embrittlement resistance must be excellent to suppress embrittlement by hydrogen infiltration.
기본적으로 수소 저장 용기 및 설비는 수소의 투과에 의한 저장 손실을 줄이는 것이 기본적인 목표이고 따라서, 수소의 투과율이 높은 면심입방구조(FCC)의 재료가 적합하다고 할 수 있다. 이러한 용도로 사용되는 대표적인 FCC 계열의 소재로는 Cr-Ni계의 오스테나이트계 스테인레스강이 대표적이다. 이러한 오스테나이트계 스테인레스강은 고압 수소 가스 환경하에서의 내수소취화성이 우수하기 때문에 고압가스 저장용기 혹은 저장용기의 라이너 및 배관용 재료에 사용되고 있다.Basically, hydrogen storage vessels and facilities have a basic goal of reducing the storage loss due to the permeation of hydrogen, and therefore, a material of a face centered cubic structure (FCC) having a high permeability of hydrogen may be suitable. Typical FCC-based materials used for this purpose are austenitic stainless steels of Cr-Ni. These austenitic stainless steels are used in high pressure gas storage containers or liners and piping materials because of their excellent hydrogen embrittlement resistance under high pressure hydrogen gas environments.
그러나 최근 수소의 1회 충전에 의한 장거리 운행 및 대량 저장을 위해 수소 가스의 압력을 수십 혹은 수백 MPa로 높이고 있어 통상의 강도가 낮은 오스테나이트계 스테인레스강의 경우 고압하에서의 하중을 견디기 위해서는 소재의 두께를 증가시켜야 하여 결국 용기나 설비의 중량 증가와 대형화를 피하기 어려워 상용화에 제한이 되고 있다.However, in recent years, the pressure of hydrogen gas is increased to tens or hundreds of MPa for long-distance operation and mass storage by one-time charging of hydrogen. Therefore, in the case of austenitic stainless steel with low strength, the material thickness is increased to withstand the load under high pressure. As a result, it is difficult to avoid the increase in the weight and size of the container or equipment, which is a limitation in commercialization.
이를 해결하기 위한 기술로써 일본 공개특허공보 특개평5-98391호 및 국제 공개특허공보 제2014-111285호에서는 냉간 가공에 의해 오스테나이트계 스테인레스강의 강도를 높이는 기술이 개시되어 있으나, 냉간 가공에 의한 강도 증가는 연성 및 인성을 저하시키고 오스테나이트의 안정도를 저하시켜 가공유기 마르텐사이트를 발생시킬 수 있으므로 수소를 저장하는 용기로는 적합하지 않다. 한편, 한국 공개특허공보 제10-2006-0018250호에서는 서로 상이한 방향으로의 두 차례 냉간 가공을 실시함으로써 오스테나이트의 안정도를 확보하는 기술이 개시되어 있으나, 오스테나이트의 안정도를 증가시키기 위해 고가의 합금원소인 다량의 Cr, Ni을 첨가하게 되므로 이는 비용적인 측면에서 불리한 단점이 있다.As a technique to solve this problem, Japanese Laid-Open Patent Publication No. 5-98391 and International Publication No. 2014-111285 disclose a technique of increasing the strength of austenitic stainless steel by cold working, but by cold working. The increase is not suitable as a container for storing hydrogen because the increase in ductility and toughness and the stability of austenite can be reduced to generate an organic martensite. On the other hand, Korean Patent Publication No. 10-2006-0018250 discloses a technique for securing the stability of austenite by performing two cold working in different directions, but to increase the stability of austenite Since a large amount of Cr, Ni is added as an element, this is disadvantageous in terms of cost.
한편, 한국 공개특허공보 제10-2011-0004491호 및 한국 공개특허공보 제10-2013-0045931호에서는 종래의 오스테나이트계 스테인레스강이 갖는 고가의 합금원소인 Ni을 저가의 합금원소인 Mn으로 대체하여 안정한 오스테나이트를 확보하여 내수소취화성을 개선한 기술이 개시되어 있으나, 이 또한 여전히 고가의 합금원소를 다량 함유하고 있어 경제적인 측면에서 상용화에 걸림돌이 되고 있다. Meanwhile, in Korean Unexamined Patent Publication No. 10-2011-0004491 and Korean Unexamined Patent Publication No. 10-2013-0045931, Ni, an expensive alloy element of the conventional austenitic stainless steel, is replaced with a low-cost alloy element Mn. In order to secure stable austenite and improve hydrogen embrittlement resistance, a technique is still contained, which also contains a large amount of expensive alloying elements, which is an obstacle to commercialization.
본 발명의 여러 목적 중 하나는, 고가의 합금 원소의 첨가 없이도 우수한 내수소취화성을 가지는 오스테나이트계 강재를 제공하는 것이다.One of several objects of the present invention is to provide an austenitic steel having excellent hydrogen embrittlement resistance without the addition of expensive alloying elements.
상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 중량%로, C: 0.1~0.5%, Cu: 5% 이하(0% 제외), N: 1% 이하(0%는 제외)를 포함하고, Mn의 함량은 Mn≥-10.7C+24.5를 만족하며, Cr: 10% 이하, Ni: 5% 이하, Mo: 5% 이하, Si: 4% 이하, Al: 5% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 파괴연신율(T-El1)에 대한 25℃ 및 70MPa의 고압 수소 조건 하 인장 시험에 따른 파괴연신율(T-El2)의 비(T-El2/T-El1)가 0.5 이상인 내수소취화성이 우수한 오스테나이트계 강재를 제공한다.In order to achieve the above object, one aspect of the present invention, by weight, C: 0.1 ~ 0.5%, Cu: 5% or less (excluding 0%), N: 1% or less (excluding 0%) Mn content satisfies Mn≥-10.7C + 24.5, Cr: 10% or less, Ni: 5% or less, Mo: 5% or less, Si: 4% or less, Al: 5% or less, balance Fe And elongation at break (T-El 2 ) according to tensile test under high pressure hydrogen conditions of 25 ° C. and 70 MPa to breakdown elongation (T-El 1 ) according to tensile test under atmospheric conditions of 25 ° C. and 1 atm, including unavoidable impurities. It provides an austenitic steel having excellent hydrogen embrittlement resistance of the ratio (T-El 2 / T-El 1 ) of 0.5 or more.
본 발명의 여러 효과 중 하나로서, 본 발명의 오스테나이트계 강재는 고가의 합금 원소의 첨가 없이도 우수한 내수소취화성을 가지는 장점이 있다.As one of various effects of the present invention, the austenitic steel of the present invention has an advantage of having excellent hydrogen embrittlement resistance without the addition of expensive alloying elements.
도 1은 본 발명의 탄소 및 망간의 조성 범위를 그래프로 나타낸 것이다.1 is a graph showing the composition range of carbon and manganese of the present invention.
도 2는 발명예 1에 따른 시편에 대해 상온 인장 시험 후 파단면을 관찰한 사진이다.Figure 2 is a photograph of the fracture surface after the room temperature tensile test for the specimen according to Inventive Example 1.
수소의 저장 또는 이송 등을 위한 용기는 기본적으로 수소의 투과율이 낮아야 하며, 따라서, 철강 소재의 경우, 수소의 투과율이 낮은 FCC 구조를 확보하는 것이 필수적이며, 특히, 소성 가공, 사용 중 외부 하중 인가에 따른 소성 변형 등의 외부 변형에 대해서도 FCC 구조가 안정적으로 유지될 필요가 있다.Containers for storing or transporting hydrogen should basically have a low transmittance of hydrogen. Therefore, in the case of steel materials, it is essential to secure an FCC structure with a low transmittance of hydrogen. The FCC structure needs to be stably maintained even for external deformation such as plastic deformation.
