WO2017110759A1 - 放熱部品用銅合金板 - Google Patents

放熱部品用銅合金板 Download PDF

Info

Publication number
WO2017110759A1
WO2017110759A1 PCT/JP2016/087840 JP2016087840W WO2017110759A1 WO 2017110759 A1 WO2017110759 A1 WO 2017110759A1 JP 2016087840 W JP2016087840 W JP 2016087840W WO 2017110759 A1 WO2017110759 A1 WO 2017110759A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
alloy plate
heat
less
Prior art date
Application number
PCT/JP2016/087840
Other languages
English (en)
French (fr)
Inventor
大輔 橋本
昌泰 西村
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016175464A external-priority patent/JP6446007B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201680071395.1A priority Critical patent/CN108368566B/zh
Priority to KR1020187017439A priority patent/KR20180081609A/ko
Publication of WO2017110759A1 publication Critical patent/WO2017110759A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/10Alloys based on copper with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present disclosure relates to a heat sink, a heat sink, a copper alloy plate for heat dissipating parts used for a heat pipe and the like for processing heat generated from a CPU of a computer, an LED lamp and the like.
  • the present invention relates to a copper alloy plate for a heat dissipation component that is used when a process of heating to a high temperature such as brazing, diffusion bonding, deaeration, or the like is included as part of the manufacturing process of the heat dissipation component.
  • tubular heat pipes and flat heat pipes having high heat conductivity and heat transport capability have been proposed as heat dissipating parts having higher heat dissipating properties.
  • the heat pipe exhibits higher heat dissipation characteristics than the heat sink by cyclically performing evaporation (heat absorption from the CPU) and condensation (release of absorbed heat) of the refrigerant sealed inside.
  • evaporation heat absorption from the CPU
  • condensation release of absorbed heat
  • a tubular heat pipe (see Patent Document 3) is formed by sintering copper powder in a tube to form a wick, heat-degassing treatment, brazing and sealing one end, and putting a refrigerant in the tube under vacuum or reduced pressure. And the other end is brazed and sealed.
  • the planar heat pipe (see Patent Documents 4 and 5) is a further improvement of the heat dissipation performance of the tubular heat pipe.
  • a flat heat pipe has been proposed in which the inner surface is roughened, grooved, and the like, similar to the tubular heat pipe.
  • a method of brazing, etc. after joining two upper and lower pure copper plates that have undergone processing such as press molding, punching, cutting, etching, etc. by brazing, diffusion bonding, welding, etc. Seal with.
  • a degassing process may be performed in a joining process.
  • planar heat pipe one constituted by an outer member and an inner member accommodated in the outer member has been proposed.
  • One or more internal members are arranged inside the outer surface member in order to promote the condensation, evaporation and transport of the refrigerant, and fins, protrusions, holes, slits and the like having various shapes are processed.
  • the external surface member and the internal member are joined and integrated by a method such as brazing or diffusion bonding, brazing, etc. It seals by the method of.
  • the heat radiating plate and the heat sink are heated to about 200 to 700 ° C. in the soldering and brazing processes.
  • the tubular heat pipe and the planar heat pipe are heated to about 800 to 1000 ° C. in processes such as sintering, degassing, brazing using phosphor copper brazing (such as BCuP-2), diffusion bonding, and welding.
  • phosphor copper brazing such as BCuP-2
  • the softening is severe when heated at a temperature of 650 ° C. or higher.
  • the crystal grains become abruptly coarsened.
  • the manufactured heat pipe is easily deformed when attached to a heat sink and a semiconductor device, or incorporated into a PC housing, and the structure inside the heat pipe changes. Further, there is a problem that unevenness on the surface becomes large and the desired heat dissipation performance cannot be exhibited. Moreover, in order to avoid such a deformation
  • the copper alloy plates (Fe—P type) described in Patent Documents 1 and 2 are softened when heated at a temperature of 650 ° C. or higher, and the conductivity is greatly reduced as compared with pure copper. For this reason, for example, when a flat heat pipe is manufactured through processes such as sintering, degassing, brazing, diffusion bonding, welding, etc., it is easily deformed by the process of transporting and handling the heat pipe, incorporating it into the substrate, etc. . Moreover, the expected performance as a heat pipe cannot be obtained due to the decrease in conductivity.
