WO2017111233A1 - High strength steel and manufacturing method therefor - Google Patents

High strength steel and manufacturing method therefor Download PDF

Info

Publication number
WO2017111233A1
WO2017111233A1 PCT/KR2016/007678 KR2016007678W WO2017111233A1 WO 2017111233 A1 WO2017111233 A1 WO 2017111233A1 KR 2016007678 W KR2016007678 W KR 2016007678W WO 2017111233 A1 WO2017111233 A1 WO 2017111233A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
less
strength
martensite
strength steel
Prior art date
Application number
PCT/KR2016/007678
Other languages
French (fr)
Korean (ko)
Inventor
서창효
한성호
Original Assignee
(주)포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코 filed Critical (주)포스코
Publication of WO2017111233A1 publication Critical patent/WO2017111233A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high strength steel and a manufacturing method thereof, and more particularly, to a high strength steel excellent in high yield ratio and hole expansion properties and a manufacturing method thereof.
  • High strength steel sheet is required to improve fuel efficiency and durability by various environmental regulations and energy usage regulations.
  • high strength steel with excellent yield strength is adopted for structural members such as members, seat rails, and pillars to improve impact resistance of vehicles.
  • Structural member has a characteristic that the higher the yield strength, that is, the higher the yield ratio (yield strength / tensile strength) than the tensile strength, to absorb impact energy.
  • yield strength yield strength / tensile strength
  • the elongation decreases, so that a problem arises in that the molding processability is lowered.
  • the method of reinforcing steel includes solid solution strengthening, precipitation strengthening, strengthening by grain refinement, transformation strengthening, and the like.
  • the reinforcement by solid solution strengthening and grain refinement of the method has a disadvantage that it is very difficult to produce high strength steel with a tensile strength of 490MPa or more.
  • precipitation-reinforced high-strength steels are formed by adding carbon and nitride forming elements such as Cu, Nb, Ti, and V to precipitate carbon and nitride to reinforce steel sheets or to refine grains by suppressing grain growth by fine precipitates.
  • carbon and nitride forming elements such as Cu, Nb, Ti, and V
  • the above technique has the advantage of easily obtaining a high strength compared to a low manufacturing cost, but the recrystallization temperature is rapidly increased by the fine precipitate, there is a disadvantage that a high temperature annealing must be performed to ensure ductility sufficient to recrystallize.
  • the precipitation-reinforced steel which precipitates and strengthens carbon and nitride on a ferrite base has a problem in that it is difficult to obtain high-strength steel of 600 MPa or more.
  • the transformation hardened high-strength steel is a ferritic-martensitic dual phase steel in which hard martensite is included in the ferritic base, and a transformation induced plasticity (TRIP) steel or a ferritic material using transformation organic plasticity of retained austenite.
  • CP Complexed Phase
  • CP Complexed Phase
  • the tensile strength that can be implemented in such an improved high strength steel is limited to the level of about 1200Mpa.
  • a typical manufacturing method for increasing yield strength is to use water cooling during continuous annealing. That is, it is possible to manufacture a steel sheet having a tempered martensite structure in which the microstructure tempered martensite by cracking in an annealing process and then immersing in water to temper.
  • this method has very serious disadvantages such as deterioration of workability and deviation of material by position in roll forming application due to inferior shape quality due to width and length temperature variations in water cooling.
  • Japanese Patent Laid-Open No. 1992-289120 (1992.10.14) is disclosed.
  • the patent is a continuous annealing of 0.18% or more carbon steel, water cooled to room temperature, and then subjected to overaging for 1 to 15 minutes at a temperature of 120 ⁇ 300 °C, to develop a martensite steel with a martensite volume ratio of 80 ⁇ 97% or more will be.
  • the yield ratio is very high, but the shape quality of the coil is deteriorated due to the temperature deviation in the width direction and the length direction. Therefore, problems such as material defects and workability deterioration according to parts during roll forming processing occur.
  • Japanese Patent Laid-Open Publication No. 2010-090432 (2010.04.22) uses tempering martensite to simultaneously obtain high strength and high ductility, and also provides a method for manufacturing a cold rolled steel sheet having excellent plate shape after continuous annealing. As high as 0.2% or more, the possibility of induction of furnace dent due to weld inferiority and a large amount of Si is feared.
  • the present invention has been made to solve this problem, the object of the present invention, yield ratio is 0.8 or more in order to secure excellent bending workability and hole expandability, the R / t value of the bending workability index is at most 1 and at the same time hole expansion It is to provide a high-strength steel having a HER value of 50% or more, an index for evaluating the properties and a method of manufacturing the same.
  • the high-strength steel according to an embodiment of the present invention by weight% C: 0.035 ⁇ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ⁇ 3.5%, Cr: 0.3 ⁇ 1.2%, Ti: 0.03 to 0.08%, Nb: 0.01 to 0.05%, residual Fe and unavoidable impurities, and the volume fraction of the metamorphic tissue including tempered martensite and bainite in the total microstructure is 90% or more.
  • the average particle diameter of the tempered martensite structure is 2 ⁇ m or less, the average particle diameter of the bainite structure is 3 ⁇ m or less, and the volume fraction of the bainite structure in which the particle size exceeds 3 ⁇ m is 5% or less.
  • B 0.0010-0.0050%
  • P 0.001-0.10%
  • S 0.010% or less
  • Sol.Al 0.01-0.10%
  • N 0.010% or less
  • the average hardness value Hv of the microstructure is 340 or more, and the maximum value of the hardness value is 1.3 times or less of the minimum value.
  • the distribution density of the nanoprecipitates of 10 nm or less in the metamorphic structure is characterized in that the 150 / ⁇ m 2 or more.
  • the tensile strength is 980 MPa or more, and the yield strength is characterized by 780 MPa or more.
  • high-strength steel manufacturing method in weight% C: 0.035 ⁇ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ⁇ 3.5%, Cr: 0.3 ⁇ 1.2%, Ti: 0.03 ⁇ 0.08%, Nb: manufacturing a slab containing 0.01 ⁇ 0.05%, the balance Fe and unavoidable impurities, hot rolling the slab to the finish-rolling exit side temperature Ar 3 ⁇ Ar 3 + 50 °C to produce a hot rolled steel sheet, Cold rolling the hot rolled steel sheet at a reduction ratio of 40 to 70% to produce a cold rolled steel sheet, continuously annealing the cold rolled steel sheet in a temperature range of Ac 3 ⁇ 30 °C, after the continuous annealing step 650 ⁇ 700 °C
  • the first step of cooling to a cooling rate of 1 ⁇ 10 °C / sec, after the first step of cooling, Ms-100 ⁇ Ms °C includes a second cooling at a cooling rate of 5 ⁇ 20
  • the overaging step is characterized in that the aging time is adjusted so that the volume fraction of metamorphic tissue consisting of tempered martensite and bainite of the entire tissue is 95% or more.
  • steel having a high tensile strength of 980 MPa or more can be manufactured.
  • FIG. 2 is a photograph showing a nano precipitate according to an embodiment of the present invention.
  • the volume fraction occupied by the metamorphic structure including the tempered martensite and bainite is 90% or more of the entire microstructure of the manufactured steel, the average particle diameter of the tempered martensite tissue is 2 ⁇ m or less, It is preferable that the average particle diameter is 3 micrometers or less, and the volume fraction of the bainite structure whose particle diameter exceeds 3 micrometers is 5% or less.
  • Carbon (C) is a very important element added for strengthening metamorphic tissue. Carbon promotes high strength and promotes the formation of martensite in metamorphic steel. As the carbon content increases, the martensite content in the steel increases. However, if the amount exceeds 0.07%, the strength of martensite increases, but the difference in strength from ferrite with low carbon concentration increases. This difference in strength is because the elongation flange property is lowered because the fracture easily occurs at the interface between phases when stress is added. In addition, weldability is inferior and welding defects occur when machining parts. On the other hand, when the carbon content is lowered to less than 0.035%, it is difficult to secure the strength of martensite proposed in the present invention, so the amount is limited to 0.035 to 0.07%.
  • Silicon (Si) is an element that promotes ferrite transformation and raises the carbon content in the unmodified austenite to form a complex structure of ferrite and martensite, thereby preventing the increase in martensite strength. It is also desirable to limit the possible additions as well as cause surface scale defects in terms of surface properties, as well as degrading chemical conversion. Therefore, in the present invention, the amount of addition was limited to 0.3% or less (excluding 0%).
  • Manganese (Mn) is an element that refines particles without damaging ductility, precipitates sulfur with MnS, prevents hot brittleness due to the formation of FeS, and strengthens steel, and at the same time, lowers the critical cooling rate at which a martensite phase is obtained. By doing so, martensite can be more easily formed. If the content is less than 2.0%, it is difficult to secure the target strength of the present invention, and if the content exceeds 3.5%, there is a high possibility of problems such as weldability and hot rolling property, so the content of manganese is 2.0 to 3.5%. Limited to the range, it is more advantageous to control in the range of 2.3 to 3.2%.
  • Phosphorus (P) is a substitution type alloy element having the greatest solid solution strengthening effect, and serves to improve in-plane anisotropy and strength. If the content is less than 0.001%, the effect may not be secured and it may cause a problem in manufacturing cost.However, if the content is added excessively, the press formability may deteriorate and the brittleness of the steel may be generated. It is desirable to limit.
  • S is an impurity element in steel and is an element that inhibits the ductility and weldability of the steel sheet. If the content is more than 0.01%, the S content is preferably limited to 0.01% or less because it is highly likely to inhibit the ductility and weldability of the steel sheet.
  • Soluble aluminum combines with oxygen to cause deoxidation and distributes carbon in ferrite like austenite to austenite, such as silicon, and is effective in improving martensite hardenability. If the content is less than 0.01% can not secure the effect, if the content exceeds 0.1%, the effect is not only saturated, but also increases the manufacturing cost, it is preferable to limit the content to 0.01 ⁇ 0.1%.
  • Nitrogen (N) is an effective component for stabilizing austenite, and if it exceeds 0.01%, it is preferable to limit the upper limit to 0.01% because the risk of cracking when playing through AlN formation is greatly increased.
  • Chromium (Cr) is a component added to improve the hardenability of steel and to secure high strength, and is an element that plays a very important role in forming martensite, which is a low temperature transformation phase in the present invention. If the content is less than 0.3%, it is difficult to secure the above-mentioned effects. If the content is more than 1.2%, the effect is not only saturated, but excessive hot-rolling strength increases, resulting in the problem of cold rolling deterioration. Therefore, the content is limited to 0.3-1.2%. It is preferable.
  • Boron (B) is a component that delays the transformation of austenite into pearlite during cooling during annealing, and is added as an element that suppresses ferrite formation and promotes martensite formation.
  • the content is less than 0.0010%, it is difficult to obtain the above-described effects, and if the content exceeds 0.0050%, the cost is increased according to the excess of ferroalloy, so it is preferable to limit the content to 0.0010% to 0.0050%.
  • Titanium (Ti) and niobium (Nb) are effective elements for increasing the strength of steel sheets and miniaturizing grains by nano precipitates. Adding these elements combines with carbon to form very fine nano precipitates. These nano precipitates serve to reduce the hardness difference between phases by strengthening the matrix structure.
  • the content of titanium is limited to 0.03 to 0.08%
  • the content of niobium is limited to 0.01 to 0.05%.
  • the high-strength steel manufactured according to the present invention has an average hardness value (Hv) of the microstructure of 340 or more, a maximum value of the hardness value of 1.3 times or less of the minimum value, and distribution of nano precipitates of 10 nm or less in diameter in the metamorphic structure It is preferable that the density is 150 pieces / micrometer 2 or more, the tensile strength is 980 MPa or more, and the yield strength is 780 MPa or more.
  • High-strength steel manufacturing method by weight% C: 0.035 ⁇ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ⁇ 3.5%, Cr: 0.3 ⁇ 1.2%, Ti: 0.03 ⁇ 0.08%, Nb: 0.01 ⁇ 0.05%, the remainder of producing a slab containing Fe and unavoidable impurities, hot-rolled slab to finish the hot rolling outlet temperature of Ar 3 ⁇ Ar 3 +50 °C to produce a hot rolled steel sheet Step, cold-rolled hot rolled steel sheet at a reduction ratio of 40 ⁇ 70% to produce a cold rolled steel sheet, continuous annealing the cold rolled steel sheet in the temperature range of Ac 3 ⁇ 30 °C, after the continuous annealing step to 650 ⁇ 700 °C The first step of cooling at a cooling rate of 1 ⁇ 10 °C / sec, After the first step of cooling, Ms-100 ⁇ Ms °C to a second cooling at a cooling rate of 5 ⁇
  • the exit temperature more specifically, the hot rolling is performed so that the exit temperature FDT of the finish rolling mill is Ar 3 to Ar 3 + 50 ° C. If the outlet temperature is less than Ar 3 , the hot deformation resistance is likely to increase rapidly, and the top, tail, and edges of the hot rolled coil become single phase regions, thereby increasing in-plane anisotropy and degrading formability. . On the other hand, if Ar 3 + 50 ° C. is exceeded, too thick an oxidizing scale may occur, and the microstructure of the steel sheet is likely to coarsen.
  • the temperature in the temperature range of 600 to 750 ° C at the time of winding up it is preferable to maintain the temperature in the temperature range of 600 to 750 ° C at the time of winding up.
  • the coiling temperature CT is less than 600 ° C.
  • excessive martensite or bainite may be generated, resulting in excessive strength increase of the hot rolled steel sheet, which may cause manufacturing problems such as shape defects due to load during cold rolling.
  • pickling deteriorates due to an increase in the surface scale, and therefore, it is preferable to limit it to the above-described winding temperature.
  • Hot rolled steel is subjected to pickling and cold rolling.
  • Cold rolling is a step of producing a cold rolled steel sheet, it is preferable to roll at a reduction ratio of 40 to 70%. If the reduction ratio is less than 40%, the recrystallization driving force is weakened, so that there is a big problem to obtain a good recrystallized grain, and shape correction is very difficult. On the other hand, if the reduction ratio exceeds 70%, there is a high possibility of cracking at the edge of the steel sheet, and the rolling load rapidly increases.
  • the size of the martensite phase produced during cooling due to the increase in the austenite grain size due to the high temperature annealing can not satisfy the particle size of the microstructure presented in the present invention.
  • the steel sheet is first cooled to a cooling rate of 1 to 10 ° C / sec to 650 to 700 ° C.
  • This primary cooling step is a process for converting most austenite into martensite by suppressing ferrite transformation.
  • the second cooling is cooled to a temperature of Ms ⁇ Ms-100 °C at a cooling rate of 5 ⁇ 20 °C / s. This starts to transform the austenite to martensite but does not cool it below the temperature at which the martensite transformation ends. This gives us a tempered martensite structure.
  • the secondary cooling end temperature is less than Ms-100 ° C.
  • the amount of martensite is excessively increased during the overaging treatment, which simultaneously increases the yield strength and tensile strength and deteriorates the ductility.
  • deterioration of shape due to rapid cooling may result in deterioration of workability when processing automotive parts.
  • the austenite produced during annealing cannot be transformed into martensite, but is formed as bainite, granular bainite, etc., which is a high temperature transformation, and thus the yield strength deteriorates rapidly. Occurs.
  • the occurrence of such a structure is accompanied by a decrease in yield ratio and deterioration of hole expandability, and thus cannot produce a high yield ratio type high strength steel having excellent elongation flange property.
  • the skin pass rolling may be performed in an elongation of 0.1 to 1.0%.
  • the skin pass rolling of the metamorphic tissue steel causes an increase in yield strength of at least 50 MPa with little increase in tensile strength. If the elongation is less than 0.1%, it is difficult to control the shape. If the elongation is 1.0% or more, the operability is greatly unstable due to the high stretching operation, and therefore it is preferable to limit the above range.
  • the aging time it is preferable to adjust the aging time so that the volume fraction of the metamorphic tissue composed of tempered martensite and bainite of the whole tissue is 95% or more, which will be described later for the physical properties of Examples and Comparative Examples. This is explained in more detail in the description.
  • Table 1 shows an example (steel numbers 1 to 8) and a comparative example (steel numbers 9 to 17) that satisfy the composition according to the present invention.
  • Table 2 shows an embodiment satisfying the finish rolling temperature (FDT) and the secondary cooling end temperature (RCS) according to the present invention, and a comparative example not satisfied.
  • Table 3 shows the properties of each steel group.
  • the steel slab formed as shown in Table 1 was vacuum-dissolved, heated in a reheating temperature at 1200 ° C. in a heating furnace for 1 hour, and hot rolled, and then wound up.
  • the hot rolling was finished in the range of 880 ⁇ 920 °C, which is in the range of Ar 3 ⁇ Ar 3 + 50 °C, and the winding temperature (CT) was controlled at 650 ⁇ 680 °C. It was.
  • Pickling was performed using a hot rolled steel sheet, and cold rolling was performed at a cold rolling reduction of 45%.
  • the cold rolled steel sheet was continuously annealed at the temperature of the soaking section (SS) set according to the conditions shown in Table 2, and cooled to the secondary cooling end temperature (RCS). Finally, the skin pass rolling rate was 0.2. Fixed to%.
  • the martensite + bainite fraction, average particle diameter, microstructure average hardness value, phase hardness ratio, and the distribution density of nanoprecipitates of 10 nm or less in steel were prepared for each steel component and annealing conditions. Investigate.
  • the JIS No. 5 tensile test piece was produced to measure the physical properties of the material, and the results are shown with the comparative material.
  • the steel plates 1-1, 1-2, 2-2, 3, 4, 5-1, 6-1, 7, 8, which are examples according to the present invention, are all limited in the present invention. You can see that you are satisfied with the numbers you are doing. That is, the fraction of metamorphic tissue, tempered martensite and bainite particle size, hardness value, phase hardness ratio, number of nano precipitates, yield strength and tensile strength and yield ratio, elongation, bending workability (R / t), hole expandability ( HER) etc. are excellent.
  • the steel sheets 9 to 17, which are unsatisfactory in the composition range of the present invention not only have a high variation in the hardness ratio between phases, but also do not satisfy the physical properties required by the present invention, such as poor bending workability and poor hole expandability. .
  • steel sheets 2-1, 5-2, 6-2, and 6-3 which satisfy the composition of the present invention but do not satisfy the continuous annealing temperature or the secondary cooling end temperature, also do not satisfy the physical properties required by the present invention. Can be.
  • the martensite transformation rate was at least 95%
  • the martensite average particle diameter was 1.7 ⁇ m or less
  • the bainite average particle diameter was 2.5 ⁇ m or less.
  • the average hardness of the microstructures of the inventive steels was at least 340 Hv, and satisfies at most 1.3 in the hardness ratio between phases.
  • the nano precipitates of 10 nm or less satisfied 150 or more / ⁇ 2 or more as proposed in the present invention.
  • the inventive steels 1-9 which satisfy the characteristics suggested by the present invention steel, have a yield ratio in the range of 0.8 to 0.87, and have an excellent yield ratio with R / t 0.3 to 1.0 and HER value of 55% to 70%. It can be seen that and the elongation flange properties.
  • FIG. 1 and 2 shows the microstructure of invention steel No. 5-1.
  • the average particle size of martensite is 2 ⁇ m or less, and the average particle diameter of bainite is 3 ⁇ m or less.
  • very large nano precipitates of 10 nm or less, such as TiC and NbC, were distributed in large quantities.
  • a high hardness value of the microstructure and a low hardness deviation between phases resulted in a yield strength of 0.8 or higher and R /. t 0.3 ⁇ 1.0, it was possible to manufacture a high strength steel sheet having a HER value of more than 50%.
  • the annealing condition does not satisfy the conditions of the present invention steel, or the comparative material does not satisfy the present invention steel in the component did not satisfy the material properties required by the present invention steel.
  • Comparative Steels 2-1 and 5-1 the components satisfy the conditions of the present invention, but the secondary cooling end temperature of the RCS temperature is 440 ° C and 450 ° C, which does not satisfy the cooling rate below the Ms temperature suggested by the present invention.
  • the austenite produced during annealing due to overaging could not be transformed into martensite, but was formed by high temperature transformation bainite, granular bainite, etc., resulting in coarse transformation. These coarse metamorphic phases resulted in low yield ratio and low HER value due to low hardness and high hardness ratio between phases.
  • Comparative steel 6-2 was annealed in the ideal region because the annealing temperature (SS) is very low, and the martensite transformation fraction was 82%, which fell short of the target of the invention steel.
  • the formation of ferrite caused a decrease in the hardness value of the microstructure and an increase in the deviation of the hardness ratio between phases, resulting in a low yield ratio and a deterioration of the HER value.
  • Comparative steel 6-3 has an annealing temperature (SS) of 890 ° C., which increases the size of the martensite structure produced during cooling due to an increase in austenite grain size due to high temperature annealing.
  • the average particle diameter of was not able to manufacture below 3 ⁇ m, resulting in degradation of yield ratio and HER value.
  • Comparative steels 9 to 12 exceeded the carbon content ranges of carbon presented in the present invention steel.
  • This increase in carbon serves to increase the strength of martensite produced in the quenching process after annealing.
  • all martensite remains tempered rather than tempered.
  • the tempered martensite is reduced in strength due to precipitation of carbon, but the non-tempered lattice type martensite is very stable martensite and has a very high strength due to the added carbon. Therefore, when the carbon content exceeds the component suggested by the present invention steel, the HER value and the yield ratio do not satisfy the criteria suggested by the present invention due to the increase in the strength difference between the rat martensite and the tempered martensite produced in the overaging treatment. I can't.
  • Comparative steels 13 to 15 did not satisfy the carbon content or Mn, Cr content of the present invention steel. That is, comparative steels 13 and 14 did not have sufficient transformation of martensite due to the low Mn or Cr content, and comparative steel 15 had a high carbon content but a low Cr content, yielding a high ratio between phases and yielding coarse martensite. The ratio and HER value deteriorated.
  • Comparative steel 16 had a very high Si content.
  • Si is a ferrite forming element, and when the amount is increased, it promotes ferrite formation upon cooling.
  • Steel No. 16 produced 81% martensite due to the high Si content, which did not satisfy the criteria suggested by the present invention.
  • the yield ratio was low and the HER value was deteriorated due to a decrease in hardness value and an increase in hardness ratio between phases.
  • Comparative steel 17 is a case where Ti and Nb do not satisfy the conditions of the inventive steel. As mentioned above, Ti and Nb combine with carbon to form nano precipitates, and these nano precipitates serve to reduce the hardness difference between phases by strengthening the matrix structure. However, Comparative Steel 17 did not have enough Ti and Nb to form sufficient precipitates, resulting in deterioration of yield ratio and HER value due to the distribution of nano precipitates and increasing the hardness ratio between phases.
  • the hardness of the metamorphic tissue was measured by using a Nano-Indenter (NT110) device to measure 100 points in a square with a load of 2g, excluding maximum and minimum values.
  • NT110 Nano-Indenter
  • bainite, martensite and nano precipitates were evaluated by FE-TEM.
  • size and distribution density of the nano precipitates were evaluated by using an image analyzer equipment for the texture photograph of the precipitates measured by FE-TEM.
  • the fraction of metamorphic tissue was observed by SEM and the image analysis equipment was used.
  • the tissue having the highest strength among the low-temperature tissues is martensite, and as is well known, the method for preparing martensite is the process of maintaining water for sufficient time to form austenite during annealing, followed by water cooling and tempering treatment. will be.
  • the water-cooling method is intended to secure martensite by controlling alloy elements in the present invention due to deterioration in productivity due to problems such as material deviation and shape defects.
  • this method may cause problems such as deterioration of weldability due to the addition of high alloying elements. Therefore, in the present invention, it is intended to minimize the carbon content that has the greatest impact on the weldability. For this reason, in the present invention, the carbon content is limited to 0.07% or less.
  • an alloy element In order to secure a high yield ratio under cooling conditions such as the present invention, an alloy element should be added as much as possible. However, such an attempt causes additional problems such as deterioration of weldability and increase in hot rolled strength. However, when the martensite size and nano precipitates are controlled without excessive addition of alloying elements, it is possible to satisfy the stretch flangeability and yield ratio proposed in the present invention.
  • the percentage of metamorphic tissue should be controlled to 90% or more, wherein the metamorphic tissue is composed of bainite and temper martensite.
  • the metamorphic tissue is composed of bainite and temper martensite.
  • 100% of the metamorphosis is possible.
  • the average hardness of the structure formed in the steel should be 340 Hv or more.
  • the hardness ratio between phases and the hardness ratio between phases were not satisfied, it was impossible to secure the HER value below R / t 1, more than 50%, and yield ratio above 0.8.