한편, 전술한 통상의 내수소취화성이 우수한 강재인 오스테나이트계 스테인리스 강의 경제성이 열위한 단점을 극복하기 위하여, 최근 고가의 니켈을 저가의 망간으로 대체하고, 탄소를 첨가하여 오스테나이트를 상온에서 안정화시키고자 하는 시도가 이어져 오고 있다. 그런데, 이러한 고탄소 및 고망간 오스테나이트계 강재는 낮은 적층결함에너지로 인해 부분 전위가 쉽게 발달하여 슬립의 평면화가 쉽게 이루어지게 되며, 이에 따라 슬립면 상에서의 전위의 집적이 쉽게 이루어져 가공경화가 매우 높게 된다. 또한, 오스테나이트 안정화를 위한 탄소의 첨가는 동적변형시효를 유발하여 강재의 가공경화를 크게 향상시키게 된다. 이에 따라, 이러한 고탄소 및 고망간 오스테나이트계 강재는 내수소취화성이 요구되는 용도로는 부적합하다. On the other hand, in order to overcome the disadvantages of the economics of the austenitic stainless steel, which is a conventional steel with excellent hydrogen embrittlement resistance, recently replaced expensive nickel with low-cost manganese, and by adding carbon to stabilize austenite at room temperature Attempts have been made. However, such high carbon and high manganese austenitic steels have partial stacking potentials due to low stacking defect energy, thereby making it easier to planarize slips. Becomes high. In addition, the addition of carbon for austenite stabilization causes dynamic strain aging to greatly improve the work hardening of steel. Accordingly, such high carbon and high manganese austenitic steels are not suitable for applications requiring hydrogen embrittlement resistance.
이에, 본 발명자들은 탄소의 함량을 비교적 낮추면서도, 탄소 및 망간 함량의 관계를 적절히 제어함을 통해 강재의 내수소취화성을 향상시키고자 시도하였으며, 그 결과 본 발명을 도출하기에 이르렀다.Accordingly, the present inventors attempted to improve the hydrogen embrittlement resistance of steel materials by appropriately controlling the relationship between carbon and manganese content while relatively lowering the carbon content, and as a result, the present invention has been derived.
이하, 본 발명의 일 측면인 내수소취화성이 우수한 오스테나이트계 강재에 대하여 상세히 설명한다. Hereinafter, an austenitic steel having excellent hydrogen embrittlement resistance, which is an aspect of the present invention, will be described in detail.
먼저, 오스테나이트계 강재의 합금 성분 및 바람직한 함량 범위에 대하여 상세히 설명한다. 후술하는 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량 기준임을 미리 밝혀둔다.First, the alloy component and the preferred content range of the austenitic steels will be described in detail. It is noted that the content of each component described below is based on weight unless otherwise specified.
탄소(C): 0.1~0.5%Carbon (C): 0.1-0.5%
탄소는 오스테나이트를 안정화시키고, 강재의 강도를 향상시키는 원소이며, 특히, 냉각과정 혹은 가공에 의한 오스테나이트의 입실런 혹은 알파 마르텐사이트로의 변태점인 Ms 및 Md를 낮추는 역할을 한다. 만약, 탄소 함량이 부족할 경우에는 오스테나이트의 안정도가 부족해지고, 또한 외부 응력에 의해 쉽게 입실런 혹은 알파 마르텐사이트로 가공유기변태를 일으켜 FCC 조직을 유지할 수 없으므로 내수소취화성이 급격히 열화될 수 있다. 따라서, 본 발명에서는 탄소 함량을 0.1% 이상으로 제어함이 바람직하고, 0.15% 이상으로 제어함이 보다 바람직하며, 0.2% 이상으로 제어함이 보다 더 바람직하다. 다만, 그 함량이 과다할 경우 전위와의 동적변형시효를 발생시켜 강재의 가공 경화를 높혀 내수소취화성이 열화되며, 탄화물이 쉽게 석출되어 연성 내지 인성이 열화될 수 있다. 따라서, 본 발명에서는 탄소 함량을 0.5% 이하로 제어함이 바람직하고, 0.45% 이하로 제어함이 보다 바람직하다.Carbon is an element that stabilizes austenite and improves the strength of steel, and in particular, serves to lower Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing. If the carbon content is insufficient, the austenite stability may be insufficient, and the hydrogen embrittlement resistance may be drastically deteriorated because it is not easy to maintain the FCC structure due to the process organic transformation into epsilon or alpha martensite due to external stress. Therefore, in the present invention, the carbon content is preferably controlled to 0.1% or more, more preferably 0.15% or more, and even more preferably 0.2% or more. However, if the content is excessive, dynamic strain aging with dislocations increases the work hardening of the steel to deteriorate the hydrogen embrittlement resistance, and carbides may easily precipitate and deteriorate ductility or toughness. Therefore, in the present invention, the carbon content is preferably controlled to 0.5% or less, more preferably 0.45% or less.
망간(Mn): [Mn]≥-10.7[C]+24.5 (여기서, [Mn] 및 [C]는 해당 원소의 중량%를 의미함)Manganese (Mn): [Mn] ≥-10.7 [C] +24.5 (where [Mn] and [C] refer to the weight percent of the element)
본 발명에서 망간의 함량은 탄소 및 기타 함께 첨가되는 원소들과의 관계에 주의하며 결정하는 것이 바람직한데, 상온 인장 시험 후 수소의 투과율이 낮은 오스테나이트 혹은 입실런 마르텐사이트를 안정적으로 확보하여 내수소취화성을 향상시킬 수 있는 망간의 함량 범위를 도 1에 나타내었다. 상기 도 1의 그래프는 본 발명자들의 다양한 실험에 의해 도출된 결과이다.In the present invention, the content of manganese is preferably determined by paying attention to the relationship between the carbon and other elements added together, and after the room temperature tensile test to ensure a stable austenitic or epsilon martensite with a low permeability of hydrogen stable hydrogen Manganese content range that can improve the chemical conversion is shown in FIG. The graph of FIG. 1 is a result derived by various experiments of the present inventors.
즉, 인장 시험 전, 후 모두 우수한 내수소취화성을 얻을 수 있는 미세조직을 확보하기 위해서는 다른 성분이 본 발명에서 규정하는 범위를 충족한다는 전제 하에 -10.7[C]+24.5(%) 이상의 범위로 제어함이 바람직하다. 만약, 첨가되는 망간의 함량이 -10.7[C]+24.5(%) 미만일 경우 오스테나이트의 안정도가 감소하여 변형에 의해 BCC 기반의 미세조직이 형성되며, 이에 따라 내수소취화성이 열화되게 된다.That is, in order to secure a microstructure capable of obtaining excellent hydrogen embrittlement resistance both before and after the tensile test, it is controlled in the range of -10.7 [C] + 24.5 (%) or more under the premise that other components satisfy the range defined by the present invention. It is preferable to. If the amount of manganese added is less than -10.7 [C] + 24.5 (%), the stability of austenite decreases, thereby forming a BCC-based microstructure by deformation, thereby degrading hydrogen embrittlement resistance.
구리(Cu): 5% 이하(0% 제외)Copper (Cu): 5% or less (except 0%)