  • An object of the present invention is to provide a copper alloy plate capable of giving sufficient heat resistance and heat dissipation performance to a heat dissipation component manufactured through a heating process.
  • a precipitation hardening type copper alloy improves strength and conductivity by performing an aging treatment after the solution treatment.
  • the precipitation hardening type copper alloy after solution treatment, after applying plastic working in the cold and introducing the plastic strain that becomes the precipitation site into the alloy, if not aging treatment, strength and conductivity by aging treatment
  • the rate improvement effect may be low.
  • plastic processing is not applied after the heating process. Therefore, when the heat-radiating component is manufactured from a precipitation-strengthening-type copper alloy plate, the strength and conductivity may not be sufficiently improved even if an aging treatment is performed after the heating step corresponding to the solution treatment.
  • the inventors of the Cu— (Ni, Fe) —P based alloy among the precipitation hardening type copper alloys by limiting the composition range of Ni, Fe and P and the [Ni + Fe] / P ratio, After the process, the present inventors have found that the strength and conductivity of the heat-dissipating component are greatly improved even when an aging treatment is performed without adding plastic working, and the present disclosure has been reached.
  • the copper alloy plate for heat dissipation component according to the present disclosure is used when a process of heating to 650 ° C. or more and an aging treatment are included as part of the process of manufacturing the heat dissipation component, and Ni: 0.2 to 0.95 Mass% and Fe: 0.05 to 0.8 mass%, P: 0.03 to 0.2 mass%, the balance is made of Cu and inevitable impurities, and the total content of Ni and Fe is [Ni + Fe], When the content of P is [P], [Ni + Fe] is 0.25 to 1.0% by mass, [Ni + Fe] / [P] is 2 to 10, and 0.2% proof stress is 100 MPa or more. Excellent bending workability, after heating at 850 ° C. for 30 minutes, water cooling, and then after aging treatment at 500 ° C. for 2 hours, 0.2% proof stress is 120 MPa or more, and conductivity is 40% IACS or more. is there.
  • the copper alloy plate for a heat dissipation component according to the present disclosure may further contain Co as an alloy element in a range of less than 0.05% by mass as necessary.
  • the copper alloy plate for heat dissipation component according to the present disclosure may further include one or two of Sn and Mg as alloy elements, if necessary, Sn: 0.005 to 1.0 mass%, Mg: 0.00. It can be contained in the range of 005 to 0.2% by mass, or / and Zn can be contained in the range of 1.0% by mass or less.
  • the copper alloy plate for heat radiating components according to the present disclosure may further contain one or more of Si, Al, Mn, Cr, Ti, Zr, and Ag as alloy elements in a total of 0.00 as necessary. It can be contained in an amount of 005 to 0.5% by mass.
  • the copper alloy plate according to the present disclosure is used when a process of heating to 650 ° C. or more and an aging treatment are included as part of a process of manufacturing a heat dissipation component. That is, the heat-radiating component manufactured using the copper alloy plate according to the present disclosure is subjected to aging treatment after high-temperature heating at 650 ° C. or higher, and the strength is improved.
  • the copper alloy plate according to the present disclosure has a 0.2% proof stress of 100 MPa or more and has excellent bending workability.
  • the copper alloy plate according to the present disclosure is heated to 850 ° C. for 30 minutes and then subjected to aging treatment at 500 ° C.
  • the copper alloy plate according to the present disclosure has high strength after aging treatment, when a heat-dissipating component such as a heat pipe manufactured using the copper alloy plate is attached to a heat sink or a semiconductor device, or incorporated into a PC housing or the like. In addition, the heat radiating component is not easily deformed.
  • the copper alloy plate according to the present invention has a conductivity lower than that of a pure copper plate, but since the strength after the aging treatment is high, the copper alloy plate can be thinned and can compensate for a decrease in conductivity in terms of heat dissipation performance.
