WO2017110959A1 - ユーザ端末、無線基地局及び無線通信方法 - Google Patents

ユーザ端末、無線基地局及び無線通信方法 Download PDF

Info

Publication number
WO2017110959A1
WO2017110959A1 PCT/JP2016/088263 JP2016088263W WO2017110959A1 WO 2017110959 A1 WO2017110959 A1 WO 2017110959A1 JP 2016088263 W JP2016088263 W JP 2016088263W WO 2017110959 A1 WO2017110959 A1 WO 2017110959A1
Authority
WO
WIPO (PCT)
Prior art keywords
tti
user terminal
symbol
dmrs
uplink shared
Prior art date
Application number
PCT/JP2016/088263
Other languages
English (en)
French (fr)
Inventor
一樹 武田
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US16/065,197 priority Critical patent/US20190007248A1/en
Priority to CN201680076148.0A priority patent/CN108464045B/zh
Priority to JP2017558237A priority patent/JP6954841B2/ja
Priority to EP16878846.1A priority patent/EP3383111A4/en
Publication of WO2017110959A1 publication Critical patent/WO2017110959A1/ja
Priority to IL260219A priority patent/IL260219A/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management

Definitions

  • the present invention relates to a user terminal, a radio base station, and a radio communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A also referred to as LTE Advanced, LTE Rel. 10, 11 or 12
  • LTE also referred to as LTE Rel. 8 or 9
  • Successor systems for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), LTE Rel.13, Rel.14, etc.
  • FRA Full Radio Access
  • 5G 5th generation mobile communication system
  • LTE Rel.13, Rel.14, etc. are also being studied.
  • CA Carrier Aggregation
  • CC Component Carrier
  • UE User Equipment
  • DC Dual Connectivity
  • CG Cell Group
  • CC Cell Center
  • frequency division duplex in which downlink (DL) transmission and uplink (UL: Uplink) transmission are performed in different frequency bands, and DL transmission and UL transmission are in the same frequency band.
  • Time Division Duplex which is performed by switching over time, is introduced.
  • a transmission time interval (TTI) applied to DL transmission and UL transmission between the radio base station and the user terminal is set to 1 ms and controlled.
  • the TTI in the existing system (LTE Rel. 8-12) is also called a subframe, a subframe length, or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Rel In future wireless communication systems such as LTE and 5G after 13th, communication in high frequency bands such as tens of GHz, relative to IoT (Internet of Things), MTC: Machine Type Communication, M2M (Machine To Machine), etc. It is assumed that communication with a small amount of data is performed. In such a future wireless communication system, when a communication method (for example, a transmission time interval (TTI) of 1 ms) in the existing system (LTE Rel. 8-12) is applied, there is a possibility that sufficient communication service cannot be provided. .
  • TTI transmission time interval
  • a shortened TTI a TTI shorter than a 1 ms TTI (hereinafter referred to as a normal TTI).
  • PUSCH Physical Uplink Shared Channel
  • the present invention has been made in view of such points, and an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of performing communication using an uplink shared channel having a configuration suitable for shortened TTI.
  • an object of the present invention is to provide a user terminal, a radio base station, and a radio communication method capable of performing communication using an uplink shared channel having a configuration suitable for shortened TTI.
  • One aspect of the user terminal of the present invention is a transmitter that transmits an uplink shared channel in a second TTI configured with a smaller number of symbols than a first transmission time interval (TTI), and a control that controls transmission of the uplink shared channel.
  • the control unit sets the second TTI to include one of two symbols to which a demodulation reference signal for the uplink shared channel of the first TTI is transmitted, and the first TTI includes the first TTI.
  • a reference signal for demodulation of an uplink shared channel of 2TTI is transmitted.
  • communication can be performed using an uplink shared channel having a configuration suitable for shortened TTI.
  • 2A and 2B are diagrams illustrating a configuration example of a shortened TTI.
  • 3A to 3C are diagrams illustrating setting examples of the shortened TTI.
  • 4A to 4C are diagrams illustrating an example of a PUSCH configuration of normal TTI.
  • 5A and 5B are diagrams illustrating an example of a PUSCH configuration of a shortened TTI according to the first aspect.
  • 6A and 6B are diagrams illustrating multiplexing examples of DMRS according to the first aspect.
  • 7A and 7B are diagrams illustrating a first mapping example of DMRS according to the first aspect.
  • 8A to 8C are diagrams illustrating a second mapping example of DMRS according to the first aspect.
  • 9A and 9B are explanatory diagrams of an example of the Comb according to the first aspect.
  • 10A and 10B are diagrams illustrating another example of the PUSCH configuration of the shortened TTI according to the first aspect.
  • 11A and 11B are diagrams illustrating an example of a PUSCH configuration of a shortened TTI according to the second aspect. It is a figure which shows the 1st example of mapping of UCI which concerns on a 2nd aspect. It is a figure which shows the 2nd example of mapping of UCI which concerns on a 2nd aspect.
  • 14A and 14B are diagrams illustrating an example of a PUSCH configuration of a shortened TTI according to the third aspect.
  • FIG. 1 is a diagram illustrating an example of a TTI (normal TTI) in an existing system (LTE Rel. 8-12). As shown in FIG. 1, the normal TTI has a time length of 1 ms. A normal TTI is also called a subframe and is composed of two time slots. In the existing system, the normal TTI is a transmission time unit of one channel-coded data packet, and is a processing unit such as scheduling and link adaptation.
  • the normal TTI is configured to include 14 OFDM (Orthogonal Frequency Division Multiplexing) symbols (7 OFDM symbols per slot).
  • Each OFDM symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI is configured to include 14 SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols (7 SC-FDMA symbols per slot).
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Each SC-FDMA symbol has a time length (symbol length) of 66.7 ⁇ s, and a normal CP of 4.76 ⁇ s is added. Since the symbol length and the subcarrier interval are inverse to each other, when the symbol length is 66.7 ⁇ s, the subcarrier interval is 15 kHz.
  • the normal TTI may be configured to include 12 OFDM symbols (or 12SC-FDMA symbols).
  • each OFDM symbol (or each SC-FDMA symbol) has a time length of 66.7 ⁇ s, and an extended CP of 16.67 ⁇ s is added.
  • OFDM symbols may be used in the UL.
  • symbols when the OFDM symbol and the SC-FDMA symbol are not distinguished, they are referred to as “symbols”.
  • wireless interfaces suitable for high frequency bands such as tens of GHz, IoT (Internet of Things), MTC: Machine Type Communication, M2M (Machine To Machine), etc.
  • IoT Internet of Things
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • a time margin for processing for example, encoding, decoding, etc.
  • the number of user terminals that can be accommodated per unit time for example, 1 ms
  • FIG. 2 is a diagram illustrating a configuration example of the shortened TTI.
  • the shortened TTI has a time length (TTI length) shorter than 1 ms.
  • the shortened TTI may be, for example, one or a plurality of TTI lengths with a multiple of 1 ms, such as 0.5 ms, 0.2 ms, and 0.1 ms.
  • a normal TTI in the case of a normal CP, includes 14 symbols, so that it is one or a plurality of TTI lengths that are integer multiples of 1/14 ms, such as 7/14 ms, 4/14 ms, 3/14 ms, and 1/14 ms. May be.
  • a normal TTI since a normal TTI includes 12 symbols, it is one or a plurality of TTI lengths that are integral multiples of 1/12 ms such as 6/12 ms, 4/12 ms, 3/12 ms, and 1/12 ms. May be.
  • the normal CP or the extended CP can be configured by higher layer signaling such as broadcast information or RRC signaling. This makes it possible to introduce a shortened TTI while maintaining compatibility (synchronization) with a normal TTI of 1 ms.
  • FIG. 2A is a diagram illustrating a first configuration example of the shortened TTI.
  • the shortened TTI is composed of the same number of symbols as the normal TTI (here, 14 symbols), and each symbol has a symbol length of the normal TTI (for example, 66. A symbol length shorter than 7 ⁇ s).
  • the normal TTI physical layer signal configuration (RE arrangement or the like) can be used.
  • the same amount of information (bit amount) as that of normal TTI can be included in the shortened TTI.
  • the symbol time length is different from that of the normal TTI symbol, it is difficult to frequency multiplex the shortened TTI signal and the normal TTI signal shown in FIG. 2A in the same system band (or cell, CC). It becomes.
  • the subcarrier interval is usually wider than 15 kHz of TTI.
  • the subcarrier interval becomes wide, it is possible to effectively prevent channel-to-channel interference due to Doppler shift during movement of the user terminal and transmission quality deterioration due to phase noise of the user terminal receiver.
  • a high frequency band such as several tens of GHz, it is possible to effectively prevent deterioration in transmission quality by widening the subcarrier interval.
  • FIG. 2B is a diagram illustrating a second configuration example of the shortened TTI.
  • the shortened TTI is configured with a smaller number of symbols than the normal TTI, and each symbol has the same symbol length (for example, 66.7 ⁇ s) as the normal TTI.
  • the shortened TTI is half the time length (0.5 ms) of the normal TTI, the shortened TTI is composed of half the normal TTI symbols (here, 7 symbols).
  • the information amount (bit amount) included in the shortened TTI can be reduced as compared with the normal TTI.
  • the user terminal can perform reception processing (for example, demodulation, decoding, etc.) of information included in the shortened TTI in a time shorter than normal TTI, and the processing delay can be shortened.
  • the shortened TTI signal and the normal TTI signal shown in FIG. 2B can be frequency-multiplexed within the same system band (or cell, CC), and compatibility with the normal TTI can be maintained.
  • FIGS. 2A and 2B show an example of a shortened TTI that assumes a case of a normal CP (a case where a normal TTI is composed of 14 symbols), but the configuration of the shortened TTI is shown in FIGS. 2A and 2B. It is not limited to things.
  • the shortened TTI in FIG. 2A may be configured with 12 symbols
  • the shortened TTI in FIG. 2B may be configured with 6 symbols.
  • the shortened TTI only needs to have a shorter time length than the normal TTI, and the number of symbols, the symbol length, the CP length, and the like in the shortened TTI are arbitrary.
  • Future wireless communication systems may be configured so that both normal TTI and shortened TTI can be set so as to be compatible with existing systems.
  • the normal TTI and the shortened TTI may be mixed in time within the same CC (frequency domain).
  • the shortened TTI may be set in a specific subframe of the same CC (or a specific time unit such as a specific radio frame).
  • the shortened TTI is set in five consecutive subframes in the same CC, and the normal TTI is set in the other subframes. Note that the number and position of subframes in which the shortened TTI is set are not limited to those illustrated in FIG. 3A.
  • carrier aggregation (CA) or dual connectivity (DC) may be performed by integrating the normal TTI CC and the shortened TTI CC.
  • the shortened TTI may be set in a specific CC (more specifically, in the DL and / or UL of the specific CC).
  • a shortened TTI is set in the DL of a specific CC
  • a normal TTI is set in the DL and UL of another CC. Note that the number and position of CCs for which the shortened TTI is set are not limited to those shown in FIG. 3B.
  • the shortened TTI may be set to a specific CC (primary (P) cell or / and secondary (S) cell) of the same radio base station.
  • the shortened TTI may be set to a specific CC (P cell or / and S cell) in the master cell group (MCG) formed by the first radio base station, or the second radio It may be set to a specific CC (primary secondary (PS) cell or / and S cell) in the secondary cell group (SCG) formed by the base station.
  • the shortened TTI may be set to either DL or UL.
  • the normal TTI is set in the UL and the shortened TTI is set in the DL.
  • a specific DL or UL channel or signal may be assigned (set) to the shortened TTI.
  • the uplink control channel (PUCCH: Physical Uplink Control Channel) may be assigned to a normal TTI
  • the uplink shared channel (PUSCH: Physical Uplink Shared Channel) may be assigned to a shortened TTI.
  • the user terminal performs transmission of PUCCH by normal TTI and transmission of PUSCH by shortened TTI.
  • the user terminal sets (or / and detects) a shortened TTI based on an implicit or explicit notification from the radio base station.
  • an implicit notification example (2) broadcast information or RRC (Radio Resource Control) signaling, (3) MAC (Medium Access Control) signaling, (4) explicit by PHY (Physical) signaling
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • PHY Physical
  • the user terminal transmits an LBT (Listen in frequency band (for example, 5G band, unlicensed band, etc.), system bandwidth (for example, 100 MHz, etc.), LAA (License Assisted Access). Applicability of Before Talk, type of data to be transmitted (eg, control data, voice, etc.), logical channel, transport block, RLC (Radio Link Control) mode, C-RNTI (Cell-Radio Network Temporary Identifier), etc.
  • a shortened TTI may be set (for example, it is determined that a cell, a channel, a signal, or the like for communication is a shortened TTI).
  • control information (DCI) addressed to the terminal itself is detected in the PDCCH mapped to the first 1, 2, 3, or 4 symbols of the normal TTI and / or 1 ms of EPDCCH
  • 1 ms including the PDCCH / EPDCCH is normally used.
  • Control information (DCI) addressed to own terminal is detected by PDCCH / EPDCCH (eg, PDCCH mapped to other than the first 1 to 4 symbols of TTI and / or EPDCCH of less than 1 ms) that has a configuration other than that determined as TTI
  • a predetermined time interval of less than 1 ms including the PDCCH / EPDCCH may be determined as the shortened TTI.
  • the control information (DCI) addressed to the own terminal can be detected based on the CRC check result for the blind-decoded DCI.
  • the shortened TTI may be set based on setting information notified from the radio base station to the user terminal by broadcast information or RRC signaling.
  • the setting information indicates, for example, which CC or / and subframe is used as a shortened TTI, which channel or / and signal is transmitted / received by the shortened TTI, or the like.
  • the user terminal sets the shortened TTI to semi-static based on the setting information from the radio base station.
  • mode switching between the shortened TTI and the normal TTI may be performed by an RRC reconfiguration procedure, an intra-cell handover (HO) in the P cell, and a CC (S cell in the S cell. ) Removal / addition procedure.
  • the shortened TTI set based on the setting information notified by RRC signaling is activated or deactivated (activate or de-activate) by MAC signaling. May be.
  • the user terminal enables or disables the shortened TTI based on an L2 control signal (for example, a MAC control element) from the radio base station.
  • the user terminal is set in advance with a timer indicating the activation period of the shortened TTI by higher layer signaling such as RRC.
  • the UL / DL allocation of the shortened TTI for a predetermined period is performed. If not done, the shortened TTI may be invalidated.
  • Such a shortened TTI invalidation timer may count in units of normal TTI (1 ms), or may count in units of shortened TTI (for example, 0.25 ms). Note that, when switching between the shortened TTI mode and the normal TTI mode in the S cell, the S cell may be de-activated once, or it may be considered that a TA (Timing Advance) timer has expired. Thereby, the communication stop period at the time of mode switching can be provided.
  • a shortened TTI set based on setting information notified by RRC signaling may be scheduled by PHY signaling.
  • the user terminal receives and detects information included in the L1 control signal (for example, downlink control channel (PDCCH: Physical Downlink Control Channel or EPDCCH: Enhanced Physical Downlink Control Channel; hereinafter referred to as PDCCH / EPDCCH)). Based on, a shortened TTI is detected.
  • PDCCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • control information (DCI) for assigning transmission or reception in normal TTI and shortened TTI includes different information elements, and (4-1) the user terminal performs control including information elements for assigning transmission / reception in shortened TTI.
  • DCI control information
  • a predetermined time interval including the timing at which the PDCCH / EPDCCH is detected may be recognized as a shortened TTI.
  • the user terminal can blind-decode control information (DCI) that allocates transmission or reception of both normal TTI and shortened TTI in PDCCH / EPDCCH.
  • the user terminal detects downlink control information (DCI: Downlink) transmitted by the PDCCH / EPDCCH (when the control information (DCI) including an information element to which transmission / reception with the shortened TTI is allocated is detected)
  • DCI downlink control information
  • a predetermined time interval including the timing at which PDSCH or PUSCH scheduled by Control Information)) is transmitted / received may be recognized as a shortened TTI.
  • the PDSCH scheduled by the PDCCH / EPDCCH (DCI transmitted by the PDCCH / EPDCCH) when the control information (DCI) including the information element to which transmission / reception with the shortened TTI is allocated is detected.
  • HARQ-ACK Hybrid Automatic Repeat reQuest-Acknowledgement
  • ACK / NACK A / N, etc.
  • the user terminal may detect the shortened TTI based on the state of the user terminal (for example, Idle state or Connected state). For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • the state of the user terminal for example, Idle state or Connected state. For example, in the idle state, the user terminal may recognize all TTIs as normal TTIs and perform blind decoding only on the PDCCH included in the first 1 to 4 symbols of the 1 ms normal TTI. Further, when the user terminal is in the connected state, the user terminal may set (or / and detect) the shortened TTI based on at least one of the above notification examples (1) to (4).
  • PUSCH demodulation reference signals (DMRS: DeModulation Reference Signal, UL DMRS, etc.) that are normally transmitted in TTI are mapped to predetermined symbols in each slot constituting a subframe.
  • DMRS DeModulation Reference Signal
  • UL DMRS UL DMRS
  • the DMRS is mapped to the index 3 symbol (symbol at the center of each slot) as shown in FIGS. 4A-4C.
  • the DMRS may be mapped to the index 2 symbol of each slot.
  • a predetermined symbol to which DMRS is mapped is referred to as a DMRS symbol.
  • the DMRS sequence length is the same as the transmission bandwidth of the PUSCH demodulated using the DMRS.
  • at least 30 sequences are defined for each sequence length as DMRS sequences, and are grouped into 30 sequence groups.
  • DMRS sequences used in the same cell belong to the same sequence group, and which sequence group (DMRS sequence index) is used in the cell may be changed between slots (group hopping).
  • a sequence group (DMRS sequence index) may be determined based on a cell ID, may be notified to a user terminal by system information, or may be set in each PUSCH and PUCCH by user-specific RRC signaling. It may be determined based on the ID.
  • DMRS is mapped to the same symbol (for example, the symbol of index 3 shown in FIGS. 4A to 4C) for any user terminal in any cell.
  • interference is randomized in a plurality of DMRSs mapped to the same symbol by a cyclic shift (CS) and an orthogonal code (OCC).
  • CS cyclic shift
  • OCC orthogonal code
  • FIG. 4A shows a configuration example in the case of transmitting uplink data (also referred to as uplink user data or UL data) without transmitting uplink control information (UCI: Uplink Control Information) by PUSCH in normal TTI.
  • uplink data is mapped to each symbol other than two DMRS symbols.
  • FIG. 4B shows a configuration example in the case where both UCI and uplink data are transmitted by PUSCH in normal TTI.
  • the UCI may include at least one of a channel quality identifier (CQI: Channel Quality Indicator), a precoding matrix identifier (PMI: Precoding Matrix Indicator), a rank identifier (RI: Rank Indicator), and the above-described HARQ-ACK.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI rank identifier
  • HARQ-ACK rank identifier
  • the CQI and / or PMI (hereinafter referred to as CQI / PMI) is one PRB of a PUSCH transmission band (for example, one or more physical resource blocks (PRB)) in a normal TTI.
  • CQI / PMI is one PRB of a PUSCH transmission band (for example, one or more physical resource blocks (PRB)) in a normal TTI.
  • PRB physical resource blocks
  • HARQ-ACK is mapped in the time direction from the other PRB of the transmission band to symbols adjacent to two DMRS symbols.
  • RI is mapped in the time direction to symbols adjacent to HARQ-ACK.
  • Uplink data, CQI / PMI, and RI are encoded and rate matched, multiplexed, and punctured based on HARQ-ACK.
  • FIG. 4C shows a configuration example in the case where UCI is transmitted by PUSCH in normal TTI.
  • CQI / PMI, HARQ-ACK, and RI are mapped to symbols in normal TTI.
  • mapping image before applying DFT is exemplified.
  • the symbols that are actually transmitted may be arranged interleaved in the frequency direction.
  • the mapping images shown below are all before DFT application. Also, DFT is not applied to DMRS.
  • the PUSCH in normal TTI is transmitted using the configuration shown in FIGS. 4A-4C.
  • the PUSCH configuration in the normal TTI as described above cannot be directly applied to a shortened TTI (see FIG. 2B) configured with a smaller number of symbols than the normal TTI.
  • a shortened TTI see FIG. 2B
  • interference to user terminals (legacy UEs) that transmit PUSCH using normal TTI May increase.
  • a shortened TTI is set so as to include one of 2DMRS symbols in a normal TTI, and a PUSCH DMRS of the shortened TTI is transmitted / received in the one symbol.
  • the shortened TTI (second TTI) is configured with a smaller number of symbols than the normal TTI (first TTI), and each symbol has the same symbol length as the normal TTI (FIG. 2B). reference).
  • the number of shortened TTIs included in the normal TTI is, for example, 2, 4, but is not limited thereto.
  • the shortened TTI is also called partial TTI (short TTI), short TTI, sTTI, shortened subframe, short subframe, etc.
  • the normal TTI is usually TTI, long TTI, lTTI, normal TTI, It is also called a normal subframe, a long subframe, a normal subframe, or simply a subframe.
  • normal CP is applied to each symbol below is illustrated, it is not limited to this. The present embodiment can be applied as appropriate when an extended CP is applied to each symbol.
  • FIG. 5 is a diagram illustrating an example of a PUSCH configuration in the shortened TTI (sTTI) according to the first aspect.