Abstract

The present invention provides high strength steel and a manufacturing method therefor, the high strength steel comprising, by weight, 0.035-0.07% of C, 0.3% or less (exclusive of 0) of Si, 2.0-3.5% of Mn, 0.3-1.2% of Cr, 0.03-0.08% of Ti, 0.01-0.05% of Nb, and a balance amount of Fe and inevitable impurities, wherein the entire microstructure has a transformed structure containing tempered martensite and bainite at a volume fraction of 90% or more, the tempered martensite structure having an average particle diameter of 2μm or less, the bainite structure having an average particle diameter of 3μm or less, with a volume fraction of 5 % or less of a bainite structure greater than 3μm in particle diameter.

Description

고강도강 및 그 제조방법High strength steel and its manufacturing method
본 발명은 고강도강 및 그 제조방법에 관한 것으로, 보다 상세하게는 높은 항복비와 구멍확장성이 우수한 고강도강 및 그 제조방법에 관한 것이다.The present invention relates to a high strength steel and a manufacturing method thereof, and more particularly, to a high strength steel excellent in high yield ratio and hole expansion properties and a manufacturing method thereof.
최근 각종 환경 규제 및 에너지 사용 규제에 의해 연비향상이나 내구성 향상을 위하여 고강도 강판의 사용이 요구되고 있다. 특히, 최근 자동차의 충격 안정성 규제가 확대되면서 차체의 내충격성 향상을 위해 멤버(member), 시트레일(seat rail) 및 필라(pillar) 등의 구조 부재에 항복강도가 우수한 고강도강이 채용되고 있다. 구조부재는 인장강도 대비 항복강도, 즉, 항복비(항복강도/인장강도)가 높을수록 충격에너지 흡수에 유리한 특징을 가지고 있다. 그러나, 일반적으로 강판의 강도가 증가할수록 연신율이 감소하게 됨으로써, 성형가공성이 저하되는 문제점이 발생하므로, 이를 보완할 수 있는 재료의 개발이 요구되고 있는 실정이다.Recently, the use of high strength steel sheet is required to improve fuel efficiency and durability by various environmental regulations and energy usage regulations. In particular, as the impact stability regulations of automobiles are expanded, high strength steel with excellent yield strength is adopted for structural members such as members, seat rails, and pillars to improve impact resistance of vehicles. have. Structural member has a characteristic that the higher the yield strength, that is, the higher the yield ratio (yield strength / tensile strength) than the tensile strength, to absorb impact energy. However, in general, as the strength of the steel sheet increases, the elongation decreases, so that a problem arises in that the molding processability is lowered.
통상적으로, 강을 강화하는 방법에는 고용강화, 석출강화, 결정립 미세화에 의한 강화, 변태강화 등이 있다. 그러나, 상기 방법 중 고용강화 및 결정립 미세화에 의한 강화는 인장강도 490MPa급 이상의 고강도 강을 제조하기가 매우 어렵다는 단점이 있다.Typically, the method of reinforcing steel includes solid solution strengthening, precipitation strengthening, strengthening by grain refinement, transformation strengthening, and the like. However, the reinforcement by solid solution strengthening and grain refinement of the method has a disadvantage that it is very difficult to produce high strength steel with a tensile strength of 490MPa or more.
한편, 석출강화형 고강도 강은 Cu, Nb, Ti, V 등과 같은 탄, 질화물 형성원소를 첨가함으로써 탄, 질화물을 석출시켜 강판을 강화시키거나 미세 석출물에 의한 결정립 성장 억제를 통해 결정립을 미세화시켜 강도를 확보하는 기술이다. 상기 기술은 낮은 제조원가 대비 높은 강도를 쉽게 얻을 수 있다는 장점을 가지고 있으나, 미세 석출물에 의해 재결정온도가 급격히 상승하게 됨으로써, 충분한 재결정을 일으켜 연성을 확보하기 위해서는 고온소둔을 실시하여야 한다는 단점이 있다. 또한, 페라이트 기지에 탄, 질화물을 석출시켜 강화하는 석출강화강은 600MPa급 이상의 고강도 강을 얻기 곤란하다는 문제점이 있다.On the other hand, precipitation-reinforced high-strength steels are formed by adding carbon and nitride forming elements such as Cu, Nb, Ti, and V to precipitate carbon and nitride to reinforce steel sheets or to refine grains by suppressing grain growth by fine precipitates. To secure the technology. The above technique has the advantage of easily obtaining a high strength compared to a low manufacturing cost, but the recrystallization temperature is rapidly increased by the fine precipitate, there is a disadvantage that a high temperature annealing must be performed to ensure ductility sufficient to recrystallize. In addition, the precipitation-reinforced steel which precipitates and strengthens carbon and nitride on a ferrite base has a problem in that it is difficult to obtain high-strength steel of 600 MPa or more.
한편, 변태강화형 고강도강은 페라이트 기지에 경질의 마르텐사이트를 포함시킨 페라이트-마르텐사이트 2상 조직(Dual Phase)강, 잔류 오스테나이트의 변태유기 소성을 이용한 TRIP(Transformation Induced Plasticity)강 혹은 페라이트와 경질의 베이나이트 또는 마르텐사이트 조직으로 구성되는 CP(Complexed Phase)강 등 여러가지가 개발되어 왔다. 그러나, 이러한 개량 고강도강에서 구현 가능한 인장강도는 (물론, 탄소량을 높여서 보다 강도를 높일 수 있으나, 점 용접성등의 실용적 측면을 고려할 때) 약 1200Mpa급 수준이 한계이다. 또한 충돌 안전성을 확보하기 위한 구조부재에의 적용은 고온에서 성형후 수냉하는 다이(die)와의 직접 접촉을 통한 급냉에 의하여 최종 강도를 확보하는 핫 프레스 포밍(Hot Press Forming)강이 각광받고 있으나, 설비 투자비의 과다 및 열처리 및 공정비용이 높아서 적용확대가 크지 않다.On the other hand, the transformation hardened high-strength steel is a ferritic-martensitic dual phase steel in which hard martensite is included in the ferritic base, and a transformation induced plasticity (TRIP) steel or a ferritic material using transformation organic plasticity of retained austenite. Various such as CP (Complexed Phase) steels composed of hard bainite or martensite structures have been developed. However, the tensile strength that can be implemented in such an improved high strength steel (of course, the strength can be increased by increasing the amount of carbon, but considering practical aspects such as spot weldability) is limited to the level of about 1200Mpa. In addition, the application to the structural member to secure the safety of the crash, hot press forming steel (Hot Press Forming) to secure the final strength by quenching through direct contact with the die (die) that is water-cooled after molding at high temperature, Due to the excessive investment of facilities, high heat treatment and process costs, the application expansion is not large.
최근에는 충돌시 승객의 안정성을 보다 향상시키고자 차량의 시트 부품의 고강도화와 경량화가 동시에 진행되고 있다. 이러한 부품은 롤포밍 뿐만 아니라 프레스성형의 두가지 방법으로 제조되고 있다. 시트 부품은 승객과 차체를 연결하는 부품으로서 충돌시 승객이 밖으로 튕겨져 나가지 못하도록 높은 응력으로 지지해주어야 한다. 이를 위해서는 높은 항복강도, 항복비가 필요하다. 또한 가공되는 부품의 대부분이 신장플랜지성을 요구하는 부품으로서 구멍확장성이 우수한 강재의 적용이 요구되고 있다.Recently, in order to further improve the stability of passengers during a collision, high strength and light weight of a seat part of a vehicle are simultaneously progressed. These parts are manufactured by two methods, not only roll forming but also press forming. Seat parts are the part that connects the passengers to the body and must be supported with high stress to prevent the passengers from jumping out in the event of a collision. This requires high yield strength and yield ratio. In addition, as most of the parts to be processed require expansion flanges, application of steel having excellent hole expansion properties is required.
항복강도를 높이기 위한 대표적인 제조방법으로는 연속소둔시 수냉각을 이용하는 것이다. 즉 소둔공정에서 균열시킨 후 물에 침적하여 템퍼링을 시킴으로써 미세조직이 마르텐사이트를 템퍼링한 템퍼드 마르텐사이트 조직을 가지는 강판을 제조할 수 있다. 그러나 이러한 방법은 수냉각시 폭방향, 길이방향 온도편차로 인하여 형상 품질이 열위하게 되어 롤포밍 적용시 작업성 열화 및 위치별 재질 편차등을 나타내는 등 매우 심각한 단점이 존재하고 있다.A typical manufacturing method for increasing yield strength is to use water cooling during continuous annealing. That is, it is possible to manufacture a steel sheet having a tempered martensite structure in which the microstructure tempered martensite by cracking in an annealing process and then immersing in water to temper. However, this method has very serious disadvantages such as deterioration of workability and deviation of material by position in roll forming application due to inferior shape quality due to width and length temperature variations in water cooling.
종래기술로서, 일본공개특허 1992-289120 (1992.10.14)가 개시되어 있다. 상기 특허는 탄소 0.18%이상의 강재를 연속소둔후 상온까지 수냉후 120~300℃의 온도로1~15분간의 과시효 처리를 베풀어, 마르텐사이트 체적율이 80~97% 이상의 마르텐사이트 강재를 개발하는 것이다. 이와 같이 수냉후 템퍼링방식에 의한 초고강도강을 제조할 경우 항복비는 매우 높으나 폭방향, 길이방향의 온도편차에 의해 코일의 형상품질이 열화하는 문제가 발생한다. 따라서 롤포밍 가공시 부위에 따른 재질불량, 작업성 저하등의 문제가 발생한다.As a prior art, Japanese Patent Laid-Open No. 1992-289120 (1992.10.14) is disclosed. The patent is a continuous annealing of 0.18% or more carbon steel, water cooled to room temperature, and then subjected to overaging for 1 to 15 minutes at a temperature of 120 ~ 300 ℃, to develop a martensite steel with a martensite volume ratio of 80 ~ 97% or more will be. As described above, in the case of manufacturing ultra-high strength steel by the tempering method after water cooling, the yield ratio is very high, but the shape quality of the coil is deteriorated due to the temperature deviation in the width direction and the length direction. Therefore, problems such as material defects and workability deterioration according to parts during roll forming processing occur.
또한 다른 종래기술로서, 일본공개특허 2010-090432 (2010.04.22)의 경우에는 템퍼링 마르텐사이트를 활용하여 고강도와 고연성을 동시에 얻으며 연속소둔후의 판형상도 뛰어난 냉연강판의 제조방법을 제공하는데, 탄소가 0.2%이상으로 높아서 용접성의 열위와 Si다량 함유에 기인한 로내 덴트 유발 가능성이 염려된다.In addition, as another prior art, Japanese Patent Laid-Open Publication No. 2010-090432 (2010.04.22) uses tempering martensite to simultaneously obtain high strength and high ductility, and also provides a method for manufacturing a cold rolled steel sheet having excellent plate shape after continuous annealing. As high as 0.2% or more, the possibility of induction of furnace dent due to weld inferiority and a large amount of Si is feared.
따라서, 상술한 문제점을 해결하여, 높은 항복비와 구멍가공성을 나타내면서도 고강도를 나타낼 수 있는 강재가 요구되고 있는 실정이다.Therefore, in order to solve the above-mentioned problems, a steel material capable of exhibiting high yield ratio and high porosity while showing high strength is required.
본 발명은 이러한 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은, 우수한 굽힘가공성과 구멍확장성을 확보하기 위해 항복비가 0.8이상이며, 굽힘가공성 지수인 R/t 값이 1 이하인 동시에 구멍확장성을 평가하는 지수인 HER값이 50%이상인 고강도강 및 그 제조방법을 제공하는 데 있다.The present invention has been made to solve this problem, the object of the present invention, yield ratio is 0.8 or more in order to secure excellent bending workability and hole expandability, the R / t value of the bending workability index is at most 1 and at the same time hole expansion It is to provide a high-strength steel having a HER value of 50% or more, an index for evaluating the properties and a method of manufacturing the same.
위 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 고강도강은, 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하고, 전체 미세조직 중 템퍼드 마르텐사이트 및 베이나이트를 포함하는 변태조직이 차지하는 부피 분율이 90% 이상이며, 템퍼드 마르텐사이트 조직의 평균입경이 2㎛ 이하이고, 베이나이트 조직의 평균입경이 3㎛ 이하이며, 입경이 3㎛를 초과하는 베이나이트 조직의 부피 분율이 5% 이하인 것을 특징으로 한다.In order to achieve the above object, the high-strength steel according to an embodiment of the present invention, by weight% C: 0.035 ~ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ~ 3.5%, Cr: 0.3 ~ 1.2%, Ti: 0.03 to 0.08%, Nb: 0.01 to 0.05%, residual Fe and unavoidable impurities, and the volume fraction of the metamorphic tissue including tempered martensite and bainite in the total microstructure is 90% or more. The average particle diameter of the tempered martensite structure is 2 μm or less, the average particle diameter of the bainite structure is 3 μm or less, and the volume fraction of the bainite structure in which the particle size exceeds 3 μm is 5% or less.
중량%로, B: 0.0010-0.0050%, P: 0.001~0.10%, S: 0.010%이하, Sol.Al: 0.01~0.10%, N: 0.010%이하를 더 첨가하는 것을 특징으로 한다.By weight%, B: 0.0010-0.0050%, P: 0.001-0.10%, S: 0.010% or less, Sol.Al: 0.01-0.10%, N: 0.010% or less, It is characterized by the above-mentioned.
미세조직의 평균 경도값(Hv)이 340이상이고, 경도값의 최대값이 최소값의 1.3배 이하인 것을 특징으로 한다.The average hardness value Hv of the microstructure is 340 or more, and the maximum value of the hardness value is 1.3 times or less of the minimum value.
상기 변태조직 중 직경 10㎚ 이하의 나노석출물의 분포밀도가 150개/㎛2 이상인 것을 특징으로 한다.The distribution density of the nanoprecipitates of 10 nm or less in the metamorphic structure is characterized in that the 150 / μm 2 or more.
인장강도가 980MPa 이상이고, 항복강도가 780MPa 이상인 것을 특징으로 한다.The tensile strength is 980 MPa or more, and the yield strength is characterized by 780 MPa or more.