  • the copper alloy plate for heat dissipation components is processed into a predetermined shape by press molding, punching, cutting, etching, etc., and heated at high temperature (degassing, joining (brazing, diffusion joining, welding (TIG, MIG, laser)). Etc.), heating for sintering, etc., to finish the heat-radiating component, although the heating conditions for the high-temperature heating differ depending on the type and manufacturing method of the heat-radiating component, but in the embodiment of the present invention, the high-temperature heating is performed at 650.
  • the copper alloy plate according to the embodiment of the present invention is made of a (Ni, Fe) -P-based copper alloy having a composition described later, and is heated within the temperature range. At least a part of the (Ni, Fe) -P compound precipitated in the base material is dissolved, crystal grains grow, and softening and decrease in conductivity occur.
  • the copper alloy plate according to the embodiment of the present invention has a strength (0.2% proof stress) of 120 MPa or more after aging treatment of heating at 850 ° C. for 30 minutes, followed by water cooling and then heating at 500 ° C. for 2 hours. Is 40% IACS or higher. Heating at 850 ° C. for 30 minutes is a heating condition that assumes the above-described high-temperature heating process in the manufacture of a heat dissipation component.
  • the copper alloy plate according to the embodiment of the present invention is heated at high temperature under these conditions, the (Ni, Fe) -P compound precipitated before heating is solid-dissolved, crystal grains grow, softening, and conductivity are increased. A decrease occurs.
  • a fine (Ni, Fe) -P compound is precipitated. Thereby, the intensity
  • the aging treatment is (a) maintained for a certain time in the precipitation temperature range during the cooling step after high-temperature heating, (b) cooled to room temperature after high-temperature heating, and then reheated to the precipitation temperature range and maintained for a certain time. (C) After the step (a), it can be carried out by a method such as reheating to the precipitation temperature range and holding for a certain period of time.
  • Specific aging treatment conditions include a condition of holding at a temperature range of 300 to 600 ° C. for 5 minutes to 10 hours.
  • the temperature-time condition in which a fine (Ni, Fe) -P compound is generated, and when priority is given to improving the electrical conductivity, Ni, Fe and P that are dissolved are reduced over time.
  • the temperature-time conditions for the above may be selected as appropriate.
  • the copper alloy plate after the aging treatment has a lower electrical conductivity than the pure copper plate after high-temperature heating, but the strength is significantly higher than that of the pure copper plate.
  • heat dissipation parts such as a heat pipe manufactured using the copper alloy board concerning the embodiment of the present invention, are aging-treated after high temperature heating.
  • the aging treatment conditions are as described above.
  • the heat radiating component (copper alloy plate) after the aging treatment has high strength and can be prevented from being deformed when it is attached to a heat sink and a semiconductor device or incorporated in a PC housing or the like.
  • the copper alloy plate (after aging treatment) according to the embodiment of the present invention since the copper alloy plate (after aging treatment) according to the embodiment of the present invention has higher strength than that of a pure copper plate, it can be thinned (0.1 to 1.0 mm thick). The heat dissipation performance of the parts can be improved, and the decrease in conductivity when compared with a pure copper plate can be compensated. Note that the copper alloy plate according to the embodiment of the present invention has a temperature of 120 MPa or more after aging treatment even when the temperature of the high temperature heating is less than 850 ° C. (650 ° C. or more) or more than 850 ° C. (1050 ° C. or less). 2% proof stress and 40% IACS or higher conductivity can be achieved.
  • the copper alloy plate according to the embodiment of the present invention is processed into a heat dissipation component by press molding, punching, cutting, etching, or the like before being heated at a high temperature to 650 ° C. or higher.
  • the copper alloy plate needs to have a strength that does not easily deform during conveyance and handling during the processing, and has mechanical properties that allow the processing to be performed without any problem. More specifically, the copper alloy plate according to the embodiment of the present invention has a 0.2% proof stress of 100 MPa or more and excellent bending workability. If the above characteristics are satisfied, the tempering of the copper alloy sheet is not a problem. For example, any of a solution-treated material, an aging-treated material, and a cold-rolled aging-treated material can be used.
  • the bending workability of the copper alloy plate it is preferable that no crack is generated by bending of R / t ⁇ 1.5, and it is more preferable that no crack is generated by bending of R / t ⁇ 1.0.