  • FIG. 5A illustrates a case where two sTTIs are included per normal TTI (subframe)
  • FIG. 5B illustrates a case where four sTTIs are included per subframe.
  • a DMRS symbol is provided in the same symbol (center symbol of each slot) of normal TTIs.
  • each sTTI is composed of 7 symbols including DMRS symbols.
  • the user terminal maps the sTTI-1 DMRS to the DMRS symbol in the first slot (hereinafter referred to as the first DMRS symbol), and maps the sTTI-2 DMRS to the DMRS symbol in the second slot (hereinafter referred to as the second DMRS symbol). To do.
  • each sTTI is composed of 4 symbols including DMRS symbols shared among a plurality of sTTIs.
  • the first DMRS symbol is included in both sTTI-1 and STTI-2, and is shared by sTTI-1 and sTTI-2.
  • the second DMRS symbol is included in both sTTI-3 and STTI-4, and is shared by sTTI-3 and STTI-4.
  • different user terminals may transmit PUSCH, or the same user terminal may transmit PUSCH.
  • the configuration examples shown in FIGS. 5A and 5B may be combined.
  • one sTTI may be set in the first slot of the subframe as shown in FIG. 5A, and two sTTIs may be set in the second slot as shown in FIG. 5B. It may be set.
  • the user terminal when a single DMRS symbol is used in a single sTTI, the user terminal, like a normal TTI DMRS, includes a CS / OCC indication field (included in the DCI to which the PUSCH of the sTTI is allocated).
  • a DMRS can be generated using a cyclic shift index (CS index) and OCC indicated by the CS / OCC indicator field.
  • the DMRSs of the plurality of sTTIs are multiplexed into a single DMRS symbol.
  • the DMRSs of the plurality of sTTIs are multiplexed by a cyclic shift and / or a comb-shaped subcarrier arrangement (Comb). May be.
  • FIG. 6 is a diagram showing a multiplexing example of a plurality of sTTI DMRS sharing the same DMRS symbol. Note that FIG. 6 illustrates an example of multiplexing DMRS when sTTI-1 and sTTI-2 in FIG. 5B share the first DMRS symbol, but the second DMRS symbol is used for sTTI-3 and sTTI-4. The same applies to sharing.
  • FIG. 6A shows an example of multiplexing using a cyclic shift.
  • Each sTTI DMRS is generated using a different CS index and mapped to the same DMRS symbol.
  • the sTTI-1 DMRS is generated using the CS index #x
  • the sTTI-2 DMRS is generated using the CS index #y.
  • the CS index of each sTTI may be indicated by a predetermined field in the DCI (for example, a CS / OCC instruction field, a cyclic shift field, etc.).
  • FIG. 6B shows an example of multiplexing using Comb.
  • the subcarriers of Comb # 0 and # 1 are alternately arranged.
  • a different comb (subcarrier) is assigned to each sTTI DMRS.
  • Comb # 0 is assigned to the sTTI-1 DMRS
  • Comb # 1 is assigned to the sTTI-2 DMRS.
  • DMRS is generated using either CS index #x or #y
  • DMRS is mapped to either Comb # 0 or # 1.
  • DMRS of each sTTI may be multiplexed using both the cyclic shift shown in FIG. 6A and the Comb shown in FIG. 6B.
  • three or more DMRSs can be multiplexed by multiplexing a plurality of DMRSs by cyclic shift in the same comb.
  • FIG. 7 is a diagram illustrating a case where the same user terminal transmits PUSCH among a plurality of sTTIs sharing the same DMRS symbol.
  • the user terminal since a plurality of sTTI PUSCHs are allocated to the same user terminal, the user terminal may transmit only one DMRS of the plurality of sTTIs.
  • PUSCH can be assigned to different PRBs among a plurality of sTTIs sharing the same DMRS symbol.
  • the DMRS may be mapped to a PRB including at least a PRB (assigned PRB) assigned to the PUSCH by the plurality of sTTIs.
  • the user terminal determines a PRB (mapping PRB) to which DMRS is mapped (transmitted) based on the assigned PRBs in a plurality of sTTIs sharing the same DMRS symbol.
  • the user terminal maps and transmits DMRS of either sTTI-1 or sTTI-2 to consecutive PRBs including the assigned PRBs of sTTI-1 and sTTI-2 in the first DMRS symbol. To do. Further, the user terminal maps and transmits DMRS of either sTTI-3 or sTTI-4 to consecutive PRBs including the assigned PRBs of sTTI-3 and sTTI-4 in the second DMRS symbol.
  • the user terminal may map and transmit the DMRS of sTTI-1 to the allocated PRB of sTTI-1 in the first DMRS symbol.
  • the user terminal may map and transmit the DMRS of sTTI-3 to the allocated PRB of sTTI-3 in the second DMRS symbol.
  • the user terminal may map and transmit the DMRS of sTTI-2 to the allocated PRB of sTTI-2 in the first DMRS symbol.
  • the user terminal may map and transmit the DMRS of sTTI-4 to the allocated PRB of sTTI-4 in the second DMRS symbol.
  • the mapping PRB in the DMRS symbol is determined based on the allocation PRB of the plurality of sTTIs sharing the same DMRS symbol, so that the PUSCH can be flexibly allocated in the plurality of sTTIs, and Channel estimation in all PRBs assigned with multiple sTTIs can be performed. Also, DMRS can be mapped in consideration of the plurality of sTTIs in the DMRS symbol.
  • PUSCH is assigned to the same PRB among a plurality of sTTIs sharing the same DMRS symbol (PUSCH cannot be assigned to different PRBs).
  • the DMRS is mapped to the same PRB as the assigned PRB of any of the plurality of sTTIs.
  • the user terminal determines a mapping PRB in the DMRS symbol based on the assigned PRB in any of a plurality of sTTIs sharing the same DMRS symbol (for example, the first sTTI).
  • the user terminal maps and transmits only the sTTI-1 DMRS to the sTTI-1 assigned PRB.
  • a user terminal scheduled for PUSCH in sTTI-1 is not assigned a different PRB in sTTI-2.
  • the user terminal maps and transmits only the sTTI-3 DMRS to the sTTI-3 allocated PRB.
  • the user terminal scheduled for PUSCH in sTTI-4 is not assigned a different PRB in sTTI-4.
  • the mapping PRB and the DMRS sequence in the DMRS symbol are determined only by the first sTTI among the plurality of sTTIs sharing the same DMRS symbol, so that the time-sequential sTTI allocation information is decoded. Since channel estimation can be started without waiting, the effect of reducing processing delay can be improved.
  • FIG. 8 is a diagram illustrating a case where different user terminals transmit PUSCH among a plurality of sTTIs sharing the same DMRS symbol.
  • PUSCH is allocated to different user terminals among the plurality of sTTIs
  • different CS indexes and / or different Combs are applied to DMRSs of the plurality of sTTIs.
  • PUSCHs are assigned to different PRBs among a plurality of sTTIs sharing the same DMRS symbol.
  • the plurality of sTTI DMRSs may be multiplexed using Comb.
  • the DMRSs of the plurality of sTTIs are mapped to different Combs in each sTTI allocation PRB.
  • the user terminal maps the DMRS of sTTI-1 to Comb # 0 in the assigned PRB of sTTI-1.
  • the user terminal maps the DMRS of sTTI-2 to Comb # 1 in the assigned PRB of sTTI-2.
  • the DMRS is mapped only to the subcarrier of Comb # 0.
  • DMRS is mapped only to the subcarrier of Comb # 1.
  • DMRS is mapped to the subcarriers of Comb # 0 and # 1.
  • PUSCH is assigned to the same PRB among a plurality of sTTIs sharing the same DMRS symbol.
  • the plurality of sTTI DMRSs may be multiplexed using a cyclic shift.
  • the plurality of sTTI DMRSs are mapped to the same PRB using different CS indexes.
  • the user terminal determines a mapping PRB in the DMRS symbol based on the assigned PRB in any one of the plurality of sTTIs (for example, the first sTTI).
  • the user terminal generates a DMRS of sTTI-1 and a DMRS of sTTI-2 using different CS indexes, and maps them to the assigned PRB of sTTI-1 in the first DMRS symbol.
  • a user terminal scheduled for PUSCH in sTTI-1 is not assigned a different PRB in sTTI-2.
  • a DMRS of a plurality of sTTIs can be multiplexed by a cyclic shift, and a Comb is applied to the DMRS. It is possible to improve compatibility with existing systems that do not. Also, since the DMRS mapping PRB can be determined by only the first sTTI among the plurality of sTTIs, the effect of reducing the processing delay can be improved.
  • Comb when a plurality of sTTI DMRSs sharing the same DMRS symbol are multiplexed by Comb, Comb may be explicitly assigned to each sTTI DMRS, or implicitly assigned. May be.
  • the Comb index may be indicated by the value of a predetermined field (eg, CS / OCC indication field, cyclic shift field, etc.) included in DCI (eg, UL grant to which PUSCH is allocated). For example, if the CS / OCC indication field value is 0, it may indicate Comb index # 0, and if the CS / OCC indication field value is 1, it may indicate Comb index # 1.
  • a predetermined field eg, CS / OCC indication field, cyclic shift field, etc.
  • the user terminal may determine the Comb index based on the position, index, and the like of sTTI that transmits PUSCH (PUSCH is scheduled). In this case, which Comb is allocated to each sTTI sharing the same DMRS symbol may be determined in advance or may be notified by higher layer signaling. For example, in FIG. 8A, the user terminal determines Comb index # 0 for the DMRS of sTTI-1 (or sTTI-3), and the Comb index for the DMRS of sTTI-2 (or sTTI-4) # 1 may be determined.
  • FIG. 9 is a diagram illustrating the relationship between transmission power and PSD (Power Spectrum Density). As shown in FIG. 9A, when the transmission power of the DMRS and PUSCH to which the Comb is applied is the same, the PSD of the DMRS becomes the number of combs of the PSD of the PUSCH (here, 2) times.
  • the user terminal may multiply the transmission power of the DMRS to which the Comb is applied by 1 / Comb number (in this case, 1/2) times.
  • 1 / Comb number in this case, 1/2
  • the PSD of the DMRS becomes low, and the PSD of the DMRS and the PSD of the PUSCH become equivalent.
  • the DMRSs of the plurality of sTTIs are multiplexed by cyclic shift. Absent.
  • the plurality of sTTI DMRSs may be multiplexed by Comb.
  • the interference with the legacy UE that transmits the PUSCH with the normal TTI is not increased.
  • PUSCH can be transmitted by sTTI, and processing delay can be reduced.
  • an additional DMRS symbol (hereinafter referred to as an additional DMRS symbol) is provided in each sTTI in addition to the first and second DMRS symbols will be described with reference to FIG. Note that FIG. 10 will be described with a focus on differences from FIG.
  • FIG. 10 is a diagram illustrating another example of the PUSCH configuration in the sTTI according to the first aspect.
  • FIG. 10A illustrates a case where two sTTIs are included per subframe
  • FIG. 10B illustrates a case where four sTTIs are included per subframe.
  • an additional DMRS symbol may be provided for each sTTI in addition to the first and second DMRS symbols.
  • an additional DMRS symbol is provided in the first symbol (index 0) in sTTI-1, and an additional DMRS symbol is provided in the last symbol (index 6) in sTTI-2.
  • an additional DMRS symbol is provided in the first symbol (index 0)
  • an additional DMRS symbol is provided in the last symbol (index 6).
  • sTTI-3 and sTTI-4 Note that the position of the additional DMRS symbol is not limited to that shown in FIGS. 10A and 10B.
  • the DMRS of the first and second DMRS symbols can be generated using at least one of the CS index, OCC, and Comb as described with reference to FIGS. 5-8. Thereby, orthogonality and randomization with the legacy UE that transmits the PUSCH in the normal TTI can be ensured.
  • the DMRS of the additional DMRS symbol may be generated using a DMRS sequence and / or CS index of a group (DMRS sequence index) different from the first and second DMRS symbols.
  • the group (DMRS sequence index) for generating the DMRS sequence may be changed between the first and second DMRS symbols and the additional DMRS symbol.
  • the PUSCH channel estimation accuracy transmitted by sTTI may be set to the same level as PUSCH transmitted by normal TTI. it can. For this reason, the channel estimation accuracy of PUSCH transmitted by sTTI can be improved compared with the configuration shown in FIGS. 5A and 5B.
  • 10A and 10B are merely examples, and the number of DMRS symbols in the sTTI is not limited to this.
  • the number of DMRS symbols in the sTTI is not limited to this.
  • FIGS. 10A and 10B by providing two or more additional DMRS symbols, three or more DMRS symbols may be provided per sTTI.
  • the channel estimation accuracy can be further improved by increasing the number of DMRS symbols per sTTI.
  • the additional DMRS symbol may be set to the last symbol of the last sTTI (for example, sTTI-2 in FIG. 10A, sTTI-4 in FIG. 10B) in the subframe. Accordingly, when a legacy UE that transmits PUSCH using normal TTI uses a format (Shortened format) in which uplink data is not allocated to the final symbol, interference from the DMRS of sTTI (additional DMRS) in the final symbol can be avoided.
  • SRS sounding reference signal
  • channel estimation accuracy of PUSCH transmitted by sTTI can be improved while preventing interference with a legacy UE that transmits PUSCH by normal TTI.
  • the UCI and uplink data mapping method in the second mode can be applied as appropriate to the case where an additional DMRS symbol is provided in each sTTI in addition to the first and second DMRS symbols (FIG. 10).
  • FIG. 11 is a diagram illustrating an example of a PUSCH configuration in sTTI according to the second aspect.
  • FIG. 11A illustrates a case where two sTTIs are included per subframe
  • FIG. 11B illustrates a case where four sTTIs are included per subframe. Note that in FIGS. 11A and 11B, a plurality of shortened TTIs have different UCIs regardless of whether a PUSCH is assigned to the same user terminal in a plurality of sTTIs or a PUSCH is assigned to different user terminals. And uplink data are mapped.
  • the UCI may be mapped using the same rule as the UCI mapped in the normal TTI.
  • 12 and 13 are diagrams showing mapping rules in the sTTI configuration shown in FIGS. 11A and 11B, respectively. 12 and 13, the numbers assigned to resources indicate the mapping order of CQI / PMI, RI, and HARQ-ACK.
  • the CQI / PMI is mapped in the time direction to a symbol excluding the DMRS symbol from one PRB of the PUSCH transmission band.
  • HARQ-ACK is mapped in the time direction from the other PRB of the transmission band to two symbols adjacent to the DMRS symbol.
  • RI is mapped in the time direction to two symbols outside the two symbols to which HARQ-ACK is mapped.
  • the uplink data is encoded and rate-matched, multiplexed with CQI / PMI and RI, and punctured based on HARQ-ACK.
  • CQI / PMI and RI CQI / PMI and RI
  • punctured based on HARQ-ACK.
  • UCI and uplink data of each sTTI are mapped and mapped only to symbols excluding DMRS symbols in each sTTI.
  • the number of REs is usually reduced compared to TTI.
  • the UCI and uplink data of each sTTI are mapped to only symbols excluding DMRS symbols in each sTTI by applying the normal TTI mapping rule, and the number of REs to be mapped Usually decreases compared to TTI.
  • HARQ-ACK and RI are each mapped to a single symbol in each sTTI. Therefore, the mapping in the time direction of HARQ-ACK and RI in FIG. 13 is synonymous with the mapping in the frequency direction.
  • FIG. 14 is a diagram illustrating an example of a PUSCH configuration in the shortened TTI according to the third aspect.
  • the PUSCH configuration shown in FIGS. 14A and 14B is the same as the PUSCH configuration described in the second mode (FIGS. 11A and 11B) except that there is no uplink data mapping. Since the mapping method of UCI of each sTTI in FIGS. 14A and 14B is the same as that in the second mode, description thereof is omitted.
  • FIG. 14 demonstrates the case where the 1st and 2nd DMRS symbol similar to normal TTI is maintained (FIG. 5), it is not restricted to this.
  • the UCI mapping technique in the third aspect is also applicable to cases where additional DMRS symbols are provided in each sTTI in addition to the first and second DMRS symbols (FIG. 10).
  • the predetermined threshold may be notified to the user terminal by higher layer signaling.
  • the CQI / PMI payload exceeds a predetermined threshold, or the ratio of the CQI / PMI payload to the number of PUSCH REs (that is, the coding rate) has a predetermined threshold. If so, the lower priority CQI / PMI may be dropped (transmission may be aborted). Note that the priority of CQI / PMI may be the same as the priority in the existing system.
  • a plurality of The RIs of the cells may be combined. It should be noted that which cell's RI is to be combined may be notified to the user terminal by higher layer signaling.
  • a method for combining RIs of a plurality of cells (1) using an average of RIs of a plurality of cells, (2) using a maximum value of RIs of a plurality of cells, and (3) a minimum of RIs of a plurality of cells. It is conceivable to use a value.
  • the data included in the PUSCH transmitted by sTTI, CQI / PMI, RI, and HARQ-ACK may be regarded as a single codeword, and may be jointly encoded. As a result, it is possible to omit CRC bits individually added to data and UCI, thereby reducing overhead. If the data (transport block) is large and is divided into a plurality of code blocks and encoded respectively, UCI may be jointly encoded to the code block of the first, last, or specific order. Good. At this time, the concatenated bit string of data and UCI may be configured in the order of data, HARQ-ACK, RI, and CQI / PMI.
  • wireless communication system Wireless communication system
  • the radio communication method according to each of the above aspects is applied.
  • wireless communication method which concerns on each said aspect may be applied independently, respectively, and may be applied in combination.
  • FIG. 15 is a diagram illustrating an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a system bandwidth (for example, 20 MHz) of the LTE system as one unit are applied.
  • the wireless communication system 1 may be referred to as SUPER 3G, LTE-A (LTE-Advanced), IMT-Advanced, 4G, 5G, FRA (Future Radio Access), or the like.
  • a radio communication system 1 shown in FIG. 15 includes a radio base station 11 that forms a macro cell C1, and radio base stations 12a to 12c that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. . Moreover, the user terminal 20 is arrange
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 that use different frequencies simultaneously by CA or DC. In addition, the user terminal 20 can apply CA or DC using a plurality of cells (CC) (for example, six or more CCs).
  • CC cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz, etc.
  • the same carrier may be used.
  • the configuration of the frequency band used by each radio base station is not limited to this.
  • a wired connection for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface, etc.
  • a wireless connection It can be set as the structure to do.
  • the radio base station 11 and each radio base station 12 are connected to the higher station apparatus 30 and connected to the core network 40 via the higher station apparatus 30.
  • the upper station device 30 includes, for example, an access gateway device, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • Each radio base station 12 may be connected to the higher station apparatus 30 via the radio base station 11.
  • the radio base station 11 is a radio base station having a relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the radio base stations 11 and 12 are not distinguished, they are collectively referred to as a radio base station 10.
  • Each user terminal 20 is a terminal compatible with various communication methods such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • OFDMA is a multi-carrier transmission scheme that performs communication by dividing a frequency band into a plurality of narrow frequency bands (subcarriers) and mapping data to each subcarrier.
  • SC-FDMA is a single-carrier transmission scheme that reduces interference between terminals by dividing the system bandwidth into bands consisting of one or continuous resource blocks for each terminal and using a plurality of terminals with mutually different bands. is there.
  • the uplink and downlink radio access schemes are not limited to these combinations, and OFDMA may be used in the uplink.
  • downlink channels include a downlink shared channel (PDSCH) shared by each user terminal 20, a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel, and the like. Used. User data, higher layer control information, SIB (System Information Block), etc. are transmitted by PDSCH. Also, MIB (Master Information Block) is transmitted by PBCH.
  • PDSCH downlink shared channel
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • MIB Master Information Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel), EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), PHICH (Physical Hybrid-ARQ Indicator Channel), etc. Including. Downlink control information (DCI: Downlink Control Information) including scheduling information of PDSCH and PUSCH is transmitted by PDCCH. The number of OFDM symbols used for PDCCH is transmitted by PCFICH. The HAICH transmission confirmation information (ACK / NACK) for PUSCH is transmitted by PHICH.
  • EPDCCH is frequency-division multiplexed with PDSCH (downlink shared data channel), and is used for transmission of DCI and the like in the same manner as PDCCH.
  • an uplink shared channel shared by each user terminal 20
  • an uplink control channel PUCCH: Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • User data and higher layer control information are transmitted by the PUSCH.
  • Uplink control information including at least one of delivery confirmation information (ACK / NACK) and radio quality information (CQI) is transmitted by PUSCH or PUCCH.
  • a random access preamble for establishing connection with a cell is transmitted by the PRACH.
  • FIG. 16 is a diagram illustrating an example of the overall configuration of the radio base station according to the present embodiment.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106. Note that each of the transmission / reception antenna 101, the amplifier unit 102, and the transmission / reception unit 103 may include one or more.
  • User data transmitted from the radio base station 10 to the user terminal 20 via the downlink is input from the higher station apparatus 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access
  • Retransmission control for example, HARQ (Hybrid Automatic Repeat reQuest) transmission processing
  • HARQ Hybrid Automatic Repeat reQuest
  • the downlink control signal is also subjected to transmission processing such as channel coding and inverse fast Fourier transform, and is transferred to the transmission / reception unit 103.
  • the transmission / reception unit 103 converts the baseband signal output by precoding for each antenna from the baseband signal processing unit 104 to a radio frequency band and transmits the converted signal.
  • the radio frequency signal frequency-converted by the transmission / reception unit 103 is amplified by the amplifier unit 102 and transmitted from the transmission / reception antenna 101.
  • the transmitter / receiver, the transmission / reception circuit, or the transmission / reception device can be configured based on common recognition in the technical field according to the present invention.
  • the transmission / reception part 103 may be comprised as an integral transmission / reception part, and may be comprised from a transmission part and a receiving part.
  • the radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmission / reception unit 103 receives the uplink signal amplified by the amplifier unit 102.
