WO2017111134A1 - Polyimide copolymer and molded body using same - Google Patents

Polyimide copolymer and molded body using same Download PDF

Info

Publication number
WO2017111134A1
WO2017111134A1 PCT/JP2016/088575 JP2016088575W WO2017111134A1 WO 2017111134 A1 WO2017111134 A1 WO 2017111134A1 JP 2016088575 W JP2016088575 W JP 2016088575W WO 2017111134 A1 WO2017111134 A1 WO 2017111134A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide copolymer
diamine
dianhydride
polyimide
bis
Prior art date
Application number
PCT/JP2016/088575
Other languages
French (fr)
Japanese (ja)
Inventor
奈央 渡邉
Original Assignee
ソマール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソマール株式会社 filed Critical ソマール株式会社
Priority to KR1020187017215A priority Critical patent/KR102390851B1/en
Priority to CN201680075543.7A priority patent/CN108431087A/en
Publication of WO2017111134A1 publication Critical patent/WO2017111134A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • plastic substrates such as substrate glass and cover glass
  • plastic substrates are strongly demanded for portable information terminals such as mobile phones, smartphones, and tablet PCs.
  • resin materials that have excellent heat resistance, mechanical properties, and transparency suitable for the above-described applications and that can suppress yellowing due to exposure to heat and light have been studied.
  • Polyimide is widely used as a heat-resistant insulating material in the electric and electronic industry because it has excellent heat resistance, mechanical properties, chemical resistance, and electrical insulation.
  • conventional polyimides starting from aromatic compounds are colored yellow-brown in the steady state due to intramolecular conjugation and charge transfer complex formation, so they are not suitable as a substitute for glass that requires transparency. .
  • an aromatic compound is not used as a polyimide constituent unit, and all are composed of aliphatic and / or alicyclic compounds. All aliphatic polyimides have been proposed.
  • aliphatic and / or alicyclic compounds are inferior in heat resistance as compared to conventionally used aromatic compounds and have low polymerization reactivity, so that the heat resistance and mechanical strength of the resulting polyimide are reduced.
  • yellowing due to oxidation in the heat treatment process becomes a problem.
  • the problem of heat resistance can be improved by introducing rigid aromatic raw materials into the polyimide resin structure, but this reduces the transparency and solubility of the polyimide.
  • an object of the present invention is to provide a polyimide copolymer having higher transparency and elastic modulus while maintaining excellent solubility, and a molded body using the same.
  • the present inventors have maintained excellent solubility in a polyimide copolymer obtained by copolymerizing an alicyclic acid dianhydride having a specific structure and a diamine having a hydroxyl group.
  • the polyimide copolymer of the present invention is derived from 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride.
  • a structural unit derived from a diamine having a unit and a hydroxyl group is contained.
  • the diamine having a hydroxyl group is preferably a diamine represented by the following general formula (1).
  • R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
  • the diamine having a hydroxyl group at least one of 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane and bis (3-amino-4-hydroxyphenyl-3-amino-4-hydroxyphenyl) sulfone is used. It is preferable to include.
  • polyimide copolymer of the present invention is characterized by having a structural unit represented by the following general formula (2).
  • R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
  • R 1 is preferably a divalent organic group derived from a diamine compound represented by the following formula (3) or formula (4).
  • the molded article of the present invention is characterized by containing any of the above polyimide copolymers.
  • the transparency and elastic modulus can be further improved while maintaining the solubility of the polyimide copolymer.
  • the polyimide copolymer of the present invention and a molded body using the same are obtained by copolymerizing an alicyclic acid dianhydride component having a specific structure and a diamine component having a hydroxyl group.
  • alicyclic acid dianhydride is used as a raw material, the problem of coloration of polyimide resin due to intramolecular conjugation and formation of a charge transfer complex is solved.
  • the polyimide copolymer of the present invention is obtained by copolymerizing (A) an alicyclic acid dianhydride having the structure of formula (5) and (B) a diamine having a hydroxyl group.
  • the polyimide copolymer of the present invention has an alicyclic acid anhydride (1,1′-bicyclohexane) represented by the formula (5) as an acid dianhydride component.
  • -3,3 ', 4,4'-tetracarboxylic acid-3,4: 3', 4'-dianhydride is used as a constituent.
  • 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride is described, for example, in JP-A No. 2014-151559. Although it can synthesize
  • acid dianhydrides represented by the formula (5) can be used as a constituent component as long as the effects of the present invention are not affected.
  • acid dianhydrides include 3,3′4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 4,4′-oxydiphthalic dianhydride, 1,2 , 3,4-pentanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofurfuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, 5- (2, 5-dioxotetrahydrofurfuryl) -3-cyclohexene-1,2-dicarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, ethylene glycol bistrimellitic dianhydride, 2,2 ′, 3,3 ′ -Biphenyltetracarbox
  • the polyimide copolymer of this invention uses the diamine which has a hydroxyl group as a structural component.
  • the diamine having a hydroxyl group is not particularly limited, and a diamine represented by the following general formula (1) is used.
  • R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO—, or a direct bond
  • R 21 is preferably —SO 2 —, —C (CF 3 ) 2 —, or a direct bond, —SO 2 —, —C (CF 3 ) 2.
  • R 21 in the formula is more preferably —C (CF 3 ) 2 —.
  • diamine examples include 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) represented by the formula (3) and bis (3 -Amino-4-hydroxyphenyl) sulfone (SO2-HOAB) and the like.
  • BisAPAF containing fluorine is more preferable from the viewpoint of improving the solubility of the polyimide copolymer and suppressing the increase in water absorption due to the introduction of hydroxyl groups into the polyimide copolymer structure.
  • the hydroxyl group is formed by copolymerizing the 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride and a diamine having a hydroxyl group.
  • the polyimide copolymer which has is obtained.
  • a hydrogen bond arises between the hydroxyl groups of a polyimide copolymer molecule, or between a hydroxyl group and another functional group.
  • a dense network structure is formed between the polyimide copolymers, and the elastic modulus of the obtained polyimide resin is improved by the intermolecular cohesive force of hydrogen bonds. For this reason, in this invention, the elasticity modulus of a polyimide resin can be improved effectively, maintaining transparency and solubility.
  • a diamine other than a diamine having a hydroxyl group can be used as a constituent component as long as the effect of the present invention is not affected.
  • diamines are not particularly limited, and specific examples of diamine compounds include 9,9-bis (4-aminophenyl) fluorene, 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, Phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4- (4-a
  • 4,4′-diaminodiphenyl ether 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (4-aminophenoxy) phenyl) sulfone, 4,4′-methylenebis (cyclohexylamine), 2,7-fluorenediamine, 2,2′-bis (trifluoromethyl) -4,4′-biphenyldiamine 9,9-bis (4-aminophenyl) fluorene and the like are preferable.
  • a sterically bulky cardo structure or a fluorine-containing diamine is used. It is preferable to use it. From the viewpoint of improving the heat resistance and film quality of the molded article of the present invention, 9,9-bis (4-aminophenyl) fluorene, 2,2′-bis (trifluoromethyl) -4,4′-biphenyldiamine Is more preferable.
  • the polyimide copolymer of the present invention can be dissolved in an organic solvent.
  • organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, N, N-dimethylformamide, N, N-diethylacetamide, gamma-butyrolactone, alkylene glycol monoalkyl ether, alkylene Glycol dialkyl ether, alkyl carbitol acetate, benzoate and the like can be used.
  • These organic solvents may be used alone or in combination of two or more.
  • the method for producing a polyimide copolymer of the present invention includes a step of (A) copolymerizing an alicyclic acid dianhydride having a specific structure and (B) a diamine having a hydroxyl group to produce a polyimide copolymer. .
  • an acid dianhydride other than the component (A) and / or a diamine other than the component (B) can be added as desired.
  • These components are preferably polymerized in an organic solvent at 150 to 200 ° C. in the presence of a catalyst.
  • the polymerization method is not particularly limited, and a known method can be used.
  • a method may be used in which the acid dianhydride and the diamine are all put into an organic solvent at a time for polymerization.
  • the above-mentioned total amount of the acid dianhydride is put in an organic solvent, and then a method of polymerizing by adding a diamine in an organic solvent in which the acid dianhydride is dissolved or suspended,
  • a method may be employed in which an acid dianhydride is added and polymerized in an organic solvent in which the diamine is dissolved after being put in a solvent.
  • a sequential addition method can also be used.
  • the polymerization method by the sequential addition method is also not particularly limited.
  • (A ) Component acid dianhydride and / or (B) component diamine may be additionally added.
  • acid dianhydride other than (A) component and / or ( A diamine other than the component B) can be additionally added.
  • the acid dianhydride of (A) component and / or ( B) Component diamine can be additionally added.
  • the organic solvent used for producing the polyimide copolymer of the present invention is not particularly limited.
  • N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, N, N-dimethylformamide, N, N-diethylacetamide, etc., gamma-butyrolactone, alkylene glycol dialkyl ether, alkyl carbitol acetate, benzoic acid Esters can be suitably used.
  • These organic solvents may be used alone or in combination of two or more.
  • the polymerization temperature is preferably 150 to 200 ° C. If the polymerization temperature is less than 150 ° C., imidization may not proceed or may not be completed. On the other hand, when the temperature exceeds 200 ° C., the resin concentration increases due to oxidation of the solvent and unreacted raw materials and volatilization of the solvent.
  • the polymerization temperature is more preferably 160 to 195 ° C.
  • the catalyst used for the production of the polyimide copolymer of the present invention is not particularly limited, and a known imidization catalyst can be used.
  • a known imidization catalyst can be used.
  • pyridine can usually be used.
  • a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of a nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxy group, or an aromatic heterocyclic compound A cyclic compound is mentioned.
  • lower alkyl imidazoles such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, N-benzyl Imidazole derivatives such as -2-methylimidazole, substituted pyridines such as isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine, etc. , P-toluenesulfonic acid and the like can be preferably used.
  • the amount of the imidization catalyst used is preferably 0.01 to 2 equivalents, more preferably 0.02 to 1 equivalents, based on the amic acid unit of the polyamic acid.
  • an azeotropic solvent can be added to the organic solvent in order to efficiently remove the water generated by the imidization reaction.
  • aromatic hydrocarbons such as toluene, xylene and solvent naphtha
  • alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane can be used.
  • the amount added is preferably about 1 to 30% by mass, more preferably 5 to 20% by mass, based on the total amount of organic solvent.
  • ⁇ Chemical imidization method> When the polyimide copolymer of the present invention is produced by a chemical imidization method, the acid dianhydride and / or the component (B) other than the component (A), the component (B), and the component (A) used as desired. Copolymerize with other diamines. In this copolymer production process, a dehydrating agent such as acetic anhydride and a catalyst such as triethylamine, pyridine, picoline, or quinoline are added to the polyamic acid solution. In the chemical imidization method, the imidization reaction is usually carried out by heating at 60 ° C. to 120 ° C., but the reaction may be completed at room temperature.
  • the reaction time is preferably 1 to 200 hours.
  • unreacted dehydrating agent such as acetic anhydride
  • by-products such as carboxylic acid (such as acetic acid and amine salt of acetic acid) are removed to purify the polyimide copolymer.
  • the purification method is not particularly limited, and a known method can be used.
  • the reaction solution may be dropped into a poor solvent such as water or alcohol while stirring to precipitate a polyimide copolymer, followed by washing and drying under reduced pressure.
  • the same imidization catalyst and organic solvent as in the thermal imidization method can be used.
  • Examples of methods for forming a film, film or sheet from the polyimide copolymer of the present invention include known methods such as spin coating, dipping, spraying and casting.
  • a coating, film or sheet is obtained by applying the polyimide copolymer to the surface of the substrate by a selected method according to the viscosity or the like and then drying.
  • any material may be used according to the use of the final product.
  • textile products such as cloth, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polycarbonate, triacetylcellulose, cellophane, polyimide, polyamide, polyphenylene sulfide, polyetherimide, polyethersulfone, aromatic polyamide, or polysulfone.
  • the substrate may be transparent, or may be colored by blending various pigments and dyes with the material constituting the substrate, and the surface may be processed into a mat shape.
  • an ordinary heating and drying furnace may be used for drying the coated polyimide copolymer of the present invention.
  • the atmosphere in the drying furnace include air, inert gas (nitrogen, argon), and vacuum.
  • the drying temperature can be appropriately selected depending on the boiling point of the solvent in which the polyimide copolymer of the present invention is dissolved, but is usually 80 to 350 ° C., preferably 100 to 320 ° C., particularly preferably 120 to 250 ° C. Good.
  • the drying time may be appropriately selected depending on the thickness, concentration, and type of solvent, and can be about 1 second to 360 minutes.
  • a product having the polyimide copolymer of the present invention as a film can be obtained, or a film can be obtained by separating the film from the substrate.
  • a molded body is obtained using a mold, a predetermined amount of the polyimide copolymer of the present invention is injected into the mold (especially a rotating mold is preferable), and then the same temperature as the molding conditions of the film, A molded body can be obtained by drying over time.
  • fillers such as silica, alumina, mica, carbon powder, pigments, dyes, polymerization inhibitors, thickeners, thixotropic agents, precipitation inhibitors, Antioxidants, dispersants, pH adjusters, surfactants, various organic solvents, various resins, and the like can be added.
  • the polyimide resin of the present invention is an optical fiber, optical waveguide, optical filter, lens, optical filter, adhesive sheet, interphase insulating film, semiconductor insulating protective film, TFT liquid crystal insulating film, liquid crystal alignment film, protective film for solar cell, flexible It is suitably used as an electronic material such as a display substrate, a circuit board, a lithium ion battery negative electrode member, or the like.
  • Example 1 1,1'-bicyclohexane-3,3 ', 4,4'-tetracarboxylic acid-into a 500 mL separable four-necked flask equipped with a stainless steel vertical stirrer, nitrogen inlet tube, and Dean-Stark apparatus 3,4: 3 ′, 4′-dianhydride (H-BPDA) 46.24 g, 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) 54.94 g, gamma-butyrolactone (GBL) 177.86 g, 2.37 g of pyridine and 50 g of toluene were charged and the reaction system was purged with nitrogen, and then reacted at 180 ° C.
  • H-BPDA 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane
  • BisAPAF 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane
  • Example 2 Same as Example 1, except that 49.30 g of H-BPDA was used as the acid dianhydride and 29.30 g and 22.42 g of BisAPAF and SO2-HOAB were used as the diamine in the same apparatus as in Example 1, respectively. Thus, a polyimide copolymer solution having a concentration of 25% by mass was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
  • Example 3 The same method as in Example 1 except that 61.64 g of H-BPDA was used as the acid dianhydride and 36.63 g and 32.02 g of BisAPAF and TFMB were used as the diamine in the same apparatus as in Example 1. Thus, a polyimide copolymer solution having a concentration of 35% by mass was obtained.
  • Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
  • Example 4 The same method as in Example 1, except that 49.32 g of H-BPDA and 29.30 g and 27.88 g of BisAPAF and FDA as diamines were used as the acid dianhydride in the same apparatus as in Example 1, respectively. Thus, a polyimide copolymer solution having a concentration of 35% by mass was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
  • Example 5 In the same apparatus as in Example 1, 21.76 g and 32.57 g of H-BPDA and ODPA were used as the acid dianhydride, respectively, and 29.43 g and 24.39 g of SO2-HOAB and FDA were used as the diamine, respectively. In the same manner as in Example 1, a 30% by mass concentration polyimide copolymer solution was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
  • the solubility, tensile elastic modulus and total light transmittance of the polyimide copolymers of Examples 1 to 5, Comparative Example 1 and Reference Example 1 were evaluated by the following methods. Further, the breaking strength, elongation and glass transition temperature of the polyimide copolymers of Examples 1 to 5 were measured by the following methods.
  • the measurement film was prepared by the following method. Using the polyimide copolymer solution obtained in each example, comparative example, and reference example, it was applied onto a silicon wafer by a spin coat method, and temporarily dried on a hot plate at 120 ° C. for 10 minutes. The temporarily dried film was peeled from the silicon wafer, fixed to a stainless steel frame, dried at 180 ° C. for 30 minutes, and then at 250 ° C. for 1 hour to obtain a measurement film. This film was cut into 100 mm ⁇ 10 mm and measured. For the measurement, a small desktop testing machine Ez-Test (EZ-LX manufactured by Shimadzu Corporation) was used. Each measurement was performed five times, and data showing the maximum stress at break was used. The distance between chucks was 50 mm, and the pulling speed was 100 mm / min. The obtained results are shown in Tables 1 and 2.
  • Such an improvement in the elastic modulus is considered to be due to the fact that the copolymer of Example 1 has a hydroxyl group derived from a diamine, so that a dense cross-linked structure is formed by hydrogen bonding between copolymer molecules. It is done.
  • the polyimide copolymer of the present invention uses a cohesive force between molecules due to hydrogen bonding, so that a significant improvement in elastic modulus is realized while maintaining transparency.
  • an aromatic dianhydride and a diamine having a hydroxyl group are copolymerized, it is possible to increase the elastic modulus, but there is a limit to improving the transparency.
  • H-PMDA 1,2,4,5-cyclohexanetetracarboxylic acid 1,2: 4,5-dianhydride
  • H-BPDA 1,2,4,5-cyclohexanetetracarboxylic acid 1,2: 4,5-dianhydride
  • Example 2 As shown in Table 2, even in the composition of Example 1, the polyimide copolymer of Example 2 in which SO2-HOAB was further added as a diamine and the polyimide copolymer of Example 3 in which TFMB was added were also capable of transmitting all light. It was found that excellent transparency exceeding 90% and an elastic modulus higher by 40% or more than Reference Example 1 were obtained. Moreover, in the polyimide copolymer of Example 3 to which TFMB was added, since the breaking strength and the elongation were greatly improved, the improvement of the film quality of the polyimide copolymer is expected.
  • Example 4 in which FDA is further added as a diamine to the composition of Example 1, the total light transmittance and the elastic modulus are lower than those of the polyimide copolymer of Example 1, but the breaking strength. A significant improvement was observed.
  • Example 5 in which aromatic ODPA was added to H-BPDA as an acid dianhydride and FDA was added to SO2-HOAB as a diamine, the transparency and elastic modulus were lower than in Example 1, but the glass transition temperature. A significant improvement in the breaking strength was observed.
  • the third component and the fourth component various properties can be controlled while maintaining excellent solvent solubility and transparency, and high elastic modulus. Can do. For this reason, it is thought that optimal material design is possible according to the use for which a polyimide copolymer is used.