한편, 고강도강 제조방법은, 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계, 상기 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하여 열연강판을 제조하는 단계, 상기 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계, 상기 냉연강판을 Ac3±30℃의 온도 범위에서 연속소둔하는 단계, 상기 연속소둔하는 단계 이후 650~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 단계, 상기 1차 냉각하는 단계 이후, Ms-100~Ms℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 단계를 포함한다.On the other hand, high-strength steel manufacturing method, in weight% C: 0.035 ~ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ~ 3.5%, Cr: 0.3 ~ 1.2%, Ti: 0.03 ~ 0.08%, Nb: manufacturing a slab containing 0.01 ~ 0.05%, the balance Fe and unavoidable impurities, hot rolling the slab to the finish-rolling exit side temperature Ar 3 ~ Ar 3 + 50 ℃ to produce a hot rolled steel sheet, Cold rolling the hot rolled steel sheet at a reduction ratio of 40 to 70% to produce a cold rolled steel sheet, continuously annealing the cold rolled steel sheet in a temperature range of Ac 3 ± 30 ℃, after the continuous annealing step 650 ~ 700 ℃ The first step of cooling to a cooling rate of 1 ~ 10 ℃ / sec, after the first step of cooling, Ms-100 ~ Ms ℃ includes a second cooling at a cooling rate of 5 ~ 20 ℃ / sec.
상기 2차 냉각하는 단계 이후에, 온도를 일정하게 유지하면서 과시효시키는 단계를 더 포함하는 것을 특징으로 한다.After the second step of cooling, further comprising the step of overaging while maintaining a constant temperature.
상기 과시효시키는 단계는, 전체 조직 중 템퍼드 마르텐사이트와 베이나이트로 구성된 변태조직의 부피분율이 95% 이상이 되도록 시효 시간을 조절하는 것을 특징으로 한다.The overaging step is characterized in that the aging time is adjusted so that the volume fraction of metamorphic tissue consisting of tempered martensite and bainite of the entire tissue is 95% or more.
본 발명에 의한 고강도강 및 그 제조방법에 따르면 다음과 같은 효과가 있다.According to the high strength steel and the manufacturing method according to the present invention has the following effects.
첫째, 980MPa 이상의 높은 인장강도를 갖는 강재를 제조할 수 있다.First, steel having a high tensile strength of 980 MPa or more can be manufactured.
둘째, 항복비가 높아 충격 흡수가 우수하면서도, 굽힘특성과 구멍확장성이 모두 우수한 강재를 제조할 수 있다. Secondly, it is possible to manufacture steel materials having excellent impact absorption due to high yield ratio, and excellent bending property and hole expansion property.
도 1은 본 발명의 일 실시예에 따른 미세 조직을 나타낸 사진,1 is a photograph showing a microstructure according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 나노 석출물을 나타낸 사진이다.2 is a photograph showing a nano precipitate according to an embodiment of the present invention.
여기서 사용되는 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the term "comprising" embodies a particular characteristic, region, integer, step, operation, element, and / or component, and other specific characteristics, region, integer, step, operation, element, component, and / or group. It does not exclude the presence or addition of.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 의한 고강도강 및 그 제조방법에 대하여 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described a high strength steel and a method for manufacturing the same according to a preferred embodiment of the present invention.
우선, 본 발명에 따른 고강도강에 대해 설명하도록 한다.First, the high strength steel according to the present invention will be described.
이를 위해, 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하고, 여기에 선택적으로 B: 0.0010-0.0050%, P: 0.001~0.10%, S: 0.010%이하, Sol.Al: 0.01~0.10%, N: 0.010%이하를 더 첨가하는 강재를 제조한다.To this end, by weight% C: 0.035 to 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 to 3.5%, Cr: 0.3 to 1.2%, Ti: 0.03 to 0.08%, Nb: 0.01 to 0.05 %, Balance Fe and unavoidable impurities, optionally B: 0.0010-0.0050%, P: 0.001-0.10%, S: 0.010% or less, Sol.Al: 0.01-0.10%, N: 0.010% or less The steel material to further add is manufactured.
이때, 제조된 강재의 전체 미세조직 중 템퍼드 마르텐사이트 및 베이나이트를 포함하는 변태조직이 차지하는 부피 분율이 90% 이상이며, 템퍼드 마르텐사이트 조직의 평균입경이 2㎛ 이하이고, 베이나이트 조직의 평균입경이 3㎛ 이하이며, 입경이 3㎛를 초과하는 베이나이트 조직의 부피 분율이 5% 이하인 것이 바람직하다.At this time, the volume fraction occupied by the metamorphic structure including the tempered martensite and bainite is 90% or more of the entire microstructure of the manufactured steel, the average particle diameter of the tempered martensite tissue is 2 μm or less, It is preferable that the average particle diameter is 3 micrometers or less, and the volume fraction of the bainite structure whose particle diameter exceeds 3 micrometers is 5% or less.
이하에서는 각 성분들의 수치한정 이유에 대해 설명한다.Hereinafter, the reason for numerical limitation of each component will be described.
탄소(C)는 변태조직 강화를 위해 첨가되는 매우 중요한 원소이다. 탄소는 고강도화를 도모하고 변태조직강에서 마르텐사이트의 형성을 촉진한다. 탄소함량이 증가하게 되면 강중 마르텐사이트량이 증가하게 된다. 하지만 그 양이 0.07%를 초과하면 마르텐사이트의 강도는 높아지나 탄소농도가 낮은 페라이트와의 강도차이가 증가한다. 이러한 강도차이는 응력 부가시 상간 계면에서 파괴가 쉽게 발생하기 때문에 신장플랜지성이 저하한다. 또한 용접성이 열위하여 부품 가공시 용접결함이 발생하게 된다. 반면 탄소함량이 0.035% 미만으로 낮아지면 본 발명에서 제시하는 마르텐사이트의 강도를 확보하기 어렵기 때문에 그 양을 0.035~0.07%로 한정하였다.Carbon (C) is a very important element added for strengthening metamorphic tissue. Carbon promotes high strength and promotes the formation of martensite in metamorphic steel. As the carbon content increases, the martensite content in the steel increases. However, if the amount exceeds 0.07%, the strength of martensite increases, but the difference in strength from ferrite with low carbon concentration increases. This difference in strength is because the elongation flange property is lowered because the fracture easily occurs at the interface between phases when stress is added. In addition, weldability is inferior and welding defects occur when machining parts. On the other hand, when the carbon content is lowered to less than 0.035%, it is difficult to secure the strength of martensite proposed in the present invention, so the amount is limited to 0.035 to 0.07%.
실리콘(Si)은 페라이트 변태를 촉진시키고 미변태 오스테나이트중에 탄소의 함유량을 상승시켜 페라이트와 마르텐사이트의 복합조직을 형성시켜 마르텐사이트의 강도 상승을 방해하는 원소이다. 또한 표면특성 관련하여 표면 스케일결함을 유발할 뿐만 아니라 화성 처리성을 떨어뜨리기 때문에 가능한 첨가를 제한하는게 바람직하다. 따라서, 본 발명에서는 그 첨가량을 0.3%이하(0% 제외)로 제한하였다.Silicon (Si) is an element that promotes ferrite transformation and raises the carbon content in the unmodified austenite to form a complex structure of ferrite and martensite, thereby preventing the increase in martensite strength. It is also desirable to limit the possible additions as well as cause surface scale defects in terms of surface properties, as well as degrading chemical conversion. Therefore, in the present invention, the amount of addition was limited to 0.3% or less (excluding 0%).
망간(Mn)은 연성의 손상 없이 입자를 미세화시키고, 황을 MnS로 석출시켜 FeS의 생성에 의한 열간취성을 방지함과 더불어 강을 강화시키는 원소이며, 동시에 마르텐사이트상이 얻어지는 임계 냉각속도를 낮추는 역할을 하게 되어 마르텐사이트를 보다 용이하게 형성시킬 수 있다. 그 함량이 2.0% 미만인 경우 본 발명에서 목표로 하는 강도 확보에 어려움이 있고, 3.5%를 초과하게 되면 용접성, 열간압연성 등의 문제가 발생될 가능성이 높기 때문에 망간의 함량은 2.0~3.5%의 범위로 제한하였으며, 보다 바람직하게는 2.3~3.2%의 범위에서 제어하는 것이 유리하다.Manganese (Mn) is an element that refines particles without damaging ductility, precipitates sulfur with MnS, prevents hot brittleness due to the formation of FeS, and strengthens steel, and at the same time, lowers the critical cooling rate at which a martensite phase is obtained. By doing so, martensite can be more easily formed. If the content is less than 2.0%, it is difficult to secure the target strength of the present invention, and if the content exceeds 3.5%, there is a high possibility of problems such as weldability and hot rolling property, so the content of manganese is 2.0 to 3.5%. Limited to the range, it is more advantageous to control in the range of 2.3 to 3.2%.
인(P)은 고용강화효과가 가장 큰 치환형 합금원소로서 면내 이방성을 개선하고 강도를 향상시키는 역할을 한다. 그 함량이 0.001% 미만인 경우 그 효과를 확보할 수 없을 뿐만 아니라 제조비용의 문제를 야기하는 반면, 과다하게 첨가하면 프레스 성형성이 열화하고 강의 취성이 발생될 수 있기 때문에 함량을 0.001~0.10%로 제한하는 것이 바람직하다.Phosphorus (P) is a substitution type alloy element having the greatest solid solution strengthening effect, and serves to improve in-plane anisotropy and strength. If the content is less than 0.001%, the effect may not be secured and it may cause a problem in manufacturing cost.However, if the content is added excessively, the press formability may deteriorate and the brittleness of the steel may be generated. It is desirable to limit.
황(S)은 강중 불순물 원소로서 강판의 연성 및 용접성을 저해하는 원소이다. 그 함량이 0.01%를 초과하면 강판의 연성 및 용접성을 저해할 가능성이 높기 때문에 상기 S의 함량은 0.01%이하로 제한하는 것이 바람직하다.Sulfur (S) is an impurity element in steel and is an element that inhibits the ductility and weldability of the steel sheet. If the content is more than 0.01%, the S content is preferably limited to 0.01% or less because it is highly likely to inhibit the ductility and weldability of the steel sheet.
가용 알루미늄(Sol.Al)은 산소와 결합하여 탈산작용을 일으키고, 실리콘과 같이 페라이트 내 탄소를 오스테나이트로 분배하여 마르텐사이트 경화능을 향상시키는데 유효한 성분이다. 그 함량이 0.01% 미만인 경우 상기 효과를 확보할 수 없는 반면, 0.1%를 초과하게 되면 상기 효과는 포화될 뿐만 아니라, 제조비용이 증가하므로, 함량을 0.01~0.1%로 제한하는 것이 바람직하다.Soluble aluminum (Sol.Al) combines with oxygen to cause deoxidation and distributes carbon in ferrite like austenite to austenite, such as silicon, and is effective in improving martensite hardenability. If the content is less than 0.01% can not secure the effect, if the content exceeds 0.1%, the effect is not only saturated, but also increases the manufacturing cost, it is preferable to limit the content to 0.01 ~ 0.1%.
질소(N)는 오스테나이트를 안정화시키는데 유효한 작용을 하는 성분으로서, 0.01%를 초과하는 경우 AlN형성등을 통한 연주시 크랙이 발생할 위험성이 크게 증가되므로 그 상한을 0.01%로 한정하는 것이 바람직하다.Nitrogen (N) is an effective component for stabilizing austenite, and if it exceeds 0.01%, it is preferable to limit the upper limit to 0.01% because the risk of cracking when playing through AlN formation is greatly increased.
크롬(Cr)은 강의 경화능을 향상시키고 고강도를 확보하기 위해 첨가하는 성분이며, 본 발명에서는 저온 변태상인 마르텐사이트를 형성하는데 매우 중요한 역할을 하는 원소이다. 함량이 0.3% 미만인 경우 상술한 효과를 확보하기 어렵고, 1.2%를 초과하면 그 효과가 포화될 뿐만 아니라 과도한 열연강도 증가도 냉간압연성이 열화하는 문제가 발생하므로 함량을 0.3~1.2%로 제한하는 것이 바람직하다.Chromium (Cr) is a component added to improve the hardenability of steel and to secure high strength, and is an element that plays a very important role in forming martensite, which is a low temperature transformation phase in the present invention. If the content is less than 0.3%, it is difficult to secure the above-mentioned effects. If the content is more than 1.2%, the effect is not only saturated, but excessive hot-rolling strength increases, resulting in the problem of cold rolling deterioration. Therefore, the content is limited to 0.3-1.2%. It is preferable.
붕소(B)는 소둔 중 냉각하는 과정에서 오스테나이트가 펄라이트로 변태되는 것을 지연시키는 성분으로, 페라이트 형성을 억제하고 마르텐사이트의 형성을 촉진하는 원소로서 첨가되었다. 하지만, 함량이 0.0010% 미만인 경우는 상술한 효과를 얻기 어렵고, 0.0050%를 초과하면 합금철 과다에 따라 원가가 상승되므로 그 함량을 0.0010%~0.0050%로 제한하는 것이 바람직하다.Boron (B) is a component that delays the transformation of austenite into pearlite during cooling during annealing, and is added as an element that suppresses ferrite formation and promotes martensite formation. However, if the content is less than 0.0010%, it is difficult to obtain the above-described effects, and if the content exceeds 0.0050%, the cost is increased according to the excess of ferroalloy, so it is preferable to limit the content to 0.0010% to 0.0050%.
티타늄(Ti) 및 니오븀(Nb)은 강판의 강도 상승 및 나노석출물에 의한 결정립 미세화에 유효한 원소이다. 이들 원소를 첨가하게 되면 탄소와 결합하여 매우 미세한 나노석출물을 형성하게 된다. 이러한 나노 석출물은 기지조직을 강화시켜 상간의 경도차이를 감소시키는 역할을 한다. 본 발명에서는 티타늄의 함량을 0.03~0.08%로, 니오븀의 함량을 0.01~0.05%로 한정하였다. 이들 원소의 함량이 본 발명의 최소값 미만일 경우, 나노석출물의 분포밀도가 줄어들고 상간 경도비의 편차가 커지게 되며, 함량이 본 발명강의 최대값을 초과하면, 제조비용 상승 및 과다한 석출물로 인하여 연성을 크게 저하시킬 수 있다.Titanium (Ti) and niobium (Nb) are effective elements for increasing the strength of steel sheets and miniaturizing grains by nano precipitates. Adding these elements combines with carbon to form very fine nano precipitates. These nano precipitates serve to reduce the hardness difference between phases by strengthening the matrix structure. In the present invention, the content of titanium is limited to 0.03 to 0.08%, and the content of niobium is limited to 0.01 to 0.05%. When the content of these elements is less than the minimum value of the present invention, the distribution density of nano precipitates is reduced and the variation in hardness ratio between phases is increased, and when the content exceeds the maximum value of the steel of the present invention, the ductility due to the increase in manufacturing cost and excessive precipitates It can greatly reduce.