  • the transmission / reception unit 103 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 104.
  • the transmission / reception unit 103 receives the PUSCH in a shortened TTI (second TTI) configured with a smaller number of symbols than the normal TTI (first TTI).
  • the PUSCH may include uplink data (first mode), both uplink data and UCI (second mode), or UCI (first mode). 3 embodiment).
  • the transmission / reception section 103 uses the one symbol for the PUSCH of the shortened TTI.
  • Receive DMRS when an additional DMRS symbol is set in the shortened TTI, the transmission / reception unit 103 may receive the DMRS of the shortened TTI using the additional DMRS symbol.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT) processing, inverse discrete Fourier transform (IDFT: Inverse Discrete Fourier Transform) processing, and error correction on user data included in the input upstream signal.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • Decoding, MAC retransmission control reception processing, RLC layer and PDCP layer reception processing are performed and transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, state management of the radio base station 10, and radio resource management.
  • the transmission path interface 106 transmits and receives signals to and from the higher station apparatus 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives (backhaul signaling) signals to and from the adjacent radio base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), X2 interface). Also good.
  • CPRI Common Public Radio Interface
  • X2 interface also good.
  • FIG. 17 is a diagram illustrating an example of a functional configuration of the radio base station according to the present embodiment. Note that FIG. 17 mainly shows functional blocks of characteristic portions in the present embodiment, and the radio base station 10 also has other functional blocks necessary for radio communication. As illustrated in FIG. 17, the baseband signal processing unit 104 includes a control unit 301, a transmission signal generation unit 302, a mapping unit 303, and a reception signal processing unit 304.
  • the control unit 301 controls the entire radio base station 10.
  • the control unit 301 controls, for example, downlink signal generation by the transmission signal generation unit 302, signal mapping by the mapping unit 303, and signal reception processing by the reception signal processing unit 304.
  • control unit 301 performs downlink (DL) signal transmission control (for example, modulation scheme, coding rate, resource allocation (scheduling)) based on channel state information (CSI) reported from the user terminal 20. Control).
  • DL downlink
  • CSI channel state information
  • control unit 301 controls a transmission time interval (TTI) used for receiving a downlink signal and / or transmitting an uplink signal.
  • TTI transmission time interval
  • the control unit 301 sets a normal TTI of 1 ms or / and a shortened TTI shorter than the normal TTI.
  • the configuration example and setting example of the shortened TTI are as described with reference to FIGS.
  • the control unit 301 provides the user terminal 20 with an explicit notification by at least one of (1) implicit notification, or (2) RRC signaling, (3) MAC signaling, and (4) PHY signaling.
  • the setting of the shortened TTI may be instructed.
  • control unit 301 sets each shortened TTI (second TTI) so as to include one of two symbols (DMRS symbols) in which the DMRS of the PUSCH of the normal TTI (first TTI) is transmitted (FIG. 5). 10, 11 and 14).
  • the control unit 301 controls the received signal processing unit 304 to demodulate the PUSCH in the shortened TTI based on the DMRS received by the 1 DMRS symbol (or the 1 DMRS symbol and the additional DMRS symbol).
  • the control unit 301 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 302 generates a downlink signal (including a downlink data signal and a downlink control signal) based on an instruction from the control unit 301 and outputs it to the mapping unit 303. Specifically, the transmission signal generation unit 302 generates a downlink data signal (PDSCH) including notification information (control information) by the above-described higher layer signaling and user data, and outputs it to the mapping unit 303. Also, the transmission signal generation unit 302 generates a downlink control signal (PDCCH / EPDCCH) including the above-described DCI, and outputs it to the mapping unit 303. Also, the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • PDSCH downlink data signal
  • PDCCH / EPDCCH downlink control signal
  • the transmission signal generation unit 302 generates downlink reference signals such as CRS and CSI-RS, and outputs them to the mapping unit 303.
  • the transmission signal generation unit 302 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 303 maps the downlink signal generated by the transmission signal generation unit 302 to a predetermined radio resource based on an instruction from the control unit 301, and outputs it to the transmission / reception unit 103.
  • the mapping unit 303 can be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, decoding, etc.) on the uplink signal transmitted from the user terminal 20. Specifically, received signal processing section 304 demodulates the PUSCH in the shortened TTI using the DMRS received in the 1DMRS symbol (or the 1DMRS symbol and the additional DMRS symbol) included in the shortened TTI. The processing result is output to the control unit 301.
  • reception processing for example, demapping, demodulation, decoding, etc.
  • the reception signal processing unit 304 may be configured by a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device, which are described based on common recognition in the technical field according to the present invention. it can.
  • FIG. 18 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the radio frequency signals received by the plurality of transmission / reception antennas 201 are each amplified by the amplifier unit 202.
  • Each transmitting / receiving unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmission / reception unit 203 converts the frequency of the received signal into a baseband signal and outputs it to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, retransmission control reception processing, and the like on the input baseband signal.
  • Downlink data (user data) is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer.
  • broadcast information in the downlink data is also transferred to the application unit 205.
  • the uplink data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs retransmission control transmission processing (for example, HARQ transmission processing), channel coding, rate matching, puncturing, discrete Fourier transform (DFT) processing, IFFT processing, and the like. Are transferred to each transmitting / receiving unit 203. Also for UCI, channel coding, rate matching, puncturing, DFT processing, IFFT processing, and the like are performed and transferred to each transmitting / receiving section 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits it.
  • the radio frequency signal frequency-converted by the transmission / reception unit 203 is amplified by the amplifier unit 202 and transmitted from the transmission / reception antenna 201.
  • the transmission / reception unit 203 transmits the PUSCH in a shortened TTI (second TTI) configured with a smaller number of symbols than the normal TTI (first TTI).
  • the PUSCH may include uplink data (first mode), both uplink data and UCI (second mode), or UCI (first mode). 3 embodiment).
  • the transmission / reception section 203 uses the 1 DMRS symbol for the PUSCH of the shortened TTI. Send DMRS. Further, when an additional DMRS symbol is set in the shortened TTI, the transmission / reception unit 203 may transmit the DMRS of the shortened TTI using the additional DMRS symbol.
  • the transmission / reception unit 203 can be a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present invention. Further, the transmission / reception unit 203 may be configured as an integral transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • FIG. 19 is a diagram illustrating an example of a functional configuration of the user terminal according to the present embodiment. Note that FIG. 19 mainly shows functional blocks of characteristic portions in the present embodiment, and the user terminal 20 also has other functional blocks necessary for wireless communication. As shown in FIG. 19, the baseband signal processing unit 204 included in the user terminal 20 includes a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. I have.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 controls, for example, signal generation by the transmission signal generation unit 402, signal mapping by the mapping unit 403, and signal reception processing by the reception signal processing unit 404.
  • control unit 401 controls a transmission time interval (TTI) used for receiving a downlink (DL) signal and / or transmitting an uplink (UL) signal.
  • TTI transmission time interval
  • the control unit 301 sets a normal TTI of 1 ms or / and a shortened TTI shorter than the normal TTI.
  • the configuration example and setting example of the shortened TTI are as described with reference to FIGS.
  • the control unit 401 is based on an explicit notification from the radio base station 10 (1) an implicit notification or at least one of (2) RRC signaling, (3) MAC signaling, and (4) PHY signaling.
  • the shortened TTI may be set (detected).
  • control unit 401 sets the shortened TTI (second TTI) so as to include one of the 2DMRS symbols in which the PUSCH DMRS in the normal TTI (first TTI) is transmitted (FIGS. 5, 10, 11 and 11). 14).
  • control unit 401 controls the transmission signal generation unit 402 so as to transmit the DMRS in the shortened TTI using the 1DMRS symbol (or the 1DMRS symbol and the additional DMRS symbol).
  • the control unit 401 when a plurality of shortened TTIs include the 1DMRS symbol, the control unit 401 multiplexes and transmits the plurality of shortened TTI demodulation reference signals in the 1DMRS symbol. That is, the control unit 401 multiplexes a DMRS of a shortened TTI and a DMRS of another shortened TTI among the plurality of shortened TTIs, and transmits the multiplexed DMRS in the 1 DMRS symbol. For the multiplexing, cyclic shift and / or Comb can be used.
  • the control unit 401 uses each of the plurality of shortened TTIs.
  • a PRB that transmits DMRS is determined based on the assigned PRB.
  • the control unit 401 may control the transmission signal generation unit 402 so as to transmit DMRS of any one of the plurality of shortened TTIs (for example, the earliest shortened TTI) using the determined PRB.
  • the control unit 401 has the plurality of shortened TTIs.
  • the PRB assigned by any one is determined as the PRB that transmits the DMRS.
  • the control unit 401 may control the transmission signal generation unit 402 so as to transmit DMRS of any one of the plurality of shortened TTIs (for example, the earliest shortened TTI) using the determined PRB.
  • the control unit 401 uses the Comb to The DMRS of the shortened TTI may be multiplexed on the 1 DMRS symbol. Specifically, the control unit 401 controls the transmission signal generation unit 402 to transmit the DMRS of the shortened TTI using a Comb index different from that of the other user terminals 20.
  • the Comb index may be indicated in a predetermined field of DCI, or may be determined in advance according to sTTI.
  • the control unit 401 uses the cyclic shift to The DMRS of the shortened TTI may be multiplexed on the 1 DMRS symbol. Specifically, the control unit 401 controls the transmission signal generation unit 402 to transmit the DMRS of the shortened TTI using a CS index different from that of the other user terminals 20. It should be noted that which CS index is used may be indicated by a predetermined field (for example, CS / OCC field) of DCI.
  • the control unit 401 can be configured by a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present invention.
  • the transmission signal generation unit 402 Based on an instruction from the control unit 401, the transmission signal generation unit 402 generates an uplink signal (including an uplink data signal and an uplink control signal) (for example, encoding, rate matching, puncturing, modulation, etc.) and performs mapping. Output to the unit 403. For example, the transmission signal generation unit 402 generates PUSCH including uplink data, PUSCH including uplink data and UCI (at least one of HARQ-ACK, CQI / PMI, and RI), and PUSCH including UCI.
  • an uplink signal including an uplink data signal and an uplink control signal
  • the transmission signal generation unit 402 generates PUSCH including uplink data
  • PUSCH including uplink data and UCI at least one of HARQ-ACK, CQI / PMI, and RI
  • PUSCH including UCI at least one of HARQ-ACK, CQI / PMI, and RI
  • the transmission signal generation unit 402 uses any one of the shortened TTIs (for example, the earliest shortened TTI).
  • a DMRS is generated using a CS index and / or OCC indicated by DCI.
  • the transmission signal generation unit 402 transmits the CS index indicated by DCI with the shortened TTIs transmitted by the user terminals 20 and / or Alternatively, DMRS is generated using OCC.
  • the transmission signal generation unit 402 may generate the DMRS transmitted by the additional DMRS symbol using a DMRS sequence of a group (DMRS sequence index) different from the DMRS transmitted by the 1 DMRS symbol.
  • the transmission signal generation unit 402 can be a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present invention.
  • the mapping unit 403 maps the UL signal (uplink control signal and / or uplink data signal) generated by the transmission signal generation unit 402 to a radio resource and outputs the radio signal to the transmission / reception unit 203. To do.
  • the mapping unit 403 maps the DMRS generated by the transmission signal generation unit 402 to the PRB determined by the control unit 401 in the 1 DMRS symbol (or including the additional DMRS symbol).
  • the mapping unit 403 may be a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present invention.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, decoding, etc.) on downlink signals (including downlink control signals and downlink data signals).
  • the reception signal processing unit 404 outputs information received from the radio base station 10 to the control unit 401.
  • the received signal processing unit 404 outputs, for example, broadcast information, system information, control information by higher layer signaling such as RRC signaling, DCI, and the like to the control unit 401.
  • the received signal processing unit 404 can be configured by a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present invention. Further, the reception signal processing unit 404 can constitute a reception unit according to the present invention.
  • the measurement unit 405 measures the channel state based on a reference signal (for example, CSI-RS) from the radio base station 10 and outputs the measurement result to the control unit 401. Note that the channel state measurement may be performed for each CC.
  • a reference signal for example, CSI-RS
  • the measuring unit 405 can be composed of a signal processor, a signal processing circuit or a signal processing device, and a measuring device, a measurement circuit or a measuring device which are explained based on common recognition in the technical field according to the present invention.
  • each functional block (components) are realized by any combination of hardware and / or software.
  • the means for realizing each functional block is not particularly limited. That is, each functional block may be realized by one physically coupled device, or may be realized by two or more physically separated devices connected by wire or wirelessly and by a plurality of these devices. Good.
  • the radio base station, user terminal, and the like in this embodiment may function as a computer that performs processing of the radio communication method of the present invention.
  • FIG. 20 is a diagram illustrating an example of the hardware configuration of the radio base station and the user terminal according to the present embodiment.
  • the wireless base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configurations of the radio base station 10 and the user terminal 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the radio base station 10 and the user terminal 20 is obtained by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, so that the processor 1001 performs computation, and communication by the communication device 1004, This is realized by controlling reading and / or writing of data in the memory 1002 and the storage 1003.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the baseband signal processing unit 104 (204) and the call processing unit 105 described above may be realized by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, and data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • programs program codes
  • software modules software modules
  • data data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processes according to these.
  • the program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the control unit 401 of the user terminal 20 may be realized by a control program stored in the memory 1002 and operated by the processor 1001, and may be realized similarly for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, and may be configured by at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), RAM (Random Access Memory), and the like, for example.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to implement the wireless communication method according to the present embodiment.
  • the storage 1003 is a computer-readable recording medium, and may be composed of at least one of an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk, and a flash memory, for example. .
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, or the like.
  • a network device for example, the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like described above may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, etc.) that accepts external input.
  • the output device 1006 is an output device (for example, a display, a speaker, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured with a single bus or may be configured with different buses between apparatuses.
  • the radio base station 10 and the user terminal 20 may include hardware such as a microprocessor, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). A part or all of each functional block may be realized by the hardware.
  • the processor 1001 may be implemented by at least one of these hardware.
  • the channel and / or symbol may be a signal (signaling).
  • the signal may be a message.
  • a component carrier CC may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • the radio frame may be configured with one or a plurality of periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may be referred to as a subframe.
  • a subframe may be composed of one or more slots in the time domain.
  • a slot may be composed of one or more symbols (OFDM symbols, SC-FDMA symbols, etc.) in the time domain.
  • the radio frame, subframe, slot, and symbol all represent a time unit when transmitting a signal.
  • Different names may be used for the radio frame, the subframe, the slot, and the symbol.
  • one subframe may be referred to as a transmission time interval (TTI)
  • a plurality of consecutive subframes may be referred to as a TTI
  • one slot may be referred to as a TTI.
  • the subframe or TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1-13 symbols), or a period longer than 1 ms. Also good.
  • TTI means, for example, a minimum time unit for scheduling in wireless communication.
  • a radio base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used in each user terminal) to each user terminal in units of TTI.
  • the definition of TTI is not limited to this.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain. Further, the RB may include one or a plurality of symbols in the time domain, and may have a length of one slot, one subframe, or 1 TTI. One TTI and one subframe may each be composed of one or a plurality of resource blocks.
  • the RB may be called a physical resource block (PRB: Physical RB), a PRB pair, an RB pair, or the like.
  • the resource block may be composed of one or a plurality of resource elements (RE: Resource Element).
  • RE Resource Element
  • 1RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • the structure of the above-described radio frame, subframe, slot, symbol, and the like is merely an example.
  • the configuration such as the cyclic prefix (CP) length can be variously changed.
  • information, parameters, and the like described in this specification may be represented by absolute values, may be represented by relative values from a predetermined value, or may be represented by other corresponding information.
  • the radio resource may be indicated by a predetermined index.
  • software, instructions, information, etc. may be transmitted / received via a transmission medium.
  • software may use websites, servers, or other devices using wired technology (coaxial cable, fiber optic cable, twisted pair and digital subscriber line (DSL), etc.) and / or wireless technology (infrared, microwave, etc.) When transmitted from a remote source, these wired and / or wireless technologies are included within the definition of transmission media.
  • the radio base station in this specification may be read by the user terminal.
  • each aspect / embodiment of the present invention may be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user terminals (D2D: Device-to-Device).
  • the user terminal 20 may have a function that the wireless base station 10 has.
  • words such as “up” and “down” may be read as “side”.
  • the uplink channel may be read as a side channel.
  • a user terminal in this specification may be read by a radio base station.
  • the wireless base station 10 may have a function that the user terminal 20 has.
  • notification of predetermined information is not limited to explicitly performed, but is performed implicitly (for example, by not performing notification of the predetermined information). May be.
  • notification of information is not limited to the aspect / embodiment described in this specification, and may be performed by other methods.
  • notification of information includes physical layer signaling (eg, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (eg, RRC (Radio Resource Control) signaling, broadcast information (MIB (Master Information Block)). ), SIB (System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified by, for example, a MAC control element (MAC CE (Control Element)).
  • MAC CE Control Element
  • Each aspect / embodiment described herein includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile). communication system), 5G (5th generation mobile communication system), FRA (Future Radio Access), New-RAT (Radio Access Technology), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)) ), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), systems using other appropriate systems and / or extended based on these It may be applied to the next generation system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • communication system 5G (5th generation mobile communication system