Abstract

[Problem] To provide a polyimide copolymer that has an excellent solubility and transparency as well as a high elastic modulus, and a molded body using the polyimide copolymer. [Solution] A polyimide copolymer is produced by copolymerizing 1,1'-bicyclohexane-3,3',4,4'-tetracarboxylic acid-3,4:3',4'-dianhydride and a diamine containing a hydroxyl group. The diamine containing a hydroxyl group can be at least one of 2,2-bis(3-amino-4-hydroxyphenol)hexafluoropropane and bis(3-amino-4-hydroxyphenyl3-amino-4-hydroxyphenyl)sulfone.

Description

ポリイミド共重合体及びそれを用いた成形体Polyimide copolymer and molded body using the same
 本発明は、ポリイミド共重合体及びそれを用いた成形体に関し、特に、優れた溶解性及び透明性、並びに高い弾性率を兼ね備えたポリイミド共重合体及びそれを用いた成形体に関する。 The present invention relates to a polyimide copolymer and a molded body using the same, and more particularly to a polyimide copolymer having excellent solubility and transparency, and a high elastic modulus, and a molded body using the same.
 近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等の表示装置分野においては、軽量化、薄型化、フレキシブル化、耐破損性の向上等の要望から、基板ガラスやカバーガラス等のプラスチック基板への代替が行われている。特に、携帯電話、スマートフォン、タブレットPC等の携帯情報端末では、プラスチック基板が強く求められている。
 このため、上記用途に適合する優れた耐熱性、機械特性、透明性を有し、且つ熱や光の曝露による黄変を抑制できる樹脂材料が検討されている。
In recent years, in the field of display devices such as liquid crystal displays and organic electroluminescence displays, substitution for plastic substrates such as substrate glass and cover glass has been made due to demands for weight reduction, thinning, flexibility, and improvement in breakage resistance. It has been broken. In particular, plastic substrates are strongly demanded for portable information terminals such as mobile phones, smartphones, and tablet PCs.
For this reason, resin materials that have excellent heat resistance, mechanical properties, and transparency suitable for the above-described applications and that can suppress yellowing due to exposure to heat and light have been studied.
 ポリイミドは、優れた耐熱性、機械特性、耐薬品性及び電気絶縁性を有することから、電気電子業界では耐熱絶縁材料として広く用いられている。しかしながら、従来の芳香族化合物を出発原料としたポリイミドでは、分子内共役及び電荷移動錯体の形成により、定常状態において黄褐色に着色するため、透明性を要求されるガラスの代替としては適さなかった。
 この問題を解決するために、例えば、特許文献1には、分子内共役による着色を抑制するため、ポリイミド構成単位として芳香族化合物を用いず、全て脂肪族及び/又は脂環式化合物によって構成された全脂肪族ポリイミドが提案されている。
 しかしながら、脂肪族及び/又は脂環式化合物は、従来用いられてきた芳香族化合物に比べて耐熱性が劣るうえ、重合反応性が低いため、得られるポリイミドの耐熱性及び機械的強度が低下すると共に、熱処理過程での酸化に伴う黄変が問題となる。耐熱性の問題は、ポリイミド樹脂構造内に、剛直な芳香族原材料を導入することによって改善できるが、これにより、ポリイミドの透明性及び溶解性が低下する。
Polyimide is widely used as a heat-resistant insulating material in the electric and electronic industry because it has excellent heat resistance, mechanical properties, chemical resistance, and electrical insulation. However, conventional polyimides starting from aromatic compounds are colored yellow-brown in the steady state due to intramolecular conjugation and charge transfer complex formation, so they are not suitable as a substitute for glass that requires transparency. .
In order to solve this problem, for example, in Patent Document 1, in order to suppress coloration due to intramolecular conjugation, an aromatic compound is not used as a polyimide constituent unit, and all are composed of aliphatic and / or alicyclic compounds. All aliphatic polyimides have been proposed.
However, aliphatic and / or alicyclic compounds are inferior in heat resistance as compared to conventionally used aromatic compounds and have low polymerization reactivity, so that the heat resistance and mechanical strength of the resulting polyimide are reduced. At the same time, yellowing due to oxidation in the heat treatment process becomes a problem. The problem of heat resistance can be improved by introducing rigid aromatic raw materials into the polyimide resin structure, but this reduces the transparency and solubility of the polyimide.
 特許文献2には、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物と、ビス[4-(4-アミノフェノキシ)フェニル]スルホン及びビス[4-(3-アミノフェノキシ)フェニル]スルホンとからなる群から選ばれる少なくとも1種を、従来公知の方法で重付加反応させポリイミド前駆体を得て、次いでイミド化することにより得られる、特定の繰り返し単位を有する脂環系の溶剤可溶性ポリイミド共重合体が提案されている。特許文献2のポリイミド共重合体は、成型加工性にも優れるため、耐熱性、透明性等の光学特性、靭性等の機械特性に優れたポリイミドフィルムとすることができ、電気・電子部品、特に透明性と耐熱性が求められるディスプレイ材料として有用であることが記載されている。 Patent Document 2 discloses 1,2,4,5-cyclohexanetetracarboxylic dianhydride, bis [4- (4-aminophenoxy) phenyl] sulfone and bis [4- (3-aminophenoxy) phenyl] sulfone. An alicyclic solvent-soluble polyimide having a specific repeating unit, which is obtained by polyaddition reaction of at least one selected from the group consisting of the above by a conventionally known method to obtain a polyimide precursor and then imidization Copolymers have been proposed. Since the polyimide copolymer of Patent Document 2 is also excellent in moldability, it can be made into a polyimide film excellent in optical properties such as heat resistance and transparency, and mechanical properties such as toughness. It is described that it is useful as a display material that requires transparency and heat resistance.
特開2011-144260号公報JP 2011-144260 A 特開2008-297360号公報JP 2008-297360 A
 特許文献2のポリイミド共重合体では、優れた耐熱性が実現されるが、ディスプレイ等の表示デバイスの表層材等では視認性やフレキシブル化の観点から、より透明性に優れた高弾性率のポリイミド共重合体が求められる。しかしながら、特許文献2のポリイミド共重合体では、溶解性を維持しつつ、さらに透明性及び弾性率を向上させるには限界があると考えられる。
 そこで、本発明は、優れた溶解性を維持しつつ、さらに高い透明性及び弾性率を有するポリイミド共重合体及びそれを用いた成形体を提供することを目的とする。
In the polyimide copolymer of Patent Document 2, excellent heat resistance is realized, but in the surface layer material of a display device such as a display, from the viewpoint of visibility and flexibility, a highly elastic polyimide having more excellent transparency A copolymer is required. However, with the polyimide copolymer of Patent Document 2, it is considered that there is a limit to further improving the transparency and elastic modulus while maintaining the solubility.
Accordingly, an object of the present invention is to provide a polyimide copolymer having higher transparency and elastic modulus while maintaining excellent solubility, and a molded body using the same.
 上記課題に鑑み鋭意研究の結果、本発明者らは、特定の構造を有する脂環式酸二無水物と水酸基を有するジアミンを共重合させたポリイミド共重合体では、優れた溶解性を維持しつつ、透明性及び弾性率を大幅に向上できることを見出し、本発明に想到した。すなわち、本発明のポリイミド共重合体は、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物に由来する構成単位及び水酸基を有するジアミンに由来する構成単位を含有することを特徴とする。
 上記水酸基を有するジアミンは、下記一般式(1)で表されるジアミンであることが好ましい。
As a result of intensive studies in view of the above problems, the present inventors have maintained excellent solubility in a polyimide copolymer obtained by copolymerizing an alicyclic acid dianhydride having a specific structure and a diamine having a hydroxyl group. However, the present inventors have found that the transparency and elastic modulus can be greatly improved, and have arrived at the present invention. That is, the polyimide copolymer of the present invention is derived from 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride. A structural unit derived from a diamine having a unit and a hydroxyl group is contained.
The diamine having a hydroxyl group is preferably a diamine represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000006
          (1)
(式中R21は、-SO-、-C(CF-、-CO-又は直接結合)
Figure JPOXMLDOC01-appb-C000006
(1)
Wherein R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
 上記水酸基を有するジアミンは、2,2-ビス(3-アミノ-4-ヒドロキシフェノール)ヘキサフルオロプロパン及びビス(3-アミノ-4-ヒドロキシフェニル3-アミノ-4-ヒドロキシフェニル)スルホンの少なくとも一方を含むことが好ましい。 As the diamine having a hydroxyl group, at least one of 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane and bis (3-amino-4-hydroxyphenyl-3-amino-4-hydroxyphenyl) sulfone is used. It is preferable to include.
 また、本発明のポリイミド共重合体は、下記一般式(2)で表される構造単位を有することを特徴とする。 Further, the polyimide copolymer of the present invention is characterized by having a structural unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000007
          (2)            
(式中Rは、下記一般式(1)で表されるジアミン化合物から派生する二価の有機基)
Figure JPOXMLDOC01-appb-C000007
(2)
(Wherein R 1 is a divalent organic group derived from a diamine compound represented by the following general formula (1))
Figure JPOXMLDOC01-appb-C000008
          (1)
(式中R21は、-SO-、-C(CF-、-CO-又は直接結合)
Figure JPOXMLDOC01-appb-C000008
(1)
Wherein R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
 上記一般式(2)中、Rは、以下の式(3)又は式(4)で表されるジアミン化合物から派生する二価の有機基であることが好ましい。 In the general formula (2), R 1 is preferably a divalent organic group derived from a diamine compound represented by the following formula (3) or formula (4).
Figure JPOXMLDOC01-appb-C000009
            (3)
Figure JPOXMLDOC01-appb-C000009
(3)
Figure JPOXMLDOC01-appb-C000010
             (4)
Figure JPOXMLDOC01-appb-C000010
(4)
 また、本発明の成形体は、上記何れかのポリイミド共重合体を含むことを特徴とする。 The molded article of the present invention is characterized by containing any of the above polyimide copolymers.
 本発明では、ポリイミド共重合体の溶解性を維持しつつ、透明性及び弾性率をさらに向上させることができる。 In the present invention, the transparency and elastic modulus can be further improved while maintaining the solubility of the polyimide copolymer.
発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION
 以下、本発明の実施の形態について、詳細に説明する。
 本発明のポリイミド共重合体とそれを用いた成形体は、特定の構造を有する脂環式酸二無水物成分と水酸基を有するジアミン成分を共重合してなる。本発明では、脂環式酸二無水物を原料として用いるため、分子内共役及び電荷移動錯体の形成によるポリイミド樹脂の着色という問題が解決される。さらに、本発明では、水酸基を有するジアミンを用いることにより、ポリイミド共重合体に水酸基を導入し、ポリイミド共重合体間の水素結合に起因する凝集力により弾性率を向上させるため、ポリイミド樹脂の透明性及び溶解性を維持しつつ、高弾性を実現することができる。
 以下、本発明のポリイミド共重合体とそれを用いた成形体の実施形態について説明する。
Hereinafter, embodiments of the present invention will be described in detail.
The polyimide copolymer of the present invention and a molded body using the same are obtained by copolymerizing an alicyclic acid dianhydride component having a specific structure and a diamine component having a hydroxyl group. In the present invention, since alicyclic acid dianhydride is used as a raw material, the problem of coloration of polyimide resin due to intramolecular conjugation and formation of a charge transfer complex is solved. Furthermore, in the present invention, by using a diamine having a hydroxyl group, a hydroxyl group is introduced into the polyimide copolymer, and the elastic modulus is improved by the cohesive force resulting from the hydrogen bond between the polyimide copolymers. High elasticity can be realized while maintaining the properties and solubility.