구리는 내수소취화성을 얻기 위한 오스테나이트 조직을 안정화시키고, 적층결함에너지를 높여 슬립을 촉진하는 원소이다. 한편, 탄소가 높게 첨가되는 경우, 구리는 탄화물 내 고용도가 매우 낮고 오스테나이트 내 확산이 느려 오스테나이트와 핵생성된 탄화물의 계면에 농축되게 되는데, 이 경우 탄소의 확산을 방해함으로써 탄화물의 성장을 효과적으로 늦추게 되고, 결과적으로 탄화물의 생성을 억제하는 역할을 한다. 이러한 탄화물의 형성 억제는 탄소의 확산 장소를 줄여 내수소취화성을 향상시키고, 더불어 강재의 연성 및 인성을 개선한다. 본 발명에서 구리가 0.5% 이상 첨가될 경우, 이러한 탄화물 생성 억제 효과를 충분히 얻을 수 있다. 다만, 그 함량이 과다할 경우, 강재의 열간가공성이 열화될 수 있다. 따라서, 본 발명에서는 구리의 함량을 5% 이하로 제어함이 바람직하고, 3.5% 이하로 제어함이 보다 바람직하다.Copper is an element that stabilizes the austenite structure for obtaining hydrogen embrittlement resistance and promotes slippage by increasing stacking defect energy. On the other hand, when high carbon is added, copper has a very low solid solubility in carbides and a slow diffusion in austenite, concentrating at the interface between austenite and nucleated carbides. It is effectively slowed down and consequently serves to suppress the production of carbides. The suppression of the formation of carbides reduces the diffusion sites of carbon to improve hydrogen embrittlement resistance, and also to improve the ductility and toughness of steel materials. When more than 0.5% of copper is added in the present invention, such carbide production inhibitory effect can be sufficiently obtained. However, if the content is excessive, hot workability of the steel may be degraded. Therefore, in the present invention, the copper content is preferably controlled to 5% or less, and more preferably to 3.5% or less.
질소(N): 1% 이하(0% 제외)Nitrogen (N): 1% or less (except 0%)
질소는 탄소와 더불어 오스테나이트를 안정화시켜 강재의 인성을 향상시키는 원소이며, 특히, 탄소와 같이 고용강화를 통해 강재의 강도를 향상시키는데 매우 유리한 원소이다. 특히, 후술할 식 1을 통해 알 수 있듯이, 효과적으로 적층결함에너지를 높여 슬립을 조장하는 원소로 잘 알려져 있다. 다만, 본 발명에서는 질소를 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 한편, 그 함량이 과다할 경우, 조대한 질화물을 형성하여 강재의 표면 품질 및 물성이 열화될 수 있으므로, 본 발명에서는 질소의 함량을 1% 이하로 제어함이 바람직하고, 0.5% 이하로 제어함이 보다 바람직하다.In addition to carbon, nitrogen is an element that stabilizes austenite to improve the toughness of steel. In particular, nitrogen is a very advantageous element for enhancing the strength of steel through solid solution strengthening, such as carbon. In particular, as can be seen through Equation 1 to be described later, it is well known as an element that promotes the slip effectively by increasing the stacking defect energy. However, in the present invention, even if nitrogen is not added, there is no major problem in terms of securing physical properties. On the other hand, if the content is excessive, since the surface quality and physical properties of the steel may be degraded by forming coarse nitride, in the present invention, it is preferable to control the content of nitrogen to 1% or less, 0.5% or less This is more preferable.
상술한 원소 이외에도 본 발명의 오스테나이트계 강재는 Cr, Ni, Mo, Si 및 Al을 포함할 수 있다.In addition to the elements described above, the austenitic steels of the present invention may include Cr, Ni, Mo, Si, and Al.
크롬(Cr): 10% 이하Chromium (Cr): 10% or less
크롬은 적정한 첨가량의 범위까지는 오스테나이트를 안정화시켜 내수소취화성을 증가시키며, 오스테나이트 내에 고용되어 강재의 강도를 증가시킨다. 또한, 크롬은 강재의 내식성을 향상시키는 원소이기도 하다. 다만, 본 발명에서는 크롬을 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 한편, 크롬은 탄화물 형성 원소로써, 그 함량이 과다할 경우, 오스테나이트 입계에 탄화물을 형성하여 수소 확산에 용이한 장소를 제공할 뿐만 아니라, 강재의 인성을 열화시키는 문제가 있다. 따라서, 본 발명에서는 크롬의 함량을 10% 이하로 제어함이 바람직하고, 8% 이하로 제어함이 보다 바람직하다.Chromium stabilizes austenite up to the range of the proper addition amount, thereby increasing hydrogen embrittlement resistance, and is dissolved in austenite to increase the strength of steel. In addition, chromium is also an element for improving the corrosion resistance of steel materials. However, in the present invention, even if chromium is not added, there is no major problem in terms of securing physical properties. On the other hand, chromium is a carbide forming element, when the content thereof is excessive, it forms a carbide at the austenite grain boundary to provide a place for easy hydrogen diffusion and deteriorates the toughness of the steel. Therefore, in the present invention, the content of chromium is preferably controlled to 10% or less, more preferably 8% or less.
니켈(Ni): 5% 이하Nickel (Ni): 5% or less
니케은 매우 효과적인 오스테나이트 안정화 원소이며, 냉각과정 혹은 가공에 의한 오스테나이트의 입실런 혹은 알파 마르텐사이트로의 변태점인 Ms 및 Md를 낮추는 역할을 한다. 특히, 후술할 식 1을 통해 알 수 있듯이, 효과적으로 적층결함에너지를 높여 슬립을 조장하는 원소로 잘 알려져 있다. 다만, 본 발명에서는 니켈을 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 한편, 니켈은 고가의 합금 원소로써, 그 함량이 과다할 경우, 경제성이 저하되는 문제가 있다. 따라서, 본 발명에서는 니켈의 함량을 5% 이하로 제어함이 바람직하다.Nike is a very effective austenite stabilizing element and serves to lower Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing. In particular, as can be seen through Equation 1 to be described later, it is well known as an element that promotes the slip effectively by increasing the stacking defect energy. However, in the present invention, even if nickel is not added, there is no major problem in terms of securing physical properties. On the other hand, nickel is an expensive alloy element, when the content is excessive, there is a problem that the economic efficiency is lowered. Therefore, in the present invention, it is preferable to control the content of nickel to 5% or less.
몰리브덴(Mo): 5% 이하Molybdenum (Mo): 5% or less