  • the bending workability of a copper alloy plate is generally tested with a test piece having a plate width of 10 mm (see the bending workability test in Examples described later).
  • it is preferable that no crack is generated by bending with R / t 0.5.
  • the average crystal grain size (cutting method) measured in the plate width direction on the surface of the copper alloy plate is preferably 20 ⁇ m or less, and 15 ⁇ m or less. Is more preferable.
  • the heat dissipation component manufactured by processing the copper alloy plate according to the embodiment of the present invention is softened when heated to a temperature of 650 ° C. or higher. It is preferable that the heat dissipating component after high-temperature heating has a strength that does not easily deform during conveyance and handling when performing an aging treatment. For that purpose, it is preferable to have a 0.2% yield strength of 50 MPa or more at the stage of heating at 850 ° C. for 30 minutes and then water cooling.
  • the heat-radiating component manufactured using the copper alloy plate according to the embodiment of the present invention is subjected to an aging treatment, and if necessary, at least a part of the outer surface mainly for the purpose of improving corrosion resistance and solderability.
  • An Sn coating layer is formed on the surface.
  • the Sn coating layer includes electroplating, electroless plating, or those formed by heating to a melting point of Sn or lower or higher than the melting point of Sn.
  • the Sn coating layer includes Sn metal and an Sn alloy, and the Sn alloy includes one or more of Bi, Ag, Cu, Ni, In, and Zn as alloy elements in addition to Sn in a total amount of 5% by mass or less. Things.
  • a base plating such as Ni, Co, Fe or the like can be formed under the Sn coating layer. These base platings have a function as a barrier for preventing the diffusion of Cu and alloy elements from the base material and a function for preventing damage by increasing the surface hardness of the heat dissipation component.
  • a Cu-Sn alloy layer is formed by plating Cu on the base plating, further plating Sn, and then performing a heat treatment to heat to a temperature lower than or higher than the melting point of Sn to form a Cu-Sn alloy layer and Sn A three-layer structure of the coating layer can also be used.
  • the Cu—Sn alloy layer has a function as a barrier for preventing diffusion of Cu and alloy elements from the base material, and a function for preventing damage by increasing the surface hardness of the heat dissipation component.
  • a Ni coating layer is formed on at least a part of the outer surface as necessary.
  • the Ni coating layer has a barrier that prevents the diffusion of Cu and alloy elements from the base material, a damage prevention by increasing the surface hardness of the heat dissipation component, and a function of improving corrosion resistance.
  • the copper alloy plate according to the embodiment of the present invention contains Ni: 0.2 to 0.95 mass%, Fe: 0.05 to 0.8 mass%, and P: 0.03 to 0.2 mass%. To do.
  • the total content of Ni and Fe [Ni + Fe] is in the range of 0.25 to 1.0% by mass.
  • Ni and Fe generate a P compound between them and improve the strength and stress relaxation resistance of the copper alloy sheet.
  • the P compound is composed of one or more of a Ni—P compound, a Fe—P compound, and a Ni—Fe—P compound in which a part of Ni is substituted with Fe. In the embodiment of the present invention, this P compound is expressed as (Ni, Fe) -P compound.
  • the P compound has a high solid solution temperature, and even if the copper alloy plate is heated to a high temperature of 650 ° C. or higher (for example, 850 ° C.), a part thereof exists relatively stably and the coarsening of the crystal grain size is prevented.
  • the higher the heating temperature of the copper alloy plate the higher the concentration of frozen vacancies after water cooling, and the more nucleation sites of precipitates. For this reason, the number density of spherical precipitates can be increased by the subsequent aging treatment, which contributes to the improvement in strength after the aging treatment.
  • [Ni + Fe] is 0.25 to 1.0 mass%, and the P content is 0.03 to 0.2 mass%. Moreover, when each content of Ni and Fe is less than 0.2 mass% and less than 0.05 mass%, respectively, the effect of improving the strength and stress relaxation resistance of the copper alloy sheet is small. Therefore, the lower limits of the Ni and Fe contents are 0.2% by mass and 0.05% by mass, respectively.