이렇게 본 발명에 따라 제조된 고강도강은, 미세조직의 평균 경도값(Hv)이 340이상이고, 경도값의 최대값이 최소값의 1.3배 이하이며, 변태조직 중 직경 10㎚ 이하의 나노석출물의 분포밀도가 150개/㎛2 이상이며, 인장강도가 980MPa 이상이고, 항복강도가 780MPa 이상인 것이 바람직하다.Thus, the high-strength steel manufactured according to the present invention has an average hardness value (Hv) of the microstructure of 340 or more, a maximum value of the hardness value of 1.3 times or less of the minimum value, and distribution of nano precipitates of 10 nm or less in diameter in the metamorphic structure It is preferable that the density is 150 pieces / micrometer 2 or more, the tensile strength is 980 MPa or more, and the yield strength is 780 MPa or more.
이러한 물성에 대해서는 후술할 제조방법에 대한 설명에서 더 자세히 설명하도록 한다.These physical properties will be described in more detail in the description of the manufacturing method to be described later.
본 발명에 따른, 고강도강 제조방법은, 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계, 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하여 열연강판을 제조하는 단계, 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계, 냉연강판을 Ac3±30℃의 온도 범위에서 연속소둔하는 단계, 연속소둔하는 단계 이후 650~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 단계, 1차 냉각하는 단계 이후, Ms-100~Ms℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 단계를 포함한다.High-strength steel manufacturing method according to the invention, by weight% C: 0.035 ~ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ~ 3.5%, Cr: 0.3 ~ 1.2%, Ti: 0.03 ~ 0.08%, Nb: 0.01 ~ 0.05%, the remainder of producing a slab containing Fe and unavoidable impurities, hot-rolled slab to finish the hot rolling outlet temperature of Ar 3 ~ Ar 3 +50 ℃ to produce a hot rolled steel sheet Step, cold-rolled hot rolled steel sheet at a reduction ratio of 40 ~ 70% to produce a cold rolled steel sheet, continuous annealing the cold rolled steel sheet in the temperature range of Ac 3 ± 30 ℃, after the continuous annealing step to 650 ~ 700 ℃ The first step of cooling at a cooling rate of 1 ~ 10 ℃ / sec, After the first step of cooling, Ms-100 ~ Ms ℃ to a second cooling at a cooling rate of 5 ~ 20 ℃ / sec.
열간압연하여 열연강판을 제조하는 단계는, 출구측 온도, 더 자세하게는 마무리 압연기의 출구측 온도(FDT)가 Ar3~Ar3+50℃가 되도록 열간압연하게 된다. 출구측 온도가 Ar3 미만일 경우에는 열간 변형 저항이 급격히 증가될 가능성이 높고 또한 열연코일의 상(top), 하(tail)부 및 가장자리가 단상영역으로 되어 면내 이방성의 증가 및 성형성이 열화된다. 반면, Ar3+50℃를 초과하게 되면 너무 두꺼운 산화 스케일이 발생할 뿐만 아니라, 강판의 미세조직이 조대화될 가능성이 높다.In the step of producing the hot rolled steel sheet by hot rolling, the exit temperature, more specifically, the hot rolling is performed so that the exit temperature FDT of the finish rolling mill is Ar 3 to Ar 3 + 50 ° C. If the outlet temperature is less than Ar 3 , the hot deformation resistance is likely to increase rapidly, and the top, tail, and edges of the hot rolled coil become single phase regions, thereby increasing in-plane anisotropy and degrading formability. . On the other hand, if Ar 3 + 50 ° C. is exceeded, too thick an oxidizing scale may occur, and the microstructure of the steel sheet is likely to coarsen.
열간압연이 종료된 후, 권취시에는 600~750℃의 온도 범위 내를 유지하는 것이 바람직하다. 권취온도(CT)가 600℃ 미만인 경우 과다한 마르텐사이트 또는 베이나이트가 생성되어 열연강판의 과다한 강도 상승을 초래함으로써 냉간압연시 부하로 인한 형상불량 등의 제조상의 문제가 발생할 수 있다. 반면, 750℃를 초과하게 되면 표면 스케일의 증가로 산세성이 열화되므로, 상술한 권취온도로 제한하는 것이 바람직하다.After the hot rolling is completed, it is preferable to maintain the temperature in the temperature range of 600 to 750 ° C at the time of winding up. When the coiling temperature CT is less than 600 ° C., excessive martensite or bainite may be generated, resulting in excessive strength increase of the hot rolled steel sheet, which may cause manufacturing problems such as shape defects due to load during cold rolling. On the other hand, if it exceeds 750 ° C., pickling deteriorates due to an increase in the surface scale, and therefore, it is preferable to limit it to the above-described winding temperature.
열연강판은 산세를 거쳐 냉간압연 과정을 거치게 된다. 냉간압연하여 냉연강판을 제조하는 단계는, 40~70%의 압하율로 압연하는 것이 바람직하다. 압하율이 40% 미만인 경우는 재결정 구동력이 약화되어 양호한 재결정립을 얻는데 문제가 발생할 소지가 크며 형상교정이 매우 어렵다. 반면 압하율이 70%를 초과하면 강판 에지(edge)부의 크랙이 발생할 가능성이 높고, 압연하중이 급격히 증가하게 된다.Hot rolled steel is subjected to pickling and cold rolling. Cold rolling is a step of producing a cold rolled steel sheet, it is preferable to roll at a reduction ratio of 40 to 70%. If the reduction ratio is less than 40%, the recrystallization driving force is weakened, so that there is a big problem to obtain a good recrystallized grain, and shape correction is very difficult. On the other hand, if the reduction ratio exceeds 70%, there is a high possibility of cracking at the edge of the steel sheet, and the rolling load rapidly increases.
냉연강판은 연속소둔 과정을 거치면서 본 발명에서 목적하는 미세조직의 기반을 마련하게 된다. 이때 Ac3-30~Ac3+30℃의 온도(SS) 구간에서 연속소둔을 수행하는 것이 바람직하다. 소둔온도가 Ac3-30℃ 미만일 경우 페라이트가 다량으로 생성되어 항복강도가 낮아지기 때문에 항복비 0.8이상의 항복비를 확보할 수 없으며, 특히 다량의 페라이트 생성으로 변태상과의 상간 경도차이가 증가하여, 본 발명에서 제시하는 경도 340Hv이상, 경도 편차 1.3이하의 조건을 만족할 수 없다. 그러나 소둔온도가 Ac3+30℃를 초과할 경우에는 고온소둔에 따른 오스트나이트 결정립크기 증가로 냉각시 생산되는 마르텐사이트상의 크기가 증가하여 본 발명에서 제시하는 미세조직의 입경을 만족시킬 수 없다.Cold rolled steel sheet is provided through the continuous annealing process to provide the basis of the desired microstructure in the present invention. At this time, it is preferable to perform continuous annealing in the temperature (SS) section of Ac 3 -30 ~ Ac 3 +30 ℃. If the annealing temperature is lower than Ac 3 -30 ℃, a large amount of ferrite is generated and the yield strength is lowered, so the yield ratio of 0.8 or more cannot be secured.In particular, the production of a large amount of ferrite increases the hardness difference between phases, The conditions of hardness 340 Hv or more and hardness deviation 1.3 or less presented in the present invention cannot be satisfied. However, when the annealing temperature exceeds Ac 3 +30 ℃, the size of the martensite phase produced during cooling due to the increase in the austenite grain size due to the high temperature annealing can not satisfy the particle size of the microstructure presented in the present invention.
연속 소둔 이후에는, 강판을 650~700℃까지 1~10℃/초의 냉각속도로 1차 냉각한다. 이러한 1차 냉각 단계는 페라이트 변태를 억제하여 대부분의 오스테나이트를 마르텐사이트로 변태시키기 위한 공정이다.After continuous annealing, the steel sheet is first cooled to a cooling rate of 1 to 10 ° C / sec to 650 to 700 ° C. This primary cooling step is a process for converting most austenite into martensite by suppressing ferrite transformation.
1차 냉각 이후 2차 냉각은 5~20℃/s의 냉각속도로 Ms~Ms-100℃의 온도까지 냉각하게 된다. 이는 오스테나이트를 마르텐사이트로 변태시키는 것을 시작하기는 하지만, 마르텐사이트 변태가 종료되는 온도 아래까지 냉각시키지는 않는 것이다. 이를 통해 템퍼드 마르텐사이트 조직을 얻을 수 있다.After the first cooling the second cooling is cooled to a temperature of Ms ~ Ms-100 ℃ at a cooling rate of 5 ~ 20 ℃ / s. This starts to transform the austenite to martensite but does not cool it below the temperature at which the martensite transformation ends. This gives us a tempered martensite structure.
이러한 온도범위까지 2차냉각을 수행하고, 이후 온도를 유지하면서 과시효 처리를 함으로써, 코일의 폭방향, 길이방향 형상확보와 더불어 높은 항복강도 및 높은 구멍가공성(HER)을 확보할 수 있게 된다.By performing the secondary cooling to such a temperature range, and then overaging while maintaining the temperature, it is possible to secure a high yield strength and a high hole workability (HER) in addition to securing the width direction, the longitudinal shape of the coil.
2차냉각 종료온도(RCS)가 Ms-100℃ 미만일 경우에는 과시효 처리 동안 마르텐사이트량이 과도하게 증가하여 항복강도와 인장강도가 동시에 증가하고 연성이 매우 열화된다. 특히 급냉에 따른 형상 열화가 발생하여 자동차 부품 가공시 작업성 열화 등이 발생할 수 있다. 한편 Ms를 초과하는 온도까지 냉각할 경우, 소둔시 생성된 오스테나이트가 마르텐사이트로 변태되지 못하고 고온변태상인 베이나이트, 그래뉼라 베이나이트(granular bainite)등으로 생성되어 항복강도가 급격히 열화되는 문제가 발생한다. 이러한 조직의 발생은 항복비의 저하와 더불어 구멍확장성의 열화를 수반하여 본 발명에서 제시하는 신장플랜지성이 우수한 고항복비형 고강도강을 제조할 수 없다.If the secondary cooling end temperature (RCS) is less than Ms-100 ° C., the amount of martensite is excessively increased during the overaging treatment, which simultaneously increases the yield strength and tensile strength and deteriorates the ductility. In particular, deterioration of shape due to rapid cooling may result in deterioration of workability when processing automotive parts. On the other hand, when cooled to a temperature exceeding Ms, the austenite produced during annealing cannot be transformed into martensite, but is formed as bainite, granular bainite, etc., which is a high temperature transformation, and thus the yield strength deteriorates rapidly. Occurs. The occurrence of such a structure is accompanied by a decrease in yield ratio and deterioration of hole expandability, and thus cannot produce a high yield ratio type high strength steel having excellent elongation flange property.
과시효 처리가 종료된 이후에는, 연신율 0.1~1.0% 범위에서 스킨패스압연을 수행할 수 있다. 통상적으로 변태조직강을 스킨패스압연하는 경우 인장강도의 증가는 거의 없이 적어도 50MPa이상의 항복강도 상승이 일어난다. 연신율이 0.1% 미만이면 형상의 제어가 어렵고, 1.0%이상일 경우 고연신 작업에 의해 조업성이 크게 불안정해지므로 상술한 범위로 제한하는 것이 바람직하다.After the overaging treatment is completed, the skin pass rolling may be performed in an elongation of 0.1 to 1.0%. Typically, the skin pass rolling of the metamorphic tissue steel causes an increase in yield strength of at least 50 MPa with little increase in tensile strength. If the elongation is less than 0.1%, it is difficult to control the shape. If the elongation is 1.0% or more, the operability is greatly unstable due to the high stretching operation, and therefore it is preferable to limit the above range.
과시효시키는 단계는, 전체 조직 중 템퍼드 마르텐사이트와 베이나이트로 구성된 변태조직의 부피분율이 95% 이상이 되도록 시효 시간을 조절하는 것이 바람직한데, 이에 대해서는 후술할 실시예 및 비교예의 물성에 대한 설명에서 더 자세히 설명하도록 한다.In the step of overaging, it is preferable to adjust the aging time so that the volume fraction of the metamorphic tissue composed of tempered martensite and bainite of the whole tissue is 95% or more, which will be described later for the physical properties of Examples and Comparative Examples. This is explained in more detail in the description.
이하에서는 본 발명의 실시예 및 비교예와 그 물성들에 대해 설명한다.Hereinafter, examples and comparative examples of the present invention and properties thereof will be described.
표 1에는 본 발명에 따른 조성을 만족하는 실시예(강번 1~8) 및 만족하지 않는 비교예(강번 9~17)가 나타나 있다. 표 2에는 본 발명에 따른 마무리압연 온도(FDT) 및 2차냉각 종료 온도(RCS)를 만족하는 실시예와, 만족하지 않는 비교예가 나타나 있다. 표 3에는 각각의 강번별 물성이 나타나 있다.Table 1 shows an example (steel numbers 1 to 8) and a comparative example (steel numbers 9 to 17) that satisfy the composition according to the present invention. Table 2 shows an embodiment satisfying the finish rolling temperature (FDT) and the secondary cooling end temperature (RCS) according to the present invention, and a comparative example not satisfied. Table 3 shows the properties of each steel group.
하기 표1과 같이 조성되는 강 슬라브를 진공용해하고, 가열로에서 재가열온도 1200℃ 온도에서 1시간 가열하고 열간압연을 실시한 후 권취하였다. 열간압연 작업시 온도조건은 표2의 FDT에 나타낸 바와 같이 Ar3~Ar3+50℃ 범위인 880~920℃ 온도범위에서 열간압연을 종료하였으며, 권취온도(CT)는 650~680℃로 제어하였다. 열간압연한 강판을 이용하여 산세를 실시하고 냉간압하율을 45%로 하여 냉간압연을 실시하였다. 냉간압연된 강판은 표2의 조건에 따라 설정된 소킹 섹션(Soaking Section, SS)의 온도 조건으로 연속소둔하고, 2차 냉각 종료온도(RCS)까지 냉각을 실시하였으며, 최종적으로 스킨패스 압연율은 0.2%로 고정하였다.The steel slab formed as shown in Table 1 was vacuum-dissolved, heated in a reheating temperature at 1200 ° C. in a heating furnace for 1 hour, and hot rolled, and then wound up. As shown in FDT of Table 2, the hot rolling was finished in the range of 880 ~ 920 ℃, which is in the range of Ar 3 ~ Ar 3 + 50 ℃, and the winding temperature (CT) was controlled at 650 ~ 680 ℃. It was. Pickling was performed using a hot rolled steel sheet, and cold rolling was performed at a cold rolling reduction of 45%. The cold rolled steel sheet was continuously annealed at the temperature of the soaking section (SS) set according to the conditions shown in Table 2, and cooled to the secondary cooling end temperature (RCS). Finally, the skin pass rolling rate was 0.2. Fixed to%.