몰리브덴은 적정 첨가량 범위에서 오스테나이트를 안정화시키며, 냉각과정 혹은 가공에 의한 오스테나이트의 입실런 혹은 알파 마르텐사이트로의 변태점인 Ms 및 Md를 낮춰 강재의 내수소취화성을 향상시키는 역할을 한다. 또한, 강재 내부에 고용되어 강재의 강도를 증가시키며, 오스테나이트 결정립계에 편성되어 결정립계의 안정도를 높여 에너지를 감소시켜 줌으로써, 탄질화물의 결정립계 석출을 억제하는 역할을 한다. 특히, 후술할 식 1을 통해 알 수 있듯이, 효과적으로 적층결함에너지를 높여 슬립을 조장하는 원소로 잘 알려져 있다. 다만, 본 발명에서는 몰리브덴을 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 한편, 몰리브덴은 고가의 합금 원소로써, 그 함량이 과다할 경우, 경제성이 저하되는 문제가 있다. 따라서, 본 발명에서는 몰리브덴의 함량을 5% 이하로 제어함이 바람직하고, 4% 이하로 제어함이 보다 바람직하다.Molybdenum stabilizes austenite in an appropriate amount range, and serves to improve hydrogen embrittlement resistance of steel by lowering Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing. In addition, it is dissolved in the steel to increase the strength of the steel, it is organized in the austenite grain boundary to increase the stability of the grain boundary to reduce the energy, thereby acting to suppress the grain boundary precipitation of carbonitride. In particular, as can be seen through Equation 1 to be described later, it is well known as an element that promotes the slip effectively by increasing the stacking defect energy. However, in the present invention, even if molybdenum is not added, there is no major problem in terms of securing physical properties. On the other hand, molybdenum is an expensive alloying element, and when its content is excessive, there is a problem that the economical efficiency is lowered. Therefore, in the present invention, the content of molybdenum is preferably controlled to 5% or less, more preferably 4% or less.
실리콘(Si): 4% 이하Silicon (Si): 4% or less
실리콘은 용강의 주조성을 향상시키고, 특히, 오스테나이트계 강재에 첨가되는 경우 강재 내부에 고용되어 강재의 강도를 효과적으로 증가시키는 원소이다. 다만, 본 발명에서는 실리콘을 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 한편, 그 함량이 과다할 경우, 적층결함에너지를 감소시켜 부분 전위의 발생을 조장하고 응력 집중을 야기하며, 이에 따라 강재의 내수소취화성을 감소시키는 문제가 있다. 따라서, 본 발명에서는 실리콘의 함량을 4% 이하로 제어함이 바람직하다.Silicon is an element that improves the castability of molten steel and, in particular, when added to an austenitic steel, is dissolved in the steel to effectively increase the strength of the steel. However, in the present invention, even if silicon is not added, there is no major problem in terms of securing physical properties. On the other hand, if the content is excessive, the stacking defect energy is reduced to encourage the generation of partial potential and cause stress concentration, thereby reducing the hydrogen embrittlement resistance of the steel. Therefore, in the present invention, it is preferable to control the content of silicon to 4% or less.
알루미늄(Al): 5% 이하Aluminum (Al): 5% or less
알루미늄은 적정 첨가량 범위에서 오스테나이트를 안정화시키며, 냉각과정 혹은 가공에 의한 오스테나이트의 입실런 혹은 알파 마르텐사이트로의 변태점인 Ms 및 Md를 낮춰 강재의 내수소취화성을 향상시키는 역할을 한다. 또한, 강재 내부에 고용되어 강재의 강도를 증가시키고, 강재 내 탄소의 활동도에 영향을 미쳐 탄화물 형성을 효과적으로 억제하고, 강재의 인성을 증가시키는 역할을 한다. 또한, 강재의 적층결함에너지를 크게 증가시켜 교차슬립을 유도하고, 부분 전위 생성을 억제하여 응력 집중을 완화시켜 내수소취성을 증가시키는 원소이다. 다만, 본 발명에서는 알루미늄을 첨가하지 않더라도 물성 확보 측면에서는 큰 지장은 없다. 다만, 내수소취성을 보다 향상시키기 위해서는 0.2% 이상 첨가하는 것이 보다 바람직하다. 한편, 그 함량이 과다할 경우, 산화물 및 질화물을 형성하여 강의 주조성 및 표면 품질을 열화될 수 있으므로, 본 발명에서는 알루미늄의 함량을 5% 이하로 제어함이 바람직하다.Aluminum stabilizes austenite in an appropriate amount range, and serves to improve hydrogen embrittlement resistance of steel by lowering Ms and Md, which are transformation points of austenite into epsilon or alpha martensite by cooling or processing. In addition, it is employed in the steel material to increase the strength of the steel, affect the activity of the carbon in the steel to effectively suppress the formation of carbides, and serves to increase the toughness of the steel. In addition, it is an element that greatly increases the stacking defect energy of steel to induce cross-slip, suppress partial stress generation, reduce stress concentration, and increase hydrogen embrittlement resistance. However, in the present invention, even if aluminum is not added, there is no major problem in terms of securing physical properties. However, in order to improve the hydrogen embrittlement resistance more, it is more preferable to add 0.2% or more. On the other hand, if the content is excessive, since the castability and surface quality of the steel may be degraded by forming oxides and nitrides, in the present invention, it is preferable to control the content of aluminum to 5% or less.
상기 조성 이외에 나머지는 Fe이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다. 한편, 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다.In addition to the above composition, the rest is Fe. However, in the conventional manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art, not all of them are specifically mentioned in the present specification. On the other hand, addition of an effective component other than the said composition is not excluded.
일 예에 따르면, 본 발명의 오스테나이트계 강재는 하기 식 1로 정의되는 적층결함에너지(SFE)가 30mJ/m2 이상일 수 있다.According to one embodiment, the austenitic steel of the present invention may have a stacking defect energy (SFE) of 30mJ / m 2 or more, which is defined by Equation 1 below.
[식1] [Equation 1]
SFE(mJ/m2) = 1.6[Ni] - 1.3[Mn] + 0.06[Mn]2 - 1.7[Cr] + 0.01[Cr]2 + 15[Mo] - 5.6[Si] + 1.6[Cu] + 5.5[Al] - 60([C] + 1.2[N])1/2 + 26.3([C] + 1.2[N])([Cr] + [Mn] + [Mo])1/2 + 0.6{[Ni]([Cr] + [Mn])}1/2 SFE (mJ / m 2) = 1.6 [Ni] - 1.3 [Mn] + 0.06 [Mn] 2 - 1.7 [Cr] + 0.01 [Cr] 2 + 15 [Mo] - 5.6 [Si] + 1.6 [Cu] + 5.5 [Al]-60 ([C] + 1.2 [N]) 1/2 + 26.3 ([C] + 1.2 [N]) ([Cr] + [Mn] + [Mo]) 1/2 + 0.6 { [Ni] ([Cr] + [Mn])} 1/2
(여기서, [Ni], [Mn], [Cr], [Mo], [Si], [Cu], [Al], [C] 및 [N] 각각을 해당 원소의 함량(중량%)을 의미함)(Where [Ni], [Mn], [Cr], [Mo], [Si], [Cu], [Al], [C], and [N] each represent the content (% by weight) of the corresponding element. box)