  • the content ratio [Ni + Fe] / [P] of the total content of Ni and Fe [Ni + Fe] and P content [P] is less than 2 or exceeds 10, the excess Ni, Fe or P is dissolved. As a result, the conductivity decreases. Therefore, the content ratio [Ni + Fe] / [P] is set to 2 to 10.
  • the lower limit value of [Ni + Fe] / [P] is preferably 2.2, and the upper limit value is preferably 9.5.
  • Co is added as necessary in order to precipitate Co alone in the Cu matrix and improve the heat resistance of the copper alloy.
  • Co substitutes a part of Ni or Fe of the (Ni, Fe) -P compound to improve the strength and stress relaxation resistance of the copper alloy sheet.
  • the Co content is less than 0.05% by mass.
  • Sn has a function of improving the strength of the copper alloy by dissolving in the copper alloy matrix, it is added as necessary. Further, the addition of Sn is also effective in improving the stress relaxation resistance. If the usage environment of the heat dissipating parts is 80 ° C or higher, creep deformation will occur and the contact surface with the heat source such as CPU will become smaller and heat dissipation will be reduced, but by improving the stress relaxation resistance, This phenomenon can be suppressed.
  • the Sn content is set to 0.005% by mass or more, preferably 0.01% by mass or more, more preferably 0.02% by mass or more.
  • the Sn content exceeds 1.0 mass%, the bending workability of a copper alloy plate will be reduced and the electrical conductivity after an aging treatment will be reduced. Therefore, the Sn content is 1.0% by mass or less, preferably 0.6% by mass or less, more preferably 0.3% by mass or less.
  • Mg like Sn, has a function of being dissolved in a copper alloy matrix and improving the strength and stress relaxation resistance of the copper alloy, and is added as necessary.
  • the Mg content is set to 0.005 mass% or more.
  • the Mg content exceeds 0.2% by mass, the bending workability of the copper alloy plate is lowered and the electrical conductivity after the aging treatment is lowered. Therefore, the Mg content is 0.2% by mass or less, preferably 0.15% by mass or less, more preferably 0.05% by mass or less.
  • Zn has an effect of improving the strength of the copper alloy plate and improving the heat-resistant peelability of the solder and the heat-resistant peelability of the Sn plating, and therefore is added as necessary.
  • soldering may be required, and after manufacturing the heat dissipation component, Sn plating may be performed to improve corrosion resistance.
  • a copper alloy plate containing Zn is suitably used for manufacturing such a heat dissipation component.
  • the Zn content exceeds 1.0% by mass, solder wettability decreases, so the Zn content is 1.0% by mass or less.
  • the Zn content is preferably 0.7% by mass or less, more preferably 0.5% by mass or less.
  • the Zn content is less than 0.01% by mass, it is insufficient for improving the heat-resistant peelability, and the Zn content is preferably 0.01% by mass or more.
  • Zn content 0.05 mass% or more is more preferable, and 0.1 mass% or more is further more preferable.
  • the copper alloy plate which concerns on embodiment of this invention contains Zn
  • Zn when it heats at the temperature of 500 degreeC or more, depending on heating atmosphere, Zn will vaporize, the surface property of a copper alloy plate will be reduced, or a heating furnace will be used. May be contaminated.
  • the Zn content is preferably 0.5% by mass or less, more preferably 0.3% by mass or less, and further preferably 0.2% by mass or less.
  • the lower limit of the total content of these elements shall be 0.005 mass or more.
  • the lower limit is more preferably 0.01% by mass, and still more preferably 0.02% by mass.
  • Si, Al, and Mn reduce the electrical conductivity of the copper alloy even if contained in small amounts, so the upper limit values are respectively Si: 0.2 mass%, Al: 0.2 mass%, and Mn: 0.00. It is preferable to set it as 1 mass%.
  • the lower limit values of Si, Al, and Mn are Si: 0.01 mass%, Al: 0.01 mass%, and Mn: 0.01 mass, respectively.
  • Cr, Ti, and Zr easily form inclusions such as oxides and sulfides of about several ⁇ m to several tens of ⁇ m, and a gap is formed between the inclusions and the base material by cold rolling.