Hereinafter, embodiments of the polyimide copolymer of the present invention and a molded body using the same will be described.
(ポリイミド共重合体)
 本発明のポリイミド共重合体は、(A)式(5)の構造を有する脂環式酸二無水物及び(B)水酸基を有するジアミンを共重合してなるものである。
(Polyimide copolymer)
The polyimide copolymer of the present invention is obtained by copolymerizing (A) an alicyclic acid dianhydride having the structure of formula (5) and (B) a diamine having a hydroxyl group.
(A)(脂環式)酸二無水物
 本発明のポリイミド共重合体は、酸二無水物成分として、式(5)で表される脂環式酸無水物(1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物)を構成成分として用いる。1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物は、例えば、特開2014-151559号に記載されている公知の方法により合成することもできるが、市販品を用いることもできる。
(A) (Cycloaliphatic) acid dianhydride The polyimide copolymer of the present invention has an alicyclic acid anhydride (1,1′-bicyclohexane) represented by the formula (5) as an acid dianhydride component. -3,3 ', 4,4'-tetracarboxylic acid-3,4: 3', 4'-dianhydride) is used as a constituent. 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride is described, for example, in JP-A No. 2014-151559. Although it can synthesize | combine by a well-known method, a commercial item can also be used.
Figure JPOXMLDOC01-appb-C000011
         (5)
Figure JPOXMLDOC01-appb-C000011
(5)
 また、本発明においては、本発明の効果に影響を与えない範囲で、式(5)で表される酸二無水物の他の酸二無水物を構成成分として用いることができる。このような酸二無水物としては、例えば、3,3’4,4’-ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、4,4’-オキシジフタル酸二無水物、1,2,3,4-ペンタンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフルフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフルフリル)-3-シクロヘキセン-1,2-ジカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、エチレングリコールビストリメリテート二無水物、2,2’,3,3 ’-ビフェニルテトラカルボン酸二無水物、チオフェン-2,3,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ペリレン-3,4,9,10-テトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、4,4’-[プロパン-2,2-ジイルビス(1,4-フェニレンオキシ)]ジフタル酸二無水物等が挙げられる。
 さらに、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物以外の脂環式酸二無水物を構成成分として用いることもできる。このような脂環式酸二無水物としては、例えば、1,1’-ビシクロヘキサン-2,3,3’4’-テトラカルボン酸二無水物、1,1’-ビシクロヘキサン-2,3,2’3’-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、ビシクロ[2.2.2]オクタン-2,3,5,6-テトラカルボン酸-2,3:5,6-二無水物、ビシクロ[2.2.1]ヘプタン-2,3,5,6-テトラカルボン酸-2,3:5,6-二無水物、ヘキサデカヒドロ-3a,11a-(2,5-ジオキソテトラヒドロフラン-3,4-ジイル)フェナントロ[9,10-c]フラン-1,3-ジオンは、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸等を挙げることができる。
 なお、これらの化合物は一種類だけ使用してもよく、また二種以上を混合して使用してもよい。例えば、芳香族の酸二無水物を構成成分として用いることにより、得られるポリイミド共重合体の耐熱性を向上させることができる。
In the present invention, other acid dianhydrides represented by the formula (5) can be used as a constituent component as long as the effects of the present invention are not affected. Examples of such acid dianhydrides include 3,3′4,4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 4,4′-oxydiphthalic dianhydride, 1,2 , 3,4-pentanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofurfuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, 5- (2, 5-dioxotetrahydrofurfuryl) -3-cyclohexene-1,2-dicarboxylic dianhydride, cyclopentanetetracarboxylic dianhydride, ethylene glycol bistrimellitic dianhydride, 2,2 ′, 3,3 ′ -Biphenyltetracarboxylic dianhydride, thiophene-2,3,4,5-tetracarboxylic dianhydride, 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride, 2,3 ', 4-biphenyltetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5 8-naphthalenetetracarboxylic dianhydride, 2,2′-bis (3,4-dicarboxyphenyl) propane dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, perylene-3,4 , 9,10-tetracarboxylic dianhydride, ethylenetetracarboxylic dianhydride, 4,4 ′-[propane-2,2-diylbis (1,4-phenyleneoxy)] diphthalic dianhydride, etc. It is done.
Further, alicyclic acid dianhydrides other than 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride are used as constituents. It can also be used. Examples of such alicyclic acid dianhydrides include 1,1′-bicyclohexane-2,3,3′4′-tetracarboxylic dianhydride and 1,1′-bicyclohexane-2,3. , 2'3'-tetracarboxylic dianhydride, cyclohexane-1,2,4,5-tetracarboxylic dianhydride, cyclohexane-1,2,3,4-tetracarboxylic dianhydride, 1,3 , 3a, 4,5,9b-Hexahydro-5 (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione, 1,2,3,4-butane Tetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydro Furyl) -3-methyl-3-cyclohexene , 2-dicarboxylic anhydride, bicyclo [2.2.2] oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo [2.2.2] octane-2,3 , 5,6-tetracarboxylic acid-2,3: 5,6-dianhydride, bicyclo [2.2.1] heptane-2,3,5,6-tetracarboxylic acid-2,3: 5,6 Dianhydride, hexadecahydro-3a, 11a- (2,5-dioxotetrahydrofuran-3,4-diyl) phenanthro [9,10-c] furan-1,3-dione is 1,1′- Bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid and the like can be mentioned.
These compounds may be used alone or in combination of two or more. For example, the heat resistance of the resulting polyimide copolymer can be improved by using an aromatic acid dianhydride as a constituent component.
(B)ジアミン
 本発明のポリイミド共重合体は、水酸基を有するジアミンを構成成分として用いる。水酸基を有するジアミンは特に限定されず、以下の一般式(1)で表されるジアミンが用いられる。
(B) Diamine The polyimide copolymer of this invention uses the diamine which has a hydroxyl group as a structural component. The diamine having a hydroxyl group is not particularly limited, and a diamine represented by the following general formula (1) is used.
Figure JPOXMLDOC01-appb-C000012
         (1)
(式中R21は、-SO-、-C(CF-、-CO-、又は直接結合)
 ここで、透明性の観点から、式中R21は、-SO-、-C(CF-、又は直接結合であることが好ましく、-SO-、-C(CF-であることがより好ましい。また、得られるポリイミド樹脂の溶解性の観点から、式中R21は、-C(CF-であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
(1)
(Wherein R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO—, or a direct bond)
Here, from the viewpoint of transparency, in the formula, R 21 is preferably —SO 2 —, —C (CF 3 ) 2 —, or a direct bond, —SO 2 —, —C (CF 3 ) 2. -Is more preferable. Further, from the viewpoint of solubility of the obtained polyimide resin, R 21 in the formula is more preferably —C (CF 3 ) 2 —.
 具体的なジアミンとしては、例えば、式(3)で表される2,2-ビス(3-アミノ-4-ヒドロキシフェノール)ヘキサフルオロプロパン(BisAPAF)、式(4)で表されるビス(3-アミノ-4-ヒドロキシフェニル)スルホン(SO2-HOAB)等が挙げられる。ポリイミド共重合体の溶解性の向上、及びポリイミド共重合体構造中に水酸基を導入することに起因する吸水率の上昇の抑制という観点からは、フッ素を含むBisAPAFがより好ましい。  Specific examples of the diamine include 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) represented by the formula (3) and bis (3 -Amino-4-hydroxyphenyl) sulfone (SO2-HOAB) and the like. BisAPAF containing fluorine is more preferable from the viewpoint of improving the solubility of the polyimide copolymer and suppressing the increase in water absorption due to the introduction of hydroxyl groups into the polyimide copolymer structure. *
Figure JPOXMLDOC01-appb-C000013
           (3)
Figure JPOXMLDOC01-appb-C000013
(3)
Figure JPOXMLDOC01-appb-C000014
          (4)
Figure JPOXMLDOC01-appb-C000014
(4)
 上述した1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物と水酸基を有するジアミンを共重合させることにより水酸基を有するポリイミド共重合体が得られる。そして、ポリイミド共重合体分子の水酸基間又は、水酸基と他の官能基との間で水素結合が生じる。その結果、ポリイミド共重合体間に緻密な網目構造が形成され、水素結合の分子間凝集力により、得られるポリイミド樹脂の弾性率が向上する。このため、本発明においては、透明性及び溶解性を維持したまま、ポリイミド樹脂の弾性率を効果的に向上させることができる。 The hydroxyl group is formed by copolymerizing the 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride and a diamine having a hydroxyl group. The polyimide copolymer which has is obtained. And a hydrogen bond arises between the hydroxyl groups of a polyimide copolymer molecule, or between a hydroxyl group and another functional group. As a result, a dense network structure is formed between the polyimide copolymers, and the elastic modulus of the obtained polyimide resin is improved by the intermolecular cohesive force of hydrogen bonds. For this reason, in this invention, the elasticity modulus of a polyimide resin can be improved effectively, maintaining transparency and solubility.
 本発明においては、本発明の効果に影響を与えない範囲で、水酸基を有するジアミン以外のジアミンを構成成分として用いることもできる。このようなジアミンは、特に限定されず、ジアミン化合物の具体例としては、9,9-ビス(4-アミノフェニル)フルオレン、1,4-フェニレンジアミン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、1,3-ビス(4-アミノフェノキシ)ネオペンタン、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-3,3’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ジメチルビフェニル、4,4’-ジアミノ-2,2’-ビス(トリフルオロメチル)ビフェニル、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(4-アミノ-3-カルボキシフェニル)メタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、N-(4-アミノフェノキシ)-4-アミノベンズアミン、1,4-ジアミノシクロヘキサン、4,4’-メチレンビス(シクロヘキシルアミン)、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジアミン、2,7-フルオレンジアミン等が挙げられる。この中でも、4,4’-ジアミノジフェニルエーテル、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、4,4’-メチレンビス(シクロヘキシルアミン)、2,7-フルオレンジアミン、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジアミン、9,9-ビス(4-アミノフェニル)フルオレン等が好ましい。ポリイミド共重合体の透明性を維持しつつ、溶解性を向上し、吸湿性を低減させるためには、これらの中でも、立体的に嵩高いカルド構造を含有するか、又はフッ素を含有するジアミンを用いることが好ましい。また、本発明の成形体の耐熱性と膜質向上の観点からは、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジアミンがさらに好ましい。 In the present invention, a diamine other than a diamine having a hydroxyl group can be used as a constituent component as long as the effect of the present invention is not affected. Such diamines are not particularly limited, and specific examples of diamine compounds include 9,9-bis (4-aminophenyl) fluorene, 1,4-phenylenediamine, 1,2-phenylenediamine, 1,3-phenylenediamine, Phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (4-aminophenoxy) phenyl) sulfone, bis (4 -(3-aminophenoxy) phenyl) sulfone, 1,3-bis (4-aminophenoxy) neopentane, 4, '-Diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-3,3'-dimethylbiphenyl, 4,4'-diamino-2,2'-dimethylbiphenyl, 4,4'-diamino-2 , 2′-bis (trifluoromethyl) biphenyl, 4,4′-bis (4-aminophenoxy) biphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, bis (4-amino-3-carboxy) Phenyl) methane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfide, N- (4-aminophenoxy) -4-aminobenzamine, 1,4-diaminocyclohexane, 4,4′-methylenebis (Cyclohexylamine), 4,4′-methylenebis (2-methylcyclohexylamine), 2,2′-bis (trifluoromethyl) Le) -4,4'-biphenyl diamine, 2,7-fluorene diamine and the like. Among these, 4,4′-diaminodiphenyl ether, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) hexafluoropropane, bis (4- (4-aminophenoxy) phenyl) sulfone, 4,4′-methylenebis (cyclohexylamine), 2,7-fluorenediamine, 2,2′-bis (trifluoromethyl) -4,4′-biphenyldiamine 9,9-bis (4-aminophenyl) fluorene and the like are preferable. Among these, in order to improve the solubility and reduce the hygroscopicity while maintaining the transparency of the polyimide copolymer, among these, a sterically bulky cardo structure or a fluorine-containing diamine is used. It is preferable to use it. From the viewpoint of improving the heat resistance and film quality of the molded article of the present invention, 9,9-bis (4-aminophenyl) fluorene, 2,2′-bis (trifluoromethyl) -4,4′-biphenyldiamine Is more preferable.
