WO2017110967A1 - Crucible testing device, crucible testing method, silica glass crucible, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer - Google Patents

Crucible testing device, crucible testing method, silica glass crucible, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer Download PDF

Info

Publication number
WO2017110967A1
WO2017110967A1 PCT/JP2016/088285 JP2016088285W WO2017110967A1 WO 2017110967 A1 WO2017110967 A1 WO 2017110967A1 JP 2016088285 W JP2016088285 W JP 2016088285W WO 2017110967 A1 WO2017110967 A1 WO 2017110967A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
silica glass
glass crucible
wave
single crystal
Prior art date
Application number
PCT/JP2016/088285
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 須藤
忠広 佐藤
賢 北原
江梨子 北原
山崎 亨
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to JP2017558244A priority Critical patent/JP6692526B2/en
Publication of WO2017110967A1 publication Critical patent/WO2017110967A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a crucible inspection apparatus, a crucible inspection method, a silica glass crucible, a silica glass crucible manufacturing method, and a silicon ingot manufacturing method, and more particularly to a crucible inspection apparatus, a crucible inspection method, and a silica glass crucible for inspecting crucible fragility.
  • the present invention relates to a method for producing a silica glass crucible, a method for producing a silicon ingot, and a method for producing a homoepitaxial wafer.
  • a silicon single crystal (silicon ingot) is manufactured by the Czochralski method (CZochralski) using a silica glass crucible.
  • CZochralski Czochralski
  • first, polycrystalline silicon is filled into a silica glass crucible.
  • the polycrystalline silicon is melted into the silicon melt by heating with a carbon heater or the like disposed around the silica glass crucible.
  • a silicon single crystal seed crystal is brought into contact with the molten silicon melt and gradually pulled up while rotating.
  • the silicon single crystal is grown by using the seed crystal of the silicon single crystal as a nucleus.
  • the pulling of the silicon single crystal is performed at a temperature of about 1450 to 1500 ° C. This is a temperature exceeding 1200 to 1300 ° C. which is the softening point of the silica glass crucible.
  • a silica glass crucible used in manufacturing the silicon single crystal includes a cylindrical side wall, a curved bottom, and a corner having a higher curvature than the bottom by connecting the side and the bottom. It is a shape and the upper end surface of the side wall part of the silica glass crucible is formed as an annular flat surface. Further, the silica glass crucible includes, for example, a transparent layer in which bubbles cannot be observed based on visual observation or image data, and a bubble-containing layer in which bubbles are observed, from the inner surface to the outer surface of the silica glass crucible. It is comprised with the layer of. Silica glass crucibles are manufactured in various sizes such as 28 inches (about 71 cm), 32 inches (about 81 cm), 36 inches (about 91 cm), and 40 inches (about 101 cm) in diameter.
  • the pulling of the silicon single crystal is performed at a temperature exceeding the softening point of silica glass. Therefore, when the silicon single crystal is pulled, the silica glass crucible is deformed. Therefore, generally, a silica glass crucible is used for every pulling of a silicon single crystal. That is, the silica glass crucible needs to be prepared separately for each pulling of the silicon single crystal.
  • the silica glass crucible as described above is manufactured by using, for example, a rotational mold method. That is, the silica glass crucible is formed by depositing silica powder on the inner surface of a rotating mold (made of carbon) to form a silica powder layer, and arc melting the deposited silica powder layer while reducing the pressure. To manufacture. When performing arc melting, the silica glass crucible having a transparent layer and a bubble-containing layer can be produced by strongly reducing the pressure of the silica powder in the initial stage of arc melting and then reducing the pressure reduction.
  • the silica glass crucible is manufactured by the rotational mold method as described above. Due to such a manufacturing method, the silica glass crucible cannot be manufactured as designed. Therefore, the shape of the manufactured silica glass crucible and the characteristics of the inner surface may be deviated from the design drawing. In addition, as described above, it is necessary to prepare a silica glass crucible separately for each pulling of the silicon single crystal. However, if there is a defect in the manufactured silica glass crucible, the single crystal ratio is reduced when the silicon single crystal is pulled. May cause deterioration. Thus, the silica glass crucible cannot be manufactured as designed, and the manufactured silica glass crucible may have defects that cause deterioration of the single crystal ratio. Therefore, the manufactured silica glass crucible is inspected.
  • Patent Document 1 As a technique for inspecting a silica glass crucible, for example, there is Patent Document 1.
  • Patent Document 1 at least one of an infrared absorption spectrum and a Raman spectrum is measured at a measurement point on the inner surface of a silica glass crucible, and whether or not an abnormal site such as a brown ring is generated based on the obtained spectrum.
  • a method for inspecting a silica glass crucible comprising a step of judging is described. According to Patent Document 1, with the above-described configuration, it is possible to grasp a silica glass crucible where an abnormal site is likely to occur before shipment.
  • Patent Document 2 includes a step of measuring a three-dimensional shape of the inner surface of a silica glass crucible with an internal distance measuring unit, a step of (1) measuring a three-dimensional shape of a foreign object, and (2) a step of measuring a three-dimensional distribution of strain. A method for evaluating a silica glass crucible having any of the steps is described.
  • Patent Document 3 discloses an inspection method for a silica glass crucible in which ultraviolet light having a wavelength of 365 nm is irradiated on a side surface of a silica glass crucible, and the number of fluorescent spots having a wavelength within a range of 420 nm to 600 nm generated on a silica glass crucible wall surface is measured. Is described. According to Patent Document 4, with the above configuration, impurities localized in the silica glass crucible can be easily detected.
  • Patent Document 4 discloses a method for manufacturing a glass substrate that can reduce breakage of the glass substrate while increasing the production efficiency of the glass substrate.
  • the method for manufacturing a glass substrate includes a heat treatment step for the glass substrate formed by the downdraw method.
  • the glass substrate is suspended by holding the upper end portion of the glass substrate with a holding member, and the glass substrate is heat-treated while being transported along the transport direction.
  • the glass substrate has a main surface that is curved so as to protrude along the transport direction.
  • Patent Document 5 discloses a method for producing a glass substrate for a magnetic recording medium that can sufficiently reduce the surface waviness of a short wavelength and the surface waviness of a medium wavelength on the main surface of the glass substrate for a magnetic recording medium.
  • the surface roughness Ra at a measurement wavelength of 2.5 to 80 ⁇ m is 0.40 to 1.40 ⁇ m
  • the surface roughness Ra at a measurement wavelength of 2.5 to 800 ⁇ m is 0.40 to 2.00 ⁇ m.
  • Patent Document 6 discloses a method for quantitatively evaluating the amount of corrosion of reinforcing steel in a reinforced concrete structure using acoustic emission.
  • a piezoelectric element sensor is installed in a reinforced concrete structure, and acoustic emission generated due to an external load received by the concrete structure is detected.
  • the peak frequency f obtained by processing the acoustic emission is a hit number Hlow satisfying f1 ⁇ f ⁇ f2 with respect to an arbitrary frequency f1, f2, f3, f4 (f1 ⁇ f2 ⁇ f3 ⁇ f4), Evaluation is performed in a ratio with the number of hits High that satisfies f3 ⁇ f ⁇ f4.
  • Patent Document 7 discloses a defect site detection apparatus using an acoustic emission method that can clarify the position information of a defect site by removing a heat insulating material only at a sensor installation location of an inspection object such as a pipe.
  • This apparatus includes a waveform analysis device having a time-frequency analysis unit, an analysis waveform storage unit, and a calculation unit.
  • the time-frequency analysis unit extracts the highest frequency component that can be extracted from the original sound waveform detected by the sensor using time-frequency analysis in a certain frequency band, and then sequentially extracts the frequency component in a lower frequency band. To separate the waveforms.
  • the analysis waveform storage unit stores the waveform of each frequency band component separated.
  • the calculation unit reads the propagation time of the stored waveform in each frequency band, and calculates the distance between the defect site serving as the sound source and the sensor based on the difference and the propagation speed in each frequency band.
  • Patent Document 8 discloses a rotating machine bearing diagnostic apparatus using AE that can perform any bearing diagnosis regardless of the magnitude of the load and the rotating mode of the rotating machine.
  • the detection signal of the AE sensor is amplified and detected, an effective value is calculated by an effective value circuit, and a gate signal for determining a constant speed period of the elevator hoisting machine is output from the comparator to the gate circuit.
  • the control unit calculates a threshold value based on the effective value calculated by the effective value circuit during a predetermined period in the gate signal period, and outputs the threshold value to the comparator via the D / A converter.
  • the comparator outputs a signal when there is a signal equal to or greater than the threshold value among the signals that have passed through the gate circuit, and a pulse is output from the waveform shaping circuit by this signal. Whether or not the bearing is possible is diagnosed by the number of pulses.
  • Patent Document 9 discloses a plate glass cutting method and apparatus capable of cutting plate glass at a high speed and preventing deterioration in plate glass quality. This method detects the pressing force of the cutter wheel without a time lag by detecting the pressing force of the cutter wheel by a detecting unit such as a piezoelectric element while processing the cutting line of the plate glass. Also, since the vertical movement of the cutter wheel is controlled so as to follow the unevenness of the plate glass by the operation of the pressing means such as a linear motor, the cutter wheel is moved up and down so as to respond at high speed to the control signal from the control unit. .
  • Patent Literature 10 discloses a composite container inspection method and inspection system.
  • This composite container inspection method is a composite container inspection method including a liner forming a container and a reinforcing layer formed by winding fibers around the liner.
  • This inspection method includes a signal acquisition step of acquiring an acoustic emission signal from an acoustic emission sensor attached to the composite container, and a first indication of a sign of fatigue failure of the liner based on the acoustic emission signal acquired by the signal acquisition step. And a first determination step for determining whether or not the above condition is satisfied.
  • the first condition is a condition determined based on the energy of acoustic emission.
  • ⁇ Problems with cracks> In a silica glass crucible, when stress is applied to a silica glass crucible having growing cracks, the cracks grow and eventually the silica glass crucible is broken. In particular, when pulling up a silicon single crystal, about 400 kg of polycrystalline silicon is filled in the silica glass crucible, and therefore, a force pushed by the polycrystalline silicon from the inside acts on the silica glass crucible. In the process of pulling up the silicon single crystal, the silica glass crucible may be cracked or cracked, and the silicon melt in the crucible may leak out. It is known that such glass breakage is caused by the presence of cracks as starting points of cracks.
  • the crack as the starting point of the crack as described above may be formed at the stage of filling the silica glass crucible with polycrystalline silicon, but may also be formed in the process of manufacturing the silica glass crucible. Therefore, in order to prevent the situation where the silica glass crucible is broken, the silica glass crucible is inspected at the stage where the silica glass crucible is manufactured, and the crack formed in the silica glass crucible. It is necessary to inspect for the presence or absence of this. In particular, it is very important to accurately find cracks (including microcracks) that lead to cracking of the silica glass crucible before the silicon single crystal is pulled (before use).
  • the planar glass substrate before the heat treatment has only a predetermined strength to be inspected by the AE method. Is not considered.
  • an AE sensor is merely used for inspecting whether or not the manufactured glass substrate (plane) for a magnetic recording medium has a predetermined quality.
  • the technologies described in Patent Documents 4 to 10 do not consider the shape and bubble layer peculiar to the crucible. Therefore, the AE occurs, for example, by changing the sensor position for the crucible and how to apply external pressure. The ease of crucible cracking cannot be evaluated taking into account the position.
  • an object of the present invention is to provide a crucible inspection apparatus, a crucible inspection method, a silica glass crucible, and a silica glass crucible that can solve the problem that it is impossible to inspect the presence of a crack that may become a starting point of a crack. It is providing the manufacturing method of this, the manufacturing method of a silicon ingot, and the manufacturing method of a homoepitaxial wafer.
  • the crucible inspection apparatus is Inspecting the ease of cracking of a silica glass crucible comprising a cylindrical side wall, a curved bottom, and a corner provided between the side wall and the bottom and having a curvature higher than the curvature of the bottom.
  • a silica glass crucible inspection device A configuration is adopted in which an AE wave detecting means is provided which is installed on the surface of the silica glass crucible and detects an AE (Acoustic Emission) wave generated when a predetermined external force is applied to the silica glass crucible.
  • the inspection object using the conventional AE is used at room temperature, but the inspection object silicon single crystal pulling temperature of the present invention is high (the silicon melt is 1400 ° C. or higher, the temperature of the silica glass crucible).
  • the silicon melt is 1400 ° C. or higher, the temperature of the silica glass crucible.
  • This silica glass crucible is used in a state of being fitted into a carbon susceptor in a pulling device. Therefore, even if it is 1600 degreeC, it does not fall outside by the carbon susceptor outside the silica glass crucible, and can be used as a crucible.
  • quartz glass alone is deformed at about 1200 ° C.
  • the silica glass crucible is used in a completely different environment from general quartz glass, and it is necessary to detect microcracks that are so small that they cannot be compared with an object used at room temperature.
  • stress may be concentrated in the curved portion in the silica glass crucible, and it is necessary to detect minute microcracks in order to withstand the stress.
  • conventional inspection objects using AE waves are composed of simple materials such as blocks and pipes, but silica glass crucibles have side walls, corners, and bottoms, and are composed of curved surfaces. In addition, it has a layer structure of a transparent layer and a bubble layer. For this reason, the conventional method cannot be applied as it is.
  • non-destructive silica glass crucibles that are actually used for pulling up silicon single crystals at high temperatures for a long time are inspected without cutting sample pieces from the silica glass crucible. Can be selected. Thereby, it is possible to prevent troubles such as high temperature silicon melt leaking into the silicon single crystal pulling furnace (CZ furnace) due to cracking or opening of the silicon single crystal.
  • CZ furnace silicon single crystal pulling furnace
  • AE wave inspection means for inspecting AE waves is installed on the surface of the silica glass crucible, Apply a predetermined external force to the silica glass crucible, AE (Acoustic Emission) wave generated when the predetermined external force is applied to the silica glass crucible is detected. The structure is taken.
  • the silica glass crucible which is another embodiment of the present invention, A configuration is adopted in which the number of defects that generate AE waves when an external force is applied is equal to or less than a predetermined threshold.
  • An AE wave inspection means for inspecting the AE wave is installed on the surface of the silica glass crucible, a predetermined external force is applied to the silica glass crucible, and an AE (Acoustic Emission) wave generated when the predetermined external force is applied to the silica glass crucible. It has a configuration of having a detecting step.
  • the method for producing a silicon ingot according to another embodiment of the present invention A configuration is adopted in which the method includes the step of pulling up the silicon single crystal using the silica glass crucible manufactured by the silica glass crucible manufacturing method described above.
  • a homoepitaxial wafer according to another embodiment of the present invention includes a step of forming a substrate portion by a wafer formed by cutting out a silicon ingot manufactured by the above method, and a silicon single crystal homoepitaxial layer on the substrate portion Forming a step.
  • the present invention is configured as described above, and can solve the problem that the presence of a crack that may be a starting point of a crack cannot be inspected. By this, even if it is a microcrack that cannot be seen by visual inspection or image inspection, or a microcrack that exists inside the crucible wall, the inside surface and wall portion of these silica glass crucibles can be inspected using AE waves. Internal microcracks can be found.
  • FIG. 1 It is a figure which shows an example of a structure of the silica glass crucible used as the test object in the 1st Embodiment of this invention. It is a figure which shows an example of a structure of the crucible inspection apparatus in the 1st Embodiment of this invention. It is a figure which shows an example of a structure of the AE sensor shown in FIG. It is a figure which shows an example of a mode at the time of installing the AE sensor shown in FIG. 2 in a silica glass crucible. It is a figure which shows an example of a structure of the AE wave analysis apparatus shown in FIG. It is a figure for demonstrating an example of the measurement by the AE wave intensity measurement part shown in FIG.
  • FIG. 1 is a diagram illustrating an example of the configuration of the silica glass crucible 1.
  • FIG. 2 is a diagram illustrating an example of the configuration of the crucible inspection apparatus 2.
  • FIG. 3 is a diagram illustrating an example of the configuration of the AE sensor 21.
  • FIG. 4 is a diagram illustrating an example of a state when the AE sensor 21 is installed in the silica glass crucible 1.
  • FIG. 5 is a diagram illustrating an example of the configuration of the AE wave analyzer 23.
  • FIG. 6 is a diagram for explaining an example of measurement by the AE wave intensity measurement unit 231.
  • FIG. 7 is a diagram for explaining an example of AE wave measurement by the AE wave generation number measurement unit 232.
  • FIG. 8 is a diagram for explaining an example of calculation of the AE wave generation position by the AE wave generation position calculation unit 233.
  • FIG. 9 is a flowchart showing an example of the operation of the crucible inspection apparatus 2.
  • the crucible inspection apparatus 2 in the first embodiment of the present invention, a crucible inspection apparatus 2 that inspects and evaluates the fragility of the silica glass crucible 1 will be described.
  • the crucible inspection apparatus 2 in the present embodiment has an AE (Acoustic Emission) sensor 21 and detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1.
  • the crucible inspection apparatus 2 inspects and evaluates the ease of cracking of the silica glass crucible 1 based on the detection result of the AE wave by the AE sensor 21.
  • a silica glass crucible 1 to be inspected / evaluated by the crucible inspection apparatus 2 in this embodiment includes a cylindrical side wall portion 11, a curved bottom portion 12, a side wall portion 11 and a bottom portion 12. And a corner portion 13 having a higher curvature than the bottom portion 12. Moreover, the upper end surface of the side wall part 11 of the silica glass crucible 1 is formed as an annular flat surface.
  • the silica glass crucible 1 includes a transparent layer 111 in which bubbles are not observed and a bubble-containing layer 112 in which bubbles are observed from the inner surface toward the outer surface of the silica glass crucible 1 based on visual observation or image data.
  • the silica glass crucible 1 has various sizes such as 28 inches (about 71 cm), 32 inches (about 81 cm), 36 inches (about 91 cm), and 40 inches (about 101 cm) in diameter.
  • Such a silica glass crucible 1 is manufactured using, for example, a rotational mold method. That is, the silica glass crucible 1 forms a silica powder layer by depositing silica powder on the inner surface of a rotating mold (made of carbon), and arc-melting the deposited silica powder layer while reducing the pressure. Manufactured by. When performing arc melting, silica powder is strongly depressurized in the initial stage of arc melting, and then the pressure is weakened, whereby the silica having the transparent layer 111 on the inner surface side and the bubble-containing layer 112 on the outer surface side. A glass crucible 1 can be manufactured.
  • the silica glass crucible 1 is manufactured by the method as described above, for example, unmelted silica powder is attached to the outer surface layer of the silica glass crucible 1. That is, the outer surface layer of the silica glass crucible 1 has a rough roughness.
  • Silica powder used for the production of the silica glass crucible 1 includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis. Natural silica powder contains impurities, but synthetic silica powder has high purity. On the other hand, synthetic silica glass obtained by melting synthetic silica powder has a lower viscosity at high temperature than silica glass obtained by melting natural silica powder. Thus, natural silica powder and synthetic silica powder have a plurality of differences in their properties. When manufacturing the silica glass crucible 1, natural silica powder and synthetic silica powder can be used properly.
  • the crucible inspection apparatus 2 in the present embodiment includes an AE sensor 21 (AE wave detection means), an amplifier 22, and an AE wave analysis apparatus 23.
  • the AE sensor 21 and the amplifier 22 are connected so that an electric signal can be transmitted.
  • the amplifier 22 and the AE wave analyzer 23 are also connected so as to be able to transmit electrical signals.
  • FIG. 2 shows a case where the crucible inspection apparatus 2 has one AE sensor 21 as an example of the configuration of the crucible inspection apparatus 2.
  • the number of AE sensors 21 included in the crucible inspection apparatus 2 is not limited to one.
  • the crucible inspection apparatus 2 may have an arbitrary number of AE sensors 21 of two or more.
  • the AE sensor 21 is installed on the surface of the silica glass crucible 1 and detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1.
  • the AE sensor 21 can be configured to detect the AE wave so that the time when the AE wave is detected can be discriminated.
  • the AE sensor 21 includes, for example, a piezoelectric element 211, a receiving plate 212, and a connector 213.
  • a piezoelectric element 211 is provided on one surface of the receiving plate 212, and the piezoelectric element 211 and the connector 213 are connected so that a current can flow.
  • the receiving plate 212 is in contact with the silica glass crucible 1 on the other surface (the surface opposite to the side on which the piezoelectric element 211 is provided).
  • the AE sensor 21 in the present embodiment is installed on the inner surface of the silica glass crucible 1. That is, the receiving plate 212 of the AE sensor 21 is installed on the inner surface of the silica glass crucible 1 so as to be in contact with the transparent layer 111 of the silica glass crucible 1.
  • the outer surface layer of the silica glass crucible 1 has a rough roughness. In order to increase the detection accuracy of the AE wave, it is desirable that the installation surface does not have roughness. Therefore, by installing the AE sensor 21 on the inner surface of the silica glass crucible 1 as described above, Compared with the case where it is installed on the outer surface of the silica glass crucible 1, it is possible to detect the AE wave with higher accuracy.
  • the piezoelectric element 211 converts a force applied to itself into a voltage. Specifically, the piezoelectric element 211 in the present embodiment detects distortion of the silica glass crucible 1 due to propagation of AE waves and converts the distortion into a voltage. That is, the piezoelectric element 211 detects an AE wave and generates an electric signal (AE signal) corresponding to the AE wave.
  • the piezoelectric element 211 in the present embodiment is, for example, a piezoelectric ceramic, and is made of, for example, lead zirconate titanate (Pb (Zr, Ti) O3).
  • the receiving plate 212 is provided with a piezoelectric element 211 on one surface, and comes into contact with the silica glass crucible 1 on the other surface.
  • the receiving plate 212 is distorted by AE waves propagating through the silica glass crucible 1. As the receiving plate 212 is distorted in this way, the AE wave generated in the silica glass crucible 1 is transmitted to the piezoelectric element 211.
  • the receiving plate 212 is ceramics, for example.
  • Connector 213 connects piezoelectric element 211 and amplifier 22 which is an external device. As described above, the piezoelectric element 211 is connected to the connector 213, and the AE signal generated by the piezoelectric element 211 is transmitted to the amplifier 22 via the connector 213.
  • at least three AE sensors 21 described above are installed in the silica glass crucible 1. As will be described later, by using at least three AE sensors 21, it is possible to specify the position of the AE occurrence position on the plane when the three-dimensional silica glass crucible 1 is developed on the plane.
  • At least three AE sensors 21 are installed on the side wall part 11, the bottom part 12, and the corner part 13, for example.
  • a plurality of AE sensors 21 are arranged at equal intervals in the circumferential direction of the cylinder.
  • the AE sensor 21 is applied to the corner portion 13 where internal residual stress is likely to be accumulated in the silica glass crucible 1 and the bottom portion 12 where pressure is easily applied when filling a material (polycrystalline silicon) for pulling up the silicon single crystal. Is preferably arranged.
  • the silica glass crucible 1 is likely to break when the silicon single crystal is pulled. Therefore, it is desirable to inspect the ease of cracking of the silica glass crucible 1 by installing the AE sensor 21 around the connection portion between the corner portion 13 and the bottom portion 12.
  • the amplifier 22 amplifies the AE signal received from the AE sensor 21.
  • the AE signal amplified by the amplifier 22 is transmitted to the AE wave analyzer 23.
  • the configuration of the amplifier 22 is not particularly limited.
  • the AE wave analyzer 23 receives the AE signal amplified by the amplifier 22. Then, the AE wave analysis device 23 measures the strength of the AE wave based on the received AE signal, counts the number of times the AE wave is detected, and is easy to break the silica glass crucible 1 based on the detection result. Or evaluate.
  • the AE wave analysis device 23 includes, for example, a filter, an in-device amplifier, an envelope detection unit, and the like (not shown).
  • the AE wave analyzer 23 removes a signal having a frequency unnecessary for the inspection from the AE signal received from the amplifier 22 using a filter. Then, the AE wave analyzing device 23 amplifies the removed AE signal with an in-device amplifier. Thereafter, the AE wave analyzer 23 performs processing such as measurement using the amplified AE signal. Further, the AE wave analysis device 23 extracts the envelope of the amplified AE signal by the envelope detection means (specifically, for example, after half-rectifying the negative portion of the AE signal, the envelope detection is performed). Do). The AE wave analyzer 23 can also perform processing such as measurement using the extracted envelope.
  • FIG. 5 shows an example of the main configuration of the AE wave analyzer 23.
  • the AE wave analysis device 23 includes, for example, an AE wave intensity measurement unit 231, an AE wave generation frequency measurement unit 232, an AE wave generation position calculation unit 233 (position specifying unit), and a crucible evaluation unit. 234 (crucible evaluation means) and a measurement result storage unit 235.
  • the AE wave analysis device 23 includes a central processing unit (CPU: Central Processing Unit) (not shown) and a storage device, and the CPU executes a program stored in the storage device, thereby realizing the above-described units.
  • CPU Central Processing Unit
  • the AE wave analysis device 23 may have a configuration other than the above-exemplified examples, or may be configured by a part of the above-exemplified examples (for example, the AE wave analysis device 23 has an AE wave strength). And a measuring unit 231 and a crucible evaluating unit 234.
  • the AE wave intensity measurement unit 231 measures the intensity of the AE wave detected by the AE sensor 21.
  • the AE wave intensity measurement unit 231 measures the intensity of the AE wave based on the AE signal waveform amplified by the in-device amplifier.
  • FIG. 6 is an example of an AE signal waveform after amplification by the in-device amplifier.
  • the AE wave intensity measurement unit 231 measures the maximum amplitude, which is the largest amplitude among the AE signal waveforms, as the intensity of the AE wave.
  • the maximum amplitude represents the energy level (dB) of the AE wave.
  • the AE wave intensity measurement unit 231 may be configured to measure the AE average value as the AE wave intensity instead of the maximum amplitude.
  • the AE average value can be calculated by, for example, averaging the envelope waveform extracted by envelope detection.
  • the AE wave intensity measuring unit 231 may be configured to measure the AE effective value (effective value, root mean square value, RMS) as the AE wave intensity.
  • the AE wave generation number measurement unit 232 measures the number of detections of the AE wave detected by the AE sensor 21. For example, the AE wave generation frequency measurement unit 232 measures the number of detections of the AE wave based on the envelope waveform extracted by envelope detection and a predetermined threshold value (a value larger than the noise signal). .
  • FIG. 7 is an example of an envelope waveform extracted by envelope detection. As illustrated in FIG. 7, for example, the AE wave generation number measurement unit 232 measures the number of detections of the AE wave by counting the number of times exceeding the threshold value in the envelope waveform. For example, in the case of FIG. 7, the AE wave generation number measurement unit 232 measures that the AE wave has been detected twice.
  • the AE wave generation frequency measurement unit 232 may be configured to calculate, for example, the AE wave generation frequency per unit time obtained by dividing the measured frequency by the measurement time.
  • the AE wave generation position calculation unit 233 calculates the generation position of the AE wave. For example, the AE wave generation position calculation unit 233 calculates the generation position of the AE wave based on the difference in detection time when the plurality of AE sensors 21 installed in the silica glass crucible 1 detect the AE wave. Specifically, the AE wave generation position calculation unit 233 determines the generation position of the AE wave based on the difference in detection time when each AE sensor 21 detects the AE wave and the sound velocity V in the silica glass crucible 1. Is calculated.
  • FIG. 8 is a diagram for explaining an example of the calculation of the AE wave by the AE wave generation position calculation unit 233.
  • FIG. 8 shows one example when calculating the generation position of the AE wave in one dimension as an example for explaining the calculation method of the generation position of the AE wave.
  • the AE sensor 21-1 and the AE sensor 21- 2 is set at a known coordinate, and an AE wave generated from a crack 3 existing on an unknown coordinate x is detected. As shown in FIG. 8, for example, it is assumed that the AE sensor 21-1 is installed at the coordinate k1, and the AE sensor 21-2 is installed at the coordinate k2.
  • the AE sensor 21-1 detects an AE wave generated from the crack 3 at time t1
  • the AE sensor 21-2 detects an AE wave generated from the crack 3 at time t2.
  • the speed of sound waves in the silica glass crucible 1 is about 5700-5900 m / s for longitudinal waves and about 3700 m / s for transverse waves.
  • the AE wave generation position calculation unit 233 uses the three AE sensors 21 to calculate the two-dimensional position of the crack 3 based on the positional relationship between the three AE sensors and the difference in detection time. I can do it.
  • the two-dimensional position is a coordinate on a plane when the three-dimensional silica glass crucible 1 is developed on the plane.
  • the actual silica glass crucible 1 has a three-dimensional shape (a cylindrical side wall portion 11, a curved bottom portion 12, a corner portion 13 provided between the side wall portion 11 and the bottom portion 12 and having a higher curvature than the bottom portion 12). It is.