  • the upper limit values of Cr, Ti, and Zr are preferably Cr: 0.2 mass%, Ti: 0.1 mass%, and Zr: 0.05 mass%.
  • Cr, Ti and Zr preferably have lower limit values of Cr: 0.005 mass%, Ti: 0.01 mass% and Zr: 0.005 mass%, respectively.
  • the upper limit of Ag is 0.5% by mass, and the lower limit is preferably 0.01% by mass in order to obtain the above effect.
  • H is preferably less than 1.5 ppm (mass ppm, hereinafter the same), more preferably less than 1 ppm, because H collects at grain boundaries and / or interfaces between inclusions and the base material during heating and generates swelling.
  • O is preferably less than 20 ppm, more preferably less than 15 ppm.
  • S, Pb, Bi, Sb, Se and As are preferably less than 30 ppm in total and more preferably less than 20 ppm.
  • the total content of these elements is preferably less than 10 ppm, more preferably less than 5 ppm.
  • the copper alloy sheet according to the embodiment of the present invention comprises (1) hot rolling-cold rolling-annealing and (2) hot rolling-cold rolling-annealing-cold after soaking the ingot having the above composition. It can be produced by processes such as hot rolling, (3) hot rolling, cold rolling, annealing, cold rolling, and low temperature annealing. In the above (1) to (3), the cold rolling-annealing step may be performed a plurality of times.
  • the annealing includes softening annealing, recrystallization annealing, or precipitation annealing (aging treatment).
  • the heating temperature may be selected from the range of 600 to 950 ° C.
  • the heating time may be selected from the range of 5 seconds to 1 hour.
  • continuous annealing is preferably performed by heating at 650 to 950 ° C. for 5 seconds to 3 minutes.
  • precipitation annealing it is preferable to perform the annealing under the condition that the temperature is kept within a temperature range of about 300 to 600 ° C. for 0.5 to 10 hours.
  • precipitation annealing can be performed in a subsequent step.
  • the final cold rolling is preferably selected from a range of a processing rate of 5 to 80% in accordance with the target 0.2% proof stress and bending workability.
  • Low temperature annealing softens the copper alloy plate without recrystallization in order to restore the ductility of the copper alloy plate.
  • continuous annealing it is maintained at 300 to 650 ° C. for about 1 second to 5 minutes. It is good to set in.
  • the solid temperature of the copper alloy plate is maintained at 250 ° C. to 400 ° C.
  • a copper alloy plate having a 0.2% proof stress of 100 MPa or more and excellent bending workability can be manufactured. Further, this copper alloy sheet has a 0.2% proof stress of 120 MPa or more and a conductivity of 40% IACS or more when aging treatment is performed at 850 ° C. for 30 minutes and then at 500 ° C. for 2 hours.
  • the copper alloy plate according to the embodiment of the present invention is preferably manufactured in the steps of cold rolling, recrystallization treatment with solution, cold rolling, and aging treatment after soaking and hot rolling the ingot. Is done. An aging treatment may be performed without performing cold rolling after the recrystallization treatment with solution treatment, and then cold rolling may be performed. Under this manufacturing method, a copper alloy plate manufactured using the copper alloy having the above composition under the following conditions has a 0.2% proof stress of 300 MPa or more and excellent bending workability. Melting and casting can be performed by ordinary methods such as continuous casting and semi-continuous casting. In addition, it is preferable to use what has little S, Pb, Bi, Se, and As content as a copper melt
  • the homogenization treatment is preferably held for 30 minutes or more after the temperature inside the ingot reaches a temperature of 800 ° C. or higher.
  • the holding time of the homogenization treatment is more preferably 1 hour or more, and further preferably 2 hours or more.
  • hot rolling is started at a temperature of 800 ° C. or higher.
  • the hot-rolling is preferably completed at a temperature of 600 ° C. or higher, and then rapidly cooled by a method such as water cooling.
  • the end temperature of hot rolling is preferably 650 ° C. or higher, and more preferably 700 ° C. or higher.
  • the recrystallization process accompanied by solutionization described later can also be performed by performing rapid cooling after hot rolling.