일반적으로 본 발명과 같이 망간의 함량이 높은 고망간 강의 경우, 통상의 탄소 강과 비교할 때, 적층결함에너지가 낮아 부분 전위가 비교적 쉽게 생성되며, 이러한 부분 전위의 슬립은 특정 슬립면에 국한되기 때문에 전위의 집적 및 응력 집중이 야기되기 쉽다. 그런데, 이와 같은 응력의 집중은 수소의 확산을 용이하게 하는 바, 본 발명과 같은 고망간 강에서는 수소의 확산에 의해 소재의 파괴강도가 저하되는 현상, 즉, 수소에 의한 취화 현상이 발생할 가능성이 매우 높다. 따라서, 본 발명에서는 합금 성분 및 조성 범위 제어를 통한 적층결함에너지의 제어를 통해 강재의 변형 거동을 각별히 제어하여야 할 필요가 있으며, 본 발명자들의 연구 결과, 하기 식 1로 정의되는 적층결함에너지(SFE)를 30mJ/m2 이상으로 제어할 경우 수소에 의한 취화 현상 발생 가능성을 현저히 억제할 수 있음을 알아내었다.In general, in the case of high manganese steel having a high content of manganese as in the present invention, when compared with conventional carbon steels, the lamination defect energy is relatively low, so that a partial potential is relatively easily generated, and the slip of the partial potential is limited to a specific slip surface. Accumulation and stress concentration are likely to be caused. However, such concentration of stress facilitates the diffusion of hydrogen. In high-manganese steels such as the present invention, there is a possibility that the fracture strength of the material decreases due to the diffusion of hydrogen, that is, embrittlement by hydrogen may occur. Very high. Therefore, in the present invention, it is necessary to specifically control the deformation behavior of the steel through the control of the stacking fault energy through the control of the alloy component and the composition range, and as a result of the present inventors, the stacking fault energy (SFE) defined by Equation 1 below. ), It was found that the possibility of embrittlement caused by hydrogen can be significantly suppressed when controlling to 30 mJ / m 2 or more.
한편, 강재의 응력 집중에 의한 가공경화 정도는 인장 시험에 따른 가공경화율로 측정될 수 있다. 일 예에 따르면, 본 발명의 오스테나이트계 강재는 25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 가공경화율(strain hardening rate)이 14000N/mm2 이하일 수 있다. 이러한 가공경화율은 진변형 및 진응력으로부터 계산할 수 있다. 만약, 인장 시험에 의한 가공경화율의 최대값이 14000N/mm2을 초과하는 경우는 전위에 의한 응력집중이 지나치게 크게 되어 수소의 확산 및 집적이 용이하게 되어 수소취화를 유발할 수 있다.On the other hand, the degree of work hardening by stress concentration of the steel can be measured by the work hardening rate according to the tensile test. According to one embodiment, the austenitic steel of the present invention may have a strain hardening rate of 14000 N / mm 2 or less according to a tensile test under atmospheric conditions of 25 ° C. and 1 atm. This work hardening rate can be calculated from true strain and true stress. If the maximum value of the work hardening rate by the tensile test exceeds 14000 N / mm 2 , the stress concentration due to the electric potential becomes too large to facilitate the diffusion and accumulation of hydrogen, which may cause hydrogen embrittlement.
일 예에 따르면, 본 발명의 오스테나이트계 강재는 25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 인장강도가 800MPa 이하일 수 있다. 만약, 인장강도가 800MPa를 초과하는 경우 응력집중에 의한 높은 가공경화로 내수소취화성이 열위해질 수 있다.According to one embodiment, the austenitic steel of the present invention may be a tensile strength of 800MPa or less according to the tensile test under the atmospheric conditions of 25 ℃ and 1 atm. If the tensile strength exceeds 800 MPa, hydrogen embrittlement resistance may be inferior due to high work hardening caused by stress concentration.
일 예에 따르면, 본 발명의 오스테나이트계 강재는 그 미세조직으로 95면적% 이상의 오스테나이트 조직을 포함할 수 있다. 만약, 오스테나이트 조직의 면적분율이 95% 미만일 경우 목적하는 내수소취화성을 확보하지 못할 우려가 있다.According to one embodiment, the austenitic steel of the present invention may include an austenite structure of 95 area% or more as its microstructure. If the area fraction of the austenitic structure is less than 95%, there is a fear that the target hydrogen embrittlement resistance may not be secured.
일 예에 따르면, 본 발명의 오스테나이트계 강재는 25℃ 및 1atm의 대기 조건 하 인장 시험 후 미세조직이 오스테나이트 조직으로 이루어지거나 입실런 마르텐사이트 조직 및 오스테나이트 조직으로 이루어질 수 있다. 만약, 인장시험 후 미세조직이 페라이트 조직을 포함할 경우 목적하는 내수소취화성을 확보하지 못할 우려가 있다.According to one embodiment, the austenitic steels of the present invention may be made of austenite tissue or epsilon martensite tissue and austenite tissue after the tensile test under the atmospheric conditions of 25 ℃ and 1 atm. If the microstructure includes a ferrite structure after the tensile test, there is a fear that the target hydrogen embrittlement resistance may not be secured.
본 발명의 오스테나이트계 강재는 상기의 성분계를 만족하는 강 슬라브를 이용하여 통상적인 강재의 제조방법에 따라 제조할 수 있으며, 일 예로써, 상기의 성분계를 만족하는 강슬라브를 재가열하고, 조압연 및 사상압연 후, 냉각함으로써 제조할 수 있다.The austenitic steels of the present invention can be manufactured according to a conventional method for producing steel using steel slabs satisfying the above-described component system, and for example, reheating steel slabs satisfying the above-described component system and rough rolling And after finishing rolling, it can manufacture by cooling.
다만, 이 경우, 사상압연 마무리 온도는 미재결정 온도를 초과하는 온도로 제어할 필요가 있다. 미재결정 온도 이하의 온도에서 사상압연이 마무리될 경우 과도한 전위의 생성 및 축척에 의해 강재의 강도가 지나치게 높아져 수소에 의한 응력 집중 및 파괴를 조장하게 되고, 또한 인장변형시 수소 취화를 유발하는 페라이트 조직을 조기에 발생시켜 결국 목적하는 내수소취화성 확보가 어려울 수 있다. In this case, however, the finishing rolling finish temperature needs to be controlled to a temperature exceeding the unrecrystallized temperature. When finishing finishing at a temperature below the unrecrystallized temperature, the strength of the steel is excessively increased due to the generation and accumulation of excessive dislocations, thereby facilitating stress concentration and breakdown by hydrogen, and also causing fermentation of hydrogen during tensile deformation. Can be generated early, which in turn makes it difficult to achieve the desired hydrogen embrittlement resistance.
또한, 압연 종료 후 강재는 탄화물 형성 억제를 위해 가속냉각을 할 필요가 있는데, 이는 탄화물이 형성되는 경우 강재의 연신율이 감소하고, 특히 탄화물과 오스테나이트의 계면에 수소가 집적하여 결국 내수소취화성을 열위하게 만들기 때문이다. 탄소, 크롬, 몰리브텐 등이 주요한 탄화물 형성원소이므로 가속냉각 여부 및 냉각속도는 이러한 원소의 첨가량에 따라 아래 식과 같이 주어진다. In addition, after the end of the rolling steel needs to be accelerated cooling to suppress the formation of carbides, which reduces the elongation of the steel when carbide is formed, in particular hydrogen accumulates at the interface between the carbide and austenite, ultimately hydrogen embrittlement resistance Because it makes you inferior. Since carbon, chromium, molybdenum, etc. are the major carbide forming elements, whether or not accelerated cooling and cooling rate are given as follows according to the amount of addition of these elements.
[식 2] [Equation 2]
냉각속도(℃/s) ≥ 15[C] + [Cr] + [Mo] Cooling rate (℃ / s) ≥ 15 [C] + [Cr] + [Mo]