 本発明のポリイミド共重合体は、有機溶媒に溶解させることができる。この有機溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、スルホラン、N,N-ジメチルホルムアミド、N,N-ジエチルアセトアミド、ガンマ-ブチロラクトン、アルキレングリコールモノアルキルエーテル、アルキレングリコールジアルキルエーテル、アルキルカルビトールアセテート、安息香酸エステル等を用いることができる。これらの有機溶媒は、単独で用いてもよく、二種以上を混合して用いてもよい。 The polyimide copolymer of the present invention can be dissolved in an organic solvent. Examples of the organic solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, N, N-dimethylformamide, N, N-diethylacetamide, gamma-butyrolactone, alkylene glycol monoalkyl ether, alkylene Glycol dialkyl ether, alkyl carbitol acetate, benzoate and the like can be used. These organic solvents may be used alone or in combination of two or more.
 次に、本発明のポリイミド共重合体の製造方法について説明する。本発明のポリイミド共重合体を得るためには、熱的に脱水閉環する熱イミド化法、脱水剤を用いる化学イミド化法のいずれの方法を用いてもよい。以下に、熱イミド化法、化学イミド化法の順に詳細に説明する。 Next, a method for producing the polyimide copolymer of the present invention will be described. In order to obtain the polyimide copolymer of the present invention, either a thermal imidation method in which dehydration and ring closure is thermally performed or a chemical imidation method using a dehydrating agent may be used. Below, it demonstrates in detail in order of the thermal imidation method and the chemical imidation method.
<熱イミド化法>
 本発明のポリイミド共重合体の製造方法は、(A)特定の構造を有する脂環式酸二無水物及び(B)水酸基を有するジアミンを共重合させてポリイミド共重合体を製造する工程を有する。この際、(A)成分以外の酸二無水物及び/又は、(B)成分以外のジアミンを所望により添加することができる。これらの成分を、好適には、有機溶媒中、触媒の存在下、150~200℃で重合させる。
<Thermic imidization method>
The method for producing a polyimide copolymer of the present invention includes a step of (A) copolymerizing an alicyclic acid dianhydride having a specific structure and (B) a diamine having a hydroxyl group to produce a polyimide copolymer. . At this time, an acid dianhydride other than the component (A) and / or a diamine other than the component (B) can be added as desired. These components are preferably polymerized in an organic solvent at 150 to 200 ° C. in the presence of a catalyst.
 本発明のポリイミド共重合体の製造方法では、重合方法は特に限定されず、公知の方法を用いることができる。例えば、上記酸二無水物と上記ジアミンを一度に全量有機溶媒中に入れ重合する方法であってもよい。また先に上記酸二無水物全量を有機溶媒中に入れ、その後、酸二無水物を溶解または懸濁させた有機溶媒中に、ジアミンを加えて重合する方法や、先に上記ジアミン全量を有機溶媒中に入れ溶解させ、その後、ジアミンを溶解させた有機溶媒中に、酸二無水物を加えて重合する方法であってもよい。
 さらには、逐次添加法を用いることもできる。逐次添加法による重合方法も特に限定されず、例えば、上記(A)成分の酸二無水物及び(B)成分のジアミンのいずれか一方を過剰に添加して、オリゴマーを形成した後、(A)成分の酸二無水物及び/又は(B)成分のジアミンを追添加することもできる。また、上記(A)成分の酸二無水物及び(B)成分のジアミンのいずれか一方を過剰に添加して、オリゴマーを形成した後、(A)成分以外の酸二無水物及び/又は(B)成分以外のジアミンを追添加することもできる。さらに、(A)成分以外の酸二無水物及び(B)成分以外のジアミンのいずれか一方を過剰に添加して、オリゴマーを形成した後、(A)成分の酸二無水物及び/又は(B)成分のジアミンを追添加することもできる。
In the method for producing a polyimide copolymer of the present invention, the polymerization method is not particularly limited, and a known method can be used. For example, a method may be used in which the acid dianhydride and the diamine are all put into an organic solvent at a time for polymerization. In addition, the above-mentioned total amount of the acid dianhydride is put in an organic solvent, and then a method of polymerizing by adding a diamine in an organic solvent in which the acid dianhydride is dissolved or suspended, A method may be employed in which an acid dianhydride is added and polymerized in an organic solvent in which the diamine is dissolved after being put in a solvent.
Furthermore, a sequential addition method can also be used. The polymerization method by the sequential addition method is also not particularly limited. For example, after excessively adding one of the acid dianhydride of the component (A) and the diamine of the component (B) to form an oligomer, (A ) Component acid dianhydride and / or (B) component diamine may be additionally added. Moreover, after adding any one of the acid dianhydride of said (A) component and the diamine of (B) component, and forming an oligomer, acid dianhydride other than (A) component and / or ( A diamine other than the component B) can be additionally added. Furthermore, after adding any one of acid dianhydrides other than (A) component and diamine other than (B) component, and forming an oligomer, the acid dianhydride of (A) component and / or ( B) Component diamine can be additionally added.
 本発明のポリイミド共重合体の製造に用いる有機溶媒は、特に限定されない。例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、スルホラン、N,N-ジメチルホルムアミド、N,N-ジエチルアセトアミド等、ガンマ-ブチロラクトン、アルキレングリコールジアルキルエーテル、アルキルカルビトールアセテート、安息香酸エステルを好適に用いることができる。これらの有機溶媒は、単独で用いてもよく、二種以上を混合して用いてもよい。 The organic solvent used for producing the polyimide copolymer of the present invention is not particularly limited. For example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, sulfolane, N, N-dimethylformamide, N, N-diethylacetamide, etc., gamma-butyrolactone, alkylene glycol dialkyl ether, alkyl carbitol acetate, benzoic acid Esters can be suitably used. These organic solvents may be used alone or in combination of two or more.
 本発明のポリイミド共重合体の製造工程において、重合温度は、150~200℃であることが好ましい。重合温度が150℃未満であると、イミド化が進行しないか完了しない場合がある。一方、200℃を超えると、溶媒や未反応原材料の酸化、溶媒の揮発により、樹脂濃度が上昇する。重合温度は、160~195℃であるのがより好ましい。 In the production process of the polyimide copolymer of the present invention, the polymerization temperature is preferably 150 to 200 ° C. If the polymerization temperature is less than 150 ° C., imidization may not proceed or may not be completed. On the other hand, when the temperature exceeds 200 ° C., the resin concentration increases due to oxidation of the solvent and unreacted raw materials and volatilization of the solvent. The polymerization temperature is more preferably 160 to 195 ° C.
 本発明のポリイミド共重合体の製造に用いる触媒は、特に限定されず、公知のイミド化触媒を用いることができる。イミド化触媒としては、通常、ピリジンを用いることができる。これ以外にも、例えば、置換もしくは非置換の含窒素複素環化合物、含窒素複素環化合物のN-オキシド化合物、置換もしくは非置換のアミノ酸化合物、ヒドロキシ基を有する芳香族炭化水素化合物または芳香族複素環状化合物が挙げられる。特に1,2-ジメチルイミダゾール、N-メチルイミダゾール、N-ベンジル-2-メチルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、5-メチルベンズイミダゾール等の低級アルキルイミダゾール、N-ベンジル-2-メチルイミダゾール等のイミダゾール誘導体、イソキノリン、3,5-ジメチルピリジン、3,4-ジメチルピリジン、2,5-ジメチルピリジン、2,4-ジメチルピリジン、4-n-プロピルピリジン等の置換ピリジン、p-トルエンスルホン酸等を好適に使用することができる。イミド化触媒の使用量は、ポリアミド酸のアミド酸単位に対して0.01~2倍当量であることが好ましく、特に0.02~1倍当量であることが好ましい。イミド化触媒を使用することによって、得られるポリイミドの物性、特に伸びや破断抵抗が向上することがある。 The catalyst used for the production of the polyimide copolymer of the present invention is not particularly limited, and a known imidization catalyst can be used. As the imidization catalyst, pyridine can usually be used. Other than this, for example, a substituted or unsubstituted nitrogen-containing heterocyclic compound, an N-oxide compound of a nitrogen-containing heterocyclic compound, a substituted or unsubstituted amino acid compound, an aromatic hydrocarbon compound having a hydroxy group, or an aromatic heterocyclic compound A cyclic compound is mentioned. In particular, lower alkyl imidazoles such as 1,2-dimethylimidazole, N-methylimidazole, N-benzyl-2-methylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 5-methylbenzimidazole, N-benzyl Imidazole derivatives such as -2-methylimidazole, substituted pyridines such as isoquinoline, 3,5-dimethylpyridine, 3,4-dimethylpyridine, 2,5-dimethylpyridine, 2,4-dimethylpyridine, 4-n-propylpyridine, etc. , P-toluenesulfonic acid and the like can be preferably used. The amount of the imidization catalyst used is preferably 0.01 to 2 equivalents, more preferably 0.02 to 1 equivalents, based on the amic acid unit of the polyamic acid. By using an imidization catalyst, the properties of the resulting polyimide, particularly elongation and breaking resistance, may be improved.
 また、本発明のポリイミド共重合体の製造工程においては、イミド化反応により生成する水を効率よく除去するために、有機溶媒に共沸溶媒を加えることができる。共沸溶媒としては、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素や、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン等の脂環族炭化水素等を用いることができる。共沸溶媒を使用する場合、その添加量は、全有機溶媒量中の1~30質量%程度が好ましく、5~20質量%がより好ましい。 Also, in the process for producing the polyimide copolymer of the present invention, an azeotropic solvent can be added to the organic solvent in order to efficiently remove the water generated by the imidization reaction. As the azeotropic solvent, aromatic hydrocarbons such as toluene, xylene and solvent naphtha, and alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and dimethylcyclohexane can be used. When an azeotropic solvent is used, the amount added is preferably about 1 to 30% by mass, more preferably 5 to 20% by mass, based on the total amount of organic solvent.
<化学イミド化法>
 本発明のポリイミド共重合体を化学イミド化法により製造する場合、上記(A)成分と上記(B)成分及び所望により用いられる(A)成分以外の酸二無水物及び/又は(B)成分以外のジアミンとを共重合させる。この共重合体製造工程において、無水酢酸等の脱水剤と、トリエチルアミン、ピリジン、ピコリンまたはキノリン等の触媒とを、ポリアミド酸溶液に添加する。化学イミド化法では通常、60℃から120℃で加熱してイミド化反応を進行させるが、室温で反応が完結する場合もある。反応時間は、1~200時間とするのが好ましい。
 イミド化反応終了後、反応液中に残留する未反応の脱水剤(無水酢酸等)、カルボン酸等の副生成物(酢酸、酢酸のアミン塩等)を除去してポリイミド共重合体を精製する。精製方法は特に限定されず、公知の方法を用いることができる。例えば、撹拌しながら、反応溶液を水やアルコール等の貧溶媒中に滴下して、ポリイミド共重合体を析出した後、洗浄、減圧乾燥する方法等が挙げられる。
<Chemical imidization method>
When the polyimide copolymer of the present invention is produced by a chemical imidization method, the acid dianhydride and / or the component (B) other than the component (A), the component (B), and the component (A) used as desired. Copolymerize with other diamines. In this copolymer production process, a dehydrating agent such as acetic anhydride and a catalyst such as triethylamine, pyridine, picoline, or quinoline are added to the polyamic acid solution. In the chemical imidization method, the imidization reaction is usually carried out by heating at 60 ° C. to 120 ° C., but the reaction may be completed at room temperature. The reaction time is preferably 1 to 200 hours.