  • a copper alloy sheet having a desired recrystallized structure (fine recrystallized structure) is obtained after the subsequent recrystallization process.
  • the recrystallization treatment with solution treatment is performed at a temperature of 650 to 950 ° C., preferably 670 to 900 ° C. for 3 minutes or less.
  • the content of Ni, Fe and P in the copper alloy is small, it is performed in a lower temperature region within the above temperature range, and when the content of Ni, Fe and P is large, it is performed in a higher temperature region within the above temperature range. It is preferable.
  • (a) cold rolling-aging treatment, (b) cold rolling-aging treatment-cold rolling, (c) cold rolling-aging treatment-cold rolling-low temperature annealing (D) Aging treatment—cold rolling, (e) Aging treatment—cold rolling—low temperature annealing can be selected.
  • the aging treatment (precipitation annealing) is performed under the condition of holding at a heating temperature of about 300 to 600 ° C. for 0.5 to 10 hours. When the heating temperature is less than 300 ° C., the amount of precipitation is small, and when it exceeds 600 ° C., the precipitate tends to be coarsened.
  • the lower limit of the heating temperature is preferably 350 ° C, and the upper limit is preferably 580 ° C, more preferably 560 ° C.
  • the holding time for the aging treatment is appropriately selected depending on the heating temperature, and is carried out within the range of 0.5 to 10 hours. When the holding time is 0.5 hours or less, the precipitation is insufficient, and even if the holding time exceeds 10 hours, the amount of precipitation is saturated and the productivity is lowered.
  • the lower limit of the holding time is preferably 1 hour, more preferably 2 hours.
  • Copper alloys having the compositions shown in Tables 1 and 2 were cast to produce ingots having a thickness of 45 mm, a length of 85 mm, and a width of 200 mm, respectively.
  • H as an inevitable impurity was less than 1 ppm
  • O was less than 15 ppm
  • S, Pb, Bi, Sb, Se, and As were less than 20 ppm in total.
  • Each ingot was subjected to a soaking treatment at 965 ° C. for 3 hours, followed by hot rolling to obtain a hot-rolled material having a plate thickness of 15 mm, and quenching (water cooling) from a temperature of 650 ° C. or higher.
  • Polishing (facing) both sides of the hot-rolled material after quenching by 1 mm, cold rolling to a target plate thickness of 0.6 mm, and holding at 650-950 ° C. for 10-60 seconds (solution) ).
  • 50% finish cold rolling was performed to produce a copper alloy plate having a plate thickness of 0.3 mm.
  • each measurement test of conductivity, mechanical properties, bending workability, and solder wettability was performed in the following manner. The results are shown in Tables 3 and 4.
  • the obtained copper alloy plate was heated at 850 ° C. for 30 minutes and then cooled with water, and further subjected to aging treatment (precipitation treatment) at 500 ° C. for 2 hours, respectively.
  • aging treatment precipitation treatment
  • Each measurement test of physical characteristics was conducted. The results are shown in Tables 3 and 4.
  • the conductivity was measured by a four-terminal method using a double bridge in accordance with the nonferrous metal material conductivity measurement method specified in JIS-H0505.
  • Mechanism of conductivity A JIS No. 5 tensile test piece was cut out from the specimen so that the longitudinal direction was parallel to the rolling direction, and a tensile test was performed in accordance with JIS-Z2241, thereby measuring the yield strength and elongation.
  • the yield strength is a tensile strength corresponding to a permanent elongation of 0.2%.
  • solder wettability A strip-shaped test piece was collected from each test material, and the inactive flux was dip coated for 1 second, and then the solder wetting time was measured by the menisograph method.
  • the solder used was Sn-3 mass% Ag-0.5 mass% Cu maintained at 260 ⁇ 5 ° C., and the test was performed under the test conditions of an immersion speed of 25 mm / sec, an immersion depth of 5 mm, and an immersion time of 5 sec.
  • a solder wetting time of 2 seconds or less was evaluated as having excellent solder wettability. Except for Comparative Example 6, the solder wetting time was 2 seconds or less.
  • the copper alloy sheets