(여기서, [C], [Cr] 및 [Mo]는 각각 해당 원소의 함량(중량%)을 의미함)(Where [C], [Cr] and [Mo] refer to the content (% by weight) of the corresponding element)
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the description of these examples is only for illustrating the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
하기 표 1의 조성을 갖는 슬라브를 준비한 뒤, 열간 압연 및 냉각을 거쳐 압연재로 제조하였다. 이때, 모든 예에 있어서 사상압연 마무리 온도 및 냉각속도를 제외한 모든 공정 조건은 동일하게 제어하였으며, 사상압연 마무리 온도와 냉각속도는 하기 표 2에 나타내었다. 참고로, 표 2에서 냉각속도가 기재되지 않은 비교예 5의 경우, 단순 공냉을 실시한 것을 의미한다.To prepare a slab having a composition shown in Table 1, after the hot rolling and cooling to prepare a rolled material. In this case, all the process conditions except the finishing rolling finishing temperature and cooling rate in all examples were controlled in the same way, the finishing rolling finish temperature and cooling rate are shown in Table 2 below. For reference, in the case of Comparative Example 5 in which the cooling rate is not described in Table 2, it means that simple air cooling was performed.
이후, 상기 압연재의 미세조직을 관찰하고, 오스테나이트 분율을 측정하였다. 이후, 상기 압연재를 대상으로 25 및 1atm의 대기 조건 하 인장 시험을 실시한 후, 인장강도, 가공경화율 및 파괴연신율(T-El1)을 측정하고, 페라이트 분율을 측정하였다. 또한, 이와 별도로, 상기 압연재를 대상으로 25 및 70MPa의 고압 수소 조건 하 인장 시험을 실시한 후, 파괴연신율(T-El2)을 측정하였다. 그 결과를 하기 표 3에 나타내었다.Then, the microstructure of the rolled material was observed, and the austenite fraction was measured. Thereafter, the rolled material was subjected to a tensile test under atmospheric conditions of 25 and 1 atm, and then tensile strength, work hardening rate, and elongation at break (T-El 1 ) were measured, and the ferrite fraction was measured. In addition, the tensile elongation (T-El 2 ) was measured after a tensile test was performed on the rolled material under high pressure hydrogen conditions of 25 and 70 MPa. The results are shown in Table 3 below.
표 1
Figure PCTKR2016015085-appb-T000001
Table 1
Figure PCTKR2016015085-appb-T000001
표 2
Figure PCTKR2016015085-appb-T000002
TABLE 2
Figure PCTKR2016015085-appb-T000002
표 3
Figure PCTKR2016015085-appb-T000003
TABLE 3
Figure PCTKR2016015085-appb-T000003
표 3을 살펴보면, 본 발명의 성분범위를 만족하는 발명예 1 내지 5는 상온 인장 변형 후 페라이트가 생성되지 않는 안정한 오스테나이트가 얻어지며, 가공경화율 및 인장강도가 낮게 제어되고, 특히 사상압연 마무리온도가 미재결정온도를 초과하여 압연되어 전위의 생성 및 축척이 억제되고 또한 냉각속도가 본 발명에서 제어하는 범위를 만족하여 탄화물 형성이 효과적으로 억제됨으로써, 결국 파괴연신율의 비가 매우 높은 내수소취화성이 우수한 오스테나이트 강재를 얻을 수 있음을 보여주고 있다. Looking at Table 3, Inventive Examples 1 to 5 satisfying the component range of the present invention is obtained a stable austenite in which no ferrite is produced after the tensile deformation at room temperature, low work hardening rate and tensile strength is controlled, in particular finishing finishing The temperature is rolled beyond the recrystallization temperature to suppress the generation and scale of dislocations, and the cooling rate satisfies the range controlled by the present invention, thereby effectively suppressing carbide formation, resulting in excellent hydrogen embrittlement resistance with a very high ratio of break elongation. It shows that austenitic steels can be obtained.
반면, 비교예 1은 탄소 및 망간의 함량이 본 발명에서 제어하는 범위를 만족하지 못하였으며 특히 탄소의 함량이 많아 높은 가공경화율로 인해 파괴연신율의 비가 낮은, 즉 내수소취화성이 열위함을 알 수 있다.On the other hand, in Comparative Example 1, the content of carbon and manganese did not satisfy the range controlled by the present invention, and it was found that the ratio of fracture elongation was low, that is, the hydrogen embrittlement resistance was inferior due to the high content of carbon. Can be.
특히, 비교예 2는 망간의 함량이 본 발명에서 제어하는 범위를 만족하지 못함으로써 오스테나이트가 불안정하여 인장 변형 후 수소취화에 민감한 페라이트가 생성하여 내수소취화성이 열위함을 알 수 있다. In particular, it can be seen that in Comparative Example 2 the content of manganese does not satisfy the range controlled by the present invention, austenite is unstable and ferrite sensitive to hydrogen embrittlement after tensile deformation is inferior to hydrogen embrittlement resistance.
비교예 3은 탄소 및 망간의 함량과 적층결함에너지는 본 발명에서 제어하는 범위를 만족하였으나 구리의 함량이 본 발명에서 제어하는 범위를 초과함으로써 압연재에 크랙이 발생하여 건전한 시편을 얻을 수 없었다. In Comparative Example 3, the content of carbon and manganese and the stacking defect energy satisfy the range controlled by the present invention, but the copper content exceeds the range controlled by the present invention.
비교예 4는 탄소의 첨가량이 본 발명에서 제어하는 범위를 초과하여 첨가됨으로써 가공경화율이 높고 오스테나이트 입계에 탄화물이 과도하게 석출함으로써 내수소취화성이 열위함을 알 수 있다. In Comparative Example 4, it is found that the addition of carbon in excess of the range controlled by the present invention results in a high work hardening rate and inferior hydrogen embrittlement resistance due to excessive precipitation of carbides at the austenite grain boundary.
또한, 비교예 5는 망간의 함량이 본 발명에서 제어하는 범위에 해당하지 않아 목표는 하는 미세조직을 얻지 못하여 내수소취화성이 열위함을 알 수 있다. In addition, Comparative Example 5 can be seen that the hydrogen embrittlement resistance is inferior because the content of manganese does not fall within the range controlled by the present invention does not obtain the target microstructure.
한편, 도 2는 발명예 1에 따른 시편에 대해 상온 인장 시험 후 파단면을 관찰한 사진으로, 파단 형태가 연성 파괴의 전형인 딤플로 나타났다.On the other hand, Figure 2 is a photograph observing the fracture surface after the room temperature tensile test for the specimen according to Inventive Example 1, the fracture form appeared dimples typical of ductile failure.
이상 설명한 바와 같이 본 발명의 예시적인 실시예가 도시되고 설명되었지만, 다양한 변형과 다른 실시예가 본 분야의 숙련된 기술자들에 의해 행해질 수 있을 것이다. 이러한 변형과 다른 실시예들은 첨부된 청구범위에 모두 고려되고 포함되어, 본 발명의 진정한 취지 및 범위를 벗어나지 않는다 할 것이다.While the exemplary embodiments of the present invention have been shown and described as described above, various modifications and other embodiments may be made by those skilled in the art. Such modifications and other embodiments are all considered and included in the appended claims, without departing from the true spirit and scope of the invention.