After completion of the imidation reaction, unreacted dehydrating agent (such as acetic anhydride) remaining in the reaction solution and by-products such as carboxylic acid (such as acetic acid and amine salt of acetic acid) are removed to purify the polyimide copolymer. . The purification method is not particularly limited, and a known method can be used. For example, the reaction solution may be dropped into a poor solvent such as water or alcohol while stirring to precipitate a polyimide copolymer, followed by washing and drying under reduced pressure.
 本発明のポリイミド共重合体の製造に用いられる脱水剤としては、有機酸無水物、例えば、脂肪族酸無水物、芳香族酸無水物、脂環式酸無水物、複素環式酸無水物、またはそれらの二種以上の混合物が挙げられる。有機酸無水物の具体例としては、例えば、無水酢酸等が挙げられる。 Examples of the dehydrating agent used in the production of the polyimide copolymer of the present invention include organic acid anhydrides such as aliphatic acid anhydrides, aromatic acid anhydrides, alicyclic acid anhydrides, heterocyclic acid anhydrides, Or the mixture of 2 or more types of them is mentioned. Specific examples of the organic acid anhydride include acetic anhydride and the like.
 化学イミド化法による本発明のポリイミド共重合体の製造において、イミド化触媒、有機溶媒は、熱イミド化法と同様のものを用いることができる。 In the production of the polyimide copolymer of the present invention by the chemical imidization method, the same imidization catalyst and organic solvent as in the thermal imidization method can be used.
(成形体)
 本発明の成形体を製造する方法については特に制限はなく、公知の方法を用いることができる。例えば、基材の表面に、本発明のポリイミド共重合体を塗布した後、乾燥して溶媒を留去して、被膜、フィルム又はシートを成形する方法、本発明のポリイミド共重合体を金型内に注入した後、溶媒を留去して成形体とする方法等を挙げることができる。
(Molded body)
There is no restriction | limiting in particular about the method of manufacturing the molded object of this invention, A well-known method can be used. For example, after applying the polyimide copolymer of the present invention to the surface of a substrate, drying and distilling off the solvent, a method of forming a film, film or sheet, the polyimide copolymer of the present invention as a mold Examples thereof include a method of distilling off the solvent to form a molded product after the injection.
 本発明のポリイミド共重合体から、被膜、フィルム又はシートを形成する方法としては、スピンコート法、ディップ法、スプレー法、キャスト法等公知の方法が挙げられる。ポリイミド共重合体をその粘度等に応じて、選択した手法で基材表面に塗布した後、乾燥することにより、被膜、フィルム又はシートが得られる。 Examples of methods for forming a film, film or sheet from the polyimide copolymer of the present invention include known methods such as spin coating, dipping, spraying and casting. A coating, film or sheet is obtained by applying the polyimide copolymer to the surface of the substrate by a selected method according to the viscosity or the like and then drying.
 基材としては最終製品の用途に応じて任意のものを用いればよい。例えば、布等の繊維製品、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエチレン、ポリカーボネート、トリアセチルセルロース、セロハン、ポリイミド、ポリアミド、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルスルホン、芳香族ポリアミド、若しくはポリスルホン等の合成樹脂、ガラス、金属、セラミック、紙類等の材質を挙げることができる。なお、基材は透明であっても、これを構成する材質に各種顔料や染料を配合して着色したものであってもよく、更にはその表面がマット状に加工されていてもよい。 As the base material, any material may be used according to the use of the final product. For example, textile products such as cloth, polyethylene terephthalate, polyethylene naphthalate, polyethylene, polycarbonate, triacetylcellulose, cellophane, polyimide, polyamide, polyphenylene sulfide, polyetherimide, polyethersulfone, aromatic polyamide, or polysulfone. , Glass, metal, ceramic, paper and the like. The substrate may be transparent, or may be colored by blending various pigments and dyes with the material constituting the substrate, and the surface may be processed into a mat shape.
 塗布した本発明のポリイミド共重合体の乾燥には、通常の加熱乾燥炉を用いればよい。乾燥炉の雰囲気としては、大気、不活性ガス(窒素、アルゴン)、真空等が挙げられる。乾燥温度は、本発明のポリイミド共重合体を溶解させた溶媒の沸点により適宜選択できるが、通常は80~350℃、好適には100~320℃、特に好適には120~250℃とすればよい。乾燥時間は、厚み、濃度、溶媒の種類により適宜選択すればよく、1秒~360分程度とすることができる。 For drying the coated polyimide copolymer of the present invention, an ordinary heating and drying furnace may be used. Examples of the atmosphere in the drying furnace include air, inert gas (nitrogen, argon), and vacuum. The drying temperature can be appropriately selected depending on the boiling point of the solvent in which the polyimide copolymer of the present invention is dissolved, but is usually 80 to 350 ° C., preferably 100 to 320 ° C., particularly preferably 120 to 250 ° C. Good. The drying time may be appropriately selected depending on the thickness, concentration, and type of solvent, and can be about 1 second to 360 minutes.
 乾燥後は、本発明のポリイミド共重合体を被膜として有する製品が得られる他、被膜を基材から分離することによりフィルムとすることもできる。 After drying, a product having the polyimide copolymer of the present invention as a film can be obtained, or a film can be obtained by separating the film from the substrate.
 また、金型を用いて成形体を得る場合、本発明のポリイミド共重合体を所定量、金型内(特に回転金型が好ましい)に注入した後、フィルム等の成形条件と同様の温度、時間で乾燥することにより成形体を得ることができる。 In addition, when a molded body is obtained using a mold, a predetermined amount of the polyimide copolymer of the present invention is injected into the mold (especially a rotating mold is preferable), and then the same temperature as the molding conditions of the film, A molded body can be obtained by drying over time.
 本発明のポリイミド共重合体を用いて成形体を製造する場合、シリカ、アルミナ、マイカ等の充填材や、炭素粉、顔料、染料、重合禁止剤、増粘剤、チキソトロピー剤、沈殿防止剤、酸化防止剤、分散剤、pH調整剤、界面活性剤、各種有機溶媒、各種樹脂等を添加することができる。 When producing a molded body using the polyimide copolymer of the present invention, fillers such as silica, alumina, mica, carbon powder, pigments, dyes, polymerization inhibitors, thickeners, thixotropic agents, precipitation inhibitors, Antioxidants, dispersants, pH adjusters, surfactants, various organic solvents, various resins, and the like can be added.
 本発明のポリイミド共重合体から得られる成形体は、優れた溶解性及び透明性、並びに高い弾性率を兼ね備える。そのため、本発明のポリイミド樹脂は、光ファイバー、光導波路、光フィルター、レンズ、光学フィルター、接着シート、相間絶縁膜、半導体絶縁保護膜、TFT液晶絶縁膜、液晶配向膜、太陽電池用保護膜、フレキシブルディスプレイ基板等の電子材料や回路基板、リチウムイオン電池負極用部材等として好適に用いられる。 The molded product obtained from the polyimide copolymer of the present invention has excellent solubility and transparency, and high elastic modulus. Therefore, the polyimide resin of the present invention is an optical fiber, optical waveguide, optical filter, lens, optical filter, adhesive sheet, interphase insulating film, semiconductor insulating protective film, TFT liquid crystal insulating film, liquid crystal alignment film, protective film for solar cell, flexible It is suitably used as an electronic material such as a display substrate, a circuit board, a lithium ion battery negative electrode member, or the like.
 以下の実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例によって限定されるものではない。なお、実施例中、特に記載がない場合には、「%」及び「部」は質量%及び質量部を示す。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples, unless otherwise specified, “%” and “part” indicate mass% and mass part.
(実施例1)
 ステンレススチール製錨型撹拌機、窒素導入管、ディーン・スターク装置を取り付けた500mLのセパラブル4つ口フラスコに、1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物(H-BPDA)46.24g、2,2-ビス(3-アミノ-4-ヒドロキシフェノール)ヘキサフルオロプロパン(BisAPAF)54.94g、ガンマ-ブチロラクトン(GBL)177.86g、ピリジン2.37g及びトルエン50gを仕込み、反応系内を窒素置換したのち、窒素気流下180℃にて6時間反応を行った。反応によって生成した水は、トルエン、ピリジンとの共沸によって反応系外へ留去した。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表1に示す。
 反応終了後、120℃まで冷却したところでGBL109.45gを添加することにより、25質量%濃度のポリイミド共重合体溶液を得た。
Example 1
1,1'-bicyclohexane-3,3 ', 4,4'-tetracarboxylic acid-into a 500 mL separable four-necked flask equipped with a stainless steel vertical stirrer, nitrogen inlet tube, and Dean-Stark apparatus 3,4: 3 ′, 4′-dianhydride (H-BPDA) 46.24 g, 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane (BisAPAF) 54.94 g, gamma-butyrolactone (GBL) 177.86 g, 2.37 g of pyridine and 50 g of toluene were charged and the reaction system was purged with nitrogen, and then reacted at 180 ° C. for 6 hours under a nitrogen stream. Water produced by the reaction was distilled out of the reaction system by azeotropy with toluene and pyridine. Table 1 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
After completion of the reaction, when cooled to 120 ° C., 109.45 g of GBL was added to obtain a polyimide copolymer solution having a concentration of 25% by mass.
(比較例1)
 ステンレススチール製錨型撹拌機、窒素導入管、ディーン・スターク装置を取り付けた500mLのセパラブル4つ口フラスコに、H-BPDAを46.22g、2,2’-ビス(トリフルオロメチル)-4,4’-ビフェニルジアミン(TFMB)48.03g、GBL165g、ピリジン2.37g、トルエン50gを仕込み、反応系内を窒素置換したのち、窒素気流下180℃にて6時間反応を行った。反応によって生成した水は、トルエン、ピリジンとの共沸によって反応系外へ留去した。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表1に示す。
 反応終了後、120℃まで冷却し、35質量%濃度のポリイミド共重合体溶液を得た。
(Comparative Example 1)
In a 500 mL separable four-necked flask equipped with a stainless steel vertical agitator, nitrogen inlet tube, and Dean-Stark apparatus, 46.22 g of H-BPDA, 2,2′-bis (trifluoromethyl) -4, After charging 48.03 g of 4′-biphenyldiamine (TFMB), 165 g of GBL, 2.37 g of pyridine, and 50 g of toluene, the reaction system was purged with nitrogen, and then reacted at 180 ° C. for 6 hours under a nitrogen stream. Water produced by the reaction was distilled out of the reaction system by azeotropy with toluene and pyridine. Table 1 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
After completion of the reaction, it was cooled to 120 ° C. to obtain a 35% by mass polyimide copolymer solution.
(参考例1)
 ステンレススチール製錨型撹拌機、窒素導入管、ディーン・スターク装置を取り付けた500mLのセパラブル4つ口フラスコに、4,4’-オキシジフタル酸二無水物(ODPA)31.22g、9,9-ビス(4-アミノフェニル)フルオレン(FDA)34.84g、GBL115.99g、ピリジン1.58g、トルエン50gを仕込み、反応系内を窒素置換したのち、窒素気流下180℃にて3時間反応を行った。反応によって生成した水は、トルエン、ピリジンとの共沸によって反応系外へ留去した。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表1に示す。
 反応終了後、120℃まで冷却したところでGBL133.83gを添加することにより、25質量%濃度のポリイミド共重合体溶液を得た。
(Reference Example 1)