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

短縮TTIに適する構成の上り共有チャネルを用いて通信を行うこと。本発明のユーザ端末は、通常TTIの上り共有チャネルの復調用参照信号が送信される2シンボルの一つを含むように短縮TTIを設定する。当該ユーザ端末は、当該短縮TTIにおいて上り共有チャネルを送信するとともに、上記1シンボルで上記短縮TTIの上り共有チャネルの復調用参照信号を送信する。

Description

ユーザ端末、無線基地局及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末、無線基地局及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、LTE Rel.13、Rel.14などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がユーザ端末に設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。異なる無線基地局の複数のCCが統合されるため、DCは、Inter-eNB CAなどとも呼ばれる。
 また、LTE Rel.8-12では、下り(DL:Downlink)送信と上り(UL:Uplink)送信とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、DL送信とUL送信とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
 以上のようなLTE Rel.8-12では、無線基地局とユーザ端末間のDL送信及びUL送信に適用される伝送時間間隔(TTI:Transmission Time Interval)は1msに設定されて制御される。既存システム(LTE Rel.8-12)におけるTTIは、サブフレーム、サブフレーム長などとも呼ばれる。
 一方、Rel.13以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯での通信や、IoT(Internet of Things)、MTC:Machine Type Communication、M2M(Machine To Machine)など相対的にデータ量が小さい通信を行うことが想定される。このような将来の無線通信システムにおいて、既存システム(LTE Rel.8-12)における通信方法(例えば、1msの伝送時間間隔(TTI))を適用する場合、十分な通信サービスを提供できないおそれがある。
 そこで、将来の無線通信システムでは、1msのTTI(以下、通常TTIという)より短いTTI(以下、短縮TTIという)を利用して通信を行うことが考えられる。短縮TTIを利用する場合、当該短縮TTIで送信される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)をどのように構成するかが問題となる。
 本発明はかかる点に鑑みてなされたものであり、短縮TTIに適する構成の上り共有チャネルを用いて通信を行うことが可能なユーザ端末、無線基地局及び無線通信方法を提供することを目的の一とする。
 本発明のユーザ端末の一態様は、第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて上り共有チャネルを送信する送信部と、前記上り共有チャネルの送信を制御する制御部と、を具備し、前記制御部は、前記第1TTIの上り共有チャネルの復調用参照信号が送信される2シンボルの1つを含むように前記第2TTIを設定し、前記1シンボルで前記第2TTIの上り共有チャネルの復調用参照信号を送信することを特徴とする。
 本発明によれば、短縮TTIに適する構成の上り共有チャネルを用いて通信を行うことができる。
通常TTIの構成例を示す図である。 図2A及び2Bは、短縮TTIの構成例を示す図である。 図3A~3Cは、短縮TTIの設定例を示す図である。 図4A~4Cは、通常TTIのPUSCH構成例を示す図である。 図5A及び5Bは、第1の態様に係る短縮TTIのPUSCH構成の一例を示す図である。 図6A及び6Bは、第1の態様に係るDMRSの多重例を示す図である。 図7A及び7Bは、第1の態様に係るDMRSの第1のマッピング例を示す図である。 図8A~8Cは、第1の態様に係るDMRSの第2のマッピング例を示す図である。 図9A及び9Bは、第1の態様に係るCombの一例の説明図である。 図10A及び10Bは、第1の態様に係る短縮TTIのPUSCH構成の他の例を示す図である。 図11A及び11Bは、第2の態様に係る短縮TTIのPUSCH構成の一例を示す図である。 第2の態様に係るUCIの第1のマッピング例を示す図である。 第2の態様に係るUCIの第2のマッピング例を示す図である。 図14A及び14Bは、第3の態様に係る短縮TTIのPUSCH構成の一例を示す図である。 本実施の形態に係る無線通信システムの概略構成の一例を示す図である。 本実施の形態に係る無線基地局の全体構成の一例を示す図である。 本実施の形態に係る無線基地局の機能構成の一例を示す図である。 本実施の形態に係るユーザ端末の全体構成の一例を示す図である。 本実施の形態に係るユーザ端末の機能構成の一例を示す図である。 本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 図1は、既存システム(LTE Rel.8-12)におけるTTI(通常TTI)の一例を示す図である。図1に示すように、通常TTIは、1msの時間長を有する。通常TTIは、サブフレームとも呼ばれ、2つの時間スロットで構成される。なお、既存システムにおいて、通常TTIは、チャネル符号化された1データ・パケットの送信時間単位であり、スケジューリング、リンクアダプテーションなどの処理単位となる。
 図1に示すように、下りリンク(DL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14OFDM(Orthogonal Frequency Division Multiplexing)シンボル(スロットあたり7OFDMシンボル)を含んで構成される。各OFDMシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 また、上りリンク(UL)において通常サイクリックプリフィクス(CP)の場合、通常TTIは、14SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル(スロットあたり7SC-FDMAシンボル)を含んで構成される。各SC-FDMAシンボルは、66.7μsの時間長(シンボル長)を有し、4.76μsの通常CPが付加される。シンボル長とサブキャリア間隔は互いに逆数の関係にあるため、シンボル長66.7μsの場合、サブキャリア間隔は、15kHzである。
 なお、図示しないが、拡張CPの場合、通常TTIは、12OFDMシンボル(又は12SC-FDMAシンボル)を含んで構成されてもよい。この場合、各OFDMシンボル(又は各SC-FDMAシンボル)は、66.7μsの時間長を有し、16.67μsの拡張CPが付加される。また、ULにおいてOFDMシンボルが用いられてもよい。以下、OFDMシンボル、SC-FDMAシンボルを区別しない場合、「シンボル」という。
 一方、Rel.13以降のLTEや5Gなどの将来の無線通信システムでは、数十GHzなどの高周波数帯に適した無線インターフェースや、IoT(Internet of Things)、MTC:Machine Type Communication、M2M(Machine To Machine)など相対的にデータ量が小さい通信に適するように、パケットサイズは小さいが遅延を最小化する無線インターフェースが望まれている。
 通常TTIよりも短い時間長の短縮TTIを用いる場合、ユーザ端末や無線基地局における処理(例えば、符号化、復号など)に対する時間的マージンが増加するため、処理遅延を低減できる。また、短縮TTIを用いる場合、単位時間(例えば、1ms)当たりに収容可能なユーザ端末数を増加させることができる。このため、将来の無線通信システムでは、チャネル符号化された1データ・パケットの送信時間単位、スケジューリング、リンクアダプテーションなどの処理単位として、通常TTIよりも短い短縮TTIを用いることが検討されている。
 図2及び3を参照し、短縮TTIについて説明する。図2は、短縮TTIの構成例を示す図である。図2A及び図2Bに示すように、短縮TTIは、1msより短い時間長(TTI長)を有する。短縮TTIは、例えば、0.5ms、0.2ms、0.1msなど、倍数が1msとなるTTI長の1つまたは複数であってもよい。あるいは、通常CPの場合に通常TTIは14シンボルを含むことから、7/14ms、4/14ms、3/14ms、1/14msなど1/14msの整数倍となるTTI長の1つまたは複数であってもよい。また、拡張CPの場合に通常TTIは12シンボルを含むことから、6/12ms、4/12ms、3/12ms、1/12msなど1/12msの整数倍となるTTI長の1つまたは複数であってもよい。なお、短縮TTIにおいても、従前のLTEと同様に、通常CPか拡張CPかは報知情報やRRCシグナリング等の上位レイヤシグナリングでConfigureすることができる。これにより、1msである通常TTIとの互換性(同期)を保ちながら、短縮TTIを導入できる。
 図2Aは、短縮TTIの第1の構成例を示す図である。図2Aに示すように、第1の構成例では、短縮TTIは、通常TTIと同一数のシンボル(ここでは、14シンボル)で構成され、各シンボルは、通常TTIのシンボル長(例えば、66.7μs)よりも短いシンボル長を有する。
 図2Aに示すように、通常TTIのシンボル数を維持してシンボル長を短くする場合、通常TTIの物理レイヤ信号構成(RE配置等)を流用することができる。また、通常TTIのシンボル数を維持する場合、短縮TTIにおいても通常TTIと同一の情報量(ビット量)を含めることができる。一方で、通常TTIのシンボルとはシンボル時間長が異なることから、図2Aに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(または、セル、CC)内に周波数多重することが困難となる。
 また、シンボル長とサブキャリア間隔とは互いに逆数の関係にあるため、図2Aに示すようにシンボル長を短くする場合、サブキャリア間隔は、通常TTIの15kHzよりも広くなる。サブキャリア間隔が広くなると、ユーザ端末の移動時のドップラー・シフトによるチャネル間干渉や、ユーザ端末の受信機の位相雑音による伝送品質劣化を効果的に防止できる。特に、数十GHzなどの高周波数帯においては、サブキャリア間隔を広げることにより、伝送品質の劣化を効果的に防止できる。
 図2Bは、短縮TTIの第2の構成例を示す図である。図2Bに示すように、第2の構成例では、短縮TTIは、通常TTIよりも少ない数のシンボルで構成され、各シンボルは、通常TTIと同一のシンボル長(例えば、66.7μs)を有する。例えば、図2Bにおいて、短縮TTIが通常TTIの半分の時間長(0.5ms)であるとすると、短縮TTIは、通常TTIの半分のシンボル(ここでは、7シンボル)で構成される。
 図2Bに示すように、シンボル長を維持してシンボル数を削減する場合、短縮TTIに含める情報量(ビット量)を通常TTIよりも削減できる。このため、ユーザ端末は、通常TTIよりも短い時間で、短縮TTIに含まれる情報の受信処理(例えば、復調、復号など)を行うことができ、処理遅延を短縮できる。また、図2Bに示す短縮TTIの信号と通常TTIの信号とを同一システム帯域(またはセル、CC)内で周波数多重でき、通常TTIとの互換性を維持できる。
 なお、図2A及び図2Bでは、通常CPの場合(通常TTIが14シンボルで構成される場合)を想定した短縮TTIの例を示しているが、短縮TTIの構成は、図2A及び2Bに示すものに限られない。例えば、拡張CPの場合、図2Aの短縮TTIは、12シンボルで構成されてもよいし、図2Bの短縮TTIは、6シンボルで構成されてもよい。このように、短縮TTIは、通常TTIよりも短い時間長であればよく、短縮TTI内のシンボル数、シンボル長、CP長などはどのようなものであってもよい。
 図3を参照し、短縮TTIの設定例を説明する。将来の無線通信システムは、既存システムとの互換性を有するように、通常TTI及び短縮TTIの双方を設定可能に構成されてもよい。
 例えば、図3Aに示すように、通常TTIと短縮TTIとは、同一のCC(周波数領域)内で時間的に混在してもよい。具体的には、短縮TTIは、同一のCCの特定のサブフレーム(或いは、特定の無線フレームなどの特定の時間単位)に設定されてもよい。例えば、図3Aでは、同一のCC内の連続する5サブフレームにおいて短縮TTIが設定され、その他のサブフレームにおいて通常TTIが設定される。なお、短縮TTIが設定されるサブフレームの数や位置は、図3Aに示すものに限られない。
 また、図3Bに示すように、通常TTIのCCと短縮TTIのCCとを統合して、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)が行われてもよい。具体的には、短縮TTIは、特定のCCに(より具体的には、特定のCCのDL及び/又はULに)、設定されてもよい。例えば、図3Bでは、特定のCCのDLにおいて短縮TTIが設定され、他のCCのDL及びULにおいて通常TTIが設定される。なお、短縮TTIが設定されるCCの数や位置は、図3Bに示すものに限られない。
 また、CAの場合、短縮TTIは、同一の無線基地局の特定のCC(プライマリ(P)セル又は/及びセカンダリ(S)セル)に設定されてもよい。一方、DCの場合、短縮TTIは、第1無線基地局によって形成されるマスターセルグループ(MCG)内の特定のCC(Pセル又は/及びSセル)に設定されてもよいし、第2無線基地局によって形成されるセカンダリセルグループ(SCG)内の特定のCC(プライマリセカンダリ(PS)セル又は/及びSセル)に設定されてもよい。
 また、図3Cに示すように、短縮TTIは、DL又はULのいずれかに設定されてもよい。例えば、図3Cでは、TDDシステムにおいて、ULに通常TTIが設定され、DLに短縮TTIが設定される。
 また、DL又はULの特定のチャネルや信号が短縮TTIに割り当てられ(設定され)てもよい。例えば、上り制御チャネル(PUCCH:Physical Uplink Control Channel)は、通常TTIに割り当てられ、上り共有チャネル(PUSCH:Physical Uplink Shared Channel)は、短縮TTIに割り当てられてもよい。例えばこの場合、ユーザ端末は、PUCCHの送信は通常TTIで行い、PUSCHの送信は短縮TTIで行う。
 図3において、ユーザ端末は、無線基地局からの黙示的(implicit)又は明示的(explicit)な通知に基づいて、短縮TTIを設定(又は/及び検出)する。以下では、(1)黙示的な通知例と、(2)報知情報またはRRC(Radio Resource Control)シグナリング、(3)MAC(Medium Access Control)シグナリング、(4)PHY(Physical)シグナリングによる明示的な通知例を説明する。
 (1)黙示的な通知の場合、ユーザ端末は、周波数帯(例えば、5G向けのバンド、アンライセンスドバンドなど)、システム帯域幅(例えば、100MHzなど)、LAA(License Assisted Access)におけるLBT(Listen Before Talk)の適用有無、送信されるデータの種類(例えば、制御データ、音声など)、論理チャネル、トランスポートブロック、RLC(Radio Link Control)モード、C-RNTI(Cell-Radio Network Temporary Identifier)などに基づいて、短縮TTIを設定(例えば、通信を行うセル、チャネル、信号などが短縮TTIであることを判断)してもよい。また、通常TTIの先頭1、2、3、または4シンボルにマッピングされるPDCCHおよび/または1msのEPDCCHで自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1msを通常TTIと判断し、それ以外の構成を取るPDCCH/EPDCCH(例えば通常TTIの先頭1~4シンボル以外にマッピングされるPDCCHおよび/または1ms未満のEPDCCH)で自端末宛の制御情報(DCI)を検出した場合、当該PDCCH/EPDCCHを含む1ms未満の所定の時間区間を短縮TTIと判断してもよい。ここで、自端末宛の制御情報(DCI)の検出は、ブラインド復号したDCIに対するCRCのチェック結果に基づいて行うことができる。
 (2)報知情報またはRRCシグナリング(上位レイヤシグナリング)の場合、報知情報またはRRCシグナリングにより無線基地局からユーザ端末に通知される設定情報に基づいて、短縮TTIが設定されてもよい。当該設定情報は、例えば、どのCC又は/及びサブフレームを短縮TTIとして利用するか、どのチャネル又は/及び信号を短縮TTIで送受信するかなどを示す。ユーザ端末は、無線基地局からの設定情報に基づいて、短縮TTIを準静的(semi-static)に設定する。なお、短縮TTIと通常TTIとのモード切り替えは、RRCの再構成(RRC Reconfiguration)手順で行われてもよいし、Pセルでは、Intra-cellハンドオーバ(HO)、Sセルでは、CC(Sセル)のremoval/addition手順により行われてもよい。
 (3)MACシグナリング(L2(Layer 2)シグナリング)の場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、MACシグナリングにより有効化又は無効化(activate又はde-activate)されてもよい。具体的には、ユーザ端末は、無線基地局からのL2制御信号(例えば、MAC制御要素)に基づいて、短縮TTIを有効化又は無効化する。ユーザ端末は、RRC等の上位レイヤシグナリングによりあらかじめ短縮TTIの有効化期間を示すタイマを設定されていて、L2制御信号で短縮TTIが有効化されたのち所定の期間短縮TTIのUL/DL割当がなされなかった場合、短縮TTIを無効化するものとしてもよい。このような短縮TTI無効化タイマは、通常TTI(1ms)を単位としてカウントするものとしてもよいし、短縮TTI(例えば0.25ms)を単位としてカウントするものとしてもよい。なお、Sセルにおいて短縮TTIと通常TTIとのモードを切り替える場合、Sセルは、一旦de-activateされるものとしてもよいし、TA(Timing Advance)タイマが満了したものとみなされてもよい。これにより、モード切り替え時の通信停止期間を設けることができる。
 (4)PHYシグナリング(L1(Layer 1)シグナリング)の場合、RRCシグナリングにより通知される設定情報に基づいて設定される短縮TTIが、PHYシグナリングによりスケジューリングされてもよい。具体的には、ユーザ端末は、受信及び検出したL1制御信号(例えば、下り制御チャネル(PDCCH:Physical Downlink Control Channel又はEPDCCH:Enhanced Physical Downlink Control Channel、以下、PDCCH/EPDCCHという))に含まれる情報に基づいて、短縮TTIを検出する。