Claims (6)

  1. 중량%로, C: 0.1~0.5%, Cu: 5% 이하(0% 제외), N: 1% 이하(0%는 제외)를 포함하고, Mn의 함량은 [Mn]≥-10.7[C]+24.5(여기서, [Mn] 및 [C]는 해당 원소의 중량%를 의미함)를 만족하며, Cr: 10% 이하, Ni: 5% 이하, Mo: 5% 이하, Si: 4% 이하, Al: 5% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고,By weight, C: 0.1-0.5%, Cu: 5% or less (except 0%), N: 1% or less (except 0%), and the content of Mn is [Mn] ≥-10.7 [C] Satisfies +24.5 (where [Mn] and [C] mean the weight% of the corresponding element), Cr: 10% or less, Ni: 5% or less, Mo: 5% or less, Si: 4% or less, Al: 5% or less, including residual Fe and unavoidable impurities,
    25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 파괴연신율(T-El1)에 대한 25℃ 및 70MPa의 수소 조건 하 인장 시험에 따른 파괴연신율(T-El2)의 비(T-El2/T-El1)가 0.5 이상인 내수소취화성이 우수한 오스테나이트계 강재.Ratio of elongation at break (T-El 2 ) according to tensile test under 25 ° C. and 70 MPa hydrogen conditions to tensile elongation (T-El 1 ) according to tensile test under atmospheric conditions of 25 ° C. and 1 atm (T-El 2 / Austenitic steel with excellent hydrogen embrittlement resistance of T-El 1 ) of 0.5 or more.
  2. 제1항에 있어서,The method of claim 1,
    하기 식 1로 정의되는 적층결함에너지(SFE)가 30mJ/m2 이상인 내수소취화성이 우수한 오스테나이트계 강재.An austenitic steel having excellent hydrogen embrittlement resistance, wherein a stacking fault energy (SFE) of 30 mJ / m 2 or more is defined by Equation 1 below.
    [식1] [Equation 1]
    SFE(mJ/m2) = 1.6[Ni] - 1.3[Mn] + 0.06[Mn]2 - 1.7[Cr] + 0.01[Cr]2 + 15[Mo] - 5.6[Si] + 1.6[Cu] + 5.5[Al] - 60([C] + 1.2[N])1/2 + 26.3([C] + 1.2[N])([Cr] + [Mn] + [Mo])1/2 + 0.6{[Ni]([Cr] + [Mn])}1/2 SFE (mJ / m 2) = 1.6 [Ni] - 1.3 [Mn] + 0.06 [Mn] 2 - 1.7 [Cr] + 0.01 [Cr] 2 + 15 [Mo] - 5.6 [Si] + 1.6 [Cu] + 5.5 [Al]-60 ([C] + 1.2 [N]) 1/2 + 26.3 ([C] + 1.2 [N]) ([Cr] + [Mn] + [Mo]) 1/2 + 0.6 { [Ni] ([Cr] + [Mn])} 1/2
    (여기서, [Ni], [Mn], [Cr], [Mo], [Si], [Cu], [Al], [C] 및 [N] 각각을 해당 원소의 함량(중량%)을 의미함)(Where [Ni], [Mn], [Cr], [Mo], [Si], [Cu], [Al], [C], and [N] each represent the content (% by weight) of the corresponding element. box)
  3. 제1항에 있어서,The method of claim 1,
    25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 가공경화율(strain hardening rate)이 14000N/mm2 이하인 내수소취화성이 우수한 오스테나이트계 강재.Austenitic steel with excellent hydrogen embrittlement resistance at a strain hardening rate of 14000 N / mm 2 or less according to a tensile test at 25 ° C. and 1 atm atmosphere.
  4. 제1항에 있어서,The method of claim 1,
    25℃ 및 1atm의 대기 조건 하 인장 시험에 따른 인장강도가 800MPa 이하인 내수소취화성이 우수한 오스테나이트계 강재.Austenitic steel with excellent hydrogen embrittlement resistance with tensile strength of 800 MPa or less according to tensile test at 25 ° C and 1 atm atmosphere.
  5. 제1항에 있어서,The method of claim 1,
    그 미세조직으로 95면적% 이상(100면적% 포함)의 오스테나이트 조직을 포함하는 오스테나이트계 강재.Austenitic steels containing austenitic structure of 95 or more% (including 100 area%) as the microstructure.
  6. 제1항에 있어서,The method of claim 1,
    25℃ 및 1atm의 대기 조건 하 인장 시험 후 미세조직이 오스테나이트 조직으로 이루어지거나 입실런 마르텐사이트 조직 및 오스테나이트 조직으로 이루어지는 오스테나이트계 강재.Austenitic steels having a microstructure consisting of austenite structure or epsilon martensite structure and austenite structure after a tensile test at 25 ° C. and 1 atm atmosphere.
PCT/KR2016/015085 2015-12-22 2016-12-22 Austenitic steel material having excellent hydrogen-embrittlement resistance WO2017111489A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA3009463A CA3009463C (en) 2015-12-22 2016-12-22 Austenitic steel material having excellent hydrogen-embrittlement resistance
CN201680075016.6A CN108431275A (en) 2015-12-22 2016-12-22 The excellent austenite steel of resistance to hydrogen embrittlement
EP16879356.0A EP3395989B1 (en) 2015-12-22 2016-12-22 Austenitic steel material having excellent hydrogen-embrittlement resistance
KR1020187019341A KR20180085797A (en) 2015-12-22 2016-12-22 Austenitic steels with excellent resistance to corrosion
JP2018533257A JP6703608B2 (en) 2015-12-22 2016-12-22 Austenitic steel with excellent hydrogen embrittlement resistance
US16/065,062 US20190010590A1 (en) 2015-12-22 2016-12-22 Austenitic steel material having excellent hydrogen-embrittlement resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150184291 2015-12-22
KR10-2015-0184291 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017111489A1 true WO2017111489A1 (en) 2017-06-29