표 3에 나타낸 바와 같이 각 강 성분 및 소둔조건의 변화에 제조된 강재의 마르텐사이트+베이나이트 분율, 평균입경, 미세조직 평균 경도값, 상간 경도비 및 강중 10㎚ 이하의 나노석출물의 분포 밀도를 조사하였다. 또한 JIS 5호 인장시험편을 제작하여 재질의 물성을 측정하였으며, 그 결과를 비교재와 함께 나타내었다.As shown in Table 3, the martensite + bainite fraction, average particle diameter, microstructure average hardness value, phase hardness ratio, and the distribution density of nanoprecipitates of 10 nm or less in steel were prepared for each steel component and annealing conditions. Investigate. In addition, the JIS No. 5 tensile test piece was produced to measure the physical properties of the material, and the results are shown with the comparative material.
CC MnMn SiSi PP SS AlAl CrCr TiTi NbNb BB NN Ac3Ac3 MsMs 비고Remarks
1One 0.0630.063 2.972.97 0.1370.137 0.0110.011 0.00340.0034 0.0260.026 1.001.00 0.0470.047 0.0310.031 0.00210.0021 0.0040.004 865.2865.2 410.0410.0 발명강Invention steel
22 0.0620.062 2.422.42 0.1330.133 0.0110.011 0.00360.0036 0.0240.024 1.001.00 0.0450.045 0.0310.031 0.0020.002 0.00470.0047 865.4865.4 427.1427.1 발명강Invention steel
33 0.0430.043 2.942.94 0.1390.139 0.0110.011 0.00330.0033 0.0220.022 1.001.00 0.0440.044 0.0310.031 0.0020.002 0.0040.004 874.1874.1 419.3419.3 발명강Invention steel
44 0.0430.043 2.462.46 0.1310.131 0.0110.011 0.00320.0032 0.0230.023 1.011.01 0.0430.043 0.0310.031 0.00210.0021 0.00450.0045 873.8873.8 433.8433.8 발명강Invention steel
55 0.0530.053 2.952.95 0.1080.108 0.0110.011 0.00230.0023 0.0310.031 0.970.97 0.0490.049 0.0320.032 0.00220.0022 0.00340.0034 868.1868.1 415.2415.2 발명강Invention steel
66 0.0510.051 2.972.97 0.1010.101 0.0110.011 0.0020.002 0.0340.034 0.690.69 0.050.05 0.0320.032 0.0020.002 0.00350.0035 868.7868.7 418.8418.8 발명강Invention steel
77 0.0620.062 2.992.99 0.1250.125 0.0110.011 0.0020.002 0.0330.033 0.520.52 0.0480.048 0.0320.032 0.00230.0023 0.00350.0035 865.0865.0 415.6415.6 발명강Invention steel
88 0.0620.062 2.742.74 0.1060.106 0.0110.011 0.0020.002 0.040.04 0.710.71 0.0520.052 0.0320.032 0.00250.0025 0.00350.0035 864.2864.2 420.9420.9 발명강Invention steel
99 0.0810.081 2.522.52 0.1050.105 0.0110.011 0.0020.002 0.0350.035 0.790.79 0.0510.051 0.0320.032 0.00250.0025 0.00350.0035 856.9856.9 418.6418.6 비교강Comparative steel
1010 0.0760.076 2.652.65 0.1070.107 0.010.01 0.0020.002 0.0330.033 0.500.50 0.050.05 0.0310.031 0.00230.0023 0.00330.0033 858.8858.8 420.2420.2 비교강Comparative steel
1111 0.0770.077 2.632.63 0.1020.102 0.010.01 0.0020.002 0.0350.035 0.670.67 0.0490.049 0.030.03 0.00250.0025 0.00330.0033 858.2858.2 418.4418.4 비교강Comparative steel
1212 0.150.15 3.13.1 0.0990.099 0.0110.011 0.0030.003 0.0370.037 0.650.65 0.0510.051 0.0390.039 0.00350.0035 0.00310.0031 835.8835.8 373.4373.4 비교강Comparative steel
1313 0.0610.061 1.51.5 0.1010.101 0.010.01 0.0040.004 0.0330.033 0.720.72 0.040.04 0.020.02 0.00290.0029 0.00310.0031 864.4864.4 458.9458.9 비교강Comparative steel
1414 0.0560.056 2.912.91 0.1120.112 0.010.01 0.0030.003 0.0350.035 0.200.20 0.040.04 0.020.02 0.0020.002 0.00310.0031 867.0867.0 424.4424.4 비교강Comparative steel
1515 0.160.16 2.92.9 0.10.1 0.010.01 0.0030.003 0.030.03 1.501.50 0.0410.041 0.040.04 0.00240.0024 0.00410.0041 833.3833.3 365.0365.0 비교강Comparative steel
1616 0.0610.061 2.82.8 1.21.2 0.0120.012 0.0040.004 0.0330.033 0.750.75 0.0420.042 0.0360.036 0.00290.0029 0.00330.0033 913.5913.5 419.0419.0 비교강Comparative steel
1717 0.0590.059 2.952.95 0.1010.101 0.0110.011 0.0030.003 0.0360.036 0.950.95 0.0150.015 00 0.00310.0031 0.00350.0035 865.2865.2 412.9412.9 비교강Comparative steel
강번River FDT(℃)FDT (℃) CT(℃)CT (℃) SS(℃)SS (℃) RCS(℃)RCS (℃) 비고Remarks
1-11-1 880880 680680 820820 350350 발명강Invention steel
1-21-2 880880 680680 810810 270270 발명강Invention steel
2-12-1 890890 680680 820820 440440 비교강Comparative steel
2-22-2 880880 680680 820820 270270 발명강Invention steel
33 880880 680680 820820 350350 발명강Invention steel
44 880880 680680 820820 350350 발명강Invention steel
5-15-1 880880 680680 810810 350350 발명강Invention steel
5-25-2 880880 680680 820820 450450 비교강Comparative steel
6-16-1 880880 680680 820820 300300 발명강Invention steel
6-26-2 880880 650650 760760 350350 비교강Comparative steel
6-36-3 880880 680680 890890 350350 비교강Comparative steel
77 880880 680680 820820 350350 발명강Invention steel
88 880880 680680 820820 350350 발명강Invention steel
99 880880 680680 820820 350350 비교강Comparative steel
1010 880880 680680 820820 350350 비교강Comparative steel
1111 880880 680680 820820 350350 비교강Comparative steel
1212 880880 680680 820820 350350 비교강Comparative steel
1313 880880 680680 820820 350350 비교강Comparative steel
1414 880880 680680 820820 350350 비교강Comparative steel
1515 880880 680680 820820 350350 비교강Comparative steel
1616 920920 680680 820820 350350 비교강Comparative steel
1717 880880 680680 820820 350350 비교강Comparative steel
강번River 변태분율(%)Transformation fraction (%) M평균입경(㎛)M average particle diameter (㎛) B평균입경(㎛)B average particle diameter (㎛) 경도값(Hv)Hardness value (Hv) 상간 경도비Hardness ratio between phases 나노석출물 밀도(개/㎛2)Nano Precipitate Density (piece / μm 2 ) YS(MPa)YS (MPa) TS(MPa)TS (MPa) T-El(%)T-El (%) R/tR / t HER(%)HER (%) YRYR 비고Remarks
1-11-1 9797 1.21.2 2.52.5 360360 1.31.3 172172 881881 10021002 9.29.2 0.40.4 55.255.2 0.880.88 발명강Invention steel
1-21-2 9696 1.31.3 2.32.3 390390 1.21.2 182182 932932 11121112 8.08.0 0.70.7 63.263.2 0.840.84 발명강Invention steel
2-12-1 9090 2.22.2 3.53.5 320320 2.12.1 179179 620620 891891 11.611.6 1.31.3 39.939.9 0.700.70 비교강Comparative steel
2-22-2 9595 1.61.6 2.62.6 360360 1.31.3 181181 791791 982982 9.79.7 1One 65.365.3 0.810.81 발명강Invention steel
33 9797 1.01.0 2.72.7 341341 1.21.2 162162 812812 992992 9.59.5 0.70.7 65.165.1 0.820.82 발명강Invention steel
44 9999 1.41.4 2.82.8 361361 1.21.2 158158 801801 10021002 14.614.6 1One 68.168.1 0.800.80 발명강Invention steel
5-15-1 100100 1.31.3 2.72.7 359359 1.31.3 162162 862862 10811081 8.58.5 0.70.7 70.270.2 0.800.80 발명강Invention steel
5-25-2 8585 2.62.6 3.83.8 270270 3.23.2 161161 669669 945945 10.210.2 1One 32.932.9 0.710.71 비교강Comparative steel
6-16-1 9999 1.71.7 2.12.1 361361 1.31.3 168168 786786 10011001 9.69.6 0.70.7 75.375.3 0.790.79 발명강Invention steel
6-26-2 8282 1.91.9 4.14.1 250250 3.53.5 158158 593593 922922 10.510.5 1.61.6 21.521.5 0.640.64 비교강Comparative steel
6-36-3 100100 33 3.53.5 380380 1.21.2 159159 751751 864864 6.16.1 1.61.6 42.542.5 0.870.87 비교강Comparative steel
77 9999 1.51.5 2.32.3 370370 1.11.1 161161 871871 10811081 6.56.5 0.70.7 68.368.3 0.810.81 발명강Invention steel
88 100100 1.61.6 2.52.5 380380 1.21.2 159159 801801 993993 10.610.6 0.70.7 69.569.5 0.810.81 발명강Invention steel
99 9999 1.21.2 3.83.8 390390 2.82.8 160160 626626 998998 9.29.2 1.61.6 40.240.2 0.630.63 비교강Comparative steel
1010 100100 1.31.3 4.54.5 360360 2.52.5 159159 661661 10051005 12.112.1 22 35.335.3 0.660.66 비교강Comparative steel
1111 9999 1.51.5 3.53.5 370370 2.12.1 153153 694694 10331033 8.68.6 1.61.6 33.633.6 0.670.67 비교강Comparative steel
1212 100100 2.52.5 3.53.5 360360 3.23.2 158158 781781 11511151 10.510.5 1.61.6 21.121.1 0.680.68 비교강Comparative steel
1313 8282 1.81.8 3.43.4 250250 2.52.5 159159 543543 753753 13.613.6 22 46.546.5 0.720.72 비교강Comparative steel
1414 9595 4.24.2 3.43.4 340340 2.12.1 158158 453453 695695 14.314.3 22 38.538.5 0.650.65 비교강Comparative steel
1515 9999 2.22.2 4.24.2 360360 2.12.1 159159 965965 12871287 8.68.6 1.61.6 32.532.5 0.750.75 비교강Comparative steel
1616 8181 1.51.5 4.54.5 250250 3.93.9 158158 785785 11051105 12.112.1 22 25.125.1 0.710.71 비교강Comparative steel
1717 9393 2.32.3 4.24.2 300300 2.52.5 8989 592592 813813 11.511.5 22 34.234.2 0.730.73 비교강Comparative steel
표 1 내지 표 3에 나타난 바와 같이, 본 발명에 따른 실시예인 강번 1-1, 1-2, 2-2, 3, 4, 5-1, 6-1, 7, 8은 모두 본 발명에서 한정하고 있는 수치들을 만족하고 있는 것을 알 수 있다. 즉, 변태조직의 분율, 템퍼드 마르텐사이트 및 베이나이트 입경, 경도값, 상간 경도비, 나노석출물 개수, 항복강도 및 인장강도와 항복비, 연신율, 굽힘가공성(R/t), 구멍확장성(HER) 등이 우수함을 알 수 있다.As shown in Tables 1 to 3, the steel plates 1-1, 1-2, 2-2, 3, 4, 5-1, 6-1, 7, 8, which are examples according to the present invention, are all limited in the present invention. You can see that you are satisfied with the numbers you are doing. That is, the fraction of metamorphic tissue, tempered martensite and bainite particle size, hardness value, phase hardness ratio, number of nano precipitates, yield strength and tensile strength and yield ratio, elongation, bending workability (R / t), hole expandability ( HER) etc. are excellent.
반면, 본 발명의 조성 범위를 불만족하는 강번 9 내지 17은, 상간 경도비의 편차가 높을 뿐만 아니라, 굽힘가공성과 구멍확장성이 불량한 등 본 발명이 요구하는 물성을 만족하지 못 하는 것을 알 수 있다.On the other hand, the steel sheets 9 to 17, which are unsatisfactory in the composition range of the present invention, not only have a high variation in the hardness ratio between phases, but also do not satisfy the physical properties required by the present invention, such as poor bending workability and poor hole expandability. .
또한, 본 발명의 조성을 만족하지만 연속소둔 온도나 2차냉각 종료 온도를 불만족하는 강번 2-1, 5-2, 6-2, 6-3 역시 본 발명이 요구하는 물성을 만족하지 못 하는 것을 알 수 있다.In addition, it is understood that steel sheets 2-1, 5-2, 6-2, and 6-3, which satisfy the composition of the present invention but do not satisfy the continuous annealing temperature or the secondary cooling end temperature, also do not satisfy the physical properties required by the present invention. Can be.
이하, 각 강종별 물성을 상세히 살펴본다.Hereinafter, the physical properties of each steel type will be described in detail.
본 발명에 따른 실시예 강재의 경우, 마르텐사이트 변태율이 최소 95%이상, 마르텐사이트 평균입경이 1.7㎛ 이하, 베이나이트 평균입경은 2.5㎛ 이하로서 우수한 수치를 나타내었다. 한편 본 발명강들의 입내 미세조직 평균 경도값은 최소 340Hv이상이었으며, 상간의 경도비에서도 최대 1.3이하를 만족하였다. 한편 10㎚ 이하의 나노석출물은 본 발명에서 제시한 바와 같이 150개/㎛2이상을 만족하였다.In the case of the exemplary steel according to the present invention, the martensite transformation rate was at least 95%, the martensite average particle diameter was 1.7 μm or less, and the bainite average particle diameter was 2.5 μm or less. On the other hand, the average hardness of the microstructures of the inventive steels was at least 340 Hv, and satisfies at most 1.3 in the hardness ratio between phases. On the other hand, the nano precipitates of 10 nm or less satisfied 150 or more / 탆 2 or more as proposed in the present invention.
이와 같이 본 발명강에서 제시한 특성을 만족하는 발명강 1-9번강들은 항복비가 0.8~0.87의 범위에서 분포하고 있으며, R/t 0.3~1.0, HER값 또한 55%~70%로서 우수한 항복비와 신장 플랜지성을 나타내고 있음을 알 수 있다.As described above, the inventive steels 1-9, which satisfy the characteristics suggested by the present invention steel, have a yield ratio in the range of 0.8 to 0.87, and have an excellent yield ratio with R / t 0.3 to 1.0 and HER value of 55% to 70%. It can be seen that and the elongation flange properties.
도 1 및 도 2에 발명강 5-1번의 미세조직이 나타나 있다. 도 1에 나타난 바와 같이 마르텐사이트 평균입경이 2㎛ 이하 이며, 이중 베이나이트의 평균입경이 3㎛ 이하임을 확인할 수 있다. 또한 도 2의 강중 석출물을 나타낸 결과에서도 TiC, NbC와 같은 10㎚ 이하의 매우 미세한 나노 석출물들이 다량 분포하고 있었으며, 이로 인해 미세조직의 경도값이 높고 상간 경도편차가 낮아 0.8이상의 항복강도와 R/t 0.3~1.0, 50%이상의 HER값을 가지는 고강도강판을 제조할 수 있었다.1 and 2 shows the microstructure of invention steel No. 5-1. As shown in FIG. 1, the average particle size of martensite is 2 μm or less, and the average particle diameter of bainite is 3 μm or less. In addition, even in the results showing the precipitates in FIG. 2, very large nano precipitates of 10 nm or less, such as TiC and NbC, were distributed in large quantities. As a result, a high hardness value of the microstructure and a low hardness deviation between phases resulted in a yield strength of 0.8 or higher and R /. t 0.3 ~ 1.0, it was possible to manufacture a high strength steel sheet having a HER value of more than 50%.