In a 500 mL separable four-necked flask equipped with a stainless steel vertical stirrer, nitrogen inlet tube, and Dean-Stark apparatus, 31.22 g of 4,4′-oxydiphthalic dianhydride (ODPA), 9,9-bis (4-Aminophenyl) fluorene (FDA) 34.84 g, GBL 115.99 g, pyridine 1.58 g and toluene 50 g were charged, and the reaction system was purged with nitrogen, followed by reaction at 180 ° C. for 3 hours in a nitrogen stream. . Water produced by the reaction was distilled out of the reaction system by azeotropy with toluene and pyridine. Table 1 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
After completion of the reaction, when cooled to 120 ° C., 133.83 g of GBL was added to obtain a polyimide copolymer solution having a concentration of 25% by mass.
(実施例2)
 実施例1と同様の装置に、酸二無水物として、H-BPDAを49.30g、ジアミンとして、BisAPAF及びSO2-HOABをそれぞれ29.30g及び22.42g用いた他は、実施例1と同様の方法で、25質量%濃度のポリイミド共重合体溶液を得た。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表2に示す。
(Example 2)
Same as Example 1, except that 49.30 g of H-BPDA was used as the acid dianhydride and 29.30 g and 22.42 g of BisAPAF and SO2-HOAB were used as the diamine in the same apparatus as in Example 1, respectively. Thus, a polyimide copolymer solution having a concentration of 25% by mass was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
(実施例3)
 実施例1と同様の装置に、酸二無水物として、H-BPDAを61.64g、ジアミンとして、BisAPAF及びTFMBをそれぞれ36.63g及び32.02g用いた他は、実施例1と同様の方法で、35質量%濃度のポリイミド共重合体溶液を得た。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表2に示す。
(Example 3)
The same method as in Example 1 except that 61.64 g of H-BPDA was used as the acid dianhydride and 36.63 g and 32.02 g of BisAPAF and TFMB were used as the diamine in the same apparatus as in Example 1. Thus, a polyimide copolymer solution having a concentration of 35% by mass was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
(実施例4)
 実施例1と同様の装置に、酸二無水物として、H-BPDAを49.32g、ジアミンとして、BisAPAF及びFDAをそれぞれ29.30g及び27.88g用いた他は、実施例1と同様の方法で、35質量%濃度のポリイミド共重合体溶液を得た。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表2に示す。
Example 4
The same method as in Example 1, except that 49.32 g of H-BPDA and 29.30 g and 27.88 g of BisAPAF and FDA as diamines were used as the acid dianhydride in the same apparatus as in Example 1, respectively. Thus, a polyimide copolymer solution having a concentration of 35% by mass was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
(実施例5)
 実施例1と同様の装置に、酸二無水物として、H-BPDA及びODPAをそれぞれ21.76g及び32.57g、ジアミンとして、SO2-HOAB及びFDAをそれぞれ29.43g及び24.39g用いた他は、実施例1と同様の方法で、30質量%濃度のポリイミド共重合体溶液を得た。反応に用いた(A)酸二無水物と(B)ジアミンの組成比(質量)を、表2に示す。
(Example 5)
In the same apparatus as in Example 1, 21.76 g and 32.57 g of H-BPDA and ODPA were used as the acid dianhydride, respectively, and 29.43 g and 24.39 g of SO2-HOAB and FDA were used as the diamine, respectively. In the same manner as in Example 1, a 30% by mass concentration polyimide copolymer solution was obtained. Table 2 shows the composition ratio (mass) of (A) acid dianhydride and (B) diamine used in the reaction.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 上記実施例1~5、比較例1及び参考例1のポリイミド共重合体の溶解性、引張弾性率及び全光線透過率を、以下に示す方法で評価した。また、実施例1~5のポリイミド共重合体の破断強度、伸度及びガラス転移温度を以下に示す方法で測定した。 The solubility, tensile elastic modulus and total light transmittance of the polyimide copolymers of Examples 1 to 5, Comparative Example 1 and Reference Example 1 were evaluated by the following methods. Further, the breaking strength, elongation and glass transition temperature of the polyimide copolymers of Examples 1 to 5 were measured by the following methods.
(溶解性)
 溶解性は、重合過程及び反応終了後1週間経過後のポリイミド共重合体溶液の濁り及び析出物の有無により評価した。全ての実施例、比較例及び参考例において、重合過程及び反応終了後1週間経過後とも濁りや析出物は認められず、溶解性が良好であることが確認された。
(Solubility)
Solubility was evaluated by the turbidity of the polyimide copolymer solution and the presence or absence of precipitates after one week from the completion of the polymerization process and reaction. In all Examples, Comparative Examples, and Reference Examples, no turbidity or precipitate was observed even after 1 week from the completion of the polymerization process and the reaction, and it was confirmed that the solubility was good.
(引張弾性率、破断強度及び伸度の測定)
 測定用フィルムは、以下の方法で調製した。各実施例、比較例及び参考例で得られたポリイミド共重合体溶液を用いて、スピンコート法によりシリコンウエハ上に塗布し、120℃のホットプレート上で10分間仮乾燥を行った。仮乾燥したフィルムをシリコンウエハから剥離し、ステンレス製の枠に固定して180℃で30分、続いて250℃で1時間、乾燥を行い、測定用フィルムを得た。このフィルムを100mm×10mmに切断して測定を行った。
 測定には、小型卓上試験機Ez-Test(株式会社島津製作所製  EZ-LX)を用いた。測定は、それぞれ5回行い、最大の破断点応力を示したデータを用いた。なお、チャック間距離は50mm、引張り速度は100mm/minとした。得られた結果を、表1、2に示す。
(Measurement of tensile modulus, breaking strength and elongation)
The measurement film was prepared by the following method. Using the polyimide copolymer solution obtained in each example, comparative example, and reference example, it was applied onto a silicon wafer by a spin coat method, and temporarily dried on a hot plate at 120 ° C. for 10 minutes. The temporarily dried film was peeled from the silicon wafer, fixed to a stainless steel frame, dried at 180 ° C. for 30 minutes, and then at 250 ° C. for 1 hour to obtain a measurement film. This film was cut into 100 mm × 10 mm and measured.
For the measurement, a small desktop testing machine Ez-Test (EZ-LX manufactured by Shimadzu Corporation) was used. Each measurement was performed five times, and data showing the maximum stress at break was used. The distance between chucks was 50 mm, and the pulling speed was 100 mm / min. The obtained results are shown in Tables 1 and 2.
(ガラス転移温度の測定)
 引張弾性率、破断強度及び伸度測定用試料と同様にして作製したフィルムを用いて測定を行った。
 ガラス転移温度の測定には、DSC6200(セイコーインスツル株式会社製)を用いた。ここで、10℃/minの昇温速度で500℃まで加熱し、ガラス転移温度は中間点ガラス転移温度を適用した。得られた結果を、表1、2に示す。
(Measurement of glass transition temperature)
Measurement was performed using a film produced in the same manner as the sample for measuring tensile modulus, breaking strength, and elongation.
DSC6200 (manufactured by Seiko Instruments Inc.) was used for measuring the glass transition temperature. Here, it heated to 500 degreeC with the temperature increase rate of 10 degree-C / min, and applied the intermediate point glass transition temperature as the glass transition temperature. The obtained results are shown in Tables 1 and 2.
(全光線透過率の測定)
 引張弾性率、破断強度及び伸度測定用試料と同様にして測定用フィルムを作製した。JISK7361に基づいて、全光線透過率の測定を行った。測定には、ヘイズメーター  NDH4000(日本電色工業株式会社製)を用いた。得られた結果を表1、2に示す。
(Measurement of total light transmittance)
A film for measurement was produced in the same manner as the sample for measuring tensile elastic modulus, breaking strength and elongation. Based on JISK7361, the total light transmittance was measured. For the measurement, a haze meter NDH4000 (manufactured by Nippon Denshoku Industries Co., Ltd.) was used. The obtained results are shown in Tables 1 and 2.
 表1に示すように、芳香族酸二無水物であるODPAと水酸基を有しないジアミンであるFDAとを共重合させた参考例1に比べて、脂環式酸二無水物であるH-BPDAと水酸基を有しないジアミンであるTFMBを共重合させた比較例1では、全光線透過率が4%上昇し、透明性は向上したが、弾性率に大きな変化は認められなかった。なお、脂環式酸二無水物であるH-BPDAと水酸基を有しないジアミンであるFDAを共重合させたポリイミド共重合体では、十分な分子量の上昇が認められず、良好な成膜性が得られなかった。
 これに対して、脂環式酸二無水物であるH-BPDAと水酸基を有するジアミンであるBisAPAFを共重合させた実施例1では、参考例1より透明性が向上するとともに、参考例1に比べて弾性率が40%以上増加することがわかった。
 このような弾性率の向上は、実施例1の共重合体では、ジアミンに由来する水酸基を有するため、共重合体分子間の水素結合により、緻密な架橋構造が形成されることに起因すると考えられる。このように本発明のポリイミド共重合体では、水素結合による分子間の凝集力を用いるため、透明性を維持しつつ、大幅な弾性率の向上が実現される。
 なお、芳香族酸二無水物と水酸基を有するジアミンを共重合させた場合、弾性率を上昇させることは可能であるが、透明性の向上には限界があった。また、脂環式酸二無水物として、H-BPDAに変えて1,2,4,5-シクロヘキサンテトラカルボン酸1,2:4,5-二無水物(H-PMDA)を用いて、水酸基を有するジアミンと共重合させて得られたポリイミド共重合体では、参考例1と比べて弾性率に顕著な変化は認められなかった。
 以上の結果、脂環式酸二無水物であるH-BPDAと水酸基を有するジアミンの組み合わせが有効であることが確認された。
As shown in Table 1, compared to Reference Example 1 in which ODPA, which is an aromatic acid dianhydride, and FDA, which is a diamine having no hydroxyl group, are copolymerized, H-BPDA, which is an alicyclic acid dianhydride. In Comparative Example 1 in which TFMB, which is a diamine having no hydroxyl group, was copolymerized, the total light transmittance increased by 4% and the transparency was improved, but no significant change was observed in the elastic modulus. In addition, in the polyimide copolymer obtained by copolymerizing H-BPDA, which is an alicyclic acid dianhydride, and FDA, which is a diamine having no hydroxyl group, a sufficient increase in molecular weight is not observed, and good film formability is obtained. It was not obtained.
On the other hand, in Example 1 in which H-BPDA, which is an alicyclic acid dianhydride, and BisAPAF, which is a diamine having a hydroxyl group, were copolymerized, the transparency was improved compared to Reference Example 1, and It was found that the elastic modulus increased by 40% or more.
Such an improvement in the elastic modulus is considered to be due to the fact that the copolymer of Example 1 has a hydroxyl group derived from a diamine, so that a dense cross-linked structure is formed by hydrogen bonding between copolymer molecules. It is done. As described above, the polyimide copolymer of the present invention uses a cohesive force between molecules due to hydrogen bonding, so that a significant improvement in elastic modulus is realized while maintaining transparency.
In addition, when an aromatic dianhydride and a diamine having a hydroxyl group are copolymerized, it is possible to increase the elastic modulus, but there is a limit to improving the transparency. In addition, as the alicyclic acid dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid 1,2: 4,5-dianhydride (H-PMDA) is used instead of H-BPDA, In the polyimide copolymer obtained by copolymerization with a diamine having a viscosity, no significant change was observed in the elastic modulus as compared with Reference Example 1.
As a result, it was confirmed that a combination of H-BPDA, which is an alicyclic acid dianhydride, and a diamine having a hydroxyl group was effective.
 表2に示すように、実施例1の組成に、ジアミンとして、さらにSO2-HOABを加えた実施例2のポリイミド共重合体及びTFMBを加えた実施例3のポリイミド共重合体でも、全光線透過率が90%を超える優れた透明性と参考例1より40%以上高い弾性率が得られることがわかった。また、TFMBを加えた実施例3のポリイミド共重合体では、破断強度及び伸度が大幅に向上していることから、ポリイミド共重合体の膜質の向上が期待される。
 また、実施例1の組成に、ジアミンとしてさらにFDAを加えた実施例4のポリイミド共重合体では、全光線透過率及び弾性率は、実施例1のポリイミド共重合体より低下するが、破断強度の大幅な向上が認められた。
 酸二無水物として、H-BPDAに芳香族のODPAを加え、ジアミンとして、SO2-HOABにFDAを加えた実施例5では、透明性及び弾性率は実施例1より低下するが、ガラス転移温度と破断強度の大幅な向上が認められた。
 以上のように本発明のポリイミド共重合体では、第3成分、第4成分を添加することにより、優れた溶媒溶解性及び透明性、並びに高い弾性率を維持しつつ、各種特性を制御することができる。このため、ポリイミド共重合体の使用される用途に応じて最適な材料設計が可能と考えられる。
 