 例えば、通常TTIと短縮TTIでの送信または受信を割り当てる制御情報(DCI)は異なる情報要素を含むものとしておき、(4-1)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCHが検出されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。ユーザ端末は、PDCCH/EPDCCHにおいて、通常TTIと短縮TTI、両方の送信または受信を割り当てる制御情報(DCI)をブラインド復号することができる。或いは、(4-2)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送される下り制御情報(DCI:Downlink Control Information))によりスケジューリングされるPDSCH又はPUSCHが送信/受信されるタイミングを含む所定の時間区間を短縮TTIと認識してもよい。或いは、(4-3)ユーザ端末は、短縮TTIでの送受信を割り当てる情報要素を含む制御情報(DCI)が検出された場合に、そのPDCCH/EPDCCH(により伝送されるDCI)によりスケジューリングされるPDSCH又はPUSCHに対する再送制御情報(HARQ-ACK(Hybrid Automatic Repeat reQuest-Acknowledgement)、ACK/NACK、A/Nなどともいう)を送信又は受信するタイミングを含む所定の時間区間を短縮TTIと認識してもよい。
 また、ユーザ端末は、ユーザ端末の状態(例えば、Idle状態又はConnected状態)に基づいて、短縮TTIを検出してもよい。例えば、ユーザ端末は、Idle状態である場合、全てのTTIを通常TTIとして認識し、1msの通常TTIの先頭1~4シンボルに含まれるPDCCHのみをブラインド復号するものとしてもよい。また、ユーザ端末は、Connected状態である場合、上述の通知例(1)-(4)の少なくとも一つに基づいて、短縮TTIを設定(又は/及び検出)してもよい。
 以上のように、短縮TTIが設定される場合、当該短縮TTIで送信されるPUSCHをどのように構成するかが問題となる。ところで、通常TTI(サブフレーム)で送信されるPUSCHは、図4に示すように構成される。
 図4A-4Cに示すように、通常TTIで送信されるPUSCHの復調用参照信号(DMRS:DeModulation Reference Signal、UL DMRSなどともいう)は、サブフレームを構成する各スロットの所定シンボルにマッピングされる。例えば、通常CPが用いられる(各スロットが7シンボルで構成される)場合、DMRSは、図4A-4Cに示すように、各スロットのインデックス3のシンボル(各スロットの中央のシンボル)にマッピングされるが、これに限られない。拡張CPが用いられる(各スロットが6シンボルで構成される)場合、DMRSは、各スロットのインデックス2のシンボルにマッピングされてもよい。以下、DMRSがマッピングされる所定シンボルをDMRSシンボルという。
 ここで、DMRSの系列長は、当該DMRSを用いて復調されるPUSCHの送信帯域幅と同一である。また、DMRSの系列は、各系列長に対して少なくとも30系列が定義され、30の系列グループにグループ化される。同一のセル内で用いられるDMRS系列は同一の系列グループに属し、セル内でどの系列グループ(DMRS系列インデックス(DMRS sequence index))を用いるかはスロット間で変更されてもよい(グループホッピング)。系列グループ(DMRS系列インデックス)は、セルIDに基づいて決定されてもよいし、システム情報によりユーザ端末に通知されてもよいし、ユーザ個別のRRCシグナリングでPUSCHおよびPUCCHそれぞれに設定され得る仮想セルIDに基づいて決定されてもよい。
 また、同期する複数のセル間において、DMRSは、どのセルのどのユーザ端末も同一のシンボル(例えば、図4A-4Cに示すインデックス3のシンボル)にマッピングされる。また、同一シンボルにマッピングされる複数のDMRSは、巡回シフト(CS:Cyclic shift)及び直交符号(OCC:Orthogonal Cover Code)により、干渉がランダム化される。
 図4Aでは、通常TTIにおいてPUSCHにより上り制御情報(UCI:Uplink Control Information)を送信せずに上りデータ(上りユーザデータ、ULデータともいう)を送信する場合の構成例が示される。図4Aでは、2つのDMRSシンボル以外の各シンボルに上りデータがマッピングされる。
 図4Bでは、通常TTIにおいてPUSCHによりUCIと上りデータとの双方を送信する場合の構成例が示される。UCIは、チャネル品質識別子(CQI:Channel Quality Indicator)、プリコーディング行列識別子(PMI:Precoding Matrix Indicator)、ランク識別子(RI:Rank Indicator)や、上述のHARQ-ACKの少なくとも一つを含んでもよい。
 図4Bに示すように、CQI及び/又はPMI(以下、CQI/PMIという)は、通常TTIでPUSCHの送信帯域(例えば、1以上の物理リソースブロック(PRB:Physical Resource Block))の一方のPRBから、2つのDMRSシンボルを除いたシンボルに時間方向にマッピングされる。また、HARQ-ACKは、上記送信帯域の他方のPRBから、2つのDMRSシンボルにそれぞれ隣接するシンボルに時間方向にマッピングされる。また、RIは、HARQ-ACKに隣接するシンボルに時間方向にマッピングされる。上りデータ、CQI/PMI、RIはそれぞれ符号化及びレートマッチングされ、多重され、HARQ-ACKに基づいてパンクチャされる。
 図4Cでは、通常TTIにおいてPUSCHによりUCIを送信する場合の構成例が示される。図4Cでは、図4Bと同様に、CQI/PMI、HARQ-ACK、RIが通常TTI内のシンボルにマッピングされる。
 なお、図4A-4Cでは、DFT(Discrete Fourier Transform)適用前のマッピングイメージが例示するものとする。実際に送信されるシンボルは周波数方向にインタリーブされて配置されてもよい。以下に示すマッピングイメージは、全てDFT適用前であるものとする。また、DMRSには、DFTは適用されない。
 図4A-4Cに示す構成を用いて、通常TTIにおけるPUSCHは送信される。しかしながら、以上のような通常TTIにおけるPUSCHの構成は、通常TTIよりも少ないシンボル数で構成される短縮TTI(図2B参照)にはそのまま適用できないことが想定される。一方で、通常TTIにおけるPUSCHの構成(特に、各スロットのDMRSシンボル)を考慮せずに、短縮TTIのPUSCHを構成する場合、通常TTIを用いてPUSCHを送信するユーザ端末(レガシーUE)に対する干渉が増大する恐れがある。
 そこで、本発明者らは、通常TTIのDMRSシンボルを維持しながら、通常TTIよりも少ないシンボル数で構成される短縮TTIあたり少なくとも一つのDMRSシンボルを含ませることを着想し、本発明に至った。具体的には、本発明では、通常TTIにおける2DMRSシンボルの1つを含むように短縮TTIが設定され、当該1シンボルで短縮TTIのPUSCHのDMRSが送受信される。
 以下、本発明の一実施の形態について図面を参照して詳細に説明する。なお、本実施の形態において、短縮TTI(第2TTI)は、通常TTI(第1TTI)よりも少ないシンボル数で構成され、各シンボルは、通常TTIと同一のシンボル長を有するものとする(図2B参照)。なお、通常TTI内に含まれる短縮TTIの数は、例えば、2、4などであるが、これらに限られない。
 また、短縮TTIは、部分TTI(partial TTI)、ショート(short)TTI、sTTI、短縮サブフレーム、ショートサブフレーム等とも呼ばれ、通常TTIは、TTI、ロング(long)TTI、lTTI、ノーマルTTI、通常サブフレーム、ロングサブフレーム、ノーマルサブフレーム、単にサブフレーム等とも呼ばれる。また、以下では、各シンボルに通常CPが適用される場合を例示するが、これに限られない。本実施の形態は、各シンボルに拡張CPが適用される場合にも適宜適用可能である。
(第1の態様)
 第1の態様では、短縮TTIで割り当てられるPUSCHを用いてUCIを送信せずに上りデータを送信する場合のPUSCHの構成例を説明する。
<DMRSシンボルを維持する場合>
 図5は、第1の態様に係る短縮TTI(sTTI)におけるPUSCH構成の一例を示す図である。図5Aでは、通常TTI(サブフレーム)あたり2つのsTTIを含む場合、図5Bでは、サブフレームあたり4つのsTTIを含む場合が示される。図5A及び5Bに示すように、複数のsTTIを含むサブフレームでは、通常TTIの同一のシンボル(各スロットの中央のシンボル)にDMRSシンボルが設けられる。
 図5Aにおいて、各sTTIは、DMRSシンボルを含む7シンボルで構成される。ユーザ端末は、第1スロットのDMRSシンボル(以下、第1DMRSシンボルという)にsTTI-1のDMRSをマッピングし、第2スロットのDMRSシンボル(以下、第2DMRSシンボルという)にsTTI-2のDMRSをマッピングする。
 一方、図5Bにおいて、各sTTIは、複数のsTTI間で共用されるDMRSシンボルを含む4シンボルで構成される。第1DMRSシンボルは、sTTI-1とSTTI-2との双方に含まれ、sTTI-1とsTTI-2とで共用される。第2DMRSシンボルは、sTTI-3とSTTI-4との双方に含まれ、sTTI-3とSTTI-4とで共用される。
 図5A及び5Bにおいて、異なるsTTIでは、異なるユーザ端末がPUSCHを送信してもよいし、同一のユーザ端末がPUSCHを送信してもよい。また、図示しないが、図5A及び5Bに示す構成例は組み合わせられてもよい。例えば、サブフレームの第1スロットでは、図5Aに示すように一つのsTTIが設定され、第2スロットでは、図5Bに示すように2つのsTTIが設定されてもよいし、これとは逆に設定されてもよい。
 図5Aに示すように、単一のDMRSシンボルを単一のsTTIで利用する場合、ユーザ端末は、通常TTIのDMRSと同様に、当該sTTIのPUSCHを割り当てるDCIに含まれるCS/OCC指示フィールド(CS/OCC indicator Field)で指示される巡回シフトインデックス(CSインデックス)及びOCCを用いてDMRSを生成できる。
 一方、図5Bに示すように、単一のDMRSシンボルを複数のsTTIで共用する場合、当該複数のsTTIのDMRSは、単一のDMRSシンボルに多重される。例えば、図5Bに示すように、単一のDMRSシンボルを複数のsTTIで共用する場合、当該複数のsTTIのDMRSは、巡回シフト及び/又は櫛の歯状のサブキャリア配置(Comb)により多重されてもよい。
 図6は、同一のDMRSシンボルを共用する複数のsTTIのDMRSの多重例を示す図である。なお、図6では、図5BのsTTI-1とsTTI-2とで第1DMRSシンボルを共用する場合のDMRSの多重例を一例として説明するが、sTTI-3とsTTI-4とで第2DMRSシンボルを共用する場合にも同様に適用可能である。
 図6Aでは、巡回シフトを用いた多重例が示される。各sTTIのDMRSは、異なるCSインデックスを用いて生成され、同一のDMRSシンボルにマッピングされる。例えば、図6Aでは、sTTI-1のDMRSは、CSインデックス#xを用いて生成される一方、sTTI-2のDMRSは、CSインデックス#yを用いて生成される。なお、各sTTIのCSインデックスは、DCI内の所定フィールド(例えば、CS/OCC指示フィールド、巡回シフトフィールド(Cyclic Shift Field)など)で示されてもよい。
 図6Bでは、Combを用いた多重例が示される。図6Bに示すように、Comb#0及び#1のサブキャリアは交互に配置される。各sTTIのDMRSには、異なるComb(サブキャリア)が割り当てられる。例えば、図6Bでは、sTTI-1のDMRSには、Comb#0が割り当てられる一方、sTTI-2のDMRSには、Comb#1が割り当てられる。各sTTIのCombは、DCI内の所定フィールド(例えば、CS/OCCフィールドなど)により指定されてもよいし(例えば、所定フィールド値=0ならComb#0など)、どのsTTIであるかによって予め定められていてもよい(例えば、sTTI1ならComb#0など)。
 なお、図6A及び6Bにおいて、単一のDMRSシンボルを共用する複数のsTTIで同一のユーザ端末がPUSCHを送信する場合、当該ユーザ端末は、当該複数のsTTIのいずれかのDMRSのみを生成して送信してもよい。この場合、例えば、図6Aでは、CSインデックス#x又は#yのいずれかを用いてDMRSが生成され、図6Bでは、Comb#0又は#1のいずれかにDMRSがマッピングされる。
 また、図6Aに示す巡回シフト及び図6Bに示すCombとの双方を用いて、各sTTIのDMRSが多重されてもよい。この場合、同一のComb内に巡回シフトにより複数のDMRSが多重することで、3以上のDMRSを多重可能となる。
 図7及び8を参照し、同一のDMRSシンボルを共用する複数のsTTIのDMRSのマッピング例を説明する。図7は、同一のDMRSシンボルを共用する複数のsTTI間で同一のユーザ端末がPUSCHを送信する場合を示す図である。なお、図7では、複数のsTTIのPUSCHが同一のユーザ端末に割り当てられるため、ユーザ端末は、当該複数のsTTIのいずれかのDMRSのみを送信してもよい。
 図7Aでは、同一のDMRSシンボルを共用する複数のsTTI間で異なるPRBにPUSCHが割り当て可能である。この場合、DMRSは、当該複数のsTTIでPUSCHに割り当てられたPRB(割り当てPRB)を少なくとも含むPRBにマッピングされてもよい。ユーザ端末は、同一のDMRSシンボルを共用する複数のsTTIにおける割り当てPRBに基づいて、DMRSをマッピング(送信)するPRB(マッピングPRB)を決定する。
 例えば、図7Aにおいて、ユーザ端末は、第1DMRSシンボルにおいて、sTTI-1及びsTTI-2それぞれの割り当てPRBを含む連続したPRBに、sTTI-1又はsTTI-2のいずれかのDMRSをマッピングして送信する。また、ユーザ端末は、第2DMRSシンボルにおいて、sTTI-3及びsTTI-4それぞれの割り当てPRBを含む連続したPRBに、sTTI-3又はsTTI-4のいずれかのDMRSをマッピングして送信する。
 また、sTTI-2においてユーザ端末に対するPUSCHの割り当てがない場合、当該ユーザ端末は、第1DMRSシンボルにおいて、sTTI-1の割り当てPRBに、sTTI-1のDMRSをマッピングして送信してもよい。同様に、sTTI-4においてユーザ端末に対するPUSCHの割り当てがない場合、当該ユーザ端末は、第2DMRSシンボルにおいて、sTTI-3の割り当てPRBに、sTTI-3のDMRSをマッピングして送信してもよい。同様に、sTTI-1においてユーザ端末に対するPUSCHの割り当てがない場合、当該ユーザ端末は、第1DMRSシンボルにおいて、sTTI-2の割り当てPRBに、sTTI-2のDMRSをマッピングして送信してもよい。同様に、sTTI-3においてユーザ端末に対するPUSCHの割り当てがない場合、当該ユーザ端末は、第2DMRSシンボルにおいて、sTTI-4の割り当てPRBに、sTTI-4のDMRSをマッピングして送信してもよい。
 図7Aに示す場合、同一のDMRSシンボルを共用する複数のsTTIの割り当てPRBに基づいて、当該DMRSシンボルにおけるマッピングPRBが決定されるので、当該複数のsTTIにおいて柔軟にPUSCHを割り当てることができ、なおかつ複数のsTTIで割り当てられたすべてのPRBにおけるチャネル推定を行うことができる。また、当該DMRSシンボルにおいて当該複数のsTTIを考慮してDMRSをマッピングできる。
 図7Bでは、同一のDMRSシンボルを共用する複数のsTTI間で同一のPRBにPUSCHが割り当てられる(異なるPRBにPUSCHを割り当て可能ではない)。この場合、DMRSは、当該複数のsTTIのいずれかの割り当てPRBと同一のPRBにマッピングされる。ユーザ端末は、同一のDMRSシンボルを共用する複数のsTTIのうちのいずれか(例えば、最初のsTTI)における割り当てPRBに基づいて、DMRSシンボルにおけるマッピングPRBを決定する。
 例えば、図7Bにおいて、ユーザ端末は、第1DMRSシンボルにおいて、sTTI-1の割り当てPRBにsTTI-1のDMRSのみをマッピングして送信する。この場合、sTTI-1でPUSCHをスケジューリングされたユーザ端末は、sTTI-2で異なるPRBが割り当てられないものと仮定する。同様に、ユーザ端末は、第2DMRSシンボルにおいて、sTTI-3の割り当てPRBにsTTI-3のDMRSのみをマッピングして送信する。この場合、sTTI-4でPUSCHをスケジューリングされたユーザ端末は、sTTI-4で異なるPRBが割り当てられないものと仮定する。
 図7Bに示す場合、同一のDMRSシンボルを共用する複数のsTTIのうちの最初のsTTIのみで、DMRSシンボルにおけるマッピングPRB及びDMRS系列が決定されるので、時間的に遅いsTTIの割り当て情報の復号を待つことなくチャネル推定を開始できることから、処理遅延の軽減効果を向上させることができる。
 図8は、同一のDMRSシンボルを共用する複数のsTTI間で異なるユーザ端末がPUSCHを送信する場合を示す図である。なお、図8では、当該複数のsTTI間で異なるユーザ端末にPUSCHが割り当てられるため、当該複数のsTTIのDMRSには、それぞれ異なるCSインデックス又は/及び異なるCombが適用される。
 図8Aでは、同一のDMRSシンボルを共用する複数のsTTI間で異なるPRBにPUSCHが割り当てられる。この場合、当該複数のsTTIのDMRSは、Combを用いて多重されてもよい。具体的には、当該複数のsTTIのDMRSは、それぞれのsTTIの割り当てPRBにおいて、異なるCombにマッピングされる。
 例えば、図8Aにおいて、sTTI-1のDMRSにComb#0が割り当てられ、sTTI-2のDMRSにComb#1が割り当てられるものとする。この場合、ユーザ端末は、sTTI-1の割り当てPRB内のComb#0に対してsTTI-1のDMRSをマッピングする。一方、ユーザ端末は、sTTI-2の割り当てPRB内のComb#1に対してsTTI-2のDMRSをマッピングする。
 これにより、図8Bに示すように、sTTI-1においてのみPUSCHが割り当てられるPRBでは、Comb#0のサブキャリアにだけDMRSがマッピングされる。一方、sTTI-2においてのみPUSCHが割り当てられるPRBでは、Comb#1のサブキャリアにだけDMRSがマッピングされる。また、sTTI-1及びsTTI-2の双方でPUSCHが割り当てられるPRBでは、Comb#0及び#1のサブキャリアにDMRSがマッピングされる。