또한 성분이 본 발명강을 만족하더라도 소둔조건이 본 발명강의 조건을 만족하지 못하거나 또는 성분에서 본 발명강을 만족하지 못하는 비교재의 경우는 본 발명강에서 요구하는 재질특성을 만족하지 못하였다.In addition, even if the component satisfies the present invention steel, the annealing condition does not satisfy the conditions of the present invention steel, or the comparative material does not satisfy the present invention steel in the component did not satisfy the material properties required by the present invention steel.
비교강 2-1과 5-1은 성분은 본 발명강의 조건을 만족하지만 2차 냉각 종료 온도인 RCS온도가 440℃와 450℃로서 본 발명에서 제시하는 Ms온도 이하의 냉각속도를 만족하지 못하여 고온 과시효에 의해 소둔시 생성된 오스테나이트가 마르텐사이트로 변태되지 못하고 고온변태상인 베이나이트, 그래뉼라 베이나이트(granular bainite)등으로 생성되어 조대한 변태상이 발생하였다. 이러한 조대 변태상들은 미세조직의 경도값이 낮고 상간 경도비가 높아 항복비가 낮고 HER값이 열화를 초래하였다.In Comparative Steels 2-1 and 5-1, the components satisfy the conditions of the present invention, but the secondary cooling end temperature of the RCS temperature is 440 ° C and 450 ° C, which does not satisfy the cooling rate below the Ms temperature suggested by the present invention. The austenite produced during annealing due to overaging could not be transformed into martensite, but was formed by high temperature transformation bainite, granular bainite, etc., resulting in coarse transformation. These coarse metamorphic phases resulted in low yield ratio and low HER value due to low hardness and high hardness ratio between phases.
비교강 6-2는 소둔온도(SS)가 매우 낮아 이상역에서 소둔되었으며, 이로 인해 마르텐사이트 변태분율은 82%로서 본 발명강의 목표에 미달하였다. 이러한 페라이트의 생성은 미세조직의 경도값 하락, 상간경도비 편차 증가를 유발시켜 항복비가 낮고 HER값이 열화한 결과를 초래하였다.Comparative steel 6-2 was annealed in the ideal region because the annealing temperature (SS) is very low, and the martensite transformation fraction was 82%, which fell short of the target of the invention steel. The formation of ferrite caused a decrease in the hardness value of the microstructure and an increase in the deviation of the hardness ratio between phases, resulting in a low yield ratio and a deterioration of the HER value.
비교강 6-3은 소둔온도(SS)가 890℃로 매우 높아 고온소둔에 따른 오스트나이트 결정립크기 증가로 냉각시 생산되는 마르텐사이트 조직 크기가 증가하여, 마르텐사이트 평균입경이 2㎛ 이하이면서 베이나이트의 평균입경이 3㎛ 이하로 제조할 수 없었고, 이로 인해 항복비와 HER값이 열화되었다.Comparative steel 6-3 has an annealing temperature (SS) of 890 ° C., which increases the size of the martensite structure produced during cooling due to an increase in austenite grain size due to high temperature annealing. The average particle diameter of was not able to manufacture below 3㎛, resulting in degradation of yield ratio and HER value.
비교강 9~12는 탄소함량이 본 발명강에서 제시하는 탄소의 성분범위를 초과하였다. 이러한 탄소의 증가는 소둔후 급냉공정에서 생성되는 마르텐사이트의 강도를 증가시키는 역할을 하게 된다. 그러나 급냉후 과시효처리시 모든 마르텐사이트가 템퍼링되지 못하고 래쓰형으로 잔존하고 있다. 이때 발생하는 템퍼드 마르텐사이트의 경우는 탄소의 석출로 인해 강도가 감소하게 되지만 템퍼링되지 못한 래쓰형 마르텐사이트는 매우 안정적인 마르텐사이트로서 첨가된 탄소로 인해 매우 높은 강도를 가지게 된다. 따라서 탄소함량이 본 발명강에서 제시한 성분을 초과하게 되면 래쓰 마르텐사이트와 과시효처리에서 생성된 템퍼드 마르텐사이트간의 강도차이 증가로 인해 HER값과 항복비가 본 발명강에서 제시하는 기준을 만족하지 못하게 된다.Comparative steels 9 to 12 exceeded the carbon content ranges of carbon presented in the present invention steel. This increase in carbon serves to increase the strength of martensite produced in the quenching process after annealing. However, after quenching and overaging, all martensite remains tempered rather than tempered. In this case, the tempered martensite is reduced in strength due to precipitation of carbon, but the non-tempered lattice type martensite is very stable martensite and has a very high strength due to the added carbon. Therefore, when the carbon content exceeds the component suggested by the present invention steel, the HER value and the yield ratio do not satisfy the criteria suggested by the present invention due to the increase in the strength difference between the rat martensite and the tempered martensite produced in the overaging treatment. I can't.
비교강 13~15는 탄소함량 또는 Mn, Cr 함량이 본 발명강의 기존을 만족하지 못하였다. 즉 비교강 13과 14는 낮은 Mn 또는 Cr 함량으로 인해 충분한 마르텐사이트의 변태가 발생하지 않았으며, 비교강 15는 탄소함량은 높지만 Cr 함량이 낮아 상간 경도비가 높고 조대한 마르텐사이트의 생성에 의해 항복비와 HER값이 열화하였다.Comparative steels 13 to 15 did not satisfy the carbon content or Mn, Cr content of the present invention steel. That is, comparative steels 13 and 14 did not have sufficient transformation of martensite due to the low Mn or Cr content, and comparative steel 15 had a high carbon content but a low Cr content, yielding a high ratio between phases and yielding coarse martensite. The ratio and HER value deteriorated.
비교강 16은 Si 함량이 매우 높았다. 일반적으로 Si는 페라이트 형성원소로서 첨가량이 증가하게 되면 냉각시 페라이트 생성을 촉진하게 된다. 16번강은 높은 Si첨가로 인해 생성되는 마르텐사이트량이 81%로서 본 발명에서 제시하는 기준을 만족하지 못하였으며, 미세조직내 경도값 하락, 상간 경도비 증가등으로 항복비가 낮고 HER값이 열화하였다.Comparative steel 16 had a very high Si content. In general, Si is a ferrite forming element, and when the amount is increased, it promotes ferrite formation upon cooling. Steel No. 16 produced 81% martensite due to the high Si content, which did not satisfy the criteria suggested by the present invention. The yield ratio was low and the HER value was deteriorated due to a decrease in hardness value and an increase in hardness ratio between phases.
비교강 17은 Ti, Nb가 본 발명강의 조건을 만족하지 못한 경우이다. 앞서 언급한 바와 같이 Ti, Nb는 탄소와 결합하여 나노 석출물을 형성시키고, 이러한 나노 석출물은 기지조직을 강화시켜 상간의 경도차이를 감소시키는 역할을 한다. 그러나 비교강 17은 Ti, Nb가 매우 적어 충분힌 석출물을 형성하지 못하게 되고, 이로 인해 나노석출물 분포, 상간 경도비 증가등으로 항복비와 HER값이 열화하였다.Comparative steel 17 is a case where Ti and Nb do not satisfy the conditions of the inventive steel. As mentioned above, Ti and Nb combine with carbon to form nano precipitates, and these nano precipitates serve to reduce the hardness difference between phases by strengthening the matrix structure. However, Comparative Steel 17 did not have enough Ti and Nb to form sufficient precipitates, resulting in deterioration of yield ratio and HER value due to the distribution of nano precipitates and increasing the hardness ratio between phases.
이하에서는 강재의 물성의 측정법과 물성에 따른 효과에 대해 설명한다.Hereinafter, the measuring method and the effect of the physical properties of the steel.
변태조직의 경도는 나노인덴터(Nano-Indenter, NT110)기기를 이용하여 2g의 하중으로 100point를 정방형으로 측정하여 최대, 최소값을 제외한 값들을 활용하였다. 또한 베이나이트, 마르텐사이트와 나노석출물은 FE-TEM을 통해 평가하였다. 특히 나노석출물의 크기 및 분포밀도는 FE-TEM으로 측정된 석출물 조직사진을 화상해석(image analyzer) 설비를 이용하여 평가하였다. 또한 변태조직의 분율은 SEM으로 관찰후 화상해석 설비를 이용하였다.The hardness of the metamorphic tissue was measured by using a Nano-Indenter (NT110) device to measure 100 points in a square with a load of 2g, excluding maximum and minimum values. In addition, bainite, martensite and nano precipitates were evaluated by FE-TEM. In particular, the size and distribution density of the nano precipitates were evaluated by using an image analyzer equipment for the texture photograph of the precipitates measured by FE-TEM. In addition, the fraction of metamorphic tissue was observed by SEM and the image analysis equipment was used.
앞에서 언급한 바와 같이 본 발명강에서 제시한 R/t 1이하 및 HER 50%이상의 신장플랜지성과 0.8이상의 항복비가 우수한 강재를 제조하기 위해서는 미세조직 및 석출물의 제어가 매우 중요하다. 굽힘가공성, 신장 플랜지성과 항복비를 동시에 증가시키는 방법으로는 저온 단상조직을 확보하는 기술이 필요하다. 일반적으로 저온조직중 가장 높은 강도를 가지는 조직이 마르텐사이트이며 기 공지된 바와 같이 가장 용이하게 마르텐사이트를 제조하는 방법은 소둔시 오스테나이트가 충분히 형성될 수 있는 시간동안 유지한후 수냉을 하고 템퍼링처리하는 것이다. 그러나 수냉방식은 재질편차, 형상불량등의 문제로 인한 생산성 열화로 본 발명에서는 합금원소 제어에 의한 마르텐사이트 확보를 도모하고자 하였다. 즉 Mn, Cr등의 경화능원소를 일정량이상 첨가함으로써 낮은 냉각속도에서도 마르텐사이트를 확보하는 기술이다. 그러나 이러한 방법은 높은 합금원소 첨가로 인한 용접성 열화등의 문제가 발생할 수있다. 따라서 본 발명에서는 용접성에 가장 큰 영향을 미치는 탄소함량을 최소화하고자 하였다. 이 때문에 본 발명에서는 탄소함량을 0.07%이하로 제한하였다.As mentioned above, it is very important to control the microstructure and precipitates in order to produce a steel having excellent elongation flange of R / t 1 or less and HER 50% or more and yield ratio of 0.8 or more. As a method of simultaneously increasing bending workability, elongation flangeability and yield ratio, it is necessary to secure a low temperature single phase structure. In general, the tissue having the highest strength among the low-temperature tissues is martensite, and as is well known, the method for preparing martensite is the process of maintaining water for sufficient time to form austenite during annealing, followed by water cooling and tempering treatment. will be. However, the water-cooling method is intended to secure martensite by controlling alloy elements in the present invention due to deterioration in productivity due to problems such as material deviation and shape defects. In other words, by adding a certain amount of hardenable elements such as Mn, Cr, etc., martensite is secured even at a low cooling rate. However, this method may cause problems such as deterioration of weldability due to the addition of high alloying elements. Therefore, in the present invention, it is intended to minimize the carbon content that has the greatest impact on the weldability. For this reason, in the present invention, the carbon content is limited to 0.07% or less.
본 발명과 같은 냉각조건에서 높은 항복비를 확보하기 위해서는 합금원소를 가능한 다량 첨가하여야 한다. 그러나 이러한 시도는 용접성 열화, 열연강도 증가등의 문제를 추가로 야기하고 있으므로 이에 대한 해결이 필요하다. 그러나, 과도한 합금원소 첨가 없이도 마르텐사이트의 크기와 나노석출물을 제어할 경우 본 발명에서 제시하는 신장 플랜지성과 항복비를 만족할 수 있게 되는 것이다.In order to secure a high yield ratio under cooling conditions such as the present invention, an alloy element should be added as much as possible. However, such an attempt causes additional problems such as deterioration of weldability and increase in hot rolled strength. However, when the martensite size and nano precipitates are controlled without excessive addition of alloying elements, it is possible to satisfy the stretch flangeability and yield ratio proposed in the present invention.
본 발명에 따른 강재는, 변태조직의 분율이 90%이상으로 제어되어야 하며, 이때 변태조직은 베이나이트와 템퍼트 마르텐사이트로 구성되어 있다. R/t, HER과 항복비를 증가시키기 위해서는 가능한 100%의 변태조직이 유리하다. 강도를 증가시키기 위해서는 변태조직의 크기를 가능한 작게 하는 것이 바람직하였다. 마르텐사이트와 베이나이트의 평균입경이 본 발명의 범위를 벗어날 경우, 굽힘가공성 및 신장플랜지성과 항복비를 만족할 수 없었다.Steel according to the present invention, the percentage of metamorphic tissue should be controlled to 90% or more, wherein the metamorphic tissue is composed of bainite and temper martensite. In order to increase the R / t, HER and yield ratio, 100% of the metamorphosis is possible. In order to increase the strength, it is desirable to make the size of the metamorphic tissue as small as possible. When the average particle diameter of martensite and bainite is outside the scope of the present invention, the bending workability and the elongation flange and the yield ratio could not be satisfied.
0.8이상의 항복비를 확보하기 위해서는 강중에 형성되는 조직의 평균 경도가 340Hv이상이 되어야 한다. 한편 굽힘가공성과 신장 플랜지성 측면에서는 상간 강도비 제어가 매우 중요하므로 R/t 1 이하인 동시에 HER 50%이상을 확보하기 위해서는 미세조직내 연질상과 경질상의 경도비가 1.3이내로 제어할 필요가 있다. 변태상의 경도값과 더불어 상간 경도비를 만족하지 못하는 경우 R/t 1 이하와 50%이상의 HER값과 0.8이상의 항복비의 확보가 불가능하였다.In order to secure a yield ratio of 0.8 or more, the average hardness of the structure formed in the steel should be 340 Hv or more. On the other hand, in terms of bending workability and elongation flangeability, it is very important to control the phase-to-strength ratio, so that the hardness ratio of the soft phase and the hard phase within the microstructure must be controlled to 1.3 or less to secure HER 50% or less at the same time. When the hardness ratio between phases and the hardness ratio between phases were not satisfied, it was impossible to secure the HER value below R / t 1, more than 50%, and yield ratio above 0.8.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.Although embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains may implement the present invention in other specific forms without changing the technical spirit or essential features thereof. I can understand that.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변경된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. The scope of the present invention is shown by the following claims rather than the detailed description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. .