 
As shown in Table 2, even in the composition of Example 1, the polyimide copolymer of Example 2 in which SO2-HOAB was further added as a diamine and the polyimide copolymer of Example 3 in which TFMB was added were also capable of transmitting all light. It was found that excellent transparency exceeding 90% and an elastic modulus higher by 40% or more than Reference Example 1 were obtained. Moreover, in the polyimide copolymer of Example 3 to which TFMB was added, since the breaking strength and the elongation were greatly improved, the improvement of the film quality of the polyimide copolymer is expected.
Further, in the polyimide copolymer of Example 4 in which FDA is further added as a diamine to the composition of Example 1, the total light transmittance and the elastic modulus are lower than those of the polyimide copolymer of Example 1, but the breaking strength. A significant improvement was observed.
In Example 5 in which aromatic ODPA was added to H-BPDA as an acid dianhydride and FDA was added to SO2-HOAB as a diamine, the transparency and elastic modulus were lower than in Example 1, but the glass transition temperature. A significant improvement in the breaking strength was observed.
As described above, in the polyimide copolymer of the present invention, by adding the third component and the fourth component, various properties can be controlled while maintaining excellent solvent solubility and transparency, and high elastic modulus. Can do. For this reason, it is thought that optimal material design is possible according to the use for which a polyimide copolymer is used.