 図8A及び図8Bに示すように、同一のDMRSシンボルを共用する複数のsTTIのDMRSをCombにより多重する場合、当該複数のsTTI間でPUSCHに異なるPRBを割り当てることができる。この結果、柔軟なスケジューリングを行うことができる。
 図8Cでは、同一のDMRSシンボルを共用する複数のsTTI間で同一のPRBにPUSCHが割り当てられる。この場合、当該複数のsTTIのDMRSは、巡回シフトを用いて多重されてもよい。具体的には、当該複数のsTTIのDMRSは、異なるCSインデックスを用いて、同一のPRBにマッピングされる。ユーザ端末は、当該複数のsTTIのうちのいずれか(例えば、最初のsTTI)における割り当てPRBに基づいて、DMRSシンボルにおけるマッピングPRBを決定する。
 例えば、図8Cにおいて、ユーザ端末は、sTTI-1のDMRSとsTTI-2のDMRSとをそれぞれ異なるCSインデックスを用いて生成し、第1DMRSシンボルにおけるsTTI-1の割り当てPRBにマッピングする。この場合、sTTI-1でPUSCHをスケジューリングされたユーザ端末は、sTTI-2で異なるPRBが割り当てられないものと仮定する。sTTI-3及びsTTI-4についても同様である。
 図8Cに示すように、同一のDMRSシンボルを共用する複数のsTTI間で同一のPRBにPUSCHが割り当てられると仮定する場合、巡回シフトにより複数のsTTIのDMRSを多重可能となり、CombをDMRSに適用しない既存システムとの融和性を向上させることができる。また、当該複数のsTTIのうちの最初のsTTIのみでDMRSのマッピングPRBを決定できるので、処理遅延の軽減効果を向上させることができる。
 なお、図8A及び8Bにおいて、同一のDMRSシンボルを共用する複数のsTTIのDMRSをCombにより多重する場合、各sTTIのDMRSに対してCombが明示的に割り当てられてもよいし、黙示的に割り当てられてもよい。
 具体的には、DCI(例えば、PUSCHを割り当てるULグラント)に含まれる所定フィールド(例えば、CS/OCC指示フィールド、巡回シフトフィールドなど)の値により、Combインデックスが指示されてもよい。例えば、CS/OCC指示フィールド値が0であれば、Combインデックス#0を示し、CS/OCC指示フィールド値が1であれば、Combインデックス#1を示してもよい。
 或いは、PUSCHを送信する(PUSCHがスケジューリングされる)sTTIの位置やインデックス等に基づいて、ユーザ端末がCombインデックスを決定してもよい。この場合、同一のDMRSシンボルを共用する各sTTIに対してどのCombを割り当てるかは、予め定められていてもよいし、上位レイヤシグナリングにより通知されてもよい。例えば、図8Aにおいて、ユーザ端末は、sTTI-1(又は、sTTI-3)のDMRSに対してCombインデックス#0を決定し、sTTI-2(又は、sTTI-4)のDMRSに対してCombインデックス#1を決定してもよい。
 また、各sTTIのDMRSに対してCombを適用する場合、ユーザ端末は、Combの数に基づいて、PUSCHの送信電力を制御してもよい。図9は、送信電力とPSD(Power Spectrum Density)との関係を示す図である。図9Aに示すように、Combを適用するDMRSとPUSCHの送信電力を同一とする場合、当該DMRSのPSDは、PUSCHのPSDのComb数(ここでは、2)倍となる。
 このため、ユーザ端末は、Combを適用するDMRSの送信電力を1/Comb数(ここでは、1/2)倍にしてもよい。これにより、図9Bに示すように、DMRSのPSDは低くなり、当該DMRSのPSDとPUSCHのPSDとが同等となる。この結果、DMRSによる他セル干渉を抑圧し、かつ、上りデータの受信SINRを推定し易くすることができる。
 また、同一のDMRSシンボルを共用する複数のsTTI間で同一のPRBにPUSCHが割り当てられる場合、図8Cでは、当該複数のsTTIのDMRSが巡回シフトにより多重されるものとしたが、これに限られない。当該複数のsTTIのDMRSは、Combにより多重されてもよい。
 以上のように、通常TTIの各スロットのDMRSシンボルに、当該通常TTIよりも少ないシンボル数で構成されるsTTIのDMRSをマッピングする場合、通常TTIでPUSCHを送信するレガシーUEに対する干渉を増大させずに、sTTIでPUSCHを送信することができ、処理遅延を軽減できる。
<DMRSシンボルを増やす場合>
 図10を参照し、上記第1及び第2DMRSシンボルに加えて、各sTTIに追加のDMRSシンボル(以下、追加DMRSシンボルという)を設ける場合について説明する。なお、図10については、図5との相違点を中心に説明する。
 図10は、第1の態様に係るsTTIにおけるPUSCH構成の他の例を示す図である。図10Aでは、サブフレームあたり2つのsTTIを含む場合、図10Bでは、サブフレームあたり4つのsTTIを含む場合が示される。図10A及び10Bに示すように、複数のsTTIを含むサブフレームでは、上記第1及び第2DMRSシンボルに加えて、各sTTIに追加DMRSシンボルが設けられてもよい。
 例えば、図10Aにおいて、sTTI-1では、最初のシンボル(インデックス0)に追加DMRSシンボルが設けられ、sTTI-2では、最後のシンボル(インデックス6)に追加DMRSシンボルが設けられる。同様に、図10Bにおいて、sTTI-1では、最初のシンボル(インデックス0)に追加DMRSシンボルが設けられ、sTTI-2では、最後のシンボル(インデックス6)に追加DMRSシンボルが設けられる。sTTI-3及びsTTI-4についても同様である。なお、追加DMRSシンボルの位置は、図10A及び10Bに示すものに限られない。
 図10A及び10Bにおいて、上記第1及び第2DMRSシンボルのDMRSは、図5-8を参照して説明したように、CSインデックス、OCC、Combの少なくとも一つを用いて生成できる。これにより、通常TTIでPUSCHを送信するレガシーUEとの直交性・ランダム化を確保できる。
 一方、追加DMRSシンボルのDMRSは、上記第1及び第2DMRSシンボルとは異なるグループ(DMRS系列インデックス)のDMRS系列及び/又はCSインデックスを用いて生成されてもよい。このとき、例えばセルIDや仮想セルIDに基づいて、第1および第2DMRSシンボルと追加DMRSシンボルとでDMRS系列を生成するグループ(DMRS系列インデックス)を変えてもよい。これにより、異なるセルに接続するユーザ端末間でグループ(DMRS系列インデックス)のホッピングルールを異なるものにすることができるので、セル間干渉のランダム化を強めることが可能となる。
 図10A及び10Bに示す場合、通常TTIと同様に、sTTIあたり2つのDMRSシンボルを含むので、sTTIで送信されるPUSCHのチャネル推定精度を、通常TTIで送信されるPUSCHと同レベルとすることができる。このため、sTTIで送信されるPUSCHのチャネル推定精度を、図5A及び5Bに示す構成と比較して、チャネル推定精度を改善できる。
 なお、図10A及び10Bは例示にすぎず、sTTI内のDMRSシンボルの数はこれに限られない。例えば、図10A及び10Bにおいて、2以上の追加DMRSシンボルを設けることで、sTTIあたり3以上のDMRSシンボルを設けてもよい。sTTIあたりのDMRSシンボル数を増加させることにより、チャネル推定精度を更に改善できる。
 また、通常TTIの最後のシンボルには、上りデータではなく、サウンディング参照信号(SRS:Sounding Reference Signal)が配置されることが想定される。このため、追加DMRSシンボルは、サブフレーム内の最後のsTTI(例えば、図10AのsTTI-2、図10BのsTTI-4)の最後のシンボルに設定されてもよい。これにより、通常TTIでPUSCHを送信するレガシーUEが最終のシンボルに上りデータを割り当てないフォーマット(Shortened format)を用いる場合、当該最終のシンボルにおけるsTTIのDMRS(追加DMRS)からの干渉を回避できる。
 以上のように、追加DMRSシンボルを設ける場合、通常TTIでPUSCHを送信するレガシーUEに対する干渉を防止しながら、sTTIで送信されるPUSCHのチャネル推定精度を向上させることができる。
(第2の態様)
 第2の態様では、sTTIで割り当てられるPUSCHを用いてUCI及び上りデータの双方を送信する場合のPUSCHの構成例を説明する。第2の態様における各sTTIにおけるDMRSの送信方法は、第1の態様と同様であるため、説明を省略する。第2の態様では、第1の態様で説明したように構成されるsTTI内のリソースエレメント(RE)に対するUCI及び上りデータのマッピングについて詳述する。
 なお、以下では、通常TTIと同様の第1及び第2DMRSシンボルを維持する場合(図5)について説明するが、これに限られない。第2の態様におけるUCI及び上りデータのマッピング手法は、上記第1及び第2DMRSシンボルに加えて、各sTTIに追加DMRSシンボルを設ける場合(図10)にも適宜適用可能である。
 図11は、第2の態様に係るsTTIにおけるPUSCH構成の一例を示す図である。図11Aでは、サブフレームあたり2つのsTTIを含む場合、図11Bでは、サブフレームあたり4つのsTTIを含む場合が示される。なお、図11A及び11Bでは、複数のsTTIにおいて、同一のユーザ端末にPUSCHが割り当てられる場合、又は、異なるユーザ端にPUSCHが割り当てられる場合のいずれにおいても、当該複数の短縮TTIには、異なるUCI及び上りデータがマッピングされるものとする。
 図11A及び図11Bに示すように、各sTTIにおいて、UCIは、通常TTI内でマッピングされるUCIと同一のルールを用いて、マッピングされてもよい。図12及び13は、それぞれ、図11A及び11Bに示すsTTI構成におけるマッピングルールを示す図である。なお、図12及び13において、リソースに付される番号は、CQI/PMI、RI、HARQ-ACKのそれぞれのマッピング順序を示すものとする。
 図12に示すように、各sTTIにおいて、CQI/PMIは、PUSCHの送信帯域の一方のPRBから、DMRSシンボルを除いたシンボルに時間方向にマッピングされる。また、HARQ-ACKは、上記送信帯域の他方のPRBから、DMRSシンボルに隣接する2シンボルに時間方向にマッピングされる。また、RIは、HARQ-ACKがマッピングされる2シンボルの外側の2シンボルに時間方向にマッピングされる。
 また、図12において、上りデータは、符号化及びレートマッチングされ、CQI/PMI、RIと多重され、HARQ-ACKに基づいてパンクチャされる。図12に示すように、通常TTIの同様のマッピングルールを適用する場合であっても、各sTTIのUCI及び上りデータは、各sTTI内のDMRSシンボルを除いたシンボルだけにマッピングされ、マッピングされるRE数は通常TTIと比べて減少する。
 同様に、図13に示す場合においても、各sTTIのUCI及び上りデータは、通常TTIのマッピングルールを適用して、各sTTI内のDMRSシンボルを除いたシンボルだけにマッピングされ、マッピングされるRE数は通常TTIと比べて減少する。なお、図13では、HARQ-ACK及びRIはそれぞれ各sTTI内の単一のシンボルにマッピングされる。このため、図13におけるHARQ-ACK及びRIの時間方向のマッピングは、周波数方向のマッピングと同義である。
(第3の態様)
 第3の態様では、sTTIで割り当てられるPUSCHを用いて上りデータを送信せずにUCIを送信する場合のPUSCHの構成例を説明する。第3の態様に係るPUSCH構成は、上りデータのマッピングがない点を除いて、第2の態様と同様である。
 図14は、第3の態様に係る短縮TTIにおけるPUSCH構成の一例を示す図である。図14A及び図14Bに示すPUSCH構成は、上りデータのマッピングがない点を除いて、第2の態様(図11A及び11B)で説明したPUSCH構成と同様である。図14A及び図14Bにおける各sTTIのUCIのマッピング方法については、第2の態様と同様であるため、説明を省略する。
 なお、図14では、通常TTIと同様の第1及び第2DMRSシンボルを維持する場合(図5)について説明するが、これに限られない。第3の態様におけるUCIのマッピング手法は、上記第1及び第2DMRSシンボルに加えて、各sTTIに追加DMRSシンボルを設ける場合(図10)にも適宜適用可能である。
(その他)
 第2及び第3の態様で説明したように、sTTIのPUSCHでUCIを送信する場合(UCI on PUSCH)、通常TTIのPUSCHで送信されるUCIとは異なるルールで、ペイロード制限が行われてもよい。
 例えば、第2及び第3の態様において、HARQ-ACKのペイロードが所定の閾値を上回る場合、又は、HARQ-ACKのペイロードのPUSCHのRE数に対する比率(すなわち、符号化率)が所定の閾値を上回る場合、空間バンドリングが適用されてもよい。なお、当該所定の閾値は、上位レイヤシグナリングによりユーザ端末に通知されてもよい。
 また、第2及び第3の態様において、CQI/PMIのペイロードが所定の閾値を上回る場合、又は、CQI/PMIのペイロードのPUSCHのRE数に対する比率(すなわち、符号化率)が所定の閾値を上回る場合、優先度の低いCQI/PMIはドロップされてもよい(送信が中止されてもよい)。なお、CQI/PMIの優先度は、既存システムにおける優先度と同じであってもよい。
 例えば、第2及び第3の態様において、RIのペイロードが所定の閾値を上回る場合、又は、RIのペイロードのPUSCHのRE数に対する比率(すなわち、符号化率)が所定の閾値を上回る場合、複数のセルのRIを結合してもよい。なお、どの複数のセルのRIを結合するかは、上位レイヤシグナリングによりユーザ端末に通知されてもよい。また、複数のセルのRIの結合方法としては、(1)複数のセルのRIの平均を用いる、(2)複数のセルのRIの最大値を用いる、(3)複数のセルのRIの最小値を用いる、等が考えられる。
 あるいは、sTTIで送信するPUSCHに含まれるデータ、CQI/PMI、RI、HARQ-ACKは、これらの連結ビット列を1つの符号語とみなし、ジョイント符号化を行ってもよい。これにより、データ、UCIそれぞれに個別に追加されるCRCビットを省くことができるため、オーバーヘッドを削減することができる。データ(トランスポートブロック)が大きく、複数の符号ブロックに分割されてそれぞれ符号化が行われる場合には、UCIは、最初、最後、または特定の順番の符号ブロックにジョイント符号化されるものとしてもよい。このとき、データとUCIの連結ビット列は、データ、HARQ-ACK、RI、CQI/PMIの順序で構成するものとしてもよい。無線リソース量に対してビット列のサイズが過剰な場合、CQI/PMIの全部または一部を欠落(ドロッピング)させるが、ドロッピング前後で符号語ビット列のデータ、HARQ-ACK、RIの位置に影響を与えないため、符号化処理を簡易化することができる。また、ジョイント符号化を行ったときに符号化ビットを無線リソースにマッピングする順序として、データと同じ順序を適用することができる。
(無線通信システム)
 以下、本発明の一実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記各態様に係る無線通信方法が適用される。なお、上記各態様に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 図15は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。なお、無線通信システム1は、SUPER 3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(Future Radio Access)などと呼ばれても良い。
 図15に示す無線通信システム1は、マクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12a~12cとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、異なる周波数を用いるマクロセルC1とスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、6個以上のCC)を用いてCA又はDCを適用することができる。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、Legacy carrierなどと呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクにOFDMA(直交周波数分割多元接続)が適用され、上りリンクにSC-FDMA(シングルキャリア-周波数分割多元接続)が適用される。OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックからなる帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限られず、上りリンクでOFDMAが用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、報知チャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及びPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQの送達確認情報(ACK/NACK)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報が伝送される。送達確認情報(ACK/NACK)や無線品質情報(CQI)などの少なくとも一つを含む上り制御情報(UCI:Uplink Control Information)は、PUSCH又はPUCCHにより、伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
<無線基地局>
 図16は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されてもよい。
 下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQ(Hybrid Automatic Repeat reQuest)の送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化や逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。
 本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 また、送受信部103は、通常TTI(第1TTI)よりも少ないシンボル数で構成される短縮TTI(第2TTI)においてPUSCHを受信する。当該PUSCHには、上りデータが含まれてもよいし(第1の態様)、上りデータ及びUCIの双方が含まれてもよいし(第2の態様)、UCIが含まれてもよい(第3の態様)。