Claims (8)

  1. 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하고,Weight% C: 0.035 ~ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ~ 3.5%, Cr: 0.3 ~ 1.2%, Ti: 0.03 ~ 0.08%, Nb: 0.01 ~ 0.05%, balance Fe and inevitable impurities,
    전체 미세조직 중 템퍼드 마르텐사이트 및 베이나이트를 포함하는 변태조직이 차지하는 부피 분율이 90% 이상이며, 템퍼드 마르텐사이트 조직의 평균입경이 2㎛ 이하이고, 베이나이트 조직의 평균입경이 3㎛ 이하이며, 입경이 3㎛를 초과하는 베이나이트 조직의 부피 분율이 5% 이하인 것을 특징으로 하는, 고강도강.The volume fraction of metamorphic tissues including tempered martensite and bainite is 90% or more, the average particle diameter of tempered martensite tissue is 2 µm or less, and the average particle diameter of bainite tissue is 3 µm or less. And a volume fraction of bainite structure having a particle diameter of more than 3 µm is 5% or less.
  2. 청구항 1에 있어서,The method according to claim 1,
    중량%로, B: 0.0010-0.0050%, P: 0.001~0.10%, S: 0.010%이하, Sol.Al: 0.01~0.10%, N: 0.010%이하를 더 첨가하는 것을 특징으로 하는, 고강도강.High-strength steel, characterized by further adding B: 0.0010-0.0050%, P: 0.001-0.10%, S: 0.010% or less, Sol.Al: 0.01-0.10%, N: 0.010% or less.
  3. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    미세조직의 평균 경도값(Hv)이 340이상이고, 경도값의 최대값이 최소값의 1.3배 이하인 것을 특징으로 하는, 고강도강.High-strength steel, characterized in that the average hardness value (Hv) of the microstructure is 340 or more, and the maximum value of the hardness value is 1.3 times or less of the minimum value.
  4. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    상기 변태조직 중 직경 10㎚ 이하의 나노석출물의 분포밀도가 150개/㎛2 이상인 것을 특징으로 하는, 고강도강.High-strength steel, characterized in that the distribution density of the nano-precipitates of 10 nm or less in the metamorphic structure is 150 / 탆 2 or more.
  5. 청구항 1 또는 2에 있어서,The method according to claim 1 or 2,
    인장강도가 980MPa 이상이고, 항복강도가 780MPa 이상인 것을 특징으로 하는, 고강도강.A high strength steel, characterized in that the tensile strength is 980 MPa or more, and the yield strength is 780 MPa or more.
  6. 중량 %로 C: 0.035~0.07%, Si: 0.3%이하(0은 제외), Mn: 2.0~3.5%, Cr: 0.3~1.2%, Ti: 0.03~0.08%, Nb: 0.01~0.05%, 잔부 Fe 및 불가피한 불순물을 포함하는 슬라브를 제조하는 단계;Weight% C: 0.035 ~ 0.07%, Si: 0.3% or less (excluding 0), Mn: 2.0 ~ 3.5%, Cr: 0.3 ~ 1.2%, Ti: 0.03 ~ 0.08%, Nb: 0.01 ~ 0.05%, balance Preparing a slab comprising Fe and inevitable impurities;
    상기 슬라브를 마무리압연 출구측 온도가 Ar3~Ar3+50℃가 되도록 열간압연하여 열연강판을 제조하는 단계;Manufacturing a hot rolled steel sheet by hot rolling the slab to a finish rolling outlet temperature of Ar 3 to Ar 3 + 50 ° C .;
    상기 열연강판을 40~70%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계;Cold rolling the hot rolled steel sheet at a reduction ratio of 40 to 70% to produce a cold rolled steel sheet;
    상기 냉연강판을 Ac3±30℃의 온도 범위에서 연속소둔하는 단계;Continuously annealing the cold rolled steel sheet in a temperature range of Ac 3 ± 30 ° C;
    상기 연속소둔하는 단계 이후 650~700℃까지 1~10℃/초의 냉각속도로 1차 냉각하는 단계;First cooling after the continuous annealing step at a cooling rate of 1˜10 ° C./sec to 650˜700 ° C .;
    상기 1차 냉각하는 단계 이후, Ms-100~Ms℃까지 5~20℃/초의 냉각속도로 2차 냉각하는 단계;를 포함하는, 고강도강 제조 방법.After the first step of cooling, the second step of cooling at a cooling rate of 5 ~ 20 ℃ / sec to Ms-100 ~ Ms ℃; comprising, high strength steel manufacturing method.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 2차 냉각하는 단계 이후에, 온도를 일정하게 유지하면서 과시효시키는 단계;를 더 포함하는 것을 특징으로 하는, 고강도강 제조 방법.After the secondary cooling step, the step of overaging while maintaining a constant temperature; characterized in that it further comprises, high strength steel manufacturing method.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 과시효시키는 단계는, 전체 조직 중 템퍼드 마르텐사이트와 베이나이트로 구성된 변태조직의 부피분율이 95% 이상이 되도록 시효 시간을 조절하는 것을 특징으로 하는, 고강도강 제조 방법.The overaging step is characterized in that the aging time is adjusted so that the volume fraction of metamorphic tissue consisting of tempered martensite and bainite of the entire tissue is 95% or more, high strength steel manufacturing method.
PCT/KR2016/007678 2015-12-23 2016-07-14 High strength steel and manufacturing method therefor WO2017111233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150184776 2015-12-23
KR10-2015-0184776 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017111233A1 true WO2017111233A1 (en) 2017-06-29