  • the AE wave generation position calculation unit 233 returns (reversely converts) the calculated two-dimensional position of the crack 3 to the actual three-dimensional shape of the silica glass crucible 1 to calculate the three-dimensional position of the crack 3. Also good. Thereby, the three-dimensional shape of the silica glass crucible 1 and the position of the crack 3 can be accurately grasped.
  • the crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the measurement, measurement, and calculation results by the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. To do.
  • the crucible evaluation unit 234 compares the value of the measurement result obtained by the AE wave intensity measurement unit 231 with a strength threshold value (arbitrarily adjusted value) stored in advance. And when the value of a measurement result exceeds the strength threshold, crucible evaluation part 234 evaluates that silica glass crucible 1 is easy to break. Thus, the crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the strength of the AE wave generated when a predetermined external force is applied to the silica glass crucible 1, for example.
  • a strength threshold value arbitrarily adjusted value
  • the silica glass crucible 1 When the result of measurement by the AE wave intensity measurement unit 231 is equal to or greater than a preset threshold, if the silicon single crystal is actually pulled up using the silica glass crucible 1, the silica glass crucible 1 may be broken in the middle. Becomes stronger.
  • the crucible evaluation unit 234 compares the value of the measurement result obtained by the AE wave generation frequency measurement unit 232 with a frequency threshold value (arbitrarily adjusted value) stored in advance. And when the value of a measurement result exceeds the frequency threshold, crucible evaluation part 234 evaluates that silica glass crucible 1 is easy to break. Thus, the crucible evaluation part 234 evaluates the ease of cracking of the silica glass crucible 1 based on the number of AE waves generated when a predetermined external force is applied to the silica glass crucible 1, for example.
  • the AE wave generation frequency measuring unit 232 As a result of measurement by the AE wave generation frequency measuring unit 232, when AE waves of a preset number of times or more are measured, when the silicon single crystal is actually pulled up using the silica glass crucible 1, the silica glass crucible 1 breaks along the way. The risk of getting stronger.
  • the crucible evaluation unit 234 can evaluate the ease of cracking of the silica glass crucible 1 based on the calculation result by the AE wave generation position calculation unit 233. For example, it is conceivable that the ease of cracking of the silica glass crucible 1 changes depending on the position of a crack generated in the silica glass crucible 1. Therefore, the crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the calculation result by the AE wave generation position calculation unit 233.
  • the crucible evaluation unit 234 evaluates the easiness of cracking of the silica glass crucible 1 based on whether or not there is a curved corner portion 13 or bottom portion 12 or a connection portion microcrack between the corner portion 13 and the bottom portion 12. It is desirable to do.
  • the crucible evaluation unit 234 can be configured to evaluate the ease of cracking of the silica glass crucible 1 by combining a plurality of the above-exemplified methods. For example, the crucible evaluation unit 234 determines the target when the result of the measurement by the AE wave intensity measurement unit 231 is equal to or greater than a predetermined threshold value and more than a predetermined number of AE waves are measured. It can be evaluated that the silica glass crucible 1 is easily broken. Also, the crucible evaluation unit 234 may change the threshold value to be compared with the value of the measurement result obtained by the AE wave intensity measurement unit 231 according to the generation position of the AE wave, for example.
  • the crucible evaluation unit 234 may change the number of AE waves that are allowable for each location of the silica glass crucible 1.
  • the crucible evaluating unit 234 may evaluate the ease of cracking of the silica glass crucible 1 by a combination other than those exemplified above.
  • the measurement result storage unit 235 is a storage device such as a semiconductor memory or a hard disk.
  • the measurement result storage unit 235 stores the measurement, measurement, and calculation results obtained by the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. Further, the measurement result storage unit 235 stores the evaluation result obtained by the crucible evaluation unit 234. In the measurement result storage unit 235, for example, measurement, measurement, calculation result, and evaluation result for each silica glass crucible 1 are stored.
  • the AE wave is generated by the generation or growth of cracks in the silica glass crucible 1 due to external force applied to the silica glass crucible 1 or internal force fluctuations. Therefore, in order to detect the AE wave by the crucible inspection apparatus 2, it is necessary to apply an external force to the silica glass crucible 1 or cause an internal force fluctuation.
  • generation of AE waves is induced by applying an external force to the silica glass crucible 1 using air or water pressure.
  • the compressed air is hit against the silica glass crucible 1 and the AE wave generated when the compressed air is hit is detected by the crucible inspection device 2.
  • the crucible inspection apparatus 2 detects an AE wave generated using water pressure.
  • the silica glass crucible 1 includes a cylindrical side wall part 11, a curved bottom part 12, and a container part that connects the side wall part 11 and the bottom part 12 and has a corner part 13 having a higher curvature than the bottom part 12. It has the shape of For this reason, the inside of the silica glass crucible 1 can be filled with water (liquid). By filling with water, an external force (force directed outward from the center inside the crucible) can be uniformly applied to the inner surfaces of the cylindrical side wall portion 11, the curved bottom portion 12, and the corner portion 13 having a predetermined curvature. it can.
  • the position where the external force on the inner surface of the crucible is to be applied can be easily selected depending on the amount of water to be filled. For example, if only the bottom portion 12 is filled with water, an external force can be applied only to the bottom portion 12, and if water is filled up to the corner portion 13, an external force can be applied from the bottom portion 12 to the corner portion 13. Moreover, if water is filled to the predetermined height of the side wall part 11, external force can be given to the height with which the water of the bottom part 12, the corner part 13, and the side wall part 11 was filled.
  • the AE wave can be inspected while continuously changing the position where the external force is applied to the inner surface of the crucible.
  • the use of the crucible inspection apparatus 2 is not limited to the case of inspecting the silica glass crucible 1 nondestructively.
  • the crucible inspection apparatus 2 may be configured to detect an AE wave generated by a destructive inspection of the silica glass crucible 1.
  • the AE sensor 21 of the crucible inspection apparatus 2 in the present embodiment is installed on the surface of the silica glass crucible 1. Specifically, the AE sensor 21 is installed on the inner surface of the silica glass crucible 1, for example. Then, an AE wave is generated in the silica glass crucible 1 by applying a predetermined external force to the silica glass crucible 1.
  • the AE sensor 21 of the crucible inspection apparatus 2 detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1 (step S001). Specifically, the AE sensor 21 detects an AE wave and generates an AE signal according to the AE wave. The AE signal generated by the AE sensor 21 is amplified by the amplifier 22, and the amplified AE signal is received by the AE wave analyzer 23.
  • the AE wave analyzer 23 evaluates the ease of cracking of the silica glass crucible 1 based on the received AE signal (step S002). Specifically, the AE wave intensity measurement unit 231 of the AE wave analyzer 23 measures the intensity of the AE wave based on the received AE signal. In addition, the AE wave generation frequency measurement unit 232 of the AE wave analyzer 23 measures the number of AE wave generations based on the received AE signal. Further, the AE wave generation position calculation unit 233 of the AE wave analysis device 23 calculates the generation position of the AE wave.
  • the crucible evaluation unit 234 of the AE wave analysis device 23 uses the silica glass based on the measurement, measurement, and calculation results of the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. The ease of cracking of the crucible 1 is evaluated.
  • the crucible inspection apparatus 2 in the present embodiment includes the AE sensor 21 and the AE wave analysis apparatus 23.
  • the crucible inspection apparatus 2 can detect an AE wave generated when an external force is applied to the silica glass crucible 1.
  • the crucible inspection apparatus 2 can evaluate the ease of cracking of the silica glass crucible 1 based on the detection result.
  • the ease of extension of microcracks can be evaluated from the number of times the AE wave is detected. It is possible to evaluate whether or not it affects the cracking and deformation of the crucible from the ease of extension of microcracks.
  • the size of the microcrack can be estimated from the strength of the AE wave.
  • the position of the microcrack can be estimated from the generation position of the AE wave. Considering the position where the pressure is applied by filling the raw material in the crucible and the position of the liquid surface during the pulling of the silicon single crystal, it can be evaluated whether the position where the microcracks are present affects the cracking and deformation of the crucible. Further, by evaluating these in combination, it is possible to grasp the ease of extension, size, and position of the microcracks in the crucible. Thereby, it is possible to evaluate whether the microcrack affects the crucible crack and the deformation during the pulling in consideration of the pulling condition of the silicon single crystal (the length of pulling time, the raw material filling amount, etc.).
  • the AE sensor 21 includes the piezoelectric element 211, the receiving plate 212, and the connector 213.
  • the configuration of the AE sensor 21 is not limited to the above case.
  • the AE sensor 21 may have a damper material.
  • the AE sensor 21 is installed on the inner surface of the silica glass crucible 1.
  • the AE sensor 21 may be installed on a surface other than the inner surface such as the outer surface of the silica glass crucible 1.
  • a crucible inspection method using the crucible inspection apparatus 2 described in the present embodiment can be performed.
  • an AE wave generation source such as a crack exists in the produced silica glass crucible 1.
  • the silica glass crucible 1 in which the number of defects such as cracks that generate AE waves when an external force is applied is equal to or less than a predetermined threshold value can be realized.
  • the silica glass crucible 1 in which the strength of the AE wave generated when an external force is applied is equal to or less than a predetermined threshold value. Further, by using the silica glass crucible 1 manufactured by the method for manufacturing the silica glass crucible 1 described above, for example, by pulling up the silicon ingot by the Czochralski method, cracks are not generated during the pulling. Can raise the silicon ingot.
  • FIGS. 10A to 10C are schematic views for explaining a method for producing a silicon single crystal using the silica glass crucible according to the present embodiment.
  • the silica glass crucible 1 when pulling up the silicon single crystal, the silica glass crucible 1 is filled with polycrystalline silicon, and in this state, the polycrystalline silicon is heated by a heater disposed around the silica glass crucible 1. And melt. Thereby, the silicon melt 230 is obtained.
  • the silica glass crucible of the present invention the crucible during filling can be prevented from being damaged.
  • the volume of the silicon melt 230 is determined by the mass of polycrystalline silicon. Therefore, the initial height position H 0 of the liquid surface 23 a of the silicon melt 230 is determined by the mass of the polycrystalline silicon and the three-dimensional shape of the inner surface of the silica glass crucible 1. That is, when the three-dimensional shape of the inner surface of the silica glass crucible 1 is determined, the volume up to an arbitrary height position of the silica glass crucible 1 is specified, whereby the initial height of the liquid surface 23a of the silicon melt 230 is determined. The position H0 is determined.
  • the tip of the seed crystal 24 is lowered to the height position H0 and brought into contact with the silicon melt 230. Then, the silicon single crystal 25 is grown by slowly pulling up the wire cable 561 while rotating it. At this time, the silica glass crucible 1 is rotated opposite to the rotation of the wire cable 561.
  • the inner surface shape of the corner portion 13 can be known, and therefore how the descent speed Vm changes can be accurately predicted. it can. Based on this prediction, pulling conditions such as the pulling speed of the silicon single crystal 25 are determined. At this time, by using the silica glass crucible 1 of the present embodiment, since the deformation from the predicted shape is less, the prediction accuracy of the descent speed Vm is further improved. As a result, it is possible to prevent transition from occurring in the corner portion 13 and to automate the lifting.
  • the silica glass crucible 1 is prevented from being deformed by the heating of the silica glass crucible 1 when the silicon single crystal 25 is pulled up (such as falling of the side wall 11, distortion, rising of the bottom 12).
  • the deviation of the descending speed Vm of the liquid surface 23a obtained from the three-dimensional shape of the inner surface of the glass crucible 1 is suppressed, and the silicon single crystal 25 having a high crystallization rate can be manufactured with a high yield.
  • the silicon single crystal is pulled up in an argon atmosphere and under reduced pressure (about 660 Pa to 13 kPa).
  • a silicon ingot may be manufactured by setting the silica glass crucible 1 manufactured in the present embodiment to a pulling device and pulling up the silicon single crystal.
  • FIG. 11 is a schematic view illustrating a silicon single crystal silicon ingot.
  • the silicon single crystal ingot 600 is manufactured by setting the silica glass crucible 1 of the present invention in a pulling apparatus and pulling it up by the above-described silicon single crystal manufacturing method.
  • the ingot 600 has a shoulder 610 on the seed crystal 24 side, a straight body 620 continuous from the shoulder 610, and a tail 630 continuous from the straight body 620. Note that the seed crystal 24 is removed from the ingot 600.
  • the diameter of the shoulder portion 610 gradually increases from the seed crystal 24 side to the straight body portion 620.
  • the diameter of the straight body 620 is substantially constant.
  • the diameter of the tail 630 gradually decreases as the distance from the straight body 620 increases.
  • the quality of the ingot 600 is closely related to the quality of the silica glass crucible 1 to be pulled up.
  • contamination of the silica glass crucible 1 for example, an impurity metal element in the glass
  • foreign matters leads to dislocation of the silicon single crystal in the ingot 600.
  • the smoothness of the inner surface of the silica glass crucible 1 unevenness that can be seen visually
  • the amount and size of bubbles in the vicinity of the surface there is a minute amount into the silicon due to chipping of the crucible surface, cracking of the bubbles, or crushing.
  • debris particles peeled off from the crucible
  • the liquid level lowering speed Vm is determined by a function f of the crucible inner volume and the silicon single crystal growth speed Vg (see FIG. 12B).
  • the liquid level lowering speed Vm is obtained by calculation using this function f.
  • the inner shape of the crucible is deformed and the internal volume is changed due to exposure to high temperature (see FIG. 12C).
  • the silica glass crucible is inserted into the carbon susceptor. Therefore, the outer peripheral surface of the silica glass crucible is in a state of being fitted to the carbon susceptor. For this reason, the silica glass crucible is not deformed outward but deformed only inward.
  • the internal volume of the crucible changes, the calculation of the liquid level lowering speed Vm becomes inaccurate, and the silicon single crystal growth speed Vg cannot be determined accurately. This growth rate Vg is an important factor in the generation of crystal defects. Therefore, if the growth rate Vg cannot be accurately controlled, the quality of the ingot 600 is greatly affected.
  • Vg ⁇ L / ⁇ s ⁇ ( ⁇ R / r) 2 ⁇ Vm
  • Vg ⁇ 2 ⁇ ⁇ L / ⁇ s ⁇ ( ⁇ R / r) 2 ⁇ Vm ⁇
  • the thickness of the silicon wafer is 1 A pulling control of / 10 to 1/100 or less (pulling control for making COP substantially zero) is necessary. In this case, in order to control the decrease in the liquid level of the silicon melt, it is necessary to control the accuracy of 0.01 mm or less.
  • the growth rate Vg of the silicon single crystal fluctuates 2%.
  • the rate of decrease Vm of the silicon melt at the corner 13 of the silica glass crucible 1 is higher than the rate of decrease of the level of the silicon melt at the straight body of the silica glass crucible 1. Therefore, the influence of the variation in the inner diameter of the crucible on the variation in the liquid level is larger in the corner portion 13 than in the straight body portion of the crucible.
  • the relationship between the internal residual stress and the change in the inner diameter of the crucible after use (in terms of operation results) Based on the simulation of the fluctuation amount of the inner diameter of the crucible based on this, the inner diameter fluctuation amount of the crucible in use can be estimated at the stage of the silica glass crucible 1 before use (before the silicon single crystal is pulled up). This makes it possible to reduce the deviation from the target value of the growth rate Vg of the silicon single crystal compared to the case where the deformation of the crucible is not considered at all as in the conventional technique, and the entire length of the straight body portion 620 of the ingot 600 can be reduced. Defects can be suppressed (substantially zero).
  • FIG. 13 is a diagram showing a variation amount of the inner diameter of the crucible.
  • the horizontal axis indicates the amount of variation in the inner diameter of the crucible
  • the vertical axis indicates the height from the bottom of the crucible.
  • the plot of FIG. 13 is a measured value.
  • the line L connects the average of the measured value in each height. As shown by line L, it can be seen that fluctuations in the inner diameter of the crucible (that is, fluctuations in the crucible internal volume) occur on average.
  • the rising speed A of the silicon single crystal is changed based on the shape of the inner surface of the crucible, it is possible to control the growth rate Vg of the silicon single crystal so that the entire length of the silicon single crystal is within a defect-free range. become.
  • feedback control during CZ single crystal growth is performed only by a combination of ADC (automatic diameter control) and liquid level control. That is, in the prior art, the shape of the crucible in actual use is not taken into consideration at all, and the shape change of the crucible cannot be accurately grasped, so that the growth rate Vg is accurately controlled in pulling up the silicon single crystal. I can't.
  • the conventional technology does not correspond to the Vg control corresponding to the accuracy of the liquid level lowering velocity Vm of 0.01 mm or less as described above, and the performance of the semiconductor device, particularly the device of the three-dimensional structure is sufficient. It is not a silica glass crucible that can produce a silicon single crystal (ingot) to be drawn out.
  • the temperature gradient (G) in the pulling axis direction is higher on the melt side than on the solid side (in other words, lower on the solid side than on the melt side).
  • the temperature gradient in the plane (in the radial direction) perpendicular to the pulling axis (in the radial plane) is constant.
  • the silica glass crucible 1 of the present invention can stabilize the height H between the liquid surface of the silicon melt and the tip of the heat shielding member because the deformation and collapse of the silicon single crystal are suppressed.
  • the crystal defects in the straight body portion 620 are substantially zero.
  • COP Crystal Originated Particle
  • COP is one of crystal defects and is a fine defect in which silicon atoms are not present at lattice points of a single crystal (holes are collected). The presence of the COP causes deterioration of electrical characteristics (leakage current, resistance value distribution, carrier mobility, etc.) of the semiconductor device.
  • FIG. 14 is a schematic diagram for explaining a situation in which various defects occur based on the Boronkov theory.
  • V the pulling speed
  • G the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface of the ingot (silicon single crystal)
  • V / G the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface of the ingot (silicon single crystal)
  • the relationship between V / G and point defect concentration is schematically shown with the ratio V / G being the horizontal axis and the concentration of vacancy type point defects and the concentration of interstitial silicon type point defects being the same vertical axis. expressing. It is shown that there is a critical point that becomes a boundary between a region where a vacancy type point defect occurs and a region where an interstitial silicon type point defect occurs.
  • V / G falls below the critical point, a single crystal having a dominant interstitial silicon type point defect concentration is grown.
  • V / G is less than the critical point (V / G) I, the interstitial silicon type point defects are dominant in the single crystal, and the region where the aggregate of interstitial silicon point defects exists [I ] Appears.
  • V / G exceeds the critical point, a single crystal having a dominant vacancy point defect concentration is grown.
  • V / G is greater than the critical point (V / G) v, a region where vacancy type point defects are dominant in the single crystal and agglomerates of vacancy type point defects exist [V] Appears and COP occurs.
  • FIG. 15 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth.
  • the defect distribution shown in FIG. 15 is obtained by growing a silicon single crystal while gradually lowering the pulling speed V, cutting the grown single crystal along the central axis (pickup axis) to form a plate-like specimen, It shows the occurrence of defects.
  • the defect distribution is a result of evaluating the occurrence of defects by decorating Cu on the surface of the plate-shaped specimen and performing heat treatment, then observing the plate-shaped specimen by the X-ray topograph method.
  • the OSF region appears in a ring shape from the outer peripheral portion of the single crystal.
  • the diameter of the OSF region gradually decreases as the pulling speed decreases, and disappears when the pulling speed becomes V1. Accordingly, a defect-free region [P] (region [PV]) appears instead of the OSF region, and the entire in-plane area of the single crystal is occupied by the defect-free region [P].
  • the fact that the COP shown above is substantially zero means that the number of detected COPs is substantially zero.
  • COP is detected by a particle counter.
  • the particle counter when the number of particles of 0.020 ⁇ m or more is detected only 30 or less on the wafer surface (semiconductor device forming surface), the number is substantially zero.
  • “0.020 ⁇ m COP” means, for example, 0.020 ⁇ m when measured with the SP series manufactured by Tencor or the particle counter device for semiconductors and silicon wafers having the same performance as this device.
  • the ingot 600 in which the COP of the straight body 620 is substantially zero is sliced into, for example, a diameter of 300 mm and a thickness of about 1 mm to become a silicon wafer.
  • electrical characteristics can be stabilized and deterioration can be suppressed.
  • the method of detecting COP may be other than the particle counter.
  • a method using a surface defect inspection apparatus after forming an oxide film of a predetermined thickness on the surface of a wafer, applying an external voltage to destroy the oxide film at the defective portion of the wafer surface and deposit copper
  • Examples include a method of detecting defects (COP) by observing the deposited copper with the naked eye, a transmission electron microscope (TEM), a scanning electron microscope (SEM), and the like. In the straight body 620 of the ingot 600, COP is not detected by such a detection method (substantially becomes zero).
  • a more preferable form of the ingot 600 according to the present invention is that all the straight body portions 620 do not have a region where point defects (voids) called vacancy are aggregated (V-Rich region where COP exists), and OSF (Oxidation Induced Stacking). Fault) is not detected, and there is no region (I-Rich region) where interstitial point defects called interstitials exist, that is, all of the straight body portion 620 is a neutral region.
  • the neutral region includes not only a region having no defects, but also a region that does not exist as an agglomerated defect or is so small that it cannot be detected even if a slight vacancy or interstitial is included.
  • the crystal defects in the straight body portion 620 are zero, the electrical characteristics of the semiconductor device manufactured using the wafer cut out from the ingot 600 can be stabilized and the deterioration can be suppressed.
  • a homoepitaxial wafer (hereinafter, also simply referred to as “epitaxial wafer”) may be configured by using a wafer cut out from the ingot 600 as a substrate portion.
  • FIG. 16 is a schematic cross-sectional view illustrating an epitaxial wafer.
  • the epitaxial wafer 700 includes a wafer substrate portion 710 cut out from the ingot 600, and a silicon single crystal epitaxial layer 720 provided on the substrate portion 710.
  • the epitaxial layer 720 is a silicon homoepitaxial layer.
  • the thickness of the epitaxial layer 720 is about 0.5 ⁇ m to 20 ⁇ m.
  • the substrate unit 710 is heated to about 1200 ° C. in an epitaxial furnace.
  • vaporized silicon tetrachloride (SiCl 4 ) and trichlorosilane (trichlorosilane, SiHCl 3 ) are flowed into the furnace.
  • trichlorosilane, SiHCl 3 trichlorosilane
  • the epitaxial layer 720 having substantially zero crystal defects can be formed.
  • a transistor called a Fin-type FET fin-type field effect transistor
  • a MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the source and drain are two-dimensionally configured.
  • the Fin-type FET has a channel region called FIN in the upper layer of the silicon surface and is in contact with the silicon wafer to form a three-dimensional MOSFET.
  • the planar type has been miniaturized by the gate length, but in the Fin type FET, the fin width is managed as the minimum dimension. There is also a Fin type FET having a fin width of about 20 nm, that is, about the same as COP. Therefore, it is required to reduce the size of the COP to the limit as the surface quality of the silicon wafer directly under the fin.
  • Such a three-dimensional structure is adopted not only in a Fin type FET but also in a three-dimensional NAND type flash memory.
  • a homoepitaxial wafer with improved quality is desired.
  • the size of the COP of the silicon wafer needs to be smaller and smaller.
  • the silicon melt can be controlled by paying attention to the relationship between the liquid level fluctuation of the silicon melt and the silica glass crucible.
  • the silica glass crucible can be evaluated based on the detection result of the AE wave, and a crucible in which there is no microcrack that affects cracking or deformation during pulling can be selected.
  • a crucible in which there is no microcrack that affects cracking or deformation during pulling can be selected.
  • microcracks exist in the silica glass crucible, the crucible is likely to be deformed at a high temperature for a long time during the pulling of the silicon single crystal. If the silica glass crucible is deformed during the pulling of the silicon single crystal, the surface of the silicon melt is disturbed, and various pulling conditions such as the pulling speed cannot be controlled.
  • a high quality epitaxial wafer can be provided by forming an epitaxial layer on the substrate portion of the wafer using the ingot.
  • the epitaxial layer 720 may be formed on the entire surface of the substrate portion 710 or may be partially formed. As a result, it is possible to provide a high-quality epitaxial wafer 700 that can be used when crystal integrity is required or when a multilayer structure with different resistivity is required.
  • FIG. 17 is a flowchart illustrating the steps from crucible manufacturing to wafer manufacturing. Steps S201 to S206 shown in FIG. 17 are crucible manufacturing processes, steps S207 to S214 are ingot manufacturing processes, steps S215 to S221 are silicon wafer manufacturing processes, and steps S222 to S227 are the same. It is a manufacturing process of an epitaxial wafer.
  • a series of processes from crucible production to ingot production shown in steps S201 to S214 is referred to as a crucible-ingot production process.
  • a series of processes from crucible manufacturing to silicon wafer manufacturing shown in steps S201 to S221 is referred to as a crucible-silicon wafer manufacturing process.
  • a series of processes from crucible manufacturing to epitaxial wafer manufacturing shown in steps S201 to S227 is referred to as a crucible-epiwafer manufacturing process.
  • an integrated control system is used for production management that assumes the quality of silicon single crystal products (ingots, silicon wafers, epitaxial wafers) due to crucible manufacturing.
  • the diameter of the straight body portion is controlled to be constant by ADC (automatic diameter control).
  • ADC automatic diameter control
  • the time required for pulling up the straight body having a diameter of about 300 mm to a total length of 2000 mm is about 4000 minutes as 0.5 mm / min.
  • the control during this period is mainly based on the relationship between the lifting speed and the weight, and the aim is to raise the COP free over the entire length of the straight body with a constant diameter.
  • the height H between the surface of the silicon melt important for pulling and the cone portion 571 is high when the pulling speed is high, and is low when the pulling speed is slow. Conventionally, the height H is controlled based on the individual difference for each lifting device and the experience of the operator.
  • the height H at the time of pulling up can be controlled more uniformly by predicting the amount of inner surface deformation of the crucible. That is, in the pulling device, the crucible is housed in the carbon susceptor 520, and becomes a weight of, for example, 500 kg due to the filling of polycrystalline silicon. In addition, the crucible being pulled becomes a high temperature of about 1600 ° C. and is pushed outward by the silicon melt, and the gap with the carbon susceptor 520 disappears. Since the carbon susceptor 520 is not deformed, as a result, the crucible is easily deformed inward by a reaction force from the carbon susceptor 520.
  • the integrated control system of the present embodiment accumulates information such as the manufacturing history of the crucible used so far, the measurement result of the internal residual stress before use, the shape change after use, etc. Calculate the behavior and deformation of the crucible when it is pulled up before use.
  • transformation of the crucible internal volume can be known from the deformation
  • Example A silica glass crucible was manufactured based on the rotational molding method. Specifically, silica powder having an average thickness of 15 mm was deposited on the inner surface of a 32-inch rotating mold to form a silica powder layer, and arc discharge was performed with three electrodes of three-phase alternating current. In the arc melting step, the energization time was 90 minutes, the output was 2500 kVA, and the silica powder layer was evacuated for 10 minutes from the start of energization. Eight silica glass crucibles were produced by the method as described above.
  • Test conditions and measurement conditions are shown below.
  • A Measurement conditions (a-1) Test machine crosshead speed: 3 mm / sec (a-2) Target load: 500 Newton (N)
  • B Measurement conditions (b-1) Preamplifier gain: 40 dB (dB) (B-2) Filter: 20 to 400 kHz bandpass filter (b-3)
  • Load analog signal 500 N / V
  • FIG. 18 is a diagram showing the relationship between the number of AE wave generations and the maximum energy value.
  • FIG. 18 shows the result of detecting AE waves for the eight manufactured silica glass crucibles according to the test conditions and measurement conditions.
  • the horizontal axis represents the number of AE waves generated (pieces / cm 2 ), and the vertical axis represents the maximum energy value (dBs) of the AE waves.
  • the silicon single crystal was pulled up using the silica glass crucible, and the presence or absence of cracking of the silica glass crucible was inspected.
  • the silica glass crucible shown by the circled plots in FIG. 18 is not cracked.
  • cracks occurred in the silica glass crucible indicated by the triangular plot in FIG. For this reason, the threshold for the number of AE waves generated was set to 6 / cm 2, and the threshold for the maximum energy value of the AE waves was set to 10 dBs.
  • silica glass crucibles were manufactured by the same manufacturing method as the above eight silica glass crucibles.
  • AE waves at the side wall, corner and bottom are measured, and the silica glass crucible after pulling up the above-mentioned threshold of the number of AE waves generated, the threshold of the maximum energy value, and the silicon single crystal.
  • the relationship between the presence or absence of cracks was investigated.
  • the relationship between the measurement results and the cracking of the silica glass crucible was as follows.