 また、送受信部103は、通常TTIのPUSCHのDMRS(復調用参照信号)が受信される2シンボルの1つを含むように短縮TTIが設定される場合、当該1シンボルで当該短縮TTIのPUSCHのDMRSを受信する。また、送受信部103は、短縮TTIに追加DMRSシンボルが設定される場合、追加DMRSシンボルで当該短縮TTIのDMRSを受信してもよい。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの設定や解放などの呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して隣接無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 図17は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、図17は、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているものとする。図17に示すように、ベースバンド信号処理部104は、制御部301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、を備えている。
 制御部301は、無線基地局10全体の制御を実施する。制御部301は、例えば、送信信号生成部302による下り信号の生成や、マッピング部303による信号のマッピング、受信信号処理部304による信号の受信処理を制御する。
 具体的には、制御部301は、ユーザ端末20から報告されるチャネル状態情報(CSI)に基づいて、下り(DL)信号の送信制御(例えば、変調方式、符号化率、リソース割り当て(スケジューリング)などの制御)を行う。
 また、制御部301は、下り信号の受信及び/又は上り信号の送信に用いられる伝送時間間隔(TTI)を制御する。制御部301は、1msである通常TTI又は/及び通常TTIより短い短縮TTIを設定する。短縮TTIの構成例及び設定例については、図2及び3を参照して説明した通りである。制御部301は、ユーザ端末20に対して、(1)黙示的な通知、又は、(2)RRCシグナリング、(3)MACシグナリング、(4)PHYシグナリングの少なくとも一つによる明示的な通知により、短縮TTIの設定を指示してもよい。
 具体的には、制御部301は、通常TTI(第1TTI)のPUSCHのDMRSが送信される2シンボル(DMRSシンボル)の一つを含むように各短縮TTI(第2TTI)を設定する(図5、10、11及び14)。制御部301は、当該1DMRSシンボル(又は、当該1DMRSシンボル及び追加DMRSシンボル)で受信されたDMRSに基づいて、短縮TTIにおけるPUSCHを復調するように、受信信号処理部304を制御する。
 制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下りデータ信号、下り制御信号を含む)を生成して、マッピング部303に出力する。具体的には、送信信号生成部302は、上述の上位レイヤシグナリングによる通知情報(制御情報)やユーザデータを含む下りデータ信号(PDSCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、上述のDCIを含む下り制御信号(PDCCH/EPDCCH)を生成して、マッピング部303に出力する。また、送信信号生成部302は、CRS、CSI-RSなどの下り参照信号を生成して、マッピング部303に出力する。
 送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部304は、ユーザ端末20から送信される上り信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。具体的には、受信信号処理部304は、短縮TTIに含まれる上記1DMRSシンボル(又は、上記1DMRSシンボル及び追加DMRSシンボル)で受信されたDMRSを用いて、短縮TTIにおけるPUSCHを復調する。処理結果は、制御部301に出力される。
 受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
<ユーザ端末>
 図18は、本実施の形態に係るに係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。
 複数の送受信アンテナ201で受信された無線周波数信号は、それぞれアンプ部202で増幅される。各送受信部203はアンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理や、誤り訂正復号、再送制御の受信処理などを行う。下りデータ(ユーザデータ)は、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、報知情報もアプリケーション部205に転送される。
 一方、上りデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)や、チャネル符号化、レートマッチング、パンクチャ、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて各送受信部203に転送される。UCIについても、チャネル符号化、レートマッチング、パンクチャ、DFT処理、IFFT処理などが行われて各送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
 また、送受信部203は、通常TTI(第1TTI)よりも少ないシンボル数で構成される短縮TTI(第2TTI)においてPUSCHを送信する。当該PUSCHには、上りデータが含まれてもよいし(第1の態様)、上りデータ及びUCIの双方が含まれてもよいし(第2の態様)、UCIが含まれてもよい(第3の態様)。
 また、送受信部203は、通常TTIのPUSCHのDMRS(復調用参照信号)が受信される2DMRSシンボルの1つを含むように短縮TTIが設定される場合、当該1DMRSシンボルで当該短縮TTIのPUSCHのDMRSを送信する。また、送受信部203は、短縮TTIに追加DMRSシンボルが設定される場合、追加DMRSシンボルで当該短縮TTIのDMRSを送信してもよい。
 送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置とすることができる。また、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 図19は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、図19においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているものとする。図19に示すように、ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を備えている。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、例えば、送信信号生成部402による信号の生成や、マッピング部403による信号のマッピング、受信信号処理部404による信号の受信処理を制御する。
 また、制御部401は、下り(DL)信号の受信及び/又は上り(UL)信号の送信に用いられる伝送時間間隔(TTI)を制御する。制御部301は、1msである通常TTI又は/及び通常TTIより短い短縮TTIを設定する。短縮TTIの構成例及び設定例については、図2及び3を参照して説明した通りである。制御部401は、無線基地局10からの(1)黙示的な通知、又は、(2)RRCシグナリング、(3)MACシグナリング、(4)PHYシグナリングの少なくとも一つによる明示的な通知に基づいて、短縮TTIを設定(検出)してもよい。
 具体的には、制御部401は、通常TTI(第1TTI)におけるPUSCHのDMRSが送信される2DMRSシンボルの一つを含むように短縮TTI(第2TTI)を設定する(図5、10、11及び14)。また、制御部401は、当該1DMRSシンボル(又は、当該1DMRSシンボル及び追加DMRSシンボル)で、当該短縮TTIにおけるDMRSを送信するように、送信信号生成部402を制御する。
 例えば、複数の短縮TTIが上記1DMRSシンボルを含む場合、制御部401は、当該複数の短縮TTIの復調用参照信号を当該1DMRSシンボル内に多重して送信する。すなわち、制御部401は、当該複数の短縮のTTIのうちのある短縮TTIのDMRSと他の短縮TTIのDMRSとを上記1DMRSシンボルに多重して送信する。当該多重には、巡回シフト及び/又はCombを利用することができる。
 当該複数の短縮TTIにおいて同一のユーザ端末20がPUSCHを送信する場合で、かつ、該PUSCHに異なるリソースブロックを割り当て可能である場合(図7A)、制御部401は、当該複数の短縮TTIでそれぞれ割り当てられるPRBに基づいてDMRSを送信するPRBを決定する。制御部401は、決定されたPRBを用いて、当該複数の短縮TTIのいずれか(例えば、最も早い短縮TTI)のDMRSを送信するように、送信信号生成部402を制御してもよい。
 また、当該複数の短縮TTIにおいて同一のユーザ端末20がPUSCHを送信する場合で、かつ、該PUSCHに異なるリソースブロックを割り当て可能でない場合(図7B)、制御部401は、当該複数の短縮TTIのいずれか(例えば、最も早い短縮TTI)で割り当てられるPRBを、DMRSを送信するPRBとして決定する。制御部401は、決定されたPRBを用いて、当該複数の短縮TTIのいずれか(例えば、最も早い短縮TTI)のDMRSを送信するように、送信信号生成部402を制御してもよい。
 また、当該複数の短縮TTIにおいて異なるユーザ端末20がPUSCHを送信する場合で、かつ、該PUSCHに異なるリソースブロックを割り当て可能である場合(図8A)、制御部401は、Combを用いて当該複数の短縮TTIのDMRSを上記1DMRSシンボルに多重してもよい。具体的には、制御部401は、他のユーザ端末20とは異なるCombインデックスを用いて、短縮TTIのDMRSを送信するように、送信信号生成部402を制御する。なお、Combインデックスは、DCIの所定フィールドで指示されてもよいし、sTTIに応じて予め定められていてもよい。
 また、当該複数の短縮TTIにおいて異なるユーザ端末20がPUSCHを送信する場合で、かつ、該PUSCHに異なるリソースブロックを割り当て可能でない場合(図8B)、制御部401は、巡回シフトを用いて当該複数の短縮TTIのDMRSを上記1DMRSシンボルに多重してもよい。具体的には、制御部401は、他のユーザ端末20とは異なるCSインデックスを用いて、短縮TTIのDMRSを送信するように、送信信号生成部402を制御する。なお、どのCSインデックスを用いるかは、DCIの所定フィールド(例えば、CS/OCCフィールド)で指示されてもよい。
 制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上りデータ信号、上り制御信号を含む)を生成(例えば、符号化、レートマッチング、パンクチャ、変調など)して、マッピング部403に出力する。例えば、送信信号生成部402は、上りデータを含むPUSCH、上りデータとUCI(HARQ-ACK、CQI/PMI、RIの少なくとも一つ)とを含むPUSCH、UCIを含むPUSCHを生成する。
 具体的には、送信信号生成部402は、上記複数の短縮TTIにおいて同一のユーザ端末20がPUSCHを送信する場合(図7A及び7B)、いずれかの短縮TTI(例えば、最も早い短縮TTI)でDCIにより指示されるCSインデックス及び/又はOCCを用いて、DMRSを生成する。
 また、送信信号生成部402は、上記複数の短縮TTIにおいて異なるユーザ端末20がPUSCHを送信する場合(図8A及び8B)、ユーザ端末20が送信する短縮TTIでDCIにより指示されるCSインデックス及び/又はOCCを用いて、DMRSを生成する。
 また、送信信号生成部402は、上記追加DMRSシンボルで送信されるDMRSを、上記1DMRSシンボルで送信されるDMRSとは異なるグループ(DMRS系列インデックス)のDMRS系列を用いて生成してもよい。
 送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置とすることができる。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成されたUL信号(上り制御信号及び/又は上りデータ信号)を無線リソースにマッピングして、送受信部203へ出力する。
 具体的には、マッピング部403は、上記1DMRSシンボル(又は、追加DMRSシンボルを含む)において、制御部401によって決定されたPRBに、送信信号生成部402で生成されたDMRSをマッピングする。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置とすることができる。
 受信信号処理部404は、下り信号(下り制御信号、下りデータ信号を含む)に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。受信信号処理部404は、無線基地局10から受信した情報を、制御部401に出力する。受信信号処理部404は、例えば、報知情報、システム情報、RRCシグナリングなどの上位レイヤシグナリングによる制御情報、DCIなどを、制御部401に出力する。
 受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
 測定部405は、無線基地局10からの参照信号(例えば、CSI-RS)に基づいて、チャネル状態を測定し、測定結果を制御部401に出力する。なお、チャネル状態の測定は、CC毎に行われてもよい。
 測定部405は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置、並びに、測定器、測定回路又は測定装置から構成することができる。
(ハードウェア構成)
 なお、上記実施の形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的に結合した1つの装置により実現されてもよいし、物理的に分離した2つ以上の装置を有線又は無線で接続し、これら複数の装置により実現されてもよい。
 例えば、本実施の形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図20は、本実施の形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 無線基地局10及びユーザ端末20における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信や、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001で実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュールやデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク、フラッシュメモリなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウスなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカーなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001やメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 なお、本明細書で説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)で構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットで構成されてもよい。さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDMシンボル、SC-FDMAシンボルなど)で構成されてもよい。
 無線フレーム、サブフレーム、スロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームが送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットがTTIと呼ばれてもよい。つまり、サブフレームやTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅や送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。なお、RBは、物理リソースブロック(PRB:Physical RB)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)で構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 なお、上述した無線フレーム、サブフレーム、スロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、スロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプリフィクス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本明細書で説明した情報、パラメータなどは、絶対値で表されてもよいし、所定の値からの相対値で表されてもよいし、対応する別の情報で表されてもよい。例えば、無線リソースは、所定のインデックスで指示されるものであってもよい。
 本明細書で説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア及びデジタル加入者回線(DSL)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
 また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(D2D:Device-to-Device)に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」や「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
 同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的に(例えば、当該所定の情報の通知を行わないことによって)行われてもよい。
 情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))で通知されてもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。例えば、上述の各実施形態は単独で用いてもよいし、組み合わせて用いてもよい。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2015年12月25日出願の特願2015-255029に基づく。この内容は、全てここに含めておく。