Family

ID=59090680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007678 WO2017111233A1 (en) 2015-12-23 2016-07-14 High strength steel and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2017111233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874195B2 (en) 2017-05-11 2020-12-29 Nichiei Co., Ltd. Method for forming a facial pad

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161336A (en) * 2000-09-12 2002-06-04 Nkk Corp Super high tensile-strength cold-rolled steel sheet and manufacturing method therefor
KR20130140207A (en) * 2011-05-25 2013-12-23 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
KR20140137591A (en) * 2013-05-23 2014-12-03 주식회사 포스코 High yield ratio ultra high strength steel cold rolled steel sheet having excellent bendability and method for producing the same
JP2015034326A (en) * 2013-08-09 2015-02-19 Jfeスチール株式会社 High yield ratio high strength cold rolled steel sheet and production method thereof
KR20150110700A (en) * 2013-02-26 2015-10-02 신닛테츠스미킨 카부시키카이샤 HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 980MPa OR ABOVE, AND HAVING EXCELLENT AND BAKING HARDENABILITY AND LOW-TEMPERATURE TOUGHNESS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161336A (en) * 2000-09-12 2002-06-04 Nkk Corp Super high tensile-strength cold-rolled steel sheet and manufacturing method therefor
KR20130140207A (en) * 2011-05-25 2013-12-23 신닛테츠스미킨 카부시키카이샤 Cold-rolled steel sheet and method for producing same
KR20150110700A (en) * 2013-02-26 2015-10-02 신닛테츠스미킨 카부시키카이샤 HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING MAXIMUM TENSILE STRENGTH OF 980MPa OR ABOVE, AND HAVING EXCELLENT AND BAKING HARDENABILITY AND LOW-TEMPERATURE TOUGHNESS
KR20140137591A (en) * 2013-05-23 2014-12-03 주식회사 포스코 High yield ratio ultra high strength steel cold rolled steel sheet having excellent bendability and method for producing the same
JP2015034326A (en) * 2013-08-09 2015-02-19 Jfeスチール株式会社 High yield ratio high strength cold rolled steel sheet and production method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874195B2 (en) 2017-05-11 2020-12-29 Nichiei Co., Ltd. Method for forming a facial pad

Similar Documents

Publication Publication Date Title
JP4850908B2 (en) High-manganese-type high-strength hot-rolled steel sheet excellent in workability and manufacturing method thereof
KR100851158B1 (en) High Manganese High Strength Steel Sheets With Excellent Crashworthiness, And Method For Manufacturing Of It
KR101674751B1 (en) Precipitation hardening steel sheet having excellent hole expandability and method for manufacturing the same
KR101630975B1 (en) High strength cold rolled steel sheet having high yield ratio and excellent hole expansibility and method for manufacturing the same
KR102153197B1 (en) Cold rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof
KR101767780B1 (en) High strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
KR20170075853A (en) Ultra high strength and high ductility steel sheet having excellent yield strength and hole expansion ratio, and method for manufacturing the same
KR102020407B1 (en) High-strength steel sheet having high yield ratio and method for manufacturing thereof
KR101917452B1 (en) Cold rolled steel sheet with excellent bendability and hole expansion property, and method for manufacturing the same
KR101620744B1 (en) Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
KR101353634B1 (en) Low alloy cold rolled steel sheet having excellent weldability and strength and method for manufacturing the same
KR102255823B1 (en) High-strength steel having excellent formability and high yield ratio and method for manufacturing same
KR20150142791A (en) High strength cold rolled steel sheet excellent in shape freezability, and manufacturing method thereof
KR20210061531A (en) Steel sheet having high strength and high formability and method for manufacturing the same
WO2017111233A1 (en) High strength steel and manufacturing method therefor
KR101899681B1 (en) Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
KR100985322B1 (en) High strength cold rolled steel sheet having superior workability
KR102075216B1 (en) High strength steel sheet having high yield ratio and method for manufacturing the same
KR100946066B1 (en) Method for Manufacturing Ultra High Strength Cold-rolled Steel Sheets for Automotive Bumper Reinforcements
KR101988760B1 (en) Ultra-high strength steel sheet having excellent formability, and method for manufacturing thereof
WO2024005283A1 (en) Cold-rolled steel sheet and method for manufacturing same
KR101079383B1 (en) The precipitation hardening cold rolled steel sheet having excellent yeild strength and ductility and method for manufacturing the same
KR102398271B1 (en) High-strength steel sheet having excellent bendability and hole expandability and method for manufacturing same
WO2024058312A1 (en) Ultra-high strength cold-rolled steel sheet and method for manufacturing same
JP2003268490A (en) Thin steel sheet for working excellent in bake hardenability and aging resistance and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16879101

Country of ref document: EP

Kind code of ref document: A1