Abstract

The purpose of the present invention is to solve the problem of not being able to test the presence of cracks that may initiate breakage. This crucible testing device that tests breakability of a silica glass crucible includes an acoustic emission (AE) wave detection means which is disposed on a surface of the silica glass crucible, and detects AE waves that are generated when a predetermined external force is applied to the silica glass crucible. The crucible testing device also evaluates the breakability of the silica glass crucible on the basis of the detection result from the AE wave detection means.

Description

ルツボ検査装置、ルツボ検査方法、シリカガラスルツボ、シリカガラスルツボの製造方法、シリコンインゴットの製造方法、ホモエピタキシャルウェーハの製造方法Crucible inspection apparatus, crucible inspection method, silica glass crucible, silica glass crucible manufacturing method, silicon ingot manufacturing method, homoepitaxial wafer manufacturing method
 本発明は、ルツボ検査装置、ルツボ検査方法、シリカガラスルツボ、シリカガラスルツボの製造方法、シリコンインゴットの製造方法に関し、特にルツボの割れやすさを検査するルツボ検査装置、ルツボ検査方法、シリカガラスルツボ、シリカガラスルツボの製造方法、シリコンインゴットの製造方法、ホモエピタキシャルウェーハの製造方法に関する。 The present invention relates to a crucible inspection apparatus, a crucible inspection method, a silica glass crucible, a silica glass crucible manufacturing method, and a silicon ingot manufacturing method, and more particularly to a crucible inspection apparatus, a crucible inspection method, and a silica glass crucible for inspecting crucible fragility. The present invention relates to a method for producing a silica glass crucible, a method for producing a silicon ingot, and a method for producing a homoepitaxial wafer.
 <シリコン単結晶の製造>
 シリコン単結晶(シリコンインゴット)の製造は、シリカガラスルツボを用いたチョクラルスキー法(CZ法:Czochralski)により行われる。CZ法では、まず、シリカガラスルツボの内部に多結晶シリコンを充填する。続いて、シリカガラスルツボの周囲に配置されたカーボンヒーターなどの加熱により、多結晶シリコンをシリコン融液に熔融する。そして、熔融したシリコン融液にシリコン単結晶の種結晶を接触させ、回転させながら徐々に引き上げる。これにより、シリコン単結晶の種結晶を核として成長させ、シリコン単結晶を製造する。シリコン単結晶の引き上げは1450~1500℃ほどの状態で行われる。これは、シリカガラスルツボの軟化点である1200~1300℃を超える温度である。
<Manufacture of silicon single crystal>
A silicon single crystal (silicon ingot) is manufactured by the Czochralski method (CZochralski) using a silica glass crucible. In the CZ method, first, polycrystalline silicon is filled into a silica glass crucible. Subsequently, the polycrystalline silicon is melted into the silicon melt by heating with a carbon heater or the like disposed around the silica glass crucible. Then, a silicon single crystal seed crystal is brought into contact with the molten silicon melt and gradually pulled up while rotating. Thus, the silicon single crystal is grown by using the seed crystal of the silicon single crystal as a nucleus. The pulling of the silicon single crystal is performed at a temperature of about 1450 to 1500 ° C. This is a temperature exceeding 1200 to 1300 ° C. which is the softening point of the silica glass crucible.
 <シリカガラスルツボ>
 上記シリコン単結晶を製造する際に用いられるシリカガラスルツボは、円筒状の側壁部と、湾曲した底部と、側壁部と底部とを連結し且つ底部よりも曲率が高いコーナー部と、を備えた形状であり、シリカガラスルツボの側壁部の上端面は、円環状の平坦な面として形成されている。また、シリカガラスルツボは、例えば、当該シリカガラスルツボの内面から外面に向かって、目視や画像データなどに基づいて気泡が観察できない透明層と気泡が観察される気泡含有層とを備えるなど、複数の層を備えて構成されている。シリカガラスルツボは、直径が28インチ(約71cm)、32インチ(約81cm)、36インチ(約91cm)、40インチ(約101cm)など様々な大きさで製造されている。
<Silica glass crucible>
A silica glass crucible used in manufacturing the silicon single crystal includes a cylindrical side wall, a curved bottom, and a corner having a higher curvature than the bottom by connecting the side and the bottom. It is a shape and the upper end surface of the side wall part of the silica glass crucible is formed as an annular flat surface. Further, the silica glass crucible includes, for example, a transparent layer in which bubbles cannot be observed based on visual observation or image data, and a bubble-containing layer in which bubbles are observed, from the inner surface to the outer surface of the silica glass crucible. It is comprised with the layer of. Silica glass crucibles are manufactured in various sizes such as 28 inches (about 71 cm), 32 inches (about 81 cm), 36 inches (about 91 cm), and 40 inches (about 101 cm) in diameter.
 上記のように、シリコン単結晶の引き上げは、シリカガラスの軟化点を超える温度で行われる。そのため、シリコン単結晶の引き上げを行うとシリカガラスルツボは変形してしまうことになる。従って、一般に、シリカガラスルツボは、シリコン単結晶の引き上げごとに用いられる。つまり、シリカガラスルツボは、シリコン単結晶の引き上げごとに別途用意することが必要となる。 As described above, the pulling of the silicon single crystal is performed at a temperature exceeding the softening point of silica glass. Therefore, when the silicon single crystal is pulled, the silica glass crucible is deformed. Therefore, generally, a silica glass crucible is used for every pulling of a silicon single crystal. That is, the silica glass crucible needs to be prepared separately for each pulling of the silicon single crystal.
 <シリカガラスルツボの製造方法>
 上記のようなシリカガラスルツボは、例えば、回転モールド法を用いて製造する。つまり、シリカガラスルツボは、回転している(カーボン製の)モールドの内表面にシリカ粉を堆積させてシリカ粉層を形成し、当該堆積させたシリカ粉層を減圧しながらアーク熔融することで製造する。アーク熔融を行う際に、アーク熔融の初期段階でシリカ粉を強く減圧し、その後、減圧を弱くすることで、透明層と気泡含有層とを有するシリカガラスルツボを製造することが出来る。
<Method for producing silica glass crucible>
The silica glass crucible as described above is manufactured by using, for example, a rotational mold method. That is, the silica glass crucible is formed by depositing silica powder on the inner surface of a rotating mold (made of carbon) to form a silica powder layer, and arc melting the deposited silica powder layer while reducing the pressure. To manufacture. When performing arc melting, the silica glass crucible having a transparent layer and a bubble-containing layer can be produced by strongly reducing the pressure of the silica powder in the initial stage of arc melting and then reducing the pressure reduction.
 <先行文献>
 シリカガラスルツボは、上記のように回転モールド法により製造する。このような製造方法のため、シリカガラスルツボは設計図通りに製造することが出来ない。従って、製造されたシリカガラスルツボの形状や内表面の特性などは設計図からずれているおそれがある。また、上記のようにシリカガラスルツボはシリコン単結晶の引き上げ毎に別途用意することが必要となるが、製造されたシリカガラスルツボに欠陥が存在すると、シリコン単結晶引き上げの際に単結晶率の悪化を引き起こす原因となるおそれがある。このように、シリカガラスルツボを設計図通りに製造することは出来ず、また、製造されたシリカガラスルツボには単結晶率の悪化を引き起こす原因となる欠陥が存在するおそれがある。そこで、製造されたシリカガラスルツボを検査することが行われている。
<Prior literature>
The silica glass crucible is manufactured by the rotational mold method as described above. Due to such a manufacturing method, the silica glass crucible cannot be manufactured as designed. Therefore, the shape of the manufactured silica glass crucible and the characteristics of the inner surface may be deviated from the design drawing. In addition, as described above, it is necessary to prepare a silica glass crucible separately for each pulling of the silicon single crystal. However, if there is a defect in the manufactured silica glass crucible, the single crystal ratio is reduced when the silicon single crystal is pulled. May cause deterioration. Thus, the silica glass crucible cannot be manufactured as designed, and the manufactured silica glass crucible may have defects that cause deterioration of the single crystal ratio. Therefore, the manufactured silica glass crucible is inspected.
 シリカガラスルツボを検査するための技術として、例えば、特許文献1がある。特許文献1には、シリカガラスルツボの内表面上の測定点において赤外吸収スペクトルとラマンスペクトルの少なくとも一方を測定し、得られたスペクトルに基づいてブラウンリングなどの異常サイトが発生するかどうかを判断する工程を備えるシリカガラスルツボの検査方法が記載されている。特許文献1によると、上記のような構成により、異常サイトが発生しやすいシリカガラスルツボを出荷前に把握することが可能となる。 As a technique for inspecting a silica glass crucible, for example, there is Patent Document 1. In Patent Document 1, at least one of an infrared absorption spectrum and a Raman spectrum is measured at a measurement point on the inner surface of a silica glass crucible, and whether or not an abnormal site such as a brown ring is generated based on the obtained spectrum. A method for inspecting a silica glass crucible comprising a step of judging is described. According to Patent Document 1, with the above-described configuration, it is possible to grasp a silica glass crucible where an abnormal site is likely to occur before shipment.
 また、同様にシリカガラスルツボを検査するための技術として、例えば、特許文献2がある。特許文献2には、内部測距部によりシリカガラスルツボの内表面の三次元形状を測定する工程と、(1)異物の三次元形状測定工程と(2)歪みの三次元分布測定工程とのいずれかの工程と、を有するシリカガラスルツボの評価方法が記載されている。具体的には、(1)異物の三次元形状測定工程では、複数の測定点において画像を取得し、得られた画像中に異物が存在していると判断した場合、画像を取得した位置においてシリカガラスルツボの厚さ方向の焦点位置を変化させて複数枚の画像を取得する。これにより、異物の三次元位置を特定する。また、(2)歪みの三次元分布測定工程では、内表面三次元形状上の複数の測定点において歪み画像を取得することで、歪みの三次元分布を測定する。特許文献2によると、上記構成を有することで、ルツボの内表面又は内部に存在する異物の三次元位置を特定することができるか又はルツボの歪みの三次元分布を決定することが出来るシリカガラスルツボの評価方法を提供することが出来る。 Similarly, as a technique for inspecting a silica glass crucible, there is, for example, Patent Document 2. Patent Document 2 includes a step of measuring a three-dimensional shape of the inner surface of a silica glass crucible with an internal distance measuring unit, a step of (1) measuring a three-dimensional shape of a foreign object, and (2) a step of measuring a three-dimensional distribution of strain. A method for evaluating a silica glass crucible having any of the steps is described. Specifically, (1) in the three-dimensional shape measurement step of a foreign object, images are acquired at a plurality of measurement points, and when it is determined that a foreign object is present in the obtained image, at the position where the image is acquired A plurality of images are acquired by changing the focal position in the thickness direction of the silica glass crucible. Thereby, the three-dimensional position of the foreign material is specified. In the (3) distortion three-dimensional distribution measurement step, the distortion three-dimensional distribution is measured by acquiring distortion images at a plurality of measurement points on the inner surface three-dimensional shape. According to Patent Document 2, by having the above-described configuration, it is possible to specify the three-dimensional position of the foreign matter existing on the inner surface or inside of the crucible, or to determine the three-dimensional distribution of crucible distortion. A crucible evaluation method can be provided.
 また、同様にシリカガラスルツボを検査するための技術として、例えば、特許文献3がある。特許文献3には、波長365nmの紫外光をシリカガラスルツボの側面に照射し、シリカガラスルツボ壁面に発生する420nm乃至600nmの範囲内の波長の蛍光斑点の個数を計測するシリカガラスルツボの検査方法が記載されている。特許文献4によると、上記構成により、シリカガラスルツボ中に局在する不純物を容易に検出することが出来る。 Similarly, as a technique for inspecting a silica glass crucible, there is, for example, Patent Document 3. Patent Document 3 discloses an inspection method for a silica glass crucible in which ultraviolet light having a wavelength of 365 nm is irradiated on a side surface of a silica glass crucible, and the number of fluorescent spots having a wavelength within a range of 420 nm to 600 nm generated on a silica glass crucible wall surface is measured. Is described. According to Patent Document 4, with the above configuration, impurities localized in the silica glass crucible can be easily detected.
 特許文献4には、ガラス基板の生産効率を高めつつ、ガラス基板の破損を低減することができるガラス基板の製造方法が開示される。このガラス基板の製造方法は、ダウンドロー法により成形されたガラス基板の熱処理工程を含む。熱処理工程では、ガラス基板の上端部を把持部材で把持することでガラス基板を吊り下げ、ガラス基板を搬送方向に沿って搬送しながら、ガラス基板を熱処理する。熱処理工程では、ガラス基板は、搬送方向に沿って突出するように湾曲している主表面を有する。 Patent Document 4 discloses a method for manufacturing a glass substrate that can reduce breakage of the glass substrate while increasing the production efficiency of the glass substrate. The method for manufacturing a glass substrate includes a heat treatment step for the glass substrate formed by the downdraw method. In the heat treatment step, the glass substrate is suspended by holding the upper end portion of the glass substrate with a holding member, and the glass substrate is heat-treated while being transported along the transport direction. In the heat treatment step, the glass substrate has a main surface that is curved so as to protrude along the transport direction.
 特許文献5には、磁気記録媒体用ガラス基板の主表面において、短波長の表面うねり及び中波長の表面うねりを十分に小さくできる磁気記録媒体用ガラス基板の製造方法が開示される。この製造方法は、測定波長2.5~80μmにおける表面粗さRaが0.40~1.40μmであり、かつ、測定波長2.5~800μmにおける表面粗さRaが0.40~2.00μmである、研磨面を有する軟質研磨パッドを用いてガラス基板の主表面を研磨する研磨工程を含んでいる。 Patent Document 5 discloses a method for producing a glass substrate for a magnetic recording medium that can sufficiently reduce the surface waviness of a short wavelength and the surface waviness of a medium wavelength on the main surface of the glass substrate for a magnetic recording medium. In this manufacturing method, the surface roughness Ra at a measurement wavelength of 2.5 to 80 μm is 0.40 to 1.40 μm, and the surface roughness Ra at a measurement wavelength of 2.5 to 800 μm is 0.40 to 2.00 μm. And a polishing step of polishing the main surface of the glass substrate using a soft polishing pad having a polishing surface.
 特許文献6には、鉄筋コンクリート構造物の鉄筋腐食量をアコースティックエミッションを利用して定量的に評価する方法が開示される。この方法は、鉄筋コンクリート構造物に圧電素子センサーを設置し、コンクリート構造物が受ける外部負荷に伴い発生するアコースティックエミッションを検出する。そして、アコースティックエミッションを処理して得られるピーク周波数fが、任意の周波数f1、f2、f3、f4(f1<f2≦f3<f4)に対して、f1≦f<f2を満たすヒット数Hlowと、f3≦f<f4を満たすヒット数Hhighとの比で評価を行っている。 Patent Document 6 discloses a method for quantitatively evaluating the amount of corrosion of reinforcing steel in a reinforced concrete structure using acoustic emission. In this method, a piezoelectric element sensor is installed in a reinforced concrete structure, and acoustic emission generated due to an external load received by the concrete structure is detected. The peak frequency f obtained by processing the acoustic emission is a hit number Hlow satisfying f1 ≦ f <f2 with respect to an arbitrary frequency f1, f2, f3, f4 (f1 <f2 ≦ f3 <f4), Evaluation is performed in a ratio with the number of hits High that satisfies f3 ≦ f <f4.
 特許文献7には、配管等の被検査体のセンサ設置箇所のみ保温材を除去して欠陥部位の位置情報を明確化し得るアコースティックエミッション法を用いた欠陥部位検出装置が開示される。この装置は、時間周波数解析部と、解析波形記憶部と、演算部とを有する波形解析装置を備える。時間周波数解析部は、センサで検出した音の原波形から時間周波数解析を用いて抽出できる最高周波数成分をある周波数帯域で抽出した後、それより低い周波数帯域で周波数成分を抽出する操作を順次行うことにより波形分離する。解析波形記憶部は、波形分離した各周波数帯域の成分の波形を記憶する。演算部は、記憶された各周波数帯域の波形の伝播時間を読み取り、その差と各周波数帯域における伝播速度とに基づき音源となる欠陥部位とセンサとの間の距離を算出する。 Patent Document 7 discloses a defect site detection apparatus using an acoustic emission method that can clarify the position information of a defect site by removing a heat insulating material only at a sensor installation location of an inspection object such as a pipe. This apparatus includes a waveform analysis device having a time-frequency analysis unit, an analysis waveform storage unit, and a calculation unit. The time-frequency analysis unit extracts the highest frequency component that can be extracted from the original sound waveform detected by the sensor using time-frequency analysis in a certain frequency band, and then sequentially extracts the frequency component in a lower frequency band. To separate the waveforms. The analysis waveform storage unit stores the waveform of each frequency band component separated. The calculation unit reads the propagation time of the stored waveform in each frequency band, and calculates the distance between the defect site serving as the sound source and the sensor based on the difference and the propagation speed in each frequency band.
 特許文献8には、荷重の大小や回転機の回転態様の如何にかかわらず、どのような軸受の診断も行なうことができるAEを用いた回転機軸受診断装置が開示される。この装置において、AEセンサの検出信号は増幅、検波され、実効値回路で実効値が算出され、コンパレータからエレベータ巻上機の定速期間を定めるゲート信号がゲート回路へ出力される。制御部は、ゲート信号期間中の定められた期間において、実効値回路で算出された実効値に基づいてしきい値を算出し、これをD/A変換器を介してコンパレータヘ出力する。コンパレータはゲート回路を通過した信号のうちしきい値以上の信号があるとき信号を出力し、この信号により波形整形回路からパルスが出力される。このパルスの数により軸受の可否が診断される。 Patent Document 8 discloses a rotating machine bearing diagnostic apparatus using AE that can perform any bearing diagnosis regardless of the magnitude of the load and the rotating mode of the rotating machine. In this apparatus, the detection signal of the AE sensor is amplified and detected, an effective value is calculated by an effective value circuit, and a gate signal for determining a constant speed period of the elevator hoisting machine is output from the comparator to the gate circuit. The control unit calculates a threshold value based on the effective value calculated by the effective value circuit during a predetermined period in the gate signal period, and outputs the threshold value to the comparator via the D / A converter. The comparator outputs a signal when there is a signal equal to or greater than the threshold value among the signals that have passed through the gate circuit, and a pulse is output from the waveform shaping circuit by this signal. Whether or not the bearing is possible is diagnosed by the number of pulses.
 特許文献9には、板ガラスの高速切断が可能で、かつ、板ガラスの品質の精度低下を防止することができる板ガラスの切断方法及び装置が開示される。この方法は、板ガラスの切線を加工中に、カッタホイールの押付力を圧電素子等の検出部で検出することにより、カッタホイールの押付力をタイムラグなしに検出する。また、リニアモータ等の加圧手段の作動で板ガラスの凹凸に追従するようにカッタホイールの上下移動を制御するので、コントロール部からの制御信号に対して高速応答するようにカッタホイールを上下移動する。 Patent Document 9 discloses a plate glass cutting method and apparatus capable of cutting plate glass at a high speed and preventing deterioration in plate glass quality. This method detects the pressing force of the cutter wheel without a time lag by detecting the pressing force of the cutter wheel by a detecting unit such as a piezoelectric element while processing the cutting line of the plate glass. Also, since the vertical movement of the cutter wheel is controlled so as to follow the unevenness of the plate glass by the operation of the pressing means such as a linear motor, the cutter wheel is moved up and down so as to respond at high speed to the control signal from the control unit. .
 特許文献10には、複合容器の検査方法及び検査システムが開示される。この複合容器の検査方法は、容器を形成するライナー、及びライナーに繊維を巻き付けることで形成される強化層を備える複合容器の検査方法である。この検査方法は、複合容器に取り付けられたアコースティックエミッションセンサからアコースティックエミッション信号を取得する信号取得工程と、信号取得工程によって取得されたアコースティックエミッション信号に基づいて、ライナーの疲労破壊の兆候を示す第1の条件を満たすか否かを判定する第1の判定工程と、を備える。第1の条件は、アコースティックエミッションのエネルギーに基づいて定められる条件である。
 ここで、超音波探傷による傷の検査方法がある。超音波探傷では、超音波を対象物に伝搬させて戻ってくる超音波から対象物の傷を見つけている。しかし、クラックが成長するかどうかは判断できない。このため、超音波探傷をシリカガラスルツボに適用しても、シリカガラスルツボの割れを伴うような成長するクラックを見つけ出すことはできず、シリカガラスルツボの検査には不向きである。
Patent Literature 10 discloses a composite container inspection method and inspection system. This composite container inspection method is a composite container inspection method including a liner forming a container and a reinforcing layer formed by winding fibers around the liner. This inspection method includes a signal acquisition step of acquiring an acoustic emission signal from an acoustic emission sensor attached to the composite container, and a first indication of a sign of fatigue failure of the liner based on the acoustic emission signal acquired by the signal acquisition step. And a first determination step for determining whether or not the above condition is satisfied. The first condition is a condition determined based on the energy of acoustic emission.
Here, there is a method for inspecting scratches by ultrasonic flaw detection. In ultrasonic flaw detection, a flaw of an object is found from ultrasonic waves that propagate by returning the ultrasonic wave to the object. However, it cannot be determined whether cracks will grow. For this reason, even if an ultrasonic flaw detection is applied to a silica glass crucible, it is impossible to find a growing crack accompanied by a crack in the silica glass crucible, which is unsuitable for inspection of a silica glass crucible.
特開2013-139353号公報JP 2013-139353 A 特開2014-91640号公報JP 2014-91640 A 特開平8-283092号公報JP-A-8-283092 特開2016-169136号公報JP 2016-169136 A 特開2014-154187号公報JP 2014-154187 A 特開2011-133448号公報JP 2011-133448 A 特開2003-232782号公報Japanese Patent Laid-Open No. 2003-232728 特開平09-210859号公報JP 09-210859 A 特開平08-225333号公報JP 08-225333 A 国際公開第2014/057987号International Publication No. 2014/057987 特表2014-528643号公報Special table 2014-528643 gazette 特開2008-219002号公報JP 2008-219002 A
 <クラックの問題>
 シリカガラスルツボにおいて、成長するクラックを有するシリカガラスルツボに応力が加わると、そのクラックが成長して最終的にシリカガラスルツボが割れてしまう。特に、シリコン単結晶の引き上げを行う場合にはシリカガラスルツボの内部に約400kgもの多結晶シリコンを充填することから、シリカガラスルツボには内側から多結晶シリコンによって押される力が働く。シリコン単結晶の引き上げの工程などにおいて、シリカガラスルツボにひびや割れが生じてルツボ内のシリコン融液が漏れ出してしまうことがある。このようなガラスの破壊は、割れの起点となるクラックが存在することによって起こることが知られている。
<Problems with cracks>
In a silica glass crucible, when stress is applied to a silica glass crucible having growing cracks, the cracks grow and eventually the silica glass crucible is broken. In particular, when pulling up a silicon single crystal, about 400 kg of polycrystalline silicon is filled in the silica glass crucible, and therefore, a force pushed by the polycrystalline silicon from the inside acts on the silica glass crucible. In the process of pulling up the silicon single crystal, the silica glass crucible may be cracked or cracked, and the silicon melt in the crucible may leak out. It is known that such glass breakage is caused by the presence of cracks as starting points of cracks.
 シリコン単結晶の引き上げ中にクラックが成長してシリカガラスルツボにひびや割れが発生すると、溶融した多結晶シリコンの漏れを引き起こす原因となる。
 上記のような割れの起点となるクラックは、シリカガラスルツボに多結晶シリコンを充填する段階で形成される場合があるが、シリカガラスルツボの製造過程で形成されてしまう場合もある。そのため、上記のようなシリカガラスルツボが割れてしまう事態を防ぐためには、シリカガラスルツボが製造された段階で、当該製造されたシリカガラスルツボを検査して、シリカガラスルツボに形成されているクラックの有無などを検査しておくことが必要となる。
 特に、シリカガラスルツボの割れに繋がるようなクラック(マイクロクラックを含む)を、シリコン単結晶の引き上げを行う前(使用前)の段階で的確に見つけ出すことは、非常に重要である。
If cracks grow during the pulling of the silicon single crystal and cracks or cracks occur in the silica glass crucible, it will cause leakage of molten polycrystalline silicon.
The crack as the starting point of the crack as described above may be formed at the stage of filling the silica glass crucible with polycrystalline silicon, but may also be formed in the process of manufacturing the silica glass crucible. Therefore, in order to prevent the situation where the silica glass crucible is broken, the silica glass crucible is inspected at the stage where the silica glass crucible is manufactured, and the crack formed in the silica glass crucible. It is necessary to inspect for the presence or absence of this.
In particular, it is very important to accurately find cracks (including microcracks) that lead to cracking of the silica glass crucible before the silicon single crystal is pulled (before use).
 しかしながら、上記特許文献1乃至3に記載されている技術では、特に目視や画像データからは確認できない微小なクラックの存在を検査することは出来なかった。その結果、シリコン単結晶引き上げを行うシリカガラスルツボにマイクロクラックが存在しており、当該マイクロクラックがシリカガラスルツボの破損の原因となるおそれがあった。 However, with the techniques described in Patent Documents 1 to 3, it was not possible to inspect the presence of minute cracks that could not be confirmed from visual observation or image data. As a result, a microcrack exists in the silica glass crucible for pulling up the silicon single crystal, and the microcrack may cause damage to the silica glass crucible.
 ここで、シリカガラスルツボの表面にある大きなクラックは目視、画像検査では見つけることができるが、マイクロクラックやルツボ壁の内部に存在しているクラックは目視・画像検査で見つけることはできない。このように、割れの起点となるおそれのあるクラックの存在を十分に検査することが出来ない、という問題が生じていた。 Here, large cracks on the surface of the silica glass crucible can be found by visual inspection and image inspection, but microcracks and cracks existing inside the crucible wall cannot be detected by visual inspection and image inspection. As described above, there has been a problem that the existence of a crack that may be a starting point of a crack cannot be sufficiently inspected.
 また、特許文献4に記載されている技術では、熱処理前の平面状のガラス基板が所定の強度を有しているか、AE法により検査しているだけであり、ルツボ特有の形状や気泡層に関しては考慮されていない。また、特許文献5に記載されている技術では、製造した磁気記録媒体用ガラス基板(平面)が所定の品質かどうかを検査のために、AEセンサを利用しているに過ぎない。 In addition, in the technique described in Patent Document 4, the planar glass substrate before the heat treatment has only a predetermined strength to be inspected by the AE method. Is not considered. In the technique described in Patent Document 5, an AE sensor is merely used for inspecting whether or not the manufactured glass substrate (plane) for a magnetic recording medium has a predetermined quality.
 また、特許文献6に記載されている技術では、単純な直方体の鉄筋コンクリート構造物の中の鉄筋腐食量を、AEを利用して検査しているだけであり、ルツボ特有の形状や気泡層に関しては考慮されていない。また、特許文献7に記載されている技術では、配管等の検査にAEを利用しているだけである。 Moreover, in the technique described in Patent Document 6, the amount of corrosion of reinforcing bars in a simple rectangular parallelepiped reinforced concrete structure is only inspected by using AE. Not considered. Moreover, in the technique described in Patent Document 7, only AE is used for inspection of piping and the like.
 また、特許文献8に記載されている技術では、エレベータの軸受けの検査にAEを利用しているだけである。また、特許文献9に記載されている技術では、板ガラスの凹凸の検出にAEセンサを利用しているだけである。また、特許文献10に記載されている技術では、鋼製容器の疲労破壊の検査にAEセンサを利用しているだけである。 In the technique described in Patent Document 8, only AE is used for inspection of elevator bearings. Moreover, in the technique described in patent document 9, only the AE sensor is used for the detection of the unevenness of the plate glass. Moreover, with the technique described in patent document 10, only the AE sensor is utilized for the inspection of the fatigue failure of the steel container.
 このように、特許文献4~10に記載されている技術では、ルツボ特有の形状や気泡層に関しては考慮されていないため、ルツボを対象としたセンサ位置や外圧の加え方を変えるなど、AE発生位置を考慮に入れてルツボの割れやすさを評価することはできない。 As described above, the technologies described in Patent Documents 4 to 10 do not consider the shape and bubble layer peculiar to the crucible. Therefore, the AE occurs, for example, by changing the sensor position for the crucible and how to apply external pressure. The ease of crucible cracking cannot be evaluated taking into account the position.
 そこで、本発明の目的は、割れの起点となるおそれのあるクラックの存在を検査することが出来ない、という問題を解決することが出来るルツボ検査装置、ルツボ検査方法、シリカガラスルツボ、シリカガラスルツボの製造方法、シリコンインゴットの製造方法、ホモエピタキシャルウェーハの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a crucible inspection apparatus, a crucible inspection method, a silica glass crucible, and a silica glass crucible that can solve the problem that it is impossible to inspect the presence of a crack that may become a starting point of a crack. It is providing the manufacturing method of this, the manufacturing method of a silicon ingot, and the manufacturing method of a homoepitaxial wafer.
 シリカガラスルツボの割れの起点となるおそれのあるマイクロクラックを検査するという目的のため、本発明の一形態であるルツボ検査装置は、
 円筒状の側壁部と、湾曲した底部と、前記側壁部と前記底部との間に設けられ前記底部の曲率よりも高い曲率を有するコーナー部と、を備えるシリカガラスルツボの割れやすさを検査するシリカガラスルツボ検査装置であって、
 シリカガラスルツボの表面に設置され、当該シリカガラスルツボに所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出するAE波検出手段を有する
 という構成を採る。
 ここで、従来のAEを利用した検査対象物は、常温で使用するものであるが、本発明の検査対象物シリコン単結晶引き上げ時の高温(シリコン融液が1400℃以上、シリカガラスルツボの温度は1600℃)と長時間(100時間以上)にも耐えられるシリカガラスルツボである。
 このシリカガラスルツボは、引き上げ装置におけるカーボンサセプタ内に嵌合した状態で使用される。したがって、1600℃であってもシリカガラスルツボの外側にあるカーボンサセプタによって外側には倒れず、ルツボとして使用可能である。一方、石英ガラス単体では1200℃程度で変形してしまう。つまり、シリカガラスルツボは一般的な石英ガラスとは使用環境が全く異なり、常温で使用する対象物とは比較できないくらい微小なマイクロクラックを検出する必要がある。
 高温長時間の使用状況によっては、シリカガラスルツボ内で曲部的に応力が集中することもあり、それに耐えるためにも微小なマイクロクラックを検出する必要がある。
 また、従来のAE波を利用した検査対象物は、ブロック、配管など単純な形状で単一材料で構成されているが、シリカガラスルツボは側壁部、コーナー部、底部を有し、曲面で構成され、また透明層と気泡層の層構造にもなっている。このため、従来の手法をそのまま適用することはできない。
 また、AE波を利用してマイクロクラックを検査することで、シリカガラスルツボからサンプル片を切り出したりせずに、非破壊で実際に高温長時間のシリコン単結晶引き上げに使用するシリカガラスルツボを検査し選別することができる。それにより、シリコン単結晶引き上げ時に割れたり、孔が開いたりするなどして、高温のシリコン融液がシリコン単結晶引き上げ炉(CZ炉)内に漏れ出すなどのトラブルを防止できる。
For the purpose of inspecting microcracks that may be a starting point for cracking of a silica glass crucible, the crucible inspection apparatus according to one aspect of the present invention is
Inspecting the ease of cracking of a silica glass crucible comprising a cylindrical side wall, a curved bottom, and a corner provided between the side wall and the bottom and having a curvature higher than the curvature of the bottom. A silica glass crucible inspection device,
A configuration is adopted in which an AE wave detecting means is provided which is installed on the surface of the silica glass crucible and detects an AE (Acoustic Emission) wave generated when a predetermined external force is applied to the silica glass crucible.
Here, the inspection object using the conventional AE is used at room temperature, but the inspection object silicon single crystal pulling temperature of the present invention is high (the silicon melt is 1400 ° C. or higher, the temperature of the silica glass crucible). Is a silica glass crucible that can withstand a long time (100 hours or more).
This silica glass crucible is used in a state of being fitted into a carbon susceptor in a pulling device. Therefore, even if it is 1600 degreeC, it does not fall outside by the carbon susceptor outside the silica glass crucible, and can be used as a crucible. On the other hand, quartz glass alone is deformed at about 1200 ° C. That is, the silica glass crucible is used in a completely different environment from general quartz glass, and it is necessary to detect microcracks that are so small that they cannot be compared with an object used at room temperature.
Depending on the usage conditions for a long time at a high temperature, stress may be concentrated in the curved portion in the silica glass crucible, and it is necessary to detect minute microcracks in order to withstand the stress.
In addition, conventional inspection objects using AE waves are composed of simple materials such as blocks and pipes, but silica glass crucibles have side walls, corners, and bottoms, and are composed of curved surfaces. In addition, it has a layer structure of a transparent layer and a bubble layer. For this reason, the conventional method cannot be applied as it is.
In addition, by inspecting microcracks using AE waves, non-destructive silica glass crucibles that are actually used for pulling up silicon single crystals at high temperatures for a long time are inspected without cutting sample pieces from the silica glass crucible. Can be selected. Thereby, it is possible to prevent troubles such as high temperature silicon melt leaking into the silicon single crystal pulling furnace (CZ furnace) due to cracking or opening of the silicon single crystal.
 また、本発明の他の形態であるルツボ検査方法は、
 AE波を検査するAE波検査手段をシリカガラスルツボの表面に設置し、
 シリカガラスルツボに所定の外力を加え、
 シリカガラスルツボに前記所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出する、
 という構成を採る。
In addition, the crucible inspection method according to another embodiment of the present invention,
AE wave inspection means for inspecting AE waves is installed on the surface of the silica glass crucible,
Apply a predetermined external force to the silica glass crucible,
AE (Acoustic Emission) wave generated when the predetermined external force is applied to the silica glass crucible is detected.
The structure is taken.
 また、本発明の他の形態であるシリカガラスルツボは、
 外力を加えられた際にAE波を生じる欠陥の数が予め定められた閾値以下である
 という構成を採る。
In addition, the silica glass crucible which is another embodiment of the present invention,
A configuration is adopted in which the number of defects that generate AE waves when an external force is applied is equal to or less than a predetermined threshold.
 また、本発明の他の形態であるシリカガラスルツボの製造方法は、
 AE波を検査するAE波検査手段をシリカガラスルツボの表面に設置し、シリカガラスルツボに所定の外力を加え、シリカガラスルツボに前記所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出する工程を有する
 という構成を採る。
Moreover, the method for producing a silica glass crucible which is another embodiment of the present invention,
An AE wave inspection means for inspecting the AE wave is installed on the surface of the silica glass crucible, a predetermined external force is applied to the silica glass crucible, and an AE (Acoustic Emission) wave generated when the predetermined external force is applied to the silica glass crucible. It has a configuration of having a detecting step.
 また、本発明の他の形態であるシリコンインゴットの製造方法は、
 上述したシリカガラスルツボの製造方法により製造されたシリカガラスルツボを用いてシリコン単結晶の引き上げを行う工程を有する
 という構成を採る。
Moreover, the method for producing a silicon ingot according to another embodiment of the present invention,
A configuration is adopted in which the method includes the step of pulling up the silicon single crystal using the silica glass crucible manufactured by the silica glass crucible manufacturing method described above.
 また、本発明の他の形態であるホモエピタキシャルウェーハは、上記方法によって製造したシリコンインゴットを切り出して形成されたウェーハによる基板部を形成する工程と、基板部の上にシリコン単結晶のホモエピタキシャル層を形成する工程と、を備える。 In addition, a homoepitaxial wafer according to another embodiment of the present invention includes a step of forming a substrate portion by a wafer formed by cutting out a silicon ingot manufactured by the above method, and a silicon single crystal homoepitaxial layer on the substrate portion Forming a step.
 本発明は、以上のように構成されることにより、割れの起点となるおそれのあるクラックの存在を検査することが出来ない、という問題を解決することが出来る。これにより、目視・画像検査では見えないマイクロクラックやルツボ壁の内部に存在しているマイクロクラックであっても、AE波を利用して検査することで、これらのシリカガラスルツボ内表面と壁部内部のマイクロクラックを見つけることができる。 The present invention is configured as described above, and can solve the problem that the presence of a crack that may be a starting point of a crack cannot be inspected. By this, even if it is a microcrack that cannot be seen by visual inspection or image inspection, or a microcrack that exists inside the crucible wall, the inside surface and wall portion of these silica glass crucibles can be inspected using AE waves. Internal microcracks can be found.
本発明の第1の実施形態において検査の対象となるシリカガラスルツボの構成の一例を示す図である。It is a figure which shows an example of a structure of the silica glass crucible used as the test object in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるルツボ検査装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the crucible inspection apparatus in the 1st Embodiment of this invention. 図2で示すAEセンサの構成の一例を示す図である。It is a figure which shows an example of a structure of the AE sensor shown in FIG. 図2で示すAEセンサをシリカガラスルツボに設置した際の様子の一例を示す図である。It is a figure which shows an example of a mode at the time of installing the AE sensor shown in FIG. 2 in a silica glass crucible. 図2で示すAE波解析装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the AE wave analysis apparatus shown in FIG. 図5で示すAE波強さ測定部による測定の一例を説明するための図である。It is a figure for demonstrating an example of the measurement by the AE wave intensity measurement part shown in FIG. 図5で示すAE波発生回数計測部によるAE波の計測の一例を説明するための図である。It is a figure for demonstrating an example of the measurement of the AE wave by the AE wave generation frequency measurement part shown in FIG. 図5で示すAE波発生位置算出部による発生位置の算出の一例を説明するための図である。It is a figure for demonstrating an example of calculation of the generation | occurrence | production position by the AE wave generation | occurrence | production position calculation part shown in FIG. 第1の実施形態におけるルツボ検査装置の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation | movement of the crucible test | inspection apparatus in 1st Embodiment. (a)~(c)は、本実施形態に係るシリカガラスルツボを用いたシリコン単結晶の製造方法を説明する模式図である。(A)-(c) is a schematic diagram explaining the manufacturing method of the silicon single crystal using the silica glass crucible concerning this embodiment. シリコン単結晶のインゴットを例示する模式図である。It is a schematic diagram which illustrates the ingot of a silicon single crystal. (a)~(c)は引き上げ制御を説明する模式図である。(A)-(c) is a schematic diagram explaining pull-up control. ルツボの内径の変動量を示す図である。It is a figure which shows the variation | change_quantity of the internal diameter of a crucible. ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。It is a schematic diagram explaining the condition where various defects generate | occur | produce based on the Boronkov theory. 単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。It is a schematic diagram which shows the relationship between the pulling speed at the time of single crystal growth, and defect distribution. エピタキシャルウェーハを例示する模式断面図である。It is a schematic cross section which illustrates an epitaxial wafer. ルツボ製造からウェーハ製造までの工程を例示するフローチャートである。It is a flowchart which illustrates the process from crucible manufacture to wafer manufacture. AE波発生数と最大エネルギー値との関係を示す図である。It is a figure which shows the relationship between AE wave generation number and a maximum energy value.
 [実施形態1]
 本発明の第1の実施形態におけるルツボ検査装置2、ルツボ検査方法、シリカガラスルツボ1、シリカガラスルツボの製造方法、シリコンインゴットの製造方法を、図1乃至図9を参照して説明する。図1は、シリカガラスルツボ1の構成の一例を示す図である。図2は、ルツボ検査装置2の構成の一例を示す図である。図3は、AEセンサ21の構成の一例を示す図である。図4は、AEセンサ21をシリカガラスルツボ1に設置した際の様子の一例を示す図である。図5は、AE波解析装置23の構成の一例を示す図である。図6は、AE波強さ測定部231による測定の一例を説明するための図である。図7は、AE波発生回数計測部232によるAE波の計測の一例を説明するための図である。図8は、AE波発生位置算出部233によるAE波の発生位置の算出の一例を説明するための図である。図9は、ルツボ検査装置2の動作の一例を示すフローチャートである。
[Embodiment 1]
A crucible inspection apparatus 2, a crucible inspection method, a silica glass crucible 1, a method for manufacturing a silica glass crucible, and a method for manufacturing a silicon ingot according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram illustrating an example of the configuration of the silica glass crucible 1. FIG. 2 is a diagram illustrating an example of the configuration of the crucible inspection apparatus 2. FIG. 3 is a diagram illustrating an example of the configuration of the AE sensor 21. FIG. 4 is a diagram illustrating an example of a state when the AE sensor 21 is installed in the silica glass crucible 1. FIG. 5 is a diagram illustrating an example of the configuration of the AE wave analyzer 23. FIG. 6 is a diagram for explaining an example of measurement by the AE wave intensity measurement unit 231. FIG. 7 is a diagram for explaining an example of AE wave measurement by the AE wave generation number measurement unit 232. FIG. 8 is a diagram for explaining an example of calculation of the AE wave generation position by the AE wave generation position calculation unit 233. FIG. 9 is a flowchart showing an example of the operation of the crucible inspection apparatus 2.
 本発明の第1の実施形態では、シリカガラスルツボ1の割れやすさを検査・評価するルツボ検査装置2について説明する。後述するように、本実施形態におけるルツボ検査装置2は、AE(Acoustic Emission)センサ21を有しており、シリカガラスルツボ1に所定の外力を加えた際に生じるAE波を検出する。このように構成することで、ルツボ検査装置2は、AEセンサ21によるAE波の検出結果に基づいて、シリカガラスルツボ1の割れやすさを検査・評価する。 In the first embodiment of the present invention, a crucible inspection apparatus 2 that inspects and evaluates the fragility of the silica glass crucible 1 will be described. As will be described later, the crucible inspection apparatus 2 in the present embodiment has an AE (Acoustic Emission) sensor 21 and detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1. With this configuration, the crucible inspection apparatus 2 inspects and evaluates the ease of cracking of the silica glass crucible 1 based on the detection result of the AE wave by the AE sensor 21.
 <1.シリカガラスルツボ1>
 図1で示すように、本実施形態におけるルツボ検査装置2による検査・評価の対象となるシリカガラスルツボ1は、円筒状の側壁部11と、湾曲した底部12と、側壁部11と底部12とを連結し且つ底部12よりも曲率が高いコーナー部13と、を備えた形状を有している。また、シリカガラスルツボ1の側壁部11の上端面は、円環状の平坦な面として形成されている。
<1. Silica glass crucible 1>
As shown in FIG. 1, a silica glass crucible 1 to be inspected / evaluated by the crucible inspection apparatus 2 in this embodiment includes a cylindrical side wall portion 11, a curved bottom portion 12, a side wall portion 11 and a bottom portion 12. And a corner portion 13 having a higher curvature than the bottom portion 12. Moreover, the upper end surface of the side wall part 11 of the silica glass crucible 1 is formed as an annular flat surface.
 シリカガラスルツボ1は、当該シリカガラスルツボ1の内面から外面に向かって、目視や画像データなどに基づいて気泡が観察されない透明層111と気泡が観察される気泡含有層112とを備えている。シリカガラスルツボ1は、直径が28インチ(約71cm)、32インチ(約81cm)、36インチ(約91cm)、40インチ(約101cm)など様々な大きさを有している。 The silica glass crucible 1 includes a transparent layer 111 in which bubbles are not observed and a bubble-containing layer 112 in which bubbles are observed from the inner surface toward the outer surface of the silica glass crucible 1 based on visual observation or image data. The silica glass crucible 1 has various sizes such as 28 inches (about 71 cm), 32 inches (about 81 cm), 36 inches (about 91 cm), and 40 inches (about 101 cm) in diameter.
 このようなシリカガラスルツボ1は、例えば、回転モールド法を用いて製造される。つまり、シリカガラスルツボ1は、回転している(カーボン製の)モールドの内表面にシリカ粉を堆積させてシリカ粉層を形成し、当該堆積させたシリカ粉層を減圧しながらアーク熔融することで製造する。アーク熔融を行う際に、アーク熔融の初期段階でシリカ粉を強く減圧し、その後、減圧を弱くすることで、内表面側に透明層111を有し外表面側に気泡含有層112を有するシリカガラスルツボ1を製造することが出来る。なお、シリカガラスルツボ1は例えば上記のような方法で製造されるため、シリカガラスルツボ1の外面層には未溶融のシリカ粉が付着した状態である。つまり、シリカガラスルツボ1の外面層は、ざらざらとした粗さを有している。 Such a silica glass crucible 1 is manufactured using, for example, a rotational mold method. That is, the silica glass crucible 1 forms a silica powder layer by depositing silica powder on the inner surface of a rotating mold (made of carbon), and arc-melting the deposited silica powder layer while reducing the pressure. Manufactured by. When performing arc melting, silica powder is strongly depressurized in the initial stage of arc melting, and then the pressure is weakened, whereby the silica having the transparent layer 111 on the inner surface side and the bubble-containing layer 112 on the outer surface side. A glass crucible 1 can be manufactured. In addition, since the silica glass crucible 1 is manufactured by the method as described above, for example, unmelted silica powder is attached to the outer surface layer of the silica glass crucible 1. That is, the outer surface layer of the silica glass crucible 1 has a rough roughness.
 シリカガラスルツボ1の製造に用いられるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉と化学合成によって製造される合成シリカ粉とがある。天然シリカ粉は不純物を含んでいるが、合成シリカ粉は高純度である。一方で、合成シリカ粉を熔融して得られる合成シリカガラスは、天然シリカ粉を熔融して得られるシリカガラスよりも高温における粘度が低くなる。このように、天然シリカ粉と合成シリカ粉とはその性質において複数の差異を有している。シリカガラスルツボ1を製造する際には、天然シリカ粉と合成シリカ粉とを使い分けることが出来る。 Silica powder used for the production of the silica glass crucible 1 includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis. Natural silica powder contains impurities, but synthetic silica powder has high purity. On the other hand, synthetic silica glass obtained by melting synthetic silica powder has a lower viscosity at high temperature than silica glass obtained by melting natural silica powder. Thus, natural silica powder and synthetic silica powder have a plurality of differences in their properties. When manufacturing the silica glass crucible 1, natural silica powder and synthetic silica powder can be used properly.
 <2.ルツボ検査装置2>
 図2で示すように、本実施形態におけるルツボ検査装置2は、AEセンサ21(AE波検出手段)と、増幅器22と、AE波解析装置23と、を有している。AEセンサ21と増幅器22とは、電気信号を送信可能なよう接続されている。また、増幅器22とAE波解析装置23とも電気信号を送信可能なよう接続されている。なお、図2では、ルツボ検査装置2の構成の一例として、ルツボ検査装置2が1つのAEセンサ21を有する場合を示している。しかしながら、ルツボ検査装置2が有するAEセンサ21の数は一つに限定されない。ルツボ検査装置2は、2以上の任意の数のAEセンサ21を有していても構わない。
<2. Crucible inspection device 2>
As shown in FIG. 2, the crucible inspection apparatus 2 in the present embodiment includes an AE sensor 21 (AE wave detection means), an amplifier 22, and an AE wave analysis apparatus 23. The AE sensor 21 and the amplifier 22 are connected so that an electric signal can be transmitted. The amplifier 22 and the AE wave analyzer 23 are also connected so as to be able to transmit electrical signals. FIG. 2 shows a case where the crucible inspection apparatus 2 has one AE sensor 21 as an example of the configuration of the crucible inspection apparatus 2. However, the number of AE sensors 21 included in the crucible inspection apparatus 2 is not limited to one. The crucible inspection apparatus 2 may have an arbitrary number of AE sensors 21 of two or more.
 <2-1.AEセンサ21>
 AEセンサ21は、シリカガラスルツボ1の表面に設置され、シリカガラスルツボ1に所定の外力を加えた際に生じるAE波を検出する。なお、AEセンサ21は、AE波を検出した際の時間を判別可能なようにAE波を検出するよう構成することが出来る。
<2-1. AE sensor 21>
The AE sensor 21 is installed on the surface of the silica glass crucible 1 and detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1. The AE sensor 21 can be configured to detect the AE wave so that the time when the AE wave is detected can be discriminated.
 図3を参照すると、AEセンサ21は、例えば、圧電素子211と、受信板212と、コネクタ213と、を有している。図3で示すように、受信板212の一方の面に圧電素子211が設けられており、圧電素子211とコネクタ213とは電流を流すことが可能なよう接続されている。また、図4で示すように、受信板212は、他方の面(圧電素子211が設けられている側とは反対側の面)でシリカガラスルツボ1と接することになる。 Referring to FIG. 3, the AE sensor 21 includes, for example, a piezoelectric element 211, a receiving plate 212, and a connector 213. As shown in FIG. 3, a piezoelectric element 211 is provided on one surface of the receiving plate 212, and the piezoelectric element 211 and the connector 213 are connected so that a current can flow. As shown in FIG. 4, the receiving plate 212 is in contact with the silica glass crucible 1 on the other surface (the surface opposite to the side on which the piezoelectric element 211 is provided).
 具体的には、本実施形態におけるAEセンサ21は、シリカガラスルツボ1の内表面に設置される。つまり、AEセンサ21のうちの受信板212は、シリカガラスルツボ1の透明層111と接するようシリカガラスルツボ1の内表面に設置されている。上述したように、シリカガラスルツボ1の外面層は、ざらざらとした粗さを有している。AE波の検出精度を上げるためには設置面に粗さを有していない方が望ましいため、上記のようにAEセンサ21をシリカガラスルツボ1の内表面に設置することで、AEセンサ21をシリカガラスルツボ1の外表面に設置した場合と比較して、より高い精度でAE波を検出することが可能となる。 Specifically, the AE sensor 21 in the present embodiment is installed on the inner surface of the silica glass crucible 1. That is, the receiving plate 212 of the AE sensor 21 is installed on the inner surface of the silica glass crucible 1 so as to be in contact with the transparent layer 111 of the silica glass crucible 1. As described above, the outer surface layer of the silica glass crucible 1 has a rough roughness. In order to increase the detection accuracy of the AE wave, it is desirable that the installation surface does not have roughness. Therefore, by installing the AE sensor 21 on the inner surface of the silica glass crucible 1 as described above, Compared with the case where it is installed on the outer surface of the silica glass crucible 1, it is possible to detect the AE wave with higher accuracy.
 圧電素子211は、自身に加えられた力を電圧に変換する。具体的には、本実施形態における圧電素子211は、AE波の伝播によるシリカガラスルツボ1の歪みを検出して当該歪みを電圧に変換する。つまり、圧電素子211は、AE波を検出して当該AE波に応じた電気信号(AE信号)を生成する。本実施形態における圧電素子211は例えば圧電セラミックスであり、例えば、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)により構成されている。 The piezoelectric element 211 converts a force applied to itself into a voltage. Specifically, the piezoelectric element 211 in the present embodiment detects distortion of the silica glass crucible 1 due to propagation of AE waves and converts the distortion into a voltage. That is, the piezoelectric element 211 detects an AE wave and generates an electric signal (AE signal) corresponding to the AE wave. The piezoelectric element 211 in the present embodiment is, for example, a piezoelectric ceramic, and is made of, for example, lead zirconate titanate (Pb (Zr, Ti) O3).
 受信板212は、一方の面に圧電素子211が設けられており、他方の面でシリカガラスルツボ1と接することになる。受信板212は、シリカガラスルツボ1を伝播するAE波により歪む。このように受信板212が歪むことで、シリカガラスルツボ1に生じたAE波が圧電素子211に伝わることになる。受信板212は、例えばセラミックスである。 The receiving plate 212 is provided with a piezoelectric element 211 on one surface, and comes into contact with the silica glass crucible 1 on the other surface. The receiving plate 212 is distorted by AE waves propagating through the silica glass crucible 1. As the receiving plate 212 is distorted in this way, the AE wave generated in the silica glass crucible 1 is transmitted to the piezoelectric element 211. The receiving plate 212 is ceramics, for example.
 コネクタ213は、圧電素子211と外部装置である増幅器22とを接続する。上記のように、圧電素子211はコネクタ213と接続されており、圧電素子211により生じたAE信号は、コネクタ213を介して増幅器22へと送信されることになる。 Connector 213 connects piezoelectric element 211 and amplifier 22 which is an external device. As described above, the piezoelectric element 211 is connected to the connector 213, and the AE signal generated by the piezoelectric element 211 is transmitted to the amplifier 22 via the connector 213.
 <2-1-1.AEセンサ21の設置個数>
 本実施形態においては、上記説明したAEセンサ21を少なくとも3つシリカガラスルツボ1に設置するものとする。後述するように、少なくとも3つのAEセンサ21を用いることで、立体的なシリカガラスルツボ1を平面に展開した際の平面上のAEの発生位置の位置を特定することが可能となる。
<2-1-1. Number of installed AE sensors 21>
In the present embodiment, at least three AE sensors 21 described above are installed in the silica glass crucible 1. As will be described later, by using at least three AE sensors 21, it is possible to specify the position of the AE occurrence position on the plane when the three-dimensional silica glass crucible 1 is developed on the plane.
 また、AEセンサ21は、例えば、側壁部11と底部12とコーナー部13とに、それぞれ、少なくとも3つずつ設置する。このように設置することで、より確実にAEの発生位置を特定することが可能となる。
 例えば、円筒状の側壁部11については、円筒の周方向に等間隔となるように複数個のAEセンサ21を配置する。また、シリカガラスルツボ1のうち内部残留応力が蓄積しやすいコーナー部13や、シリコン単結晶の引き上げを行う際の材料(多結晶シリコン)を充填する際に圧力が加わりやすい底部12にAEセンサ21を配置することが好ましい。
 特に、シリカガラスルツボ1のうち湾曲したコーナー部13や底部12にマイクロクラックが存在すると、シリコン単結晶引き上げの際にシリカガラスルツボ1が割れやすくなる。そのため、コーナー部13と底部12との接続部分の周辺にAEセンサ21を設置してシリカガラスルツボ1の割れやすさを検査することが望ましい。
In addition, at least three AE sensors 21 are installed on the side wall part 11, the bottom part 12, and the corner part 13, for example. By installing in this way, it becomes possible to specify the generation | occurrence | production position of AE more reliably.
For example, with respect to the cylindrical side wall portion 11, a plurality of AE sensors 21 are arranged at equal intervals in the circumferential direction of the cylinder. Further, the AE sensor 21 is applied to the corner portion 13 where internal residual stress is likely to be accumulated in the silica glass crucible 1 and the bottom portion 12 where pressure is easily applied when filling a material (polycrystalline silicon) for pulling up the silicon single crystal. Is preferably arranged.
In particular, if there are microcracks in the curved corner portion 13 and the bottom portion 12 of the silica glass crucible 1, the silica glass crucible 1 is likely to break when the silicon single crystal is pulled. Therefore, it is desirable to inspect the ease of cracking of the silica glass crucible 1 by installing the AE sensor 21 around the connection portion between the corner portion 13 and the bottom portion 12.
 <2-2.増幅器22>
 増幅器22は、AEセンサ21から受信したAE信号を増幅する。増幅器22が増幅したAE信号はAE波解析装置23へと送信される。なお、本実施形態においては、増幅器22の構成については特に限定しない。
<2-2. Amplifier 22>
The amplifier 22 amplifies the AE signal received from the AE sensor 21. The AE signal amplified by the amplifier 22 is transmitted to the AE wave analyzer 23. In the present embodiment, the configuration of the amplifier 22 is not particularly limited.
 <2-3.AE波解析装置23>
 AE波解析装置23は、増幅器22が増幅したAE信号を受信する。そして、AE波解析装置23は、受信したAE信号に基づいて、AE波の強さを測定したり、AE波を検出した回数をカウントしたり、検出結果に基づくシリカガラスルツボ1の割れやすさの評価を行ったりする。
<2-3. AE Wave Analyzer 23>
The AE wave analyzer 23 receives the AE signal amplified by the amplifier 22. Then, the AE wave analysis device 23 measures the strength of the AE wave based on the received AE signal, counts the number of times the AE wave is detected, and is easy to break the silica glass crucible 1 based on the detection result. Or evaluate.
 AE波解析装置23は、例えば図示しないフィルタや装置内増幅器、包絡線検波手段などを有している。AE波解析装置23は、増幅器22から受信したAE信号のうち検査に不必要な周波数の信号を、フィルタを用いて除去する。そして、AE波解析装置23は、除去後のAE信号を装置内増幅器で増幅する。その後、AE波解析装置23は、増幅後のAE信号を用いて測定などの処理を行う。また、AE波解析装置23は、包絡線検波手段により増幅後のAE信号の包絡線を抽出する(具体的には、例えば、AE信号の負の部分を半波整流した後、包絡線検波を行う)。AE波解析装置23は、抽出した包絡線を用いて測定などの処理を行うことも出来る。 The AE wave analysis device 23 includes, for example, a filter, an in-device amplifier, an envelope detection unit, and the like (not shown). The AE wave analyzer 23 removes a signal having a frequency unnecessary for the inspection from the AE signal received from the amplifier 22 using a filter. Then, the AE wave analyzing device 23 amplifies the removed AE signal with an in-device amplifier. Thereafter, the AE wave analyzer 23 performs processing such as measurement using the amplified AE signal. Further, the AE wave analysis device 23 extracts the envelope of the amplified AE signal by the envelope detection means (specifically, for example, after half-rectifying the negative portion of the AE signal, the envelope detection is performed). Do). The AE wave analyzer 23 can also perform processing such as measurement using the extracted envelope.
 図5は、AE波解析装置23が有する主な構成の一例である。図5を参照すると、AE波解析装置23は、例えば、AE波強さ測定部231と、AE波発生回数計測部232と、AE波発生位置算出部233(位置特定手段)と、ルツボ評価部234(ルツボ評価手段)と、計測結果記憶部235と、を有している。なお、AE波解析装置23は図示しない中央処理装置(CPU:Central Processing Unit)と記憶装置とを有しており、記憶装置が記憶するプログラムをCPUが実行することで上記各部を実現する。AE波解析装置23は、上記例示した以外の構成を有していても構わないし、上記例示したうちの一部により構成されていても構わない(例えば、AE波解析装置23は、AE波強さ測定部231とルツボ評価部234とから構成されていても構わない)。 FIG. 5 shows an example of the main configuration of the AE wave analyzer 23. Referring to FIG. 5, the AE wave analysis device 23 includes, for example, an AE wave intensity measurement unit 231, an AE wave generation frequency measurement unit 232, an AE wave generation position calculation unit 233 (position specifying unit), and a crucible evaluation unit. 234 (crucible evaluation means) and a measurement result storage unit 235. Note that the AE wave analysis device 23 includes a central processing unit (CPU: Central Processing Unit) (not shown) and a storage device, and the CPU executes a program stored in the storage device, thereby realizing the above-described units. The AE wave analysis device 23 may have a configuration other than the above-exemplified examples, or may be configured by a part of the above-exemplified examples (for example, the AE wave analysis device 23 has an AE wave strength). And a measuring unit 231 and a crucible evaluating unit 234.
 <2-3-1.AE波強さ測定部231>
 AE波強さ測定部231は、AEセンサ21が検出したAE波の強さを測定する。例えば、AE波強さ測定部231は、装置内増幅器による増幅後のAE信号波形に基づいて、AE波の強さを測定する。図6は、装置内増幅器による増幅後のAE信号波形の一例である。図6で示すように、例えば、AE波強さ測定部231は、AE信号波形のうちもっとも大きい振幅である最大振幅をAE波の強さとして測定する。なお、最大振幅は、AE波のエネルギーの大きさ(dB)を表している。AEセンサ21とAEの発生位置との間の距離が等しい場合、最大振幅が大きいほどAEの発生源で開放されたエネルギーが大きいことを示している。
<2-3-1. AE Wave Strength Measurement Unit 231>
The AE wave intensity measurement unit 231 measures the intensity of the AE wave detected by the AE sensor 21. For example, the AE wave intensity measurement unit 231 measures the intensity of the AE wave based on the AE signal waveform amplified by the in-device amplifier. FIG. 6 is an example of an AE signal waveform after amplification by the in-device amplifier. As shown in FIG. 6, for example, the AE wave intensity measurement unit 231 measures the maximum amplitude, which is the largest amplitude among the AE signal waveforms, as the intensity of the AE wave. The maximum amplitude represents the energy level (dB) of the AE wave. When the distance between the AE sensor 21 and the AE generation position is equal, the larger the maximum amplitude, the larger the energy released by the AE generation source.
 なお、AE波強さ測定部231は、最大振幅の代わりにAE平均値をAE波の強さとして測定するよう構成しても構わない。AE平均値は、例えば、包絡線検波により抽出された包絡線波形を平均化することで算出することが出来る。また、AE波強さ測定部231は、AE実効値(effective value, root mean square value, RMS)をAE波の強さとして測定するよう構成しても構わない。 Note that the AE wave intensity measurement unit 231 may be configured to measure the AE average value as the AE wave intensity instead of the maximum amplitude. The AE average value can be calculated by, for example, averaging the envelope waveform extracted by envelope detection. Further, the AE wave intensity measuring unit 231 may be configured to measure the AE effective value (effective value, root mean square value, RMS) as the AE wave intensity.
 <2-3-2.AE波発生回数計測部232>
 AE波発生回数計測部232は、AEセンサ21が検出したAE波の検出回数を計測する。例えば、AE波発生回数計測部232は、包絡線検波により抽出された包絡線波形と予め定められた閾値(ノイズ信号よりも大きな値とする)とに基づいて、AE波の検出回数を計測する。図7は、包絡線検波により抽出された包絡線波形の一例である。図7で示すように、例えば、AE波発生回数計測部232は、包絡線波形のうち閾値を超えた回数をカウントすることによりAE波の検出回数を計測する。例えば、図7の場合、AE波発生回数計測部232は、AE波が2回検出された旨を計測することになる。
<2-3-2. AE wave generation frequency measurement unit 232>
The AE wave generation number measurement unit 232 measures the number of detections of the AE wave detected by the AE sensor 21. For example, the AE wave generation frequency measurement unit 232 measures the number of detections of the AE wave based on the envelope waveform extracted by envelope detection and a predetermined threshold value (a value larger than the noise signal). . FIG. 7 is an example of an envelope waveform extracted by envelope detection. As illustrated in FIG. 7, for example, the AE wave generation number measurement unit 232 measures the number of detections of the AE wave by counting the number of times exceeding the threshold value in the envelope waveform. For example, in the case of FIG. 7, the AE wave generation number measurement unit 232 measures that the AE wave has been detected twice.
 なお、AE波発生回数計測部232は、例えば、計測された回数を計測時間で除算した単位時間あたりのAE波発生回数を算出するよう構成しても構わない。 Note that the AE wave generation frequency measurement unit 232 may be configured to calculate, for example, the AE wave generation frequency per unit time obtained by dividing the measured frequency by the measurement time.
 <2-3-3.AE波発生位置算出部233>
 AE波発生位置算出部233は、AE波の発生位置を算出する。例えば、AE波発生位置算出部233は、シリカガラスルツボ1に設置した複数のAEセンサ21がAE波を検出した際の検出時間の差に基づいて、AE波の発生位置を算出する。具体的には、AE波発生位置算出部233は、それぞれのAEセンサ21がAE波を検出した際の検出時間の差とシリカガラスルツボ1中の音速Vとに基づいて、AE波の発生位置を算出する。
<2-3-3. AE wave generation position calculation unit 233>
The AE wave generation position calculation unit 233 calculates the generation position of the AE wave. For example, the AE wave generation position calculation unit 233 calculates the generation position of the AE wave based on the difference in detection time when the plurality of AE sensors 21 installed in the silica glass crucible 1 detect the AE wave. Specifically, the AE wave generation position calculation unit 233 determines the generation position of the AE wave based on the difference in detection time when each AE sensor 21 detects the AE wave and the sound velocity V in the silica glass crucible 1. Is calculated.
 図8は、AE波発生位置算出部233によるAE波の算出の一例を説明するための図である。図8では、AE波の発生位置の算出方法を説明するための例として1次元におけるAE波の発生位置の算出を行う際の1例を示しており、AEセンサ21-1とAEセンサ21-2とを既知の座標に設置して、未知の座標x上に存在するクラック3より生じたAE波を検出する場合を示している。図8で示すように、例えば、AEセンサ21-1を座標k1に設置し、AEセンサ21-2を座標k2に設置したとする。また、AEセンサ21-1がクラック3より生じたAE波を時間t1に検出し、AEセンサ21-2がクラック3より生じたAE波を時間t2に検出したとする。この場合、AEセンサ21-1による検出時間t1とAEセンサ21-2による検出時間t2との時間差t1-t2は、AEセンサ21-1とクラック3との間の距離であるx-x1とAEセンサ21-1とクラック3との間の距離であるx-x2との差に起因して生じていることになる。従って、AE波発生位置算出部233は、V(t1-t2)=|x-x1|―|x-x2|の式を解くことで、クラック3の位置を割り出すことが出来る。なお、シリカガラスルツボ1中の音波の速度は、縦波が約5700~5900m/sであり、横波が約3700m/sである。 FIG. 8 is a diagram for explaining an example of the calculation of the AE wave by the AE wave generation position calculation unit 233. FIG. 8 shows one example when calculating the generation position of the AE wave in one dimension as an example for explaining the calculation method of the generation position of the AE wave. The AE sensor 21-1 and the AE sensor 21- 2 is set at a known coordinate, and an AE wave generated from a crack 3 existing on an unknown coordinate x is detected. As shown in FIG. 8, for example, it is assumed that the AE sensor 21-1 is installed at the coordinate k1, and the AE sensor 21-2 is installed at the coordinate k2. Also, assume that the AE sensor 21-1 detects an AE wave generated from the crack 3 at time t1, and the AE sensor 21-2 detects an AE wave generated from the crack 3 at time t2. In this case, the time difference t1-t2 between the detection time t1 by the AE sensor 21-1 and the detection time t2 by the AE sensor 21-2 is the distance between the AE sensor 21-1 and the crack 3 xx1 and AE. This is caused by the difference between xx2 which is the distance between the sensor 21-1 and the crack 3. Therefore, the AE wave generation position calculation unit 233 can determine the position of the crack 3 by solving the expression V (t1−t2) = | x−x1 | − | x−x2 |. The speed of sound waves in the silica glass crucible 1 is about 5700-5900 m / s for longitudinal waves and about 3700 m / s for transverse waves.
 AE波発生位置算出部233は、上記と同様の理由により、3つのAEセンサ21を用いることで、3つのAEセンサの位置関係と検出時間の差に基づいて、クラック3の2次元位置を算出することが出来る。ここで、2次元位置は、立体的なシリカガラスルツボ1を平面に展開した場合の平面上の座標である。一方、実際のシリカガラスルツボ1は立体的な形状(円筒状の側壁部11、湾曲した底部12、側壁部11と底部12との間に設けられ底部12よりも高い曲率を有するコーナー部13)である。そこで、AE波発生位置算出部233は、算出したクラック3の2次元位置を実際のシリカガラスルツボ1の3次元形状に戻して(逆変換して)、クラック3の3次元位置を算出してもよい。これにより、シリカガラスルツボ1の3次元形状とクラック3の位置とを正確に把握することができる。 For the same reason as described above, the AE wave generation position calculation unit 233 uses the three AE sensors 21 to calculate the two-dimensional position of the crack 3 based on the positional relationship between the three AE sensors and the difference in detection time. I can do it. Here, the two-dimensional position is a coordinate on a plane when the three-dimensional silica glass crucible 1 is developed on the plane. On the other hand, the actual silica glass crucible 1 has a three-dimensional shape (a cylindrical side wall portion 11, a curved bottom portion 12, a corner portion 13 provided between the side wall portion 11 and the bottom portion 12 and having a higher curvature than the bottom portion 12). It is. Therefore, the AE wave generation position calculation unit 233 returns (reversely converts) the calculated two-dimensional position of the crack 3 to the actual three-dimensional shape of the silica glass crucible 1 to calculate the three-dimensional position of the crack 3. Also good. Thereby, the three-dimensional shape of the silica glass crucible 1 and the position of the crack 3 can be accurately grasped.
 <2-3-4.ルツボ評価部234>
 ルツボ評価部234は、AE波強さ測定部231やAE波発生回数計測部232、AE波発生位置算出部233による測定、計測、算出結果に基づいて、シリカガラスルツボ1の割れやすさを評価する。
<2-3-4. Crucible evaluation unit 234>
The crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the measurement, measurement, and calculation results by the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. To do.
 例えば、ルツボ評価部234は、AE波強さ測定部231による測定結果の値と予め記憶されている強さ閾値(任意に調整された値)とを比較する。そして、測定結果の値が強さ閾値を超えている場合、ルツボ評価部234は、シリカガラスルツボ1を割れやすいと評価する。このように、ルツボ評価部234は、例えば、シリカガラスルツボ1に所定の外力を加えた際に生じるAE波の強さに基づいて、シリカガラスルツボ1の割れやすさを評価する。 For example, the crucible evaluation unit 234 compares the value of the measurement result obtained by the AE wave intensity measurement unit 231 with a strength threshold value (arbitrarily adjusted value) stored in advance. And when the value of a measurement result exceeds the strength threshold, crucible evaluation part 234 evaluates that silica glass crucible 1 is easy to break. Thus, the crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the strength of the AE wave generated when a predetermined external force is applied to the silica glass crucible 1, for example.
 AE波強さ測定部231による測定の結果が予め設定した閾値以上であった場合、当該シリカガラスルツボ1を用いて実際にシリコン単結晶を引き上げると、途中でシリカガラスルツボ1が割れてしまうおそれが強くなる。 When the result of measurement by the AE wave intensity measurement unit 231 is equal to or greater than a preset threshold, if the silicon single crystal is actually pulled up using the silica glass crucible 1, the silica glass crucible 1 may be broken in the middle. Becomes stronger.
 また、例えば、ルツボ評価部234は、AE波発生回数計測部232による計測結果の値と予め記憶されている回数閾値(任意に調整された値)とを比較する。そして、計測結果の値が回数閾値を超えている場合、ルツボ評価部234は、シリカガラスルツボ1を割れやすいと評価する。このように、ルツボ評価部234は、例えば、シリカガラスルツボ1に所定の外力を加えた際に生じるAE波の回数に基づいて、シリカガラスルツボ1の割れやすさを評価する。 Also, for example, the crucible evaluation unit 234 compares the value of the measurement result obtained by the AE wave generation frequency measurement unit 232 with a frequency threshold value (arbitrarily adjusted value) stored in advance. And when the value of a measurement result exceeds the frequency threshold, crucible evaluation part 234 evaluates that silica glass crucible 1 is easy to break. Thus, the crucible evaluation part 234 evaluates the ease of cracking of the silica glass crucible 1 based on the number of AE waves generated when a predetermined external force is applied to the silica glass crucible 1, for example.
 AE波発生回数計測部232による計測結果、予め設定した回以上のAE波が計測された場合、当該シリカガラスルツボ1を用いて実際にシリコン単結晶を引き上げると、途中でシリカガラスルツボ1が割れてしまうおそれが強くなる。 As a result of measurement by the AE wave generation frequency measuring unit 232, when AE waves of a preset number of times or more are measured, when the silicon single crystal is actually pulled up using the silica glass crucible 1, the silica glass crucible 1 breaks along the way. The risk of getting stronger.
 また、例えば、ルツボ評価部234は、AE波発生位置算出部233による算出結果に基づいて、シリカガラスルツボ1の割れやすさを評価することが出来る。例えば、シリカガラスルツボ1に生じているクラックの位置によって、シリカガラスルツボ1の割れやすさが変化することが考えられる。そこで、ルツボ評価部234は、AE波発生位置算出部233による算出結果に基づいて、シリカガラスルツボ1の割れやすさを評価する。 Further, for example, the crucible evaluation unit 234 can evaluate the ease of cracking of the silica glass crucible 1 based on the calculation result by the AE wave generation position calculation unit 233. For example, it is conceivable that the ease of cracking of the silica glass crucible 1 changes depending on the position of a crack generated in the silica glass crucible 1. Therefore, the crucible evaluation unit 234 evaluates the ease of cracking of the silica glass crucible 1 based on the calculation result by the AE wave generation position calculation unit 233.
 例えば、シリカガラスルツボ1の湾曲したコーナー部13や底部12にマイクロクラックが存在する場合、当該シリカガラスルツボ1を用いて実際にシリコン単結晶を引き上げると、途中でシリカガラスルツボ1が割れてしまうおそれが強い。そこで、ルツボ評価部234は、特に湾曲したコーナー部13や底部12、コーナー部13と底部12との接続部分マイクロクラックが存在するか否かに基づいて、シリカガラスルツボ1の割れやすさを評価することが望ましい。 For example, when there are microcracks in the curved corner portion 13 and the bottom portion 12 of the silica glass crucible 1, when the silicon single crystal is actually pulled up using the silica glass crucible 1, the silica glass crucible 1 is broken in the middle. There is a strong fear. Therefore, the crucible evaluation unit 234 evaluates the easiness of cracking of the silica glass crucible 1 based on whether or not there is a curved corner portion 13 or bottom portion 12 or a connection portion microcrack between the corner portion 13 and the bottom portion 12. It is desirable to do.
 ルツボ評価部234は、上記例示した方法の複数を組み合わせてシリカガラスルツボ1の割れやすさを評価するよう構成することも出来る。例えば、ルツボ評価部234は、AE波強さ測定部231による測定の結果が予め設定した所定の閾値以上であり、かつ、予め設定した所定回以上のAE波が計測された場合に、対象のシリカガラスルツボ1が割れやすいと評価することが出来る。また、ルツボ評価部234は、例えば、AE波の発生位置に応じて、AE波強さ測定部231による測定結果の値と比較する閾値の値を変えても構わない。また、ルツボ評価部234は、シリカガラスルツボ1の場所ごとに許容可能なAE波の数を変更しても構わない。ルツボ評価部234は、上記例示した以外の組み合わせにより、シリカガラスルツボ1の割れやすさを評価しても構わない。 The crucible evaluation unit 234 can be configured to evaluate the ease of cracking of the silica glass crucible 1 by combining a plurality of the above-exemplified methods. For example, the crucible evaluation unit 234 determines the target when the result of the measurement by the AE wave intensity measurement unit 231 is equal to or greater than a predetermined threshold value and more than a predetermined number of AE waves are measured. It can be evaluated that the silica glass crucible 1 is easily broken. Also, the crucible evaluation unit 234 may change the threshold value to be compared with the value of the measurement result obtained by the AE wave intensity measurement unit 231 according to the generation position of the AE wave, for example. Also, the crucible evaluation unit 234 may change the number of AE waves that are allowable for each location of the silica glass crucible 1. The crucible evaluating unit 234 may evaluate the ease of cracking of the silica glass crucible 1 by a combination other than those exemplified above.
 <2-3-5.計測結果記憶部235>
 計測結果記憶部235は、半導体メモリやハードディスクなどの記憶装置である。計測結果記憶部235は、AE波強さ測定部231やAE波発生回数計測部232、AE波発生位置算出部233による測定、計測、算出結果を記憶する。また、計測結果記憶部235は、ルツボ評価部234による評価結果を記憶する。計測結果記憶部235には、例えば、シリカガラスルツボ1ごとの測定、計測、算出結果や評価結果が記憶されている。
<2-3-5. Measurement result storage unit 235>
The measurement result storage unit 235 is a storage device such as a semiconductor memory or a hard disk. The measurement result storage unit 235 stores the measurement, measurement, and calculation results obtained by the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. Further, the measurement result storage unit 235 stores the evaluation result obtained by the crucible evaluation unit 234. In the measurement result storage unit 235, for example, measurement, measurement, calculation result, and evaluation result for each silica glass crucible 1 are stored.
 以上が、ルツボ検査装置2の構成の一例についての説明である。 The above is an explanation of an example of the configuration of the crucible inspection apparatus 2.
 <3.外力について>
 AE波は、シリカガラスルツボ1に外力が加わるか内力変動が生じたことによる、シリカガラスルツボ1中のクラックの発生、成長などにより生じる。そのため、上記ルツボ検査装置2によりAE波を検出するためには、シリカガラスルツボ1に外力を加えるか内力変動を生じさせることが必要になる。
<3. About external force >
The AE wave is generated by the generation or growth of cracks in the silica glass crucible 1 due to external force applied to the silica glass crucible 1 or internal force fluctuations. Therefore, in order to detect the AE wave by the crucible inspection apparatus 2, it is necessary to apply an external force to the silica glass crucible 1 or cause an internal force fluctuation.
 本実施形態においては、エアーか水圧を使用してシリカガラスルツボ1に対して外力を加えることでAE波の発生を誘発する。具体的には、例えば、圧縮された空気をシリカガラスルツボ1に対してぶつけ、当該圧縮された空気をぶつけた際に生じるAE波をルツボ検査装置2により検出する。また、例えば、ルツボ検査装置2は、水圧を利用して生じるAE波を検出する。このようにエアーや水圧を使用することで、シリカガラスルツボ1を破壊することなく非破壊でAE波を誘発し、シリカガラスルツボ1の割れやすさを検査・評価することが出来る。 In this embodiment, generation of AE waves is induced by applying an external force to the silica glass crucible 1 using air or water pressure. Specifically, for example, the compressed air is hit against the silica glass crucible 1 and the AE wave generated when the compressed air is hit is detected by the crucible inspection device 2. Further, for example, the crucible inspection apparatus 2 detects an AE wave generated using water pressure. By using air or water pressure in this way, AE waves can be induced non-destructively without destroying the silica glass crucible 1, and the ease of cracking of the silica glass crucible 1 can be inspected and evaluated.
 特に、シリカガラスルツボ1は、円筒状の側壁部11と、湾曲した底部12と、側壁部11と底部12とを連結し且つ底部12よりも曲率が高いコーナー部13と、を備えた器状の形状を有している。このため、シリカガラスルツボ1の内側に水(液体)を充填することができる。水の充填によって、円筒状の側壁部11や湾曲した底部12、所定の曲率を有するコーナー部13のそれぞれの内面に均一に外力(ルツボ内側の中央から外方に向けた力)を与えることができる。 In particular, the silica glass crucible 1 includes a cylindrical side wall part 11, a curved bottom part 12, and a container part that connects the side wall part 11 and the bottom part 12 and has a corner part 13 having a higher curvature than the bottom part 12. It has the shape of For this reason, the inside of the silica glass crucible 1 can be filled with water (liquid). By filling with water, an external force (force directed outward from the center inside the crucible) can be uniformly applied to the inner surfaces of the cylindrical side wall portion 11, the curved bottom portion 12, and the corner portion 13 having a predetermined curvature. it can.
 また、充填する水の量によって、ルツボ内面の外力を与えたい位置を容易に選択することができる。例えば、底部12だけに水を充填すれば底部12のみに外力を与えることができ、コーナー部13まで水を充填すれば底部12からコーナー部13まで外力を与えることができる。また、側壁部11の所定の高さまで水を充填すれば、底部12、コーナー部13および側壁部11の水が充填された高さまで外力を与えることができる。 Also, the position where the external force on the inner surface of the crucible is to be applied can be easily selected depending on the amount of water to be filled. For example, if only the bottom portion 12 is filled with water, an external force can be applied only to the bottom portion 12, and if water is filled up to the corner portion 13, an external force can be applied from the bottom portion 12 to the corner portion 13. Moreover, if water is filled to the predetermined height of the side wall part 11, external force can be given to the height with which the water of the bottom part 12, the corner part 13, and the side wall part 11 was filled.
 さらに、水の充填を行いながらAE波を検出するようにすると、ルツボ内面の外力を与える位置を連続的に変えながらAE波の検査を行うことができるようになる。 Furthermore, if the AE wave is detected while filling with water, the AE wave can be inspected while continuously changing the position where the external force is applied to the inner surface of the crucible.
 一般に、AE波検出における外力の与え方として水を利用する場合、対象物を水中に沈めるようにしている。しかし、器状のシリカガラスルツボ1を水中に沈めた場合、水からの圧力はシリカガラスルツボ1の内面や外面の全体に加わることになる。
 一方、シリカガラスルツボ1の内側に水を溜めるように充填すれば、シリカガラスルツボ1の内面のみに均一な力を与えることができる。これにより、外圧力印加のばらつきを抑制して、精度の高いAE波検出を行うことができる。
 また、所望の高さまで水を充填したり、充填しながら検査したりすることで、検査に適した外圧のかけ方を選択することができ、AE波検出の安定性を高めることができる。
In general, when water is used as an external force application method in AE wave detection, an object is submerged in water. However, when the vessel-shaped silica glass crucible 1 is submerged in water, the pressure from the water is applied to the entire inner surface and outer surface of the silica glass crucible 1.
On the other hand, if the water is stored inside the silica glass crucible 1 so as to accumulate water, a uniform force can be applied only to the inner surface of the silica glass crucible 1. Thereby, variation in external pressure application can be suppressed, and highly accurate AE wave detection can be performed.
Moreover, by filling with water to a desired height or inspecting while filling, it is possible to select a method of applying external pressure suitable for inspection, and to improve the stability of AE wave detection.
 このように、シリカガラスルツボ1の特有の形状を利用して内側に水を充填することでAE波検査に必要が外力を与えることで、一般的な対象物とは異なり精度の高いAE波検出を安定して行うことが可能となる。 In this way, by using the unique shape of the silica glass crucible 1 and filling the inside with water, it is necessary to apply an external force to the AE wave inspection. Can be performed stably.
 なお、ルツボ検査装置2の用途は、非破壊でシリカガラスルツボ1を検査する場合に限定されない。ルツボ検査装置2は、例えば、シリカガラスルツボ1に対する破壊検査によって生じるAE波を検出するよう構成しても構わない。 In addition, the use of the crucible inspection apparatus 2 is not limited to the case of inspecting the silica glass crucible 1 nondestructively. For example, the crucible inspection apparatus 2 may be configured to detect an AE wave generated by a destructive inspection of the silica glass crucible 1.
 <4.ルツボ検査装置2の動作>
 続いて、ルツボ検査装置2を用いたルツボ検査方法の一例について、図9を参照して説明する。なお、本実施形態におけるルツボ検査装置2のAEセンサ21は、シリカガラスルツボ1の表面に設置される。具体的には、AEセンサ21は、例えば、シリカガラスルツボ1の内表面に設置される。そして、シリカガラスルツボ1に対して所定の外力を加えることで、シリカガラスルツボ1にAE波を発生させる。
<4. Operation of crucible inspection apparatus 2>
Next, an example of a crucible inspection method using the crucible inspection apparatus 2 will be described with reference to FIG. The AE sensor 21 of the crucible inspection apparatus 2 in the present embodiment is installed on the surface of the silica glass crucible 1. Specifically, the AE sensor 21 is installed on the inner surface of the silica glass crucible 1, for example. Then, an AE wave is generated in the silica glass crucible 1 by applying a predetermined external force to the silica glass crucible 1.
 図9を参照すると、ルツボ検査装置2のAEセンサ21は、シリカガラスルツボ1に所定の外力を加えた際に生じるAE波を検出する(ステップS001)。具体的には、AEセンサ21は、AE波を検出し、AE波に応じてAE信号を生成する。AEセンサ21が生成したAE信号は増幅器22で増幅され、増幅されたAE信号をAE波解析装置23が受信する。 Referring to FIG. 9, the AE sensor 21 of the crucible inspection apparatus 2 detects an AE wave generated when a predetermined external force is applied to the silica glass crucible 1 (step S001). Specifically, the AE sensor 21 detects an AE wave and generates an AE signal according to the AE wave. The AE signal generated by the AE sensor 21 is amplified by the amplifier 22, and the amplified AE signal is received by the AE wave analyzer 23.
 AE波解析装置23は、受信したAE信号に基づいて、シリカガラスルツボ1の割れやすさを評価する(ステップS002)。具体的には、AE波解析装置23のAE波強さ測定部231は、受信したAE信号に基づいてAE波の強さを測定する。また、AE波解析装置23のAE波発生回数計測部232は、受信したAE信号に基づいてAE波の発生回数を計測する。また、AE波解析装置23のAE波発生位置算出部233は、AE波の発生位置を算出する。そして、AE波解析装置23のルツボ評価部234が、AE波強さ測定部231やAE波発生回数計測部232、AE波発生位置算出部233による測定、計測、算出結果に基づいて、シリカガラスルツボ1の割れやすさを評価する。 The AE wave analyzer 23 evaluates the ease of cracking of the silica glass crucible 1 based on the received AE signal (step S002). Specifically, the AE wave intensity measurement unit 231 of the AE wave analyzer 23 measures the intensity of the AE wave based on the received AE signal. In addition, the AE wave generation frequency measurement unit 232 of the AE wave analyzer 23 measures the number of AE wave generations based on the received AE signal. Further, the AE wave generation position calculation unit 233 of the AE wave analysis device 23 calculates the generation position of the AE wave. Then, the crucible evaluation unit 234 of the AE wave analysis device 23 uses the silica glass based on the measurement, measurement, and calculation results of the AE wave intensity measurement unit 231, the AE wave generation frequency measurement unit 232, and the AE wave generation position calculation unit 233. The ease of cracking of the crucible 1 is evaluated.
 以上が、ルツボ検査装置2の動作の一例についての説明である。 The above is an explanation of an example of the operation of the crucible inspection apparatus 2.
 <5.構成・作用・効果>
 このように、本実施形態におけるルツボ検査装置2は、AEセンサ21とAE波解析装置23とを有している。このような構成により、ルツボ検査装置2は、シリカガラスルツボ1に外力を加えた際に生じるAE波を検出することが出来る。その結果、ルツボ検査装置2は、検出結果に基づいて、シリカガラスルツボ1の割れやすさを評価することが出来る。
 また、AE波を検出した回数からマイクロクラックの伸展のしやすさを評価できる。マイクロクラックの伸展のしやすさからルツボの割れと変形に影響するか評価できる。
 AE波の強さからマイクロクラックの大きさを推測できる。マイクロクラックの大きさがルツボの割れと変形に影響するか評価できる。
 AE波の発生位置からマイクロクラックの位置を推測できる。ルツボ内で原料充填することにより圧力が加わる位置、及びシリコン単結晶引き上げ中の液面位置を考慮して、マイクロクラックの存在する位置がルツボの割れと変形に影響するか評価できる。
 また、これらを組み合わせて評価することにより、ルツボ内のマイクロクラックのそれぞれの伸展しやすさ、大きさ、位置を把握することができる。それにより、シリコン単結晶引き上げ条件(引き上げ時間の長さや原料充填量など)を考慮して、マイクロクラックが引き上げ中のルツボ割れと変形に影響するか評価できる。
<5. Configuration / Function / Effect>
As described above, the crucible inspection apparatus 2 in the present embodiment includes the AE sensor 21 and the AE wave analysis apparatus 23. With such a configuration, the crucible inspection apparatus 2 can detect an AE wave generated when an external force is applied to the silica glass crucible 1. As a result, the crucible inspection apparatus 2 can evaluate the ease of cracking of the silica glass crucible 1 based on the detection result.
Further, the ease of extension of microcracks can be evaluated from the number of times the AE wave is detected. It is possible to evaluate whether or not it affects the cracking and deformation of the crucible from the ease of extension of microcracks.
The size of the microcrack can be estimated from the strength of the AE wave. It can be evaluated whether the size of the microcrack affects the cracking and deformation of the crucible.
The position of the microcrack can be estimated from the generation position of the AE wave. Considering the position where the pressure is applied by filling the raw material in the crucible and the position of the liquid surface during the pulling of the silicon single crystal, it can be evaluated whether the position where the microcracks are present affects the cracking and deformation of the crucible.
Further, by evaluating these in combination, it is possible to grasp the ease of extension, size, and position of the microcracks in the crucible. Thereby, it is possible to evaluate whether the microcrack affects the crucible crack and the deformation during the pulling in consideration of the pulling condition of the silicon single crystal (the length of pulling time, the raw material filling amount, etc.).
 <6.その他の構成>
 なお、本実施形態においては、AEセンサ21が圧電素子211と受信板212とコネクタ213とを有するとした。しかしながら、AEセンサ21の構成は上記場合に限定されない。例えば、AEセンサ21は、ダンパ材を有していても構わない。
<6. Other configurations>
In the present embodiment, the AE sensor 21 includes the piezoelectric element 211, the receiving plate 212, and the connector 213. However, the configuration of the AE sensor 21 is not limited to the above case. For example, the AE sensor 21 may have a damper material.
 また、本実施形態においては、AEセンサ21はシリカガラスルツボ1の内表面に設置するとした。しかしながら、AEセンサ21はシリカガラスルツボ1の外表面など内表面以外に設置しても構わない。 In the present embodiment, the AE sensor 21 is installed on the inner surface of the silica glass crucible 1. However, the AE sensor 21 may be installed on a surface other than the inner surface such as the outer surface of the silica glass crucible 1.
 また、シリカガラスルツボ1を製造する際の工程(シリカガラスルツボ1の製造方法)として、本実施形態において説明したルツボ検査装置2を用いたルツボ検査方法を行うことが出来る。このようにシリカガラスルツボ1を製造することで、製造されたシリカガラスルツボ1にクラックなどのAE波の発生源が存在するか否かを検査することが出来る。その結果、例えば、外力を加えられた際にAE波を生じるクラックなどの欠陥の数が予め定められた閾値以下であるシリカガラスルツボ1を実現することが出来る。また、外力を加えられた際に生じるAE波の強さが予め定められた閾値以下であるシリカガラスルツボ1を実現することが出来る。また、上述したシリカガラスルツボ1の製造方法により製造されたシリカガラスルツボ1を用いて、例えばチョクラルスキー法によりシリコンインゴットの引き上げを行うことで、引き上げの途中でクラックが生じることのない、確実なシリコンインゴットの引き上げを実現することが出来る。 In addition, as a process for manufacturing the silica glass crucible 1 (a method for manufacturing the silica glass crucible 1), a crucible inspection method using the crucible inspection apparatus 2 described in the present embodiment can be performed. By producing the silica glass crucible 1 in this way, it is possible to inspect whether or not an AE wave generation source such as a crack exists in the produced silica glass crucible 1. As a result, for example, the silica glass crucible 1 in which the number of defects such as cracks that generate AE waves when an external force is applied is equal to or less than a predetermined threshold value can be realized. Further, it is possible to realize the silica glass crucible 1 in which the strength of the AE wave generated when an external force is applied is equal to or less than a predetermined threshold value. Further, by using the silica glass crucible 1 manufactured by the method for manufacturing the silica glass crucible 1 described above, for example, by pulling up the silicon ingot by the Czochralski method, cracks are not generated during the pulling. Can raise the silicon ingot.
<シリコン単結晶の製造方法>
 図10(a)~(c)は、本実施形態に係るシリカガラスルツボを用いたシリコン単結晶の製造方法を説明する模式図である。
 図10(a)に示すように、シリコン単結晶の引き上げ時には、シリカガラスルツボ1内に多結晶シリコンを充填し、この状態でシリカガラスルツボ1の周囲に配置されたヒータで多結晶シリコンを加熱して熔融させる。これにより、シリコン融液230を得る。この際、本発明のシリカガラスルツボを用いることにより、充填中のルツボの破損を防止することができる。
<Method for producing silicon single crystal>
FIGS. 10A to 10C are schematic views for explaining a method for producing a silicon single crystal using the silica glass crucible according to the present embodiment.
As shown in FIG. 10A, when pulling up the silicon single crystal, the silica glass crucible 1 is filled with polycrystalline silicon, and in this state, the polycrystalline silicon is heated by a heater disposed around the silica glass crucible 1. And melt. Thereby, the silicon melt 230 is obtained. At this time, by using the silica glass crucible of the present invention, the crucible during filling can be prevented from being damaged.
 シリコン融液230の体積は、多結晶シリコンの質量によって定まる。したがって、シリコン融液230の液面23aの初期の高さ位置H0は、多結晶シリコンの質量とシリカガラスルツボ1の内表面の三次元形状によって決まる。すなわち、シリカガラスルツボ1の内表面の三次元形状が定まると、シリカガラスルツボ1の任意の高さ位置までの容積が特定され、これにより、シリコン融液230の液面23aの初期の高さ位置H0が決定される。 The volume of the silicon melt 230 is determined by the mass of polycrystalline silicon. Therefore, the initial height position H 0 of the liquid surface 23 a of the silicon melt 230 is determined by the mass of the polycrystalline silicon and the three-dimensional shape of the inner surface of the silica glass crucible 1. That is, when the three-dimensional shape of the inner surface of the silica glass crucible 1 is determined, the volume up to an arbitrary height position of the silica glass crucible 1 is specified, whereby the initial height of the liquid surface 23a of the silicon melt 230 is determined. The position H0 is determined.
 シリコン融液230の液面23aの初期の高さ位置H0が決定された後は、種結晶24の先端を高さ位置H0まで下降させてシリコン融液230に接触させる。そして、ワイヤケーブル561を回転させながらゆっくりと引き上げることによって、シリコン単結晶25を成長させる。この際、シリカガラスルツボ1は、ワイヤケーブル561の回転とは反対に回転される。 After the initial height position H0 of the liquid surface 23a of the silicon melt 230 is determined, the tip of the seed crystal 24 is lowered to the height position H0 and brought into contact with the silicon melt 230. Then, the silicon single crystal 25 is grown by slowly pulling up the wire cable 561 while rotating it. At this time, the silica glass crucible 1 is rotated opposite to the rotation of the wire cable 561.
 図10(b)に示すように、シリコン単結晶25の直胴部(直径が一定の部位)を引き上げているときに、液面23aがシリカガラスルツボ1の側壁部11に位置している場合には、一定の速度で引き上げると液面23aの降下速度Vmはほぼ一定になるので、引き上げの制御は容易である。 As shown in FIG. 10B, when the liquid surface 23 a is located on the side wall portion 11 of the silica glass crucible 1 when the straight body portion (the portion having a constant diameter) of the silicon single crystal 25 is pulled up. In this case, if the liquid surface 23a is pulled up at a constant speed, the descending speed Vm of the liquid surface 23a becomes almost constant, so that the pulling up is easily controlled.
 しかし、図10(c)に示すように、液面23aがシリカガラスルツボ1のコーナー部13に到達すると、液面23aの下降に伴ってその面積が急激に縮小するので、液面23aの降下速度Vmが急激に大きくなる。降下速度Vmは、コーナー部13の内表面形状に依存している。 However, as shown in FIG. 10 (c), when the liquid level 23a reaches the corner 13 of the silica glass crucible 1, the area rapidly decreases as the liquid level 23a descends. The speed Vm increases rapidly. The descending speed Vm depends on the inner surface shape of the corner portion 13.
 シリカガラスルツボ1の内表面の三次元形状を正確に測定しておくことで、コーナー部13の内表面形状が分かり、したがって、降下速度Vmがどのように変化するのかを正確に予測することができる。そして、この予測に基づいて、シリコン単結晶25の引き上げ速度等の引き上げ条件が決定される。この際、本実施形態のシリカガラスルツボ1を使用することにより、予測した形状から変形することが少ないので、降下速度Vmの予測精度がより向上する。これにより、コーナー部13においても有転移化を防止し、かつ引き上げを自動化することが可能になる。 By accurately measuring the three-dimensional shape of the inner surface of the silica glass crucible 1, the inner surface shape of the corner portion 13 can be known, and therefore how the descent speed Vm changes can be accurately predicted. it can. Based on this prediction, pulling conditions such as the pulling speed of the silicon single crystal 25 are determined. At this time, by using the silica glass crucible 1 of the present embodiment, since the deformation from the predicted shape is less, the prediction accuracy of the descent speed Vm is further improved. As a result, it is possible to prevent transition from occurring in the corner portion 13 and to automate the lifting.
 本実施形態に係るシリコン単結晶の製造方法では、シリコン単結晶25の引き上げ時にシリカガラスルツボ1の加熱による変形(側壁部11の倒れ、歪み、底部12の盛り上がりなど)が抑制されるため、シリカガラスルツボ1の内表面の三次元形状から求めた液面23aの降下速度Vmのずれが抑制され、結晶化率の高いシリコン単結晶25を歩留まり良く製造することが可能になる。なお、アルゴン雰囲気、減圧下(約660Pa~13kPa程度)にてシリコン単結晶の引き上げは行なわれている。 In the method for producing a silicon single crystal according to the present embodiment, since the silica glass crucible 1 is prevented from being deformed by the heating of the silica glass crucible 1 when the silicon single crystal 25 is pulled up (such as falling of the side wall 11, distortion, rising of the bottom 12). The deviation of the descending speed Vm of the liquid surface 23a obtained from the three-dimensional shape of the inner surface of the glass crucible 1 is suppressed, and the silicon single crystal 25 having a high crystallization rate can be manufactured with a high yield. The silicon single crystal is pulled up in an argon atmosphere and under reduced pressure (about 660 Pa to 13 kPa).
<シリコン単結晶のインゴット>
 本実施形態において製造したシリカガラスルツボ1を引き上げ装置にセットして、シリコン単結晶を引き上げることでシリコンインゴットを製造してもよい。
 図11は、シリコン単結晶のシリコンインゴットを例示する模式図である。
 シリコン単結晶のインゴット600は、本発明のシリカガラスルツボ1を引き上げ装置にセットして、上記のシリコン単結晶の製造方法によって引き上げることで製造される。
<Silicon single crystal ingot>
A silicon ingot may be manufactured by setting the silica glass crucible 1 manufactured in the present embodiment to a pulling device and pulling up the silicon single crystal.
FIG. 11 is a schematic view illustrating a silicon single crystal silicon ingot.
The silicon single crystal ingot 600 is manufactured by setting the silica glass crucible 1 of the present invention in a pulling apparatus and pulling it up by the above-described silicon single crystal manufacturing method.
 インゴット600は、種結晶24側の肩部610と、肩部610から連続する直胴部620と、直胴部620から連続する尾部630とを有する。なお、インゴット600において種結晶24は除去される。肩部610の径は、種結晶24側から直胴部620にかけて漸増する。直胴部620の径はほぼ一定である。尾部630の径は、直胴部620から離れるに従い漸減していく。 The ingot 600 has a shoulder 610 on the seed crystal 24 side, a straight body 620 continuous from the shoulder 610, and a tail 630 continuous from the straight body 620. Note that the seed crystal 24 is removed from the ingot 600. The diameter of the shoulder portion 610 gradually increases from the seed crystal 24 side to the straight body portion 620. The diameter of the straight body 620 is substantially constant. The diameter of the tail 630 gradually decreases as the distance from the straight body 620 increases.
 インゴット600の品質は、引き上げを行うシリカガラスルツボ1の品質と密接に関連する。例えば、シリカガラスルツボ1の不純物(例えば、ガラス中の不純物金属元素)や異物の混入は、インゴット600におけるシリコン単結晶の有転位化に繋がる。また、シリカガラスルツボ1の内表面の滑らかさ(見た目で分かるような凹凸)、表面付近の気泡の量、大きさによっては、ルツボ表面の欠け、気泡の割れ、潰れによるシリコン内への微小な破片(ルツボから剥離した粒子など)がシリコン融液へ脱落すると、これがインゴット中に混入して有転位化することに繋がる。 The quality of the ingot 600 is closely related to the quality of the silica glass crucible 1 to be pulled up. For example, contamination of the silica glass crucible 1 (for example, an impurity metal element in the glass) or foreign matters leads to dislocation of the silicon single crystal in the ingot 600. Further, depending on the smoothness of the inner surface of the silica glass crucible 1 (unevenness that can be seen visually), the amount and size of bubbles in the vicinity of the surface, there is a minute amount into the silicon due to chipping of the crucible surface, cracking of the bubbles, or crushing. When debris (particles peeled off from the crucible) falls into the silicon melt, this mixes in the ingot and leads to dislocation.
 また、インゴット600の品質は、インゴット600の製造における引き上げ制御にも大きく左右される。以下に、インゴット600の品質と引き上げ制御との関係の具体例を説明する。
 図12(a)~(c)は引き上げ制御を説明する模式図である。
 図12(a)に示すように、シリコン単結晶の成長速度をVg、シリコン単結晶の引き上げ速度をV、シリコン融液の液面の低下速度をVm、ルツボの上昇速度をC、とした場合、次の関係が成り立つ。
 Vg=V+Vm-C
In addition, the quality of the ingot 600 greatly depends on the pulling control in manufacturing the ingot 600. Below, the specific example of the relationship between the quality of the ingot 600 and raising control is demonstrated.
FIGS. 12A to 12C are schematic diagrams for explaining the pull-up control.
As shown in FIG. 12A, when the growth rate of the silicon single crystal is Vg, the pulling rate of the silicon single crystal is V, the lowering rate of the silicon melt is Vm, and the rising rate of the crucible is C. The following relationship holds.
Vg = V + Vm-C
 このうち液面低下速度Vmは、ルツボ内容積とシリコン単結晶の成長速度Vgとの関数fによって決まる(図12(b)参照)。従来の技術においては、この関数fを用いた計算によって液面低下速度Vmを求めている。また、引き上げ速度Vおよびルツボ上昇速度Cは引き上げ装置の条件として既知であるため、これによりシリコン単結晶の成長速度Vg=V+Vm-Cを求めている。 Among these, the liquid level lowering speed Vm is determined by a function f of the crucible inner volume and the silicon single crystal growth speed Vg (see FIG. 12B). In the conventional technique, the liquid level lowering speed Vm is obtained by calculation using this function f. Further, since the pulling speed V and the crucible rising speed C are known as the conditions of the pulling apparatus, the silicon single crystal growth speed Vg = V + Vm−C is obtained therefrom.
 しかしながら、実際の引き上げにおいては、高温に曝されるためルツボの内面形状が変形し、内容積も変化することになる(図12(c)参照)。引き上げ装置では、シリカガラスルツボはカーボンサセプタに内挿される。したがって、シリカガラスルツボの外周面はカーボンサセプタに嵌合している状態になる。このため、シリカガラスルツボは外側には変形せず、内側のみに変形することになる。ルツボの内容積が変化してしまうと、液面低下速度Vmの計算が不正確になってしまい、シリコン単結晶の成長速度Vgを正確に定めることができなくなる。この成長速度Vgは、結晶欠陥の発生における重要な要素である。したがって、成長速度Vgを正確に制御できないと、インゴット600の品質に大きな影響を与えることになる。 However, in actual pulling, the inner shape of the crucible is deformed and the internal volume is changed due to exposure to high temperature (see FIG. 12C). In the pulling device, the silica glass crucible is inserted into the carbon susceptor. Therefore, the outer peripheral surface of the silica glass crucible is in a state of being fitted to the carbon susceptor. For this reason, the silica glass crucible is not deformed outward but deformed only inward. If the internal volume of the crucible changes, the calculation of the liquid level lowering speed Vm becomes inaccurate, and the silicon single crystal growth speed Vg cannot be determined accurately. This growth rate Vg is an important factor in the generation of crystal defects. Therefore, if the growth rate Vg cannot be accurately controlled, the quality of the ingot 600 is greatly affected.
 シリコン融液液面位置のルツボ内半径をR、シリコン単結晶(インゴット)の直径をr、シリコン融液の密度をρL、シリコン単結晶の密度をρsとすると、液面がルツボ直胴部にある場合、以下の式が成り立つ。
 Vg=ρL/ρs・(R/r)・Vm
 Vg/Vm=ρL/ρs・(R/r)=k
If the inner radius of the crucible at the position of the silicon melt liquid surface is R, the diameter of the silicon single crystal (ingot) is r, the density of the silicon melt is ρL, and the density of the silicon single crystal is ρs, the liquid surface is in the crucible straight body. In some cases, the following equation holds:
Vg = ρL / ρs · (R / r) 2 · Vm
Vg / Vm = ρL / ρs · (R / r) 2 = k
 ルツボの内側の半径の変動率をαとすると、以下の式が成り立つ。
 Vg=ρL/ρs・(αR/r)・Vm
 Vg=α・{ρL/ρs・(αR/r)・Vm}
When the variation rate of the inner radius of the crucible is α, the following equation is established.
Vg = ρL / ρs · (αR / r) 2 · Vm
Vg = α 2 · {ρL / ρs · (αR / r) 2 · Vm}
 このことから、Vgのずれにはαの2乗が寄与する。したがって、Rが1%変動すると、Vgは約2%変動することになる。 Therefore, the square of α contributes to the deviation of Vg. Therefore, if R varies by 1%, Vg varies by about 2%.
 R=0.797m、r=0.3m、ρL=2570kg/m、ρs=2300kg/mとすると、k=7.95、1/k=0.126となる。
 例えば、シリコンウェーハの厚さ1mm分に相当するシリコン単結晶(インゴット)を製造する場合、シリコン融液の液面の低下は0.126mmとなる。インゴットからシリコンウェーハを切り出す際の切断幅(ブレード等の幅)や切り出した後の研磨を考慮すると、シリコンウェーハの厚さは700μm~800μm程度となる。インゴットのどこを切り出してもCOPが実質的にゼロとなるようにするためには、インゴットの直胴部の全域において、COPが実質的にゼロとなるようにする必要がある。また、後述する3次元構造の半導体デバイスなど、構造部がシリコンウェーハの厚さの1/10~1/100以下の範囲に収まる場合、シリコン単結晶の引き上げにおいては、シリコンウェーハの厚さの1/10~1/100以下の引き上げ制御(COPを実質的にゼロにするための引き上げ制御)が必要である。この場合、シリコン融液の液面の低下をコントロールするためには、0.01mm以下の精度のコントロールする必要がある。
Assuming that R = 0.797 m, r = 0.3 m, ρL = 2570 kg / m 3 , and ρs = 2300 kg / m 3 , k = 7.95 and 1 / k = 0.126.
For example, when a silicon single crystal (ingot) corresponding to a thickness of 1 mm of a silicon wafer is manufactured, the drop in the silicon melt level is 0.126 mm. Considering the cutting width (width of a blade or the like) when cutting a silicon wafer from an ingot and polishing after cutting, the thickness of the silicon wafer is about 700 μm to 800 μm. In order to make the COP substantially zero no matter where the ingot is cut, it is necessary to make the COP substantially zero in the entire area of the straight body portion of the ingot. In addition, when the structure portion falls within the range of 1/10 to 1/100 or less of the thickness of the silicon wafer, such as a semiconductor device having a three-dimensional structure to be described later, the thickness of the silicon wafer is 1 A pulling control of / 10 to 1/100 or less (pulling control for making COP substantially zero) is necessary. In this case, in order to control the decrease in the liquid level of the silicon melt, it is necessary to control the accuracy of 0.01 mm or less.
 このように、シリカガラスルツボ1の内側の径が1%変動すると、シリコン単結晶の成長速度Vgは2%変動することになる。また、シリカガラスルツボ1のコーナー部13におけるシリコン融液の液面の低下速度Vmは、シリカガラスルツボ1の直胴部におけるシリコン融液の液面の低下速度よりも高くなる。したがって、ルツボ内径の変動が液面低下の変動に与える影響は、ルツボ直胴部よりもコーナー部13のほうが大きい。 Thus, when the inner diameter of the silica glass crucible 1 fluctuates 1%, the growth rate Vg of the silicon single crystal fluctuates 2%. Further, the rate of decrease Vm of the silicon melt at the corner 13 of the silica glass crucible 1 is higher than the rate of decrease of the level of the silicon melt at the straight body of the silica glass crucible 1. Therefore, the influence of the variation in the inner diameter of the crucible on the variation in the liquid level is larger in the corner portion 13 than in the straight body portion of the crucible.
 本実施形態では、実際に引き上げに使用するシリカガラスルツボ1の厚さ方向における内部残留応力を正確に測定できるため、この内部残留応力と、使用後のルツボ内径の変化との関係(操業実績に基づくルツボ内径変動量のシミュレーション)によって、使用前(シリコン単結晶の引き上げを行う前)のシリカガラスルツボ1の段階で、使用中のルツボの内径変動量を推定することができる。これにより、従来技術のように、全くルツボの変形を考慮しない場合に比べ、シリコン単結晶の成長速度Vgの目標値からのずれを低減することができ、インゴット600の直胴部620の全長にわたり欠陥を抑制(実質的にゼロに)することができる。 In this embodiment, since the internal residual stress in the thickness direction of the silica glass crucible 1 actually used for pulling can be measured accurately, the relationship between the internal residual stress and the change in the inner diameter of the crucible after use (in terms of operation results) Based on the simulation of the fluctuation amount of the inner diameter of the crucible based on this, the inner diameter fluctuation amount of the crucible in use can be estimated at the stage of the silica glass crucible 1 before use (before the silicon single crystal is pulled up). This makes it possible to reduce the deviation from the target value of the growth rate Vg of the silicon single crystal compared to the case where the deformation of the crucible is not considered at all as in the conventional technique, and the entire length of the straight body portion 620 of the ingot 600 can be reduced. Defects can be suppressed (substantially zero).
 図13は、ルツボの内径の変動量を示す図である。
 図13において横軸はルツボの内径の変動量を示し、縦軸はルツボの底部からの高さを示している。
 図13のプロットは測定値である。また、線Lは、各高さでの測定値の平均を繋いだものである。
 線Lで示すように、ルツボ内径の変動(すなわち、ルツボ内容積の変動)が平均的に起こることが分かる。本実施形態のように、ルツボの内面形状を基準にシリコン単結晶の上昇速度Aを変えればシリコン単結晶の全長にわたって欠陥のできない範囲に収まるようシリコン単結晶の成長速度Vgをコントロールすることが可能になる。
 一方、従来技術では、CZ単結晶育成中のフィードバック制御を、ADC(自動直径制御)と液面制御との組み合わせのみで行っている。すなわち、従来技術では、実際の使用におけるルツボの形状については全く考慮されておらず、しかもルツボの形状変化を正確に把握できていないため、シリコン単結晶の引き上げにおいて成長速度Vgを正確にコントロールすることができない。すなわち、従来技術では、上記のような液面降下速度Vmが0.01mm以下の精度に対応したVgのコントロールには全く対応しておらず、半導体デバイス、特に3次元構造のデバイスの性能を十分に引き出すためのシリコン単結晶(インゴット)を製造することができるシリカガラスルツボにはなっていない。
FIG. 13 is a diagram showing a variation amount of the inner diameter of the crucible.
In FIG. 13, the horizontal axis indicates the amount of variation in the inner diameter of the crucible, and the vertical axis indicates the height from the bottom of the crucible.
The plot of FIG. 13 is a measured value. Moreover, the line L connects the average of the measured value in each height.
As shown by line L, it can be seen that fluctuations in the inner diameter of the crucible (that is, fluctuations in the crucible internal volume) occur on average. As in this embodiment, if the rising speed A of the silicon single crystal is changed based on the shape of the inner surface of the crucible, it is possible to control the growth rate Vg of the silicon single crystal so that the entire length of the silicon single crystal is within a defect-free range. become.
On the other hand, in the prior art, feedback control during CZ single crystal growth is performed only by a combination of ADC (automatic diameter control) and liquid level control. That is, in the prior art, the shape of the crucible in actual use is not taken into consideration at all, and the shape change of the crucible cannot be accurately grasped, so that the growth rate Vg is accurately controlled in pulling up the silicon single crystal. I can't. In other words, the conventional technology does not correspond to the Vg control corresponding to the accuracy of the liquid level lowering velocity Vm of 0.01 mm or less as described above, and the performance of the semiconductor device, particularly the device of the three-dimensional structure is sufficient. It is not a silica glass crucible that can produce a silicon single crystal (ingot) to be drawn out.
 ここで、今までのルツボの製造履歴・検査結果・使用結果からルツボの挙動をシミュレーション技術によって推定することは可能である(ルツボの挙動の例)。ここからルツボの変形について以下のことが分かる。
(1)肉厚が薄めの部分での変動量が大きい。
(2)重量の大きいルツボほど変形量が多い。
(3)外径の小さいルツボほど内面の変形量が大きい。
(4)偏心している部分での変形量が多い。
(5)カーボンサセプタの対称形でない部分でルツボの変形が生じやすい。
(6)シリカガラスルツボはセラミックでもあり、ルツボ内周面は完全な真円にはなっていない。
Here, it is possible to estimate the behavior of the crucible from the production history, inspection results, and use results of the crucible so far by simulation technology (example of crucible behavior). From this, the following can be understood about the deformation of the crucible.
(1) The amount of fluctuation is large in the thin part.
(2) The amount of deformation increases as the weight of the crucible increases.
(3) The amount of deformation of the inner surface increases as the crucible has a smaller outer diameter.
(4) The amount of deformation in the eccentric part is large.
(5) The crucible is likely to be deformed at a non-symmetrical portion of the carbon susceptor.
(6) The silica glass crucible is also ceramic, and the inner peripheral surface of the crucible is not a perfect circle.
 上記のように、Vg=V+Vm-Cによってシリコン単結晶の成長速度Vgを制御するためには、ルツボの情報を正確に把握していることが必要である。したがって、過去からのすべてのルツボの情報を関連づけて記録しておき、検索可能な状態にしておくことが望まれる。 As described above, in order to control the growth rate Vg of the silicon single crystal by Vg = V + Vm−C, it is necessary to accurately grasp the crucible information. Therefore, it is desirable to record all crucible information from the past in association with each other so that they can be searched.
 また、シリコン単結晶の成長速度(Vg)と、固液界面付近での引き上げ軸方向の温度勾配(G)との関係を規定することがインゴット600の結晶欠陥の発生を抑制する上で重要となる。ここで、引き上げ軸方向の温度勾配(G)は、固体側よりも融液側の方が高い(言い換えると、融液側よりも固体側の方が低い)。また、引き上げ軸と直交する方向(径方向)の面内(径方向の断面の面内)の温度勾配は一定である。 It is also important to regulate the relationship between the growth rate (Vg) of the silicon single crystal and the temperature gradient (G) in the pulling axis direction near the solid-liquid interface in order to suppress the occurrence of crystal defects in the ingot 600. Become. Here, the temperature gradient (G) in the pulling axis direction is higher on the melt side than on the solid side (in other words, lower on the solid side than on the melt side). In addition, the temperature gradient in the plane (in the radial direction) perpendicular to the pulling axis (in the radial plane) is constant.
 本発明のシリカガラスルツボ1は、シリコン単結晶の引き上げの際の変形や倒れが抑制されるため、シリコン融液の液面と熱遮蔽部材の先端との高さHを安定させることができる。このようなシリカガラスルツボ1を用いてシリコン単結晶の引き上げを行い、得られたインゴット600においては、直胴部620における結晶欠陥は実質的にゼロである。例えば、直胴部620におけるCOP(Crystal Originated Particle)が実質的にゼロとなる。COPは、結晶欠陥の一つで、単結晶の格子点にシリコン原子がない(空孔が集まった)微細な欠陥のことを言う。COPがあることで、半導体装置の電気的特性(リーク電流、抵抗値分布、キャリア移動度など)を劣化させる原因となる。 The silica glass crucible 1 of the present invention can stabilize the height H between the liquid surface of the silicon melt and the tip of the heat shielding member because the deformation and collapse of the silicon single crystal are suppressed. In the ingot 600 obtained by pulling up the silicon single crystal using such a silica glass crucible 1, the crystal defects in the straight body portion 620 are substantially zero. For example, COP (Crystal Originated Particle) in the straight body 620 is substantially zero. COP is one of crystal defects and is a fine defect in which silicon atoms are not present at lattice points of a single crystal (holes are collected). The presence of the COP causes deterioration of electrical characteristics (leakage current, resistance value distribution, carrier mobility, etc.) of the semiconductor device.
 ここで、COPの発生について説明する。
 図14は、ボロンコフ理論に基づいて各種の欠陥が発生する状況を説明する模式図である。
 図14に示すように、ボロンコフ理論では、引き上げ速度をV(mm/min)、インゴット(シリコン単結晶)の固液界面近傍における引き上げ軸方向の温度勾配をG(℃/mm)としたとき、それらの比であるV/Gを横軸にとり、空孔型点欠陥の濃度と格子間シリコン型点欠陥の濃度を同一の縦軸にとって、V/Gと点欠陥濃度との関係を模式的に表現している。そして、空孔型点欠陥の発生する領域と格子間シリコン型点欠陥の発生する領域の境界となる臨界点が存在することを示している。
Here, generation of COP will be described.
FIG. 14 is a schematic diagram for explaining a situation in which various defects occur based on the Boronkov theory.
As shown in FIG. 14, in the Boronkov theory, when the pulling speed is V (mm / min) and the temperature gradient in the pulling axis direction in the vicinity of the solid-liquid interface of the ingot (silicon single crystal) is G (° C./mm), The relationship between V / G and point defect concentration is schematically shown with the ratio V / G being the horizontal axis and the concentration of vacancy type point defects and the concentration of interstitial silicon type point defects being the same vertical axis. expressing. It is shown that there is a critical point that becomes a boundary between a region where a vacancy type point defect occurs and a region where an interstitial silicon type point defect occurs.
 V/Gが臨界点を下回ると、格子間シリコン型点欠陥濃度が優勢な単結晶が育成される。V/Gが臨界点より小さい(V/G)Iを下回る範囲では、単結晶内で格子間シリコン型点欠陥が支配的であって、格子間シリコン点欠陥の凝集体が存在する領域[I]が出現する。 When V / G falls below the critical point, a single crystal having a dominant interstitial silicon type point defect concentration is grown. In a range where V / G is less than the critical point (V / G) I, the interstitial silicon type point defects are dominant in the single crystal, and the region where the aggregate of interstitial silicon point defects exists [I ] Appears.
 一方V/Gが臨界点を上回ると、空孔型点欠陥濃度が優勢な単結晶が育成される。V/Gが臨界点より大きい(V/G)vを上回る範囲では、単結晶内で空孔型点欠陥が支配的であって、空孔型点欠陥の凝集体が存在する領域[V]が出現し、COPが発生する。 On the other hand, when V / G exceeds the critical point, a single crystal having a dominant vacancy point defect concentration is grown. In a range where V / G is greater than the critical point (V / G) v, a region where vacancy type point defects are dominant in the single crystal and agglomerates of vacancy type point defects exist [V] Appears and COP occurs.
 図15は、単結晶育成時の引き上げ速度と欠陥分布との関係を示す模式図である。
 図15に示す欠陥分布は、引き上げ速度Vを徐々に低下させながらシリコン単結晶を育成し、育成した単結晶を中心軸(引き上げ軸)に沿って切断して板状試片とし、その表面の欠陥の発生状況を示したものである。欠陥分布は、板状試片の表面にCuデコレーションさせ、熱処理を施した後、その板状試片をX線トポグラフ法により観察し、欠陥の発生状況を評価した結果である。
FIG. 15 is a schematic diagram showing the relationship between the pulling rate and the defect distribution during single crystal growth.
The defect distribution shown in FIG. 15 is obtained by growing a silicon single crystal while gradually lowering the pulling speed V, cutting the grown single crystal along the central axis (pickup axis) to form a plate-like specimen, It shows the occurrence of defects. The defect distribution is a result of evaluating the occurrence of defects by decorating Cu on the surface of the plate-shaped specimen and performing heat treatment, then observing the plate-shaped specimen by the X-ray topograph method.
 図15に示すように、引き上げ速度を高速にして育成を行った場合、単結晶の引き上げ軸方向と直交する面内全域にわたり、空孔型点欠陥の凝集体(COP)が存在する領域[V]が発生する。引き上げ速度を低下させていくと、単結晶の外周部からOSF領域がリング状に出現する。このOSF領域は、引き上げ速度の低下に伴ってその径が次第に縮小し、引き上げ速度がV1になると消滅する。これに伴い、OSF領域に代わって無欠陥領域[P](領域[PV])が出現し、単結晶の面内全域が無欠陥領域[P]で占められる。そして、引き上げ速度がVまでに低下すると、格子間シリコン型点欠陥の凝集体(LD)が存在する領域[I]が出現し、ついには無欠陥領域[P](領域[PI])に代わって単結晶の面内全域が領域[I]で占められる。 As shown in FIG. 15, when the growth is performed at a high pulling speed, the region [VOP] where vacancy-type point defect aggregates (COP) exist over the entire in-plane region perpendicular to the pulling axis direction of the single crystal [V ] Occurs. When the pulling speed is decreased, the OSF region appears in a ring shape from the outer peripheral portion of the single crystal. The diameter of the OSF region gradually decreases as the pulling speed decreases, and disappears when the pulling speed becomes V1. Accordingly, a defect-free region [P] (region [PV]) appears instead of the OSF region, and the entire in-plane area of the single crystal is occupied by the defect-free region [P]. When the pulling rate is reduced to V 2 , a region [I] where interstitial silicon-type point defect aggregates (LD) are present appears, and finally appears in a defect-free region [P] (region [PI]). Instead, the entire in-plane area of the single crystal is occupied by the region [I].
 本実施形態において、上記に示すCOPが実質的にゼロとは、COPの検出数が実質的に0個であることをいう。COPはパーティクルカウンタによって検出される。パーティクルカウンタでは0.020μm以上のパーティクルがウェーハ表面(半導体デバイス形成面)に30個以下しか検出されない場合に実質的に0個となる。本明細書において「0.020μmのCOP」とは、例えばTencor社製のSPシリーズ、またはこの装置と同等性能を有する半導体用およびシリコンウェーハ用のパーティクルカウンタ装置で測定した場合に、0.020μmのパーティクルサイズとして検出されるCOPのことをいう。 In the present embodiment, the fact that the COP shown above is substantially zero means that the number of detected COPs is substantially zero. COP is detected by a particle counter. In the particle counter, when the number of particles of 0.020 μm or more is detected only 30 or less on the wafer surface (semiconductor device forming surface), the number is substantially zero. In this specification, “0.020 μm COP” means, for example, 0.020 μm when measured with the SP series manufactured by Tencor or the particle counter device for semiconductors and silicon wafers having the same performance as this device. A COP detected as a particle size.
 上記説明したように、直胴部620のCOPが実質的にゼロとなるインゴット600は、例えば直径300mm、厚さ約1mmにスライスされてシリコンウェーハとなる。インゴット600から切り出したシリコンウェーハを用いて製造した半導体装置では、電気的特性の安定化、劣化抑制を図ることができる。 As described above, the ingot 600 in which the COP of the straight body 620 is substantially zero is sliced into, for example, a diameter of 300 mm and a thickness of about 1 mm to become a silicon wafer. In a semiconductor device manufactured using a silicon wafer cut out from the ingot 600, electrical characteristics can be stabilized and deterioration can be suppressed.
 なお、COPを検出する方法はパーティクルカウンタ以外であってもよい。例えば、表面欠陥検査装置を用いる方法、ウェーハの表面に所定厚さの酸化膜を形成した後、外部電圧を印加して、ウェーハ表面の欠陥部位で酸化膜を破壊するとともに銅を析出させ、この析出した銅を肉眼、透過電子顕微鏡(TEM)、走査電子顕微鏡(SEM)などで観察することにより欠陥(COP)を検出する方法などが挙げられる。インゴット600の直胴部620では、このような検出方法ではCOPが検出されない(実質的にゼロとなる)。 Note that the method of detecting COP may be other than the particle counter. For example, a method using a surface defect inspection apparatus, after forming an oxide film of a predetermined thickness on the surface of a wafer, applying an external voltage to destroy the oxide film at the defective portion of the wafer surface and deposit copper, Examples include a method of detecting defects (COP) by observing the deposited copper with the naked eye, a transmission electron microscope (TEM), a scanning electron microscope (SEM), and the like. In the straight body 620 of the ingot 600, COP is not detected by such a detection method (substantially becomes zero).
 本発明のインゴット600におけるより好ましい形態は、直胴部620の全てにおいて、ベーカンシーと呼ばれる点欠陥(空孔)が凝集した領域(COPが存在するV-Rich領域)がなく、OSF(Oxidation Induced Stacking Fault)が検出されず、インタースティシャルと呼ばれる格子間型の点欠陥が存在する領域(I-Rich領域)がないこと、すなわち直胴部620の全てがニュートラル領域になっていることである。ここで、ニュートラル領域は、欠陥が全くない領域のほか、僅かにベーカンシーやインタースティシャルが含まれていても凝集した欠陥として存在しないか、検出不可能なほど小さい領域を含む。 A more preferable form of the ingot 600 according to the present invention is that all the straight body portions 620 do not have a region where point defects (voids) called vacancy are aggregated (V-Rich region where COP exists), and OSF (Oxidation Induced Stacking). Fault) is not detected, and there is no region (I-Rich region) where interstitial point defects called interstitials exist, that is, all of the straight body portion 620 is a neutral region. Here, the neutral region includes not only a region having no defects, but also a region that does not exist as an agglomerated defect or is so small that it cannot be detected even if a slight vacancy or interstitial is included.
 このように、直胴部620の結晶欠陥がゼロになっていることで、インゴット600から切り出したウェーハを用いて製造した半導体装置の電気的特性の安定化および劣化抑制を図ることができる。 Thus, since the crystal defects in the straight body portion 620 are zero, the electrical characteristics of the semiconductor device manufactured using the wafer cut out from the ingot 600 can be stabilized and the deterioration can be suppressed.
<ホモエピタキシャルウェーハ>
 また、このインゴット600から切り出したウェーハを基板部としてホモエピタキシャルウェーハ(以下、単に「エピタキシャルウェーハ」とも言う。)を構成してもよい。図16は、エピタキシャルウェーハを例示する模式断面図である。エピタキシャルウェーハ700は、インゴット600から切り出したウェーハの基板部710と、基板部710の上に設けられたシリコン単結晶のエピタキシャル層720と、を備えている。本実施形態において、エピタキシャル層720はシリコンのホモエピタキシャル層である。エピタキシャル層720の厚さは、約0.5μm~20μmである。
<Homoepitaxial wafer>
Further, a homoepitaxial wafer (hereinafter, also simply referred to as “epitaxial wafer”) may be configured by using a wafer cut out from the ingot 600 as a substrate portion. FIG. 16 is a schematic cross-sectional view illustrating an epitaxial wafer. The epitaxial wafer 700 includes a wafer substrate portion 710 cut out from the ingot 600, and a silicon single crystal epitaxial layer 720 provided on the substrate portion 710. In this embodiment, the epitaxial layer 720 is a silicon homoepitaxial layer. The thickness of the epitaxial layer 720 is about 0.5 μm to 20 μm.
 エピタキシャルウェーハ700の製造方法の一例を示す。先ず、基板部710をエピタキシャル炉の中で約1200℃まで加熱する。次に、炉内に気化した四塩化珪素(SiCl)、三塩化シラン(トリクロルシラン、SiHCl)を流す。これにより、基板部710の表面上にシリコン単結晶の膜が気相成長(エピタキシャル成長)し、エピタキシャル層720が形成される。 An example of the manufacturing method of the epitaxial wafer 700 is shown. First, the substrate unit 710 is heated to about 1200 ° C. in an epitaxial furnace. Next, vaporized silicon tetrachloride (SiCl 4 ) and trichlorosilane (trichlorosilane, SiHCl 3 ) are flowed into the furnace. Thus, a silicon single crystal film is vapor-phase grown (epitaxial growth) on the surface of the substrate portion 710, and an epitaxial layer 720 is formed.
 結晶欠陥が実質的にゼロであるインゴット600から切り出したウェーハを用いてエピタキシャルウェーハ700を構成することにより、結晶欠陥が実質的にゼロとなるエピタキシャル層720を形成することができる。 By forming the epitaxial wafer 700 using a wafer cut out from the ingot 600 having substantially zero crystal defects, the epitaxial layer 720 having substantially zero crystal defects can be formed.
 近年、半導体集積回路の微細化が進み、従来のプレーナ型トランジスタでは限界に近づいてきている。そこで、Fin型のFET(フィン型電界効果トランジスタ)構造と呼ばれているトランジスタが提唱されるようになった(例えば、特許文献11、12参照)。
 従来のプレーナ型では、シリコンウェーハ表面の内部に、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)構造が構成される。
 プレーナ型では、ソース、ドレインを2次元的に構成している。ところが、Fin型のFETは、シリコン表面の上層にFINと呼ばれるチャネル領域を有し、シリコンウェーハと接しており三次元構造のMOSFETとなっている。
 プレーナ型はゲート長で微細化を進めたが、Fin型のFETではフィン(Fin)幅を最少寸法として管理される。フィン幅が20nm程度、つまりCOPと同程度のFin型FETもある。
 そこで、フィン(Fin)直下のシリコンウェーハの表面品質として、COPのサイズを極限まで低減することを求められている。
 このような3次元構造は、Fin型FETのほか、3次元NAND型のフラッシュメモリでも採用される。
 このような半導体デバイスを製造するためには、品質を向上させたホモエピタキシャルウェーハが要望されている。
 シリコンウェーハを用いてホモエピタキシャル層を成膜する際、シリコンウェーハのCOPのサイズをより小さく、より少なくする必要がある。シリコンウェーハ上のCOPを抑制するために熱処理する方法もあるが、シリコン単結晶のインゴットの段階でCOPを実質的にゼロにするために、引き上げ時におけるシリコン融液のコントロールをすることが重要である。本願発明者らは、シリコン融液の液面変動とシリカガラスルツボとの関係に着目して、シリコン融液をコントロールできることを見出した。
In recent years, miniaturization of semiconductor integrated circuits has progressed, and the limits of conventional planar transistors are approaching. Therefore, a transistor called a Fin-type FET (fin-type field effect transistor) structure has been proposed (see, for example, Patent Documents 11 and 12).
In the conventional planar type, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) structure is formed inside the silicon wafer surface.
In the planar type, the source and drain are two-dimensionally configured. However, the Fin-type FET has a channel region called FIN in the upper layer of the silicon surface and is in contact with the silicon wafer to form a three-dimensional MOSFET.
The planar type has been miniaturized by the gate length, but in the Fin type FET, the fin width is managed as the minimum dimension. There is also a Fin type FET having a fin width of about 20 nm, that is, about the same as COP.
Therefore, it is required to reduce the size of the COP to the limit as the surface quality of the silicon wafer directly under the fin.
Such a three-dimensional structure is adopted not only in a Fin type FET but also in a three-dimensional NAND type flash memory.
In order to manufacture such a semiconductor device, a homoepitaxial wafer with improved quality is desired.
When forming a homoepitaxial layer using a silicon wafer, the size of the COP of the silicon wafer needs to be smaller and smaller. Although there is a heat treatment method to suppress COP on the silicon wafer, it is important to control the silicon melt at the time of pulling in order to make COP substantially zero at the ingot stage of the silicon single crystal. is there. The inventors of the present application have found that the silicon melt can be controlled by paying attention to the relationship between the liquid level fluctuation of the silicon melt and the silica glass crucible.
 本実施形態では、AE波の検出結果に基づいてシリカガラスルツボを評価し、引き上げ中に割れや変形に影響するマイクロクラックが存在しないルツボを選択することができる。シリカガラスルツボにマイクロクラックが存在すると、シリコン単結晶引き上げ中の高温長時間でルツボが変形しやすくなる。シリコン単結晶引き上げ中に、シリカガラスルツボが変形すると、シリコン融液液面が擾乱し、引き上げ速度等の各種引き上げ条件が制御することができなくなる。引き上げ中に割れや変形に影響するマイクロクラックが存在しないルツボを使用してシリコン単結晶を引き上げることで、より引き上げ中の引き上げ速度などの条件制御が高精度に可能になり、それによって結晶欠陥が実質的にゼロになるインゴットを製造することが出来るようになる。またそのインゴットを用いたウェーハによる基板部にエピタキシャル層を形成することで、高品質なエピタキシャルウェーハを提供することができる。 In the present embodiment, the silica glass crucible can be evaluated based on the detection result of the AE wave, and a crucible in which there is no microcrack that affects cracking or deformation during pulling can be selected. When microcracks exist in the silica glass crucible, the crucible is likely to be deformed at a high temperature for a long time during the pulling of the silicon single crystal. If the silica glass crucible is deformed during the pulling of the silicon single crystal, the surface of the silicon melt is disturbed, and various pulling conditions such as the pulling speed cannot be controlled. By pulling up a silicon single crystal using a crucible that does not have microcracks that affect cracking and deformation during pulling, it becomes possible to control conditions such as the pulling speed during pulling with high precision, thereby eliminating crystal defects. It becomes possible to produce an ingot that is substantially zero. Moreover, a high quality epitaxial wafer can be provided by forming an epitaxial layer on the substrate portion of the wafer using the ingot.
 なお、エピタキシャル層720は、基板部710の表面の全面に形成されていても、部分的に形成されていてもよい。これにより、結晶の完全性が求められる場合や、抵抗率の異なる多層構造を必要とする場合に対応できる高品質なエピタキシャルウェーハ700を提供することができる。
 
The epitaxial layer 720 may be formed on the entire surface of the substrate portion 710 or may be partially formed. As a result, it is possible to provide a high-quality epitaxial wafer 700 that can be used when crystal integrity is required or when a multilayer structure with different resistivity is required.
<ルツボ製造からシリコン単結晶製品製造までの工程>
 図17は、ルツボ製造からウェーハ製造までの工程を例示するフローチャートである。
 図17に示すステップS201~S206まではルツボの製造工程であり、ステップS207~S214まではインゴットの製造工程であり、ステップS215~S221まではシリコンウェーハの製造工程であり、ステップS222~S227まではエピタキシャルウェーハの製造工程である。
<Process from crucible manufacturing to silicon single crystal product manufacturing>
FIG. 17 is a flowchart illustrating the steps from crucible manufacturing to wafer manufacturing.
Steps S201 to S206 shown in FIG. 17 are crucible manufacturing processes, steps S207 to S214 are ingot manufacturing processes, steps S215 to S221 are silicon wafer manufacturing processes, and steps S222 to S227 are the same. It is a manufacturing process of an epitaxial wafer.
 ステップS201~S214に示すルツボ製造からインゴット製造までの一連の工程を、ルツボ-インゴット製造工程と言うことにする。
 ステップS201~S221に示すルツボ製造からシリコンウェーハ製造までの一連の工程を、ルツボ-シリコンウェーハ製造工程と言うことにする。
 ステップS201~S227に示すルツボ製造からエピタキシャルウェーハ製造までの一連の工程を、ルツボ-エピウェーハ製造工程と言うことにする。
A series of processes from crucible production to ingot production shown in steps S201 to S214 is referred to as a crucible-ingot production process.
A series of processes from crucible manufacturing to silicon wafer manufacturing shown in steps S201 to S221 is referred to as a crucible-silicon wafer manufacturing process.
A series of processes from crucible manufacturing to epitaxial wafer manufacturing shown in steps S201 to S227 is referred to as a crucible-epiwafer manufacturing process.
 ルツボ-インゴット製造工程、ルツボ-シリコンウェーハ製造工程およびルツボ-エピウェーハ製造工程のそれぞれにおいて、一貫した製造条件の制御および品質管理を行うため、本実施形態では、各工程を一括管理する一貫制御システムが用いられる。 In order to perform consistent manufacturing condition control and quality control in each of the crucible-ingot manufacturing process, the crucible-silicon wafer manufacturing process, and the crucible-epi wafer manufacturing process, in this embodiment, there is an integrated control system that collectively manages each process. Used.
 本実施形態では、ルツボ製造に起因してシリコン単結晶製品(インゴット、シリコンウェーハ、エピタキシャルウェーハ)の品質までを想定した生産管理を一貫制御システムが用いられる。 In this embodiment, an integrated control system is used for production management that assumes the quality of silicon single crystal products (ingots, silicon wafers, epitaxial wafers) due to crucible manufacturing.
 従来では、例えばシリコン単結晶の引き上げによってインゴットを製造する場合、ADC(自動直径制御)で直胴部の直径を一定に制御している。直径約300mmの直胴部を全長2000mmまで引き上げる時間は、0.5mm/分として約4000分必要となる。また、シリコンインゴット製造における全体としては、(1)シリカガラスルツボへの多結晶シリコンの充填時にシリカガラスルツボが割れないように慎重に装填する作業、(2)多結晶シリコンの溶融、(3)Dashネッキング(転位除去)工程、(4)シリコンインゴットの肩部の形成、(5)直胴部全長2000mmの引き上げ、(6)シリコンインゴットに転位が入らないようにテール絞りを行い、(7)炉を冷却してシリコンインゴットの回収、を行う。このような一連の処理を行い、直径300mm、直胴部の全長2000mmのシリコンインゴットを1本製造するためには、約7日程度を費やすことになる。 Conventionally, for example, when an ingot is manufactured by pulling up a silicon single crystal, the diameter of the straight body portion is controlled to be constant by ADC (automatic diameter control). The time required for pulling up the straight body having a diameter of about 300 mm to a total length of 2000 mm is about 4000 minutes as 0.5 mm / min. In addition, as a whole in the production of silicon ingots, (1) an operation of carefully loading the silica glass crucible so that the silica glass crucible does not break when filling the silica glass crucible, (2) melting of the polycrystalline silicon, (3) Dash necking (dislocation removal) process, (4) forming the shoulder of the silicon ingot, (5) lifting the total length of the straight body part to 2000 mm, (6) tail tailing to prevent dislocation from entering the silicon ingot, (7) The furnace is cooled and the silicon ingot is recovered. In order to manufacture a single silicon ingot having a diameter of 300 mm and a total length of 2000 mm by performing such a series of processes, it takes about 7 days.
 この間の制御は、主に引き上げ速度と重量の関係のみで、直胴部の直径の一定、全長でのCOPフリーの引き上げを目指している。引き上げにおいて重要なシリコン融液の液面とコーン部571との高さHは、引き上げ速度が速いと高く、引き上げ速度が遅いと低くなる。従来では、高さHの制御を引き上げ装置ごとの個体差とオペレータの経験で行っている。 The control during this period is mainly based on the relationship between the lifting speed and the weight, and the aim is to raise the COP free over the entire length of the straight body with a constant diameter. The height H between the surface of the silicon melt important for pulling and the cone portion 571 is high when the pulling speed is high, and is low when the pulling speed is slow. Conventionally, the height H is controlled based on the individual difference for each lifting device and the experience of the operator.
 本実施形態では、ルツボの内面変形量を予測することによって、引き上げ時の高さHをより一定に制御できるようにしている。すなわち、引き上げ装置においてルツボはカーボンサセプタ520内に収められ、多結晶シリコンの充填によって例えば500kgの重量となる。また、引き上げ中のルツボは約1600℃の高温となり、シリコン融液によって外側に押され、カーボンサセプタ520との隙間がなくなる。カーボンサセプタ520は変形しないため、結果としてルツボはカーボンサセプタ520からの反力で内側に変形しやすくなる。 In the present embodiment, the height H at the time of pulling up can be controlled more uniformly by predicting the amount of inner surface deformation of the crucible. That is, in the pulling device, the crucible is housed in the carbon susceptor 520, and becomes a weight of, for example, 500 kg due to the filling of polycrystalline silicon. In addition, the crucible being pulled becomes a high temperature of about 1600 ° C. and is pushed outward by the silicon melt, and the gap with the carbon susceptor 520 disappears. Since the carbon susceptor 520 is not deformed, as a result, the crucible is easily deformed inward by a reaction force from the carbon susceptor 520.
 本実施形態の一貫制御システムでは、今まで使用してきたルツボの製造履歴・使用前の内部残留応力の測定結果、使用後の形状変化などの情報を蓄積し、引き上げ装置、引き上げ条件との関係から、引き上げ時のルツボの挙動、変形を使用前に事前に計算しておく。これにより、予測される引き上げ中のルツボの変形から、ルツボの内容積の変動が分かり、引き上げ中の高さHを厳密に制御することができる。したがって、結晶欠陥が実質的にゼロとなるインゴットの製造、このインゴットからのシリコンウェーハの製造、およびこのシリコンウェーハを用いたエピタキシャルウェーハの製造へと一貫した制御を行うことが可能となる。 The integrated control system of the present embodiment accumulates information such as the manufacturing history of the crucible used so far, the measurement result of the internal residual stress before use, the shape change after use, etc. Calculate the behavior and deformation of the crucible when it is pulled up before use. Thereby, the deformation | transformation of the crucible internal volume can be known from the deformation | transformation of the crucible during raising to be estimated, and the height H during raising can be strictly controlled. Therefore, it is possible to perform consistent control to manufacture an ingot in which crystal defects are substantially zero, manufacture a silicon wafer from the ingot, and manufacture an epitaxial wafer using the silicon wafer.
[実施例]
(製造例)
 回転モールド法に基づいて、シリカガラスルツボを製造した。具体的には、32インチの回転しているモールドの内表面に平均15mmの厚さのシリカ粉を堆積させてシリカ粉層を形成し、3相交流電流3本電極によりアーク放電を行った。アーク溶融工程の通電時間は90分、出力2500kVA、通電開始から10分間はシリカ粉層の真空引きを行った。上記のような方法により、8個のシリカガラスルツボを製造した。
[Example]
(Production example)
A silica glass crucible was manufactured based on the rotational molding method. Specifically, silica powder having an average thickness of 15 mm was deposited on the inner surface of a 32-inch rotating mold to form a silica powder layer, and arc discharge was performed with three electrodes of three-phase alternating current. In the arc melting step, the energization time was 90 minutes, the output was 2500 kVA, and the silica powder layer was evacuated for 10 minutes from the start of energization. Eight silica glass crucibles were produced by the method as described above.
(検査例1)
 製造したシリカガラスルツボの内表面のうち、側壁部、コーナー部、底部、のそれぞれの所定箇所に、それぞれ3個のAEセンサ21を当てて、製造したシリカガラスルツボに水を充填してルツボ内面に向けて外力を与えた。その結果生じるAE波をそれぞれのAEセンサ21で測定した。
(Inspection example 1)
Of the inner surface of the manufactured silica glass crucible, three AE sensors 21 are applied to the respective predetermined portions of the side wall portion, corner portion, and bottom portion, and the manufactured silica glass crucible is filled with water to fill the inner surface of the crucible. The external force was given toward. The resulting AE wave was measured by each AE sensor 21.
 試験条件および計測条件を以下に示す。
 (A)計測条件
  (a-1)試験機クロスヘッド速度:3mm/秒
  (a-2)目標負荷荷重:500ニュートン(N)
 (B)計測条件
  (b-1)プリアンプゲイン:40デシベル(dB)
  (b-2)フィルタ:20~400kHzバンドパスフィルタ
  (b-3)荷重アナログ信号:500N/V
Test conditions and measurement conditions are shown below.
(A) Measurement conditions (a-1) Test machine crosshead speed: 3 mm / sec (a-2) Target load: 500 Newton (N)
(B) Measurement conditions (b-1) Preamplifier gain: 40 dB (dB)
(B-2) Filter: 20 to 400 kHz bandpass filter (b-3) Load analog signal: 500 N / V
 図18は、AE波発生数と最大エネルギー値との関係を示す図である。
 図18には、上記製造した8個のシリカガラスルツボについて上記試験条件および計測条件によりAE波を検出した結果が示される。横軸はAE波発生数(個/cm)であり、縦軸はAE波の最大エネルギー値(dBs)である。
FIG. 18 is a diagram showing the relationship between the number of AE wave generations and the maximum energy value.
FIG. 18 shows the result of detecting AE waves for the eight manufactured silica glass crucibles according to the test conditions and measurement conditions. The horizontal axis represents the number of AE waves generated (pieces / cm 2 ), and the vertical axis represents the maximum energy value (dBs) of the AE waves.
 また、AEセンサ21で測定した後、当該シリカガラスルツボを用いてシリコン単結晶の引き上げを行い、シリカガラスルツボの割れの有無を検査した。
 図18の丸印のプロットで示すシリカガラスルツボについては割れは発生していない。一方、図18の三角印のプロットで示すシリカガラスルツボについては割れが発生していた。
 このことから、AE波の発生個数の閾値を6個/cmに設定し、AE波の最大エネルギー値の閾値を10dBsに設定した。
Moreover, after measuring with the AE sensor 21, the silicon single crystal was pulled up using the silica glass crucible, and the presence or absence of cracking of the silica glass crucible was inspected.
The silica glass crucible shown by the circled plots in FIG. 18 is not cracked. On the other hand, cracks occurred in the silica glass crucible indicated by the triangular plot in FIG.
For this reason, the threshold for the number of AE waves generated was set to 6 / cm 2, and the threshold for the maximum energy value of the AE waves was set to 10 dBs.
 次に、上記8個のシリカガラスルツボと同様な製造方法によって別のシリカガラスルツボを5個製造した。これら5個のシリカガラスルツボについて、側壁部、コーナー部および底部でのAE波を測定し、上記AE波発生個数の閾値と、最大エネルギー値の閾値と、シリコン単結晶の引き上げ後のシリカガラスルツボの割れの有無の関係を調べた。以下、測定結果とシリカガラスルツボの割れとの関係は以下のようになった。 Next, five other silica glass crucibles were manufactured by the same manufacturing method as the above eight silica glass crucibles. About these five silica glass crucibles, AE waves at the side wall, corner and bottom are measured, and the silica glass crucible after pulling up the above-mentioned threshold of the number of AE waves generated, the threshold of the maximum energy value, and the silicon single crystal. The relationship between the presence or absence of cracks was investigated. Hereinafter, the relationship between the measurement results and the cracking of the silica glass crucible was as follows.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上からすると、AE波測定の結果から、側壁部、コーナー部および底部のいずれかでAE波発生個数および最大エネルギー値の閾値のいずれかを超えている場合、シリカガラスルツボが割れやすいことが分かる。また、AE波測定の結果から、側壁部、コーナー部および底部のいずれにおいてもAE波発生個数および最大エネルギー値の閾値を超えていない場合、シリカガラスルツボが割れないことが分かる。 From the above, it can be seen from the result of AE wave measurement that the silica glass crucible is easily broken when the number of AE waves generated and the threshold value of the maximum energy value are exceeded at any of the side wall, corner and bottom. . Further, from the result of AE wave measurement, it is understood that the silica glass crucible is not broken when the number of AE waves generated and the threshold value of the maximum energy value are not exceeded in any of the side wall part, the corner part and the bottom part.
 以上、上記実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることが出来る。 Although the present invention has been described with reference to the above embodiment, the present invention is not limited to the above-described embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 なお、本発明は、日本国にて2015年12月25日に特許出願された特願2015-254651の特許出願に基づく優先権主張の利益を享受するものであり、当該特許出願に記載された内容は、全て本明細書に含まれるものとする。 Note that the present invention enjoys the benefit of the priority claim based on the patent application of Japanese Patent Application No. 2015-254651 filed on December 25, 2015 in Japan, and is described in the patent application. The contents are all included in this specification.
1 シリカガラスルツボ
11 側壁部
12 底部
13 コーナー部
111 透明層
112 気泡含有層
2 ルツボ検査装置
21 AEセンサ
211 圧電素子
212 受信板
213 コネクタ
22 増幅器
23 AE波解析装置
231 AE波強さ測定部
232 AE波発生回数計測部
233 AE波発生位置算出部
234 ルツボ評価部
235 計測結果記憶部
3 クラック
600 インゴット
700 エピタキシャルウェーハ
 
DESCRIPTION OF SYMBOLS 1 Silica glass crucible 11 Side wall part 12 Bottom part 13 Corner part 111 Transparent layer 112 Bubble containing layer 2 Crucible inspection apparatus 21 AE sensor 211 Piezoelectric element 212 Receiver plate 213 Connector 22 Amplifier 23 AE wave analysis apparatus 231 AE wave intensity measurement part 232 AE Wave generation frequency measurement unit 233 AE wave generation position calculation unit 234 Crucible evaluation unit 235 Measurement result storage unit 3 Crack 600 Ingot 700 Epitaxial wafer

Claims (15)

  1.  円筒状の側壁部と、湾曲した底部と、前記側壁部と前記底部との間に設けられ前記底部の曲率よりも高い曲率を有するコーナー部と、を備えるシリカガラスルツボの割れやすさを検査するルツボ検査装置であって、
     シリカガラスルツボの表面に設置され、当該シリカガラスルツボに所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出するAE波検出手段を有する
     ルツボ検査装置。
    Inspecting the ease of cracking of a silica glass crucible comprising a cylindrical side wall, a curved bottom, and a corner provided between the side wall and the bottom and having a curvature higher than the curvature of the bottom. A crucible inspection device,
    A crucible inspection apparatus having an AE wave detecting means installed on the surface of a silica glass crucible and detecting an AE (Acoustic Emission) wave generated when a predetermined external force is applied to the silica glass crucible.
  2.  請求項1に記載のルツボ検査装置であって、
     前記AE波検出手段は、シリカガラスルツボの内表面に設置される
     ルツボ検査装置。
    The crucible inspection device according to claim 1,
    The AE wave detecting means is a crucible inspection device installed on the inner surface of a silica glass crucible.
  3.  請求項1又は2に記載のルツボ検査装置であって、
     少なくとも3つの前記AE波検出手段を有しており、
     複数の前記AE波検出手段からの検出結果に基づいてAE波発生位置を特定する位置特定手段を有する
     ルツボ検査装置。
    The crucible inspection device according to claim 1 or 2,
    Having at least three AE wave detection means;
    A crucible inspection apparatus comprising position specifying means for specifying an AE wave generation position based on detection results from a plurality of the AE wave detecting means.
  4.  請求項1乃至3のいずれかに記載のルツボ検査装置であって、
     前記AE波検出手段の検出結果に基づいてシリカガラスルツボの割れやすさを評価するルツボ評価手段を有する
     ルツボ検査装置。
    A crucible inspection apparatus according to any one of claims 1 to 3,
    A crucible inspection apparatus having a crucible evaluation means for evaluating the ease of cracking of a silica glass crucible based on the detection result of the AE wave detection means.
  5.  請求項4に記載のルツボ検査装置であって、
     前記ルツボ評価手段は、前記AE波検出手段が前記AE波を検出した回数に基づいてシリカガラスルツボの割れやすさを評価する
     ルツボ検査装置。
    The crucible inspection device according to claim 4,
    The crucible evaluation unit is a crucible inspection device that evaluates the fragility of the silica glass crucible based on the number of times the AE wave detection unit detects the AE wave.
  6.  請求項4又は5に記載のルツボ検査装置であって、
     前記ルツボ評価手段は、前記AE波検出手段が検出した前記AE波の強さに基づいてシリカガラスルツボの割れやすさを評価する
     ルツボ検査装置。
    The crucible inspection device according to claim 4 or 5,
    The crucible evaluation unit is a crucible inspection device that evaluates the fragility of the silica glass crucible based on the intensity of the AE wave detected by the AE wave detection unit.
  7.  請求項4乃至6のいずれかに記載のルツボ検査装置であって、
     前記ルツボ評価手段は、前記位置特定手段が特定した前記AE波発生位置に基づいてシリカガラスルツボの割れやすさを評価する
     ルツボ検査装置。
    The crucible inspection apparatus according to any one of claims 4 to 6,
    The crucible evaluation unit is a crucible inspection device that evaluates the fragility of the silica glass crucible based on the AE wave generation position specified by the position specifying unit.
  8.  前記ルツボ評価手段は、請求項5乃至7のいずれかに記載されている手法を少なくとも2つ以上組み合わせてシリカガラスルツボの割れやすさを評価する
     ルツボ検査装置。
    The crucible evaluation means is a crucible inspection apparatus that evaluates the ease of cracking of a silica glass crucible by combining at least two of the methods described in any one of claims 5 to 7.
  9.  請求項1乃至8のいずれかに記載のルツボ検査装置であって、
     前記AE波検出手段は、シリカガラスルツボに対して圧縮された空気をぶつけた際に生じるAE波を検出する
     ルツボ検査装置。
    A crucible inspection apparatus according to any one of claims 1 to 8,
    The said AE wave detection means is a crucible inspection apparatus which detects the AE wave which arises when compressed air is collided with a silica glass crucible.
  10.  請求項1乃至9のいずれかに記載のルツボ検査装置であって、
     前記AE波検出手段は、前記シリカガラスルツボに充填した水によるルツボ内面への水圧を利用して生じるAE波を検出する
     ルツボ検査装置。
    The crucible inspection apparatus according to any one of claims 1 to 9,
    The said AE wave detection means is a crucible inspection apparatus which detects the AE wave produced using the water pressure to the crucible inner surface by the water with which the said silica glass crucible was filled.
  11.  円筒状の側壁部と、湾曲した底部と、前記側壁部と前記底部との間に設けられ前記底部の曲率よりも高い曲率を有するコーナー部と、を備えるシリカガラスルツボの割れやすさを検査するルツボ検査方法であって、
     シリカガラスルツボの表面に設置され、当該シリカガラスルツボに所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出する
     ルツボ検査方法。
    Inspecting the ease of cracking of a silica glass crucible comprising a cylindrical side wall, a curved bottom, and a corner provided between the side wall and the bottom and having a curvature higher than the curvature of the bottom. A crucible inspection method,
    A crucible inspection method for detecting an AE (Acoustic Emission) wave that is set on the surface of a silica glass crucible and is generated when a predetermined external force is applied to the silica glass crucible.
  12.  円筒状の側壁部と、湾曲した底部と、前記側壁部と前記底部との間に設けられ前記底部の曲率よりも高い曲率を有するコーナー部と、を備え、外力を加えられた際にAE波を生じる欠陥の数が予め定められた閾値以下である
     シリカガラスルツボ。
    A cylindrical side wall portion, a curved bottom portion, and a corner portion provided between the side wall portion and the bottom portion and having a curvature higher than the curvature of the bottom portion, and when an external force is applied, an AE wave A silica glass crucible in which the number of defects that yields is less than or equal to a predetermined threshold.
  13.  円筒状の側壁部と、湾曲した底部と、前記側壁部と前記底部との間に設けられ前記底部の曲率よりも高い曲率を有するコーナー部と、を備えるシリカガラスルツボの製造方法であって、
     AE波を検査するAE波検査手段をシリカガラスルツボの表面に設置し、シリカガラスルツボに所定の外力を加え、シリカガラスルツボに前記所定の外力を加えた際に生じるAE(Acoustic Emission)波を検出する工程を有する
     シリカガラスルツボの製造方法。
    A method for producing a silica glass crucible comprising a cylindrical side wall part, a curved bottom part, and a corner part provided between the side wall part and the bottom part and having a curvature higher than the curvature of the bottom part,
    An AE wave inspection means for inspecting the AE wave is installed on the surface of the silica glass crucible, a predetermined external force is applied to the silica glass crucible, and an AE (Acoustic Emission) wave generated when the predetermined external force is applied to the silica glass crucible. The manufacturing method of the silica glass crucible which has the process to detect.
  14.  請求項13に記載のシリカガラスルツボの製造方法により製造されたシリカガラスルツボを用いてシリコン単結晶の引き上げを行う工程を有する
     シリコンインゴットの製造方法。
    A method for producing a silicon ingot, comprising the step of pulling up a silicon single crystal using the silica glass crucible produced by the method for producing a silica glass crucible according to claim 13.
  15.  請求項14記載の方法によって製造したシリコンインゴットを切り出して形成されたウェーハによる基板部を形成する工程と、
     前記基板部の上にシリコン単結晶のホモエピタキシャル層を形成する工程と、を備えたホモエピタキシャルウェーハの製造方法。
     
    Forming a substrate portion by a wafer formed by cutting out a silicon ingot produced by the method according to claim 14;
    Forming a silicon single crystal homoepitaxial layer on the substrate part.
     
PCT/JP2016/088285 2015-12-25 2016-12-22 Crucible testing device, crucible testing method, silica glass crucible, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer WO2017110967A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558244A JP6692526B2 (en) 2015-12-25 2016-12-22 Crucible inspection device, crucible inspection method, silica glass crucible manufacturing method, silicon ingot manufacturing method, homoepitaxial wafer manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015254651 2015-12-25
JP2015-254651 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110967A1 true WO2017110967A1 (en) 2017-06-29

Family

ID=59089512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088285 WO2017110967A1 (en) 2015-12-25 2016-12-22 Crucible testing device, crucible testing method, silica glass crucible, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer

Country Status (3)

Country Link
JP (1) JP6692526B2 (en)
TW (1) TW201730543A (en)
WO (1) WO2017110967A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129174A (en) * 2018-01-22 2019-08-01 株式会社ディスコ Wafer production method and wafer production device
CN114720318A (en) * 2022-04-24 2022-07-08 华中科技大学 Automatic thermal weightlessness detection device and system
US20220373514A1 (en) * 2021-05-13 2022-11-24 Idkorea Co., Ltd. Method for locating fault using acoustic emission signal
CN117233028A (en) * 2023-11-13 2023-12-15 陕西三义高科石墨新材料有限公司 Graphite crucible detection device
TWI839915B (en) 2022-09-27 2024-04-21 大陸商西安奕斯偉材料科技股份有限公司 Detection method and detection system for micro-damage on wafer surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633066U (en) * 1992-10-08 1994-04-28 三菱重工業株式会社 Crack detection device for solidified bodies
JP2000344536A (en) * 1999-06-01 2000-12-12 Toshiba Ceramics Co Ltd Quartz glass crucible and its manufacture
JP2008156224A (en) * 2006-12-21 2008-07-10 Schott Ag Quartz glass body, and method and casting mold for manufacturing quartz glass body
JP2013512186A (en) * 2009-11-30 2013-04-11 コーニング インコーポレイテッド Low thermal expansion doped fused silica crucible
JP2014091640A (en) * 2012-10-31 2014-05-19 Sumco Corp Evaluation method of silica glass crucible
WO2016047694A1 (en) * 2014-09-22 2016-03-31 株式会社Sumco Destructive examination method and quality assessment method for quartz glass crucible

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633066U (en) * 1992-10-08 1994-04-28 三菱重工業株式会社 Crack detection device for solidified bodies
JP2000344536A (en) * 1999-06-01 2000-12-12 Toshiba Ceramics Co Ltd Quartz glass crucible and its manufacture
JP2008156224A (en) * 2006-12-21 2008-07-10 Schott Ag Quartz glass body, and method and casting mold for manufacturing quartz glass body
JP2013512186A (en) * 2009-11-30 2013-04-11 コーニング インコーポレイテッド Low thermal expansion doped fused silica crucible
JP2014091640A (en) * 2012-10-31 2014-05-19 Sumco Corp Evaluation method of silica glass crucible
WO2016047694A1 (en) * 2014-09-22 2016-03-31 株式会社Sumco Destructive examination method and quality assessment method for quartz glass crucible

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KISHI: "Evaluation of Strength of Materials by Acoustic Emission (I)", JOURNAL OF THE SOCIETY OF MATERIALS SCIENCE, JAPAN, vol. 29, no. 323, 1980, pages 765 - 775, XP055600217 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129174A (en) * 2018-01-22 2019-08-01 株式会社ディスコ Wafer production method and wafer production device
JP7046617B2 (en) 2018-01-22 2022-04-04 株式会社ディスコ Wafer generation method and wafer generation device
US20220373514A1 (en) * 2021-05-13 2022-11-24 Idkorea Co., Ltd. Method for locating fault using acoustic emission signal
CN114720318A (en) * 2022-04-24 2022-07-08 华中科技大学 Automatic thermal weightlessness detection device and system
CN114720318B (en) * 2022-04-24 2024-04-12 华中科技大学 Automatic thermal weight loss detection device and system
TWI839915B (en) 2022-09-27 2024-04-21 大陸商西安奕斯偉材料科技股份有限公司 Detection method and detection system for micro-damage on wafer surface
CN117233028A (en) * 2023-11-13 2023-12-15 陕西三义高科石墨新材料有限公司 Graphite crucible detection device
CN117233028B (en) * 2023-11-13 2024-01-16 陕西三义高科石墨新材料有限公司 Graphite crucible detection device

Also Published As

Publication number Publication date
JPWO2017110967A1 (en) 2018-05-31
TW201730543A (en) 2017-09-01
JP6692526B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
WO2017110967A1 (en) Crucible testing device, crucible testing method, silica glass crucible, method for manufacturing silica glass crucible, method for manufacturing silicon ingot, and method for manufacturing homoepitaxial wafer
KR101272659B1 (en) Method of manufacturing silicon single crystal, silicon single crystal ingot, and silicon wafer
JP6598142B2 (en) Strain measuring device for silica glass crucible, method for producing silicon single crystal, and method for producing silicon single crystal
JP5204415B2 (en) Method for producing Si single crystal ingot by CZ method
US9006002B2 (en) Polycrystalline silicon rod and method for manufacturing polycrystalline silicon rod
US20090169460A1 (en) 2-dimensional line-defects controlled silicon ingot, wafer and epitaxial wafer, and manufacturing process and apparatus therefor
US10400329B2 (en) Process for the preparation of polycrystalline silicon
US9758901B2 (en) Vitreous silica crucible for pulling of silicon single crystal and method for manufacturing the same
US20090217866A1 (en) METHOD FOR PRODUCING Si SINGLE CRYSTAL INGOT BY CZ METHOD
WO2015186288A1 (en) Silicon wafer and method for manufacturing same
JP6734150B2 (en) Polycrystalline silicon pillar
CN110121576B (en) Method for determining defective region of silicon single crystal wafer
JP2004149324A (en) Polycrystalline silicon rod, production method therefor, and silicon core material used for producing the rod
JP6044530B2 (en) Method for growing silicon single crystal
JP6263999B2 (en) Method for growing silicon single crystal
JP6665870B2 (en) Crucible management system, crucible management method, silica glass crucible manufacturing method, silicon ingot manufacturing method, homoepitaxial wafer manufacturing method
JP5067301B2 (en) Method for producing silicon single crystal
JP2012013447A (en) Method for inspecting defect in semiconductor single crystal
JP6922982B2 (en) Quartz glass crucible
JPWO2013136922A1 (en) Polycrystalline silicon wafer
KR100783440B1 (en) Method of testing defect of low interstitial oxygen concentration silicon wafer
KR101942321B1 (en) A method of growing a crystal ingot
JP5889125B2 (en) Method for manufacturing SiC epitaxial substrate
Shiryaev et al. Adhesion of glassy arsenic sulfide to quartz glass
JP2013216512A (en) Method for producing silicon seed crystal and method for producing silicon single crystal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878854

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558244

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878854

Country of ref document: EP

Kind code of ref document: A1