Claims (6)

  1.  1,1’-ビシクロヘキサン-3,3’,4,4’-テトラカルボン酸-3,4:3’,4’-二無水物に由来する構成単位及び水酸基を有するジアミンに由来する構成単位を含有するポリイミド共重合体。 Structural units derived from 1,1′-bicyclohexane-3,3 ′, 4,4′-tetracarboxylic acid-3,4: 3 ′, 4′-dianhydride and diamines having a hydroxyl group Containing polyimide copolymer.
  2.  前記水酸基を有するジアミンは、下記一般式(1)で表されるジアミンである請求項1に記載のポリイミド共重合体。
    Figure JPOXMLDOC01-appb-C000001
              (1)
    (式中R21は、-SO-、-C(CF-、-CO-又は直接結合)
    The polyimide copolymer according to claim 1, wherein the diamine having a hydroxyl group is a diamine represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (1)
    Wherein R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
  3.  前記水酸基を有するジアミンは、2,2-ビス(3-アミノ-4-ヒドロキシフェノール)ヘキサフルオロプロパン及びビス(3-アミノ-4-ヒドロキシフェニル3-アミノ-4-ヒドロキシフェニル)スルホンの少なくとも一方を含む請求項1又は2に記載のポリイミド共重合体。 The diamine having a hydroxyl group includes at least one of 2,2-bis (3-amino-4-hydroxyphenol) hexafluoropropane and bis (3-amino-4-hydroxyphenyl 3-amino-4-hydroxyphenyl) sulfone. The polyimide copolymer of Claim 1 or 2 containing.
  4.  下記一般式(2)で表される構造単位を有するポリイミド共重合体。
    Figure JPOXMLDOC01-appb-C000002
                (2)            
    (式中Rは、下記一般式(1)で表されるジアミン化合物から派生する二価の有機基)
    Figure JPOXMLDOC01-appb-C000003
              (1)
    (式中R21は、-SO-、-C(CF-、-CO-又は直接結合)
    A polyimide copolymer having a structural unit represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (2)
    (Wherein R 1 is a divalent organic group derived from a diamine compound represented by the following general formula (1))
    Figure JPOXMLDOC01-appb-C000003
    (1)
    Wherein R 21 is —SO 2 —, —C (CF 3 ) 2 —, —CO— or a direct bond.
  5.  前記一般式(2)中、Rは、以下の式(3)又は式(4)で表されるジアミン化合物から派生する二価の有機基である、請求項4に記載のポリイミド共重合体。
    Figure JPOXMLDOC01-appb-C000004
                (3)
    Figure JPOXMLDOC01-appb-C000005
                 (4)
     
    5. The polyimide copolymer according to claim 4, wherein R 1 in the general formula (2) is a divalent organic group derived from a diamine compound represented by the following formula (3) or (4): .
    Figure JPOXMLDOC01-appb-C000004
    (3)
    Figure JPOXMLDOC01-appb-C000005
    (4)
  6.  請求項1~5の何れか1項に記載のポリイミド共重合体を含む成形体。
     
     
    A molded article comprising the polyimide copolymer according to any one of claims 1 to 5.

PCT/JP2016/088575 2015-12-25 2016-12-22 Polyimide copolymer and molded body using same WO2017111134A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187017215A KR102390851B1 (en) 2015-12-25 2016-12-22 Polyimide copolymer and molded article using same
CN201680075543.7A CN108431087A (en) 2015-12-25 2016-12-22 Polyimide copolymer and use its formed body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255050A JP6718678B2 (en) 2015-12-25 2015-12-25 Polyimide copolymer and molded product using the same
JP2015-255050 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111134A1 true WO2017111134A1 (en) 2017-06-29

Family

ID=59090682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088575 WO2017111134A1 (en) 2015-12-25 2016-12-22 Polyimide copolymer and molded body using same

Country Status (5)

Country Link
JP (1) JP6718678B2 (en)
KR (1) KR102390851B1 (en)
CN (1) CN108431087A (en)
TW (1) TWI782901B (en)
WO (1) WO2017111134A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6711467B2 (en) * 2017-09-13 2020-06-17 三菱瓦斯化学株式会社 Polyimide, polyimide varnish, and polyimide film
CN109824894B (en) * 2019-01-29 2021-08-10 西北工业大学 Preparation method of polyimide film with molecular main chain alternately composed of two acid anhydrides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111072A (en) * 2011-03-31 2012-10-10 금호석유화학 주식회사 Photosensitive composition used for display appratus
WO2013024849A1 (en) * 2011-08-18 2013-02-21 東レ株式会社 Polyamic acid resin composition, polyimide resin composition, polyimide oxazole resin composition, and flexible substrate containing same
WO2015125895A1 (en) * 2014-02-21 2015-08-27 三菱化学株式会社 Polyimide precursor and/or polyimide-containing composition, and polyimide film
JP2017025163A (en) * 2015-07-17 2017-02-02 Jnc株式会社 Resin solution composition and polyimide film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297360A (en) 2007-05-29 2008-12-11 New Japan Chem Co Ltd Solvent-soluble polyimide resin
WO2010044381A1 (en) * 2008-10-14 2010-04-22 日本化薬株式会社 Phenolic hydroxyl group-containing polyimide resin and photosensitive resin composition using same
JP2011144260A (en) 2010-01-14 2011-07-28 Mitsubishi Gas Chemical Co Inc Adhesive and adhesive tape
JP6077378B2 (en) 2013-04-19 2017-02-08 ソマール株式会社 Polyimide copolymer and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120111072A (en) * 2011-03-31 2012-10-10 금호석유화학 주식회사 Photosensitive composition used for display appratus
WO2013024849A1 (en) * 2011-08-18 2013-02-21 東レ株式会社 Polyamic acid resin composition, polyimide resin composition, polyimide oxazole resin composition, and flexible substrate containing same
WO2015125895A1 (en) * 2014-02-21 2015-08-27 三菱化学株式会社 Polyimide precursor and/or polyimide-containing composition, and polyimide film
JP2017025163A (en) * 2015-07-17 2017-02-02 Jnc株式会社 Resin solution composition and polyimide film

Also Published As

Publication number Publication date
CN108431087A (en) 2018-08-21
TWI782901B (en) 2022-11-11
KR20180098253A (en) 2018-09-03
TW201734091A (en) 2017-10-01
JP2017115098A (en) 2017-06-29
JP6718678B2 (en) 2020-07-08
KR102390851B1 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
CN107428934B (en) Polyimide film, polyimide varnish, article using polyimide film, and laminate
KR102257869B1 (en) Polyimide precursor composition, polyimide production method, polyimide, polyimide film, and substrate
JP2018522105A (en) Polyamide-imide precursor, polyamide-imide film, and display element including the same
KR20180031004A (en) Polyamic acid solution composition and polyimide film
JP6485996B2 (en) Polyimide copolymer oligomer, polyimide copolymer, and production method thereof
JPWO2014123045A1 (en) Alkoxysilane-modified polyamic acid solution, laminate and flexible device using the same, and method for producing laminate
TWI785224B (en) Polyamic acid and its manufacturing method, polyamic acid solution, polyimide, polyimide film, laminate and its manufacturing method, flexible device and its manufacturing method
TWI735550B (en) Polyamide acid, polyamide acid solution, polyimide, and polyimide substrate and manufacturing method thereof
WO2015008643A1 (en) Transparent polyimide copolymer, polyimide resin composition and molded article, and production method of said copolymer
KR20230027146A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, method for manufacturing laminate and electronic device
KR102184617B1 (en) Solvent soluble polyimide copolymer
JP6718678B2 (en) Polyimide copolymer and molded product using the same
WO2014171520A1 (en) Polyimide copolymer, and production method for same
JP2022044020A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
CN114133563A (en) Polyimide precursor, polyimide precursor composition, polyimide film, method for producing same, and use thereof
JP2023038407A (en) Polyamide acid composition, polyimide, polyimide film, laminate and flexible device, and method for producing laminate
JP2022044021A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film
JP2022172466A (en) Novel diamine compound, polyimide precursor and polyimide film that employ the same, and applications thereof
KR20220150824A (en) Novel diamine compound, polyimide precursor comprising the same, polyimide film and use thereof
KR20220155722A (en) Novel diamine compound, polyimide precursor comprising the same, polyimide film and use thereof
KR20230092934A (en) Polyamic acid, polyamic acid solution, polyimide, polyimide film, laminate, electronic device, and method for producing polyimide film
TW201529728A (en) Polyimide precursor composition, method of manufacturing polyimide, polyimide, polyimide film, and substrate
JP2022145217A (en) Polyamic acid composition, polyimide, laminate of the same, flexible device, and production method of laminate
KR20220144510A (en) Novel diazaspiro compound and use thereof
JP2021178881A (en) Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017215

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879020

Country of ref document: EP

Kind code of ref document: A1