Family

ID=59089865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015085 WO2017111489A1 (en) 2015-12-22 2016-12-22 Austenitic steel material having excellent hydrogen-embrittlement resistance

Country Status (7)

Country Link
US (1) US20190010590A1 (en)
EP (1) EP3395989B1 (en)
JP (1) JP6703608B2 (en)
KR (1) KR20180085797A (en)
CN (1) CN108431275A (en)
CA (1) CA3009463C (en)
WO (1) WO2017111489A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709669B (en) * 2018-03-02 2020-11-11 日商德山股份有限公司 Austin iron series stainless steel component and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255827B1 (en) * 2018-10-25 2021-05-26 주식회사 포스코 Low-temperature austenitic high manganese steel having excellent surface quality and manufacturing method for the same
FR3106898B1 (en) 2020-01-30 2022-10-07 Psa Automobiles Sa METHOD FOR ANALYZING THE FRAGILIZATION BY HYDROGEN OF BARE OR COATED STEEL PARTS USED IN MOTOR VEHICLES
US20230349031A1 (en) * 2022-04-29 2023-11-02 United States Steel Corporation Low ni-containing steel alloys with hydrogen degradation resistance

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
KR20070067593A (en) * 2005-12-24 2007-06-28 주식회사 포스코 High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
JP2011068997A (en) * 1999-07-07 2011-04-07 Arcelormittal France Strip made of iron-carbon-manganese alloy
KR20110072791A (en) * 2009-12-23 2011-06-29 주식회사 포스코 Austenitic steel sheet with high ductility and high resistance of delayed fracture and manufacturing method the same
KR20150075315A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Steels for low temperature services having superior deformed surface quality and method for production thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5681656A (en) * 1979-12-10 1981-07-03 Japan Steel Works Ltd:The Nonmagnetic steel for cryogenic temperature high magnetic field apparatus
JPS5928561A (en) * 1982-08-11 1984-02-15 Sumitomo Metal Ind Ltd Non-magnetic steel high in volume electric resistivity
JPH0215148A (en) * 1988-07-02 1990-01-18 Sumitomo Metal Ind Ltd High mn nonmagnetic steel having excellent corrosion resistance
JPH04259325A (en) * 1991-02-13 1992-09-14 Sumitomo Metal Ind Ltd Production of hot rolled high strength steel sheet excellent in workability
RU2074900C1 (en) * 1991-12-30 1997-03-10 Поханг Айрон энд Стил Ко., Лтд. Method of steel treatment (versions)
FR2829775B1 (en) * 2001-09-20 2003-12-26 Usinor PROCESS FOR THE MANUFACTURE OF ROLLED AND WELDED TUBES COMPRISING A FINAL STRETCHING OR HYDROFORMING STAGE AND WELDED TUBE THUS OBTAINED
DE102008056844A1 (en) * 2008-11-12 2010-06-02 Voestalpine Stahl Gmbh Manganese steel strip and method of making the same
JP5003785B2 (en) * 2010-03-30 2012-08-15 Jfeスチール株式会社 High tensile steel plate with excellent ductility and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068997A (en) * 1999-07-07 2011-04-07 Arcelormittal France Strip made of iron-carbon-manganese alloy
JP2007126715A (en) * 2005-11-04 2007-05-24 Sumitomo Metal Ind Ltd HIGH-Mn STEEL MATERIAL AND MANUFACTURING METHOD THEREFOR
KR20070067593A (en) * 2005-12-24 2007-06-28 주식회사 포스코 High mn steel sheet for high corrosion resistance and method of manufacturing galvanizing the steel sheet
KR20110072791A (en) * 2009-12-23 2011-06-29 주식회사 포스코 Austenitic steel sheet with high ductility and high resistance of delayed fracture and manufacturing method the same
KR20150075315A (en) * 2013-12-25 2015-07-03 주식회사 포스코 Steels for low temperature services having superior deformed surface quality and method for production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709669B (en) * 2018-03-02 2020-11-11 日商德山股份有限公司 Austin iron series stainless steel component and manufacturing method thereof

Also Published As

Publication number Publication date
CN108431275A (en) 2018-08-21
CA3009463A1 (en) 2017-06-29
JP6703608B2 (en) 2020-06-03
EP3395989A1 (en) 2018-10-31
KR20180085797A (en) 2018-07-27
US20190010590A1 (en) 2019-01-10
EP3395989A4 (en) 2018-11-14
EP3395989B1 (en) 2020-07-15
JP2019505675A (en) 2019-02-28
CA3009463C (en) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2015099363A1 (en) Low-temperature ingot steel having excellent surface processing quality
WO2017111489A1 (en) Austenitic steel material having excellent hydrogen-embrittlement resistance
KR20210018414A (en) Seek hot-rolled H-beam having a yield strength of 500 megapascal and its manufacturing method
WO2018117712A1 (en) High manganese steel having superior low-temperature toughness and yield strength and manufacturing method
WO2019117536A1 (en) Steel sheet for pressure vessel having excellent tensile strength and low-temperature impact resistance and method for producing same
WO2019098483A1 (en) Low-temperature steel plate having excellent impact toughness, and method for manufacturing same
WO2011081350A2 (en) High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
WO2018110779A1 (en) Low alloy steel sheet having excellent strength and ductility
WO2014209064A1 (en) High-strength steel sheet and manufacturing method therefor
WO2020085684A1 (en) Steel plate for pressure vessel with excellent cryogenic toughness and elongation resistance and manufacturing method thereof
WO2018088652A1 (en) Austenitic stainless steel having improved hydrogen embrittlement resistance, and high-pressure hydrogen gas container comprising same
WO2021010599A2 (en) Austenitic stainless steel having improved strength, and method for manufacturing same
WO2019098480A1 (en) Cryogenic steel plate and method for manufacturing same
WO2011081236A1 (en) Quenched steel sheet having excellent hot press formability, and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
CN112063922B (en) Steel pipe, preparation method and application thereof
WO2020085852A1 (en) High manganese austenitic steel having high yield strength and manufacturing method for same
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2020085861A1 (en) Cryogenic austenitic high-manganese steel having excellent shape, and manufacturing method therefor
WO2019125025A1 (en) High-strength austenite-based high-manganese steel material and manufacturing method for same
WO2017095049A1 (en) Wire rod having excellent low temperature impact toughness and manufacturing method therefor
WO2020085847A1 (en) Austenitic high manganese steel for cryogenic applications having excellent surface quality and resistance to stress corrosion cracking, and manufacturing method for same
WO2019093689A1 (en) High-strength, low-toughness cold-rolled steel sheet having excellent fracture properties, and method for producing same
WO2020130614A2 (en) High strength hot-rolled steel sheet having excellent hole expansion ratio and manufacturing method for same
WO2020111858A1 (en) Steel plate for pressure vessel having excellent hydrogen-induced cracking resistance and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3009463

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018533257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187019341

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187019341

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2016879356

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879356

Country of ref document: EP

Effective date: 20180723