Claims (10)

  1.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて上り共有チャネルを送信する送信部と、
     前記上り共有チャネルの送信を制御する制御部と、を具備し、
     前記制御部は、前記第1TTIの上り共有チャネルの復調用参照信号が送信される2シンボルの1つを含むように前記第2TTIを設定し、前記1シンボルで前記第2TTIの上り共有チャネルの復調用参照信号を送信することを特徴とするユーザ端末。
  2.  複数の第2TTIが前記1シンボルを含む場合、前記制御部は、前記複数の第2TTIにおける上り共有チャネルの復調用参照信号を前記1シンボル内に多重して送信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記複数の第2TTIにおいて同一のユーザ端末が上り共有チャネルを送信する場合で、かつ、該上り共有チャネルに異なるリソースブロックを割り当て可能である場合、前記制御部は、前記複数の第2TTIでそれぞれ割り当てられるリソースブロックに基づいて決定されるリソースブロックを用いて、前記複数の第2TTIのいずれかの復調用参照信号を前記1シンボル内で送信することを特徴とする請求項2に記載のユーザ端末。
  4.  前記複数の第2TTIにおいて同一のユーザ端末が上り共有チャネルを送信する場合で、かつ、該上り共有チャネルに異なるリソースブロックを割り当て可能でない場合、前記制御部は、前記複数の第2TTIのうちで最も早い第2TTIで割り当てられるリソースブロックを用いて、前記複数の第2TTIのいずれかの復調用参照信号を前記1シンボル内で送信することを特徴とする請求項2に記載のユーザ端末。
  5.  前記複数の第2TTIにおいて異なるユーザ端末が上り共有チャネルを送信する場合で、かつ、該上り共有チャネルに異なるリソースブロックを割り当て可能である場合、前記制御部は、Combを用いて前記複数の第2TTIの復調用参照信号を前記第1シンボル内で多重することを特徴とする請求項2に記載のユーザ端末。
  6.  前記複数の第2TTIにおいて異なるユーザ端末が上り共有チャネルを送信する場合で、かつ、該上り共有チャネルに異なるリソースブロックを割り当て可能でない場合、前記制御部は、巡回シフトを用いて前記複数の第2TTIの復調用参照信号を前記第1シンボル内で多重することを特徴とする請求項2に記載のユーザ端末。
  7.  前記制御部は、前記第2TTIに含まれる他のシンボルで、前記第2TTIの復調用参照信号を送信することを特徴とする請求項1から請求項6のいずれかに記載のユーザ端末。
  8.  前記制御部は、前記第1TTI内でマッピングされる上り制御情報と同一のルールを用いて、前記第2TTI内で上り制御情報をマッピングすることを特徴とする請求項1から請求項7のいずれかに記載のユーザ端末。
  9.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIにおいて上り共有チャネルを受信する受信部と、
     前記上り共有チャネルの受信を制御する制御部と、を具備し、
     前記制御部は、前記第1TTIの上り共有チャネルの復調用参照信号が受信される2シンボルの1つを含むように前記第2TTIを設定し、前記1シンボルで受信される復調用参照信号を用いて、前記第2TTIの上り共有チャネルを復調することを特徴とする無線基地局。
  10.  第1伝送時間間隔(TTI)よりも少ないシンボル数で構成される第2TTIを用いた無線通信方法であって、ユーザ端末において、
     前記第1TTIの上り共有チャネルの復調用参照信号が送信される2シンボルの1つを含むように前記第2TTIを設定する工程と、
     前記第2TTIにおいて上り共有チャネルを送信するとともに、前記1シンボルで前記第2TTIの上り共有チャネルの復調用参照信号を送信する工程と、を有することを特徴とする無線通信方法。
     
PCT/JP2016/088263 2015-12-25 2016-12-22 ユーザ端末、無線基地局及び無線通信方法 WO2017110959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/065,197 US20190007248A1 (en) 2015-12-25 2016-12-22 User terminal, radio base station and radio communication method
CN201680076148.0A CN108464045B (zh) 2015-12-25 2016-12-22 用户终端、无线基站及无线通信方法
JP2017558237A JP6954841B2 (ja) 2015-12-25 2016-12-22 ユーザ端末及び無線基地局
EP16878846.1A EP3383111A4 (en) 2015-12-25 2016-12-22 User terminal, wireless base station, and wireless communication method
IL260219A IL260219A (en) 2015-12-25 2018-06-24 At the same time a user end, a radio base station and a radio communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015255029 2015-12-25
JP2015-255029 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017110959A1 true WO2017110959A1 (ja) 2017-06-29

Family

ID=59089480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088263 WO2017110959A1 (ja) 2015-12-25 2016-12-22 ユーザ端末、無線基地局及び無線通信方法

Country Status (6)

Country Link
US (1) US20190007248A1 (ja)
EP (1) EP3383111A4 (ja)
JP (1) JP6954841B2 (ja)
CN (1) CN108464045B (ja)
IL (1) IL260219A (ja)
WO (1) WO2017110959A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019074850A1 (en) * 2017-10-09 2019-04-18 Qualcomm Incorporated DOWNLINK DEMODULATION REFERENCE SIGNAL SHARING FOR SHORT TRANSMISSION TIME INTERVALS
CN110035527A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 资源指示方法、终端设备和网络设备
CN111434172A (zh) * 2017-09-29 2020-07-17 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2020527876A (ja) * 2017-07-10 2020-09-10 ソニー株式会社 電子装置及び無線通信方法
CN111819896A (zh) * 2018-01-19 2020-10-23 株式会社Ntt都科摩 用户终端以及无线通信方法
JP2022141909A (ja) * 2017-08-10 2022-09-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置および通信方法
TWI796381B (zh) * 2017-11-09 2023-03-21 美商高通公司 低時延無線通訊中的上行鏈路傳輸技術
WO2023112279A1 (ja) * 2021-12-16 2023-06-22 株式会社Nttドコモ 端末、無線通信方法及び基地局

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982994B1 (ko) * 2016-01-26 2019-05-27 소니 주식회사 단말 장치, 기지국 장치 및 통신 방법
WO2017128296A1 (zh) * 2016-01-29 2017-08-03 华为技术有限公司 一种参考信号的传输方法、装置和系统
KR102065432B1 (ko) * 2016-03-28 2020-01-14 주식회사 케이티 공유 복조 기준 신호 기반 상향링크 데이터 채널 설정 방법 및 그 장치
CN114884640A (zh) * 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信系统中的终端、基站及其方法
KR102034306B1 (ko) * 2016-06-09 2019-11-08 엘지전자 주식회사 무선 통신 시스템에서 위상 잡음 보상 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
EP3471313A4 (en) 2016-08-08 2020-02-19 LG Electronics Inc. -1- REFERENCE SIGNAL WITH VARIABLE STRUCTURE
TWI663863B (zh) * 2016-08-10 2019-06-21 諾基亞科技公司 用於上行鏈路短傳輸時間區間傳輸之傳訊技術與相關聯方法、裝置、電腦程式産品及電腦可讀媒體
CN107889239B (zh) * 2016-09-30 2020-10-16 华为技术有限公司 一种上行控制信息发送、接收方法及设备
EP3301845B1 (en) * 2016-09-30 2023-01-18 Nokia Technologies Oy Granting resources for uplink transmissions
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置
US20180131490A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Dynamic reference signal configuration for shortened transmission time interval wireless communications
EP3566383A4 (en) * 2017-01-05 2020-09-02 Telefonaktiebolaget LM Ericsson (publ) DEVICE AND NODE IN A WIRELESS COMMUNICATION SYSTEM FOR TRANSMISSION OF UPLINK CONTROL INFORMATION
US20180198650A1 (en) * 2017-01-06 2018-07-12 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
US10708021B2 (en) * 2017-08-11 2020-07-07 Lg Electronics Inc. Method for transmitting SRS in a wireless communication system and apparatus therefor
US11140575B2 (en) * 2017-08-11 2021-10-05 Qualcomm Incorporated Modifying CSI transmissions over uplink shared resources
CN109475000B (zh) * 2017-09-08 2022-08-26 展讯半导体(南京)有限公司 共享信道资源分配方法、装置及网络侧设备
CN109756991B (zh) * 2017-11-06 2021-11-19 华为技术有限公司 通信方法及装置
US10439779B2 (en) * 2017-11-26 2019-10-08 Huawei Technologies Co., Ltd. Sequence determining method and apparatus
CN109842478A (zh) 2017-11-26 2019-06-04 华为技术有限公司 一种序列确定方法和装置
US10925078B2 (en) 2018-02-16 2021-02-16 Apple Inc. Two-tone physical uplink shared channel for machine type communications
WO2020068821A1 (en) * 2018-09-26 2020-04-02 Intel Corporation Techniques in secondary cell group failure measurement report
EP3857786A2 (en) * 2018-09-28 2021-08-04 NEC Corporation Communication system
EP3920642A4 (en) * 2019-02-01 2022-09-14 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
EP3911054A4 (en) * 2019-02-03 2021-12-29 Huawei Technologies Co., Ltd. Reference signal receiving and sending methods, apparatuses and systems
US11190248B2 (en) 2019-03-18 2021-11-30 Qualcomm Incorporated Channel state information reporting techniques in sidelink wireless communications
US11569960B2 (en) * 2019-05-20 2023-01-31 Telefonaktiebolaget Lm Ericsson (Publ) DMRS for MMW RAN
US20210337574A1 (en) * 2020-04-23 2021-10-28 Qualcomm Incorporated Handling collisions between a feedback message and uplink control information

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
CN104125040A (zh) * 2013-04-28 2014-10-29 华为技术有限公司 一种上行控制信息的传输方法及用户设备
JP6376757B2 (ja) * 2014-01-14 2018-08-22 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
KR20150089715A (ko) * 2014-01-28 2015-08-05 주식회사 아이티엘 무선 통신 시스템에서 uci 코딩율 조절 방법 및 그 장치
WO2015115804A1 (ko) * 2014-01-28 2015-08-06 주식회사 아이티엘 무선 통신 시스템에서 uci 처리 방법 및 그 장치
US20150327243A1 (en) * 2014-05-08 2015-11-12 Sharp Laboratories Of America, Inc. Systems and methods for dual-connectivity operation
KR101899034B1 (ko) * 2014-07-18 2018-09-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 데이터의 전송 방법 및 이를 위한 장치
EP3281437B1 (en) * 2015-04-10 2020-04-01 Panasonic Intellectual Property Corporation of America Base station, terminal, receiving method, and transmission method

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"UL aspects of TTI shortening", 3GPP TSG-RAN WG1#84 R1- 160965, 19 February 2016 (2016-02-19), pages 1 - 3, XP051054272, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_84/Docs/R1-160965.zip> *
ERICSSON: "Evaluation methodology for latency reduction Techniques", 3GPP TSG-RAN WG1#83 RL-157145, 22 November 2015 (2015-11-22), pages 1 - 6, XP051040021, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/R1-157145.zip> *
HUAWEI: "HiSilicon, Views on TTI length", 3GPP TSG-RAN WG1#83 RL-156459, 22 November 2015 (2015-11-22), pages 1 - 5, XP051002919, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/Rl-156459.zip> *
See also references of EP3383111A4 *
ZTE: "L1 considerations on latency reduction", 3GPP TSG-RAN WG1#83 RL-157151, 22 November 2015 (2015-11-22), pages 1 - 6, XP051003410, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_83/Docs/R1-157151.zip> *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020527876A (ja) * 2017-07-10 2020-09-10 ソニー株式会社 電子装置及び無線通信方法
JP7131573B2 (ja) 2017-07-10 2022-09-06 ソニーグループ株式会社 電子装置及び無線通信方法
JP7312896B2 (ja) 2017-08-10 2023-07-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置および通信方法
JP2022141909A (ja) * 2017-08-10 2022-09-29 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 通信装置および通信方法
CN111434172B (zh) * 2017-09-29 2023-08-22 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111434172A (zh) * 2017-09-29 2020-07-17 株式会社Ntt都科摩 用户终端以及无线通信方法
US11218350B2 (en) 2017-10-09 2022-01-04 Qualcomm Incorporated Downlink demodulation reference signal sharing for short transmission time intervals
WO2019074850A1 (en) * 2017-10-09 2019-04-18 Qualcomm Incorporated DOWNLINK DEMODULATION REFERENCE SIGNAL SHARING FOR SHORT TRANSMISSION TIME INTERVALS
TWI778146B (zh) * 2017-10-09 2022-09-21 美商高通公司 用於短傳輸時間間隔的下行鏈路解調參考信號共用
TWI796381B (zh) * 2017-11-09 2023-03-21 美商高通公司 低時延無線通訊中的上行鏈路傳輸技術
CN116347627A (zh) * 2018-01-12 2023-06-27 华为技术有限公司 资源指示方法、终端设备和网络设备
US20220224480A1 (en) 2018-01-12 2022-07-14 Huawei Technologies Co., Ltd. Resource indication method, terminal device, and network device
CN110035527A (zh) * 2018-01-12 2019-07-19 华为技术有限公司 资源指示方法、终端设备和网络设备
US11777680B2 (en) 2018-01-12 2023-10-03 Huawei Technologies Co., Ltd. Resource indication method, terminal device, and network device
CN110035527B (zh) * 2018-01-12 2023-11-10 华为技术有限公司 资源指示方法、终端设备和网络设备
CN116347627B (zh) * 2018-01-12 2024-01-16 华为技术有限公司 资源指示方法、终端设备和网络设备
CN111819896A (zh) * 2018-01-19 2020-10-23 株式会社Ntt都科摩 用户终端以及无线通信方法
CN111819896B (zh) * 2018-01-19 2024-04-23 株式会社Ntt都科摩 终端、基站、系统以及无线通信方法
WO2023112279A1 (ja) * 2021-12-16 2023-06-22 株式会社Nttドコモ 端末、無線通信方法及び基地局

Also Published As

Publication number Publication date
IL260219A (en) 2018-07-31
CN108464045B (zh) 2023-05-30
CN108464045A (zh) 2018-08-28
US20190007248A1 (en) 2019-01-03
EP3383111A1 (en) 2018-10-03
JP6954841B2 (ja) 2021-10-27
EP3383111A4 (en) 2018-12-19
JPWO2017110959A1 (ja) 2018-11-08

Similar Documents

Publication Publication Date Title
JP6954841B2 (ja) ユーザ端末及び無線基地局
JP6878278B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7197660B2 (ja) 端末、無線通信方法、基地局及びシステム
US11101911B2 (en) User terminal, radio base station, and radio communication method
JP6886919B2 (ja) 端末及び無線通信方法
JP6560364B2 (ja) ユーザ端末及び無線通信方法
WO2017110954A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7182876B2 (ja) 端末、無線通信方法、基地局及びシステム
JP6585274B2 (ja) 端末及び無線通信方法
WO2017014074A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017130991A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2017038892A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7107832B2 (ja) 端末、基地局、無線通信方法及びシステム
JP7054405B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2017142031A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP7129740B2 (ja) 端末、無線通信方法及びシステム
OA18894A (en) User terminal, wireless base station, and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 260219

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2017558237

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016878846

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016878846

Country of ref document: EP

Effective date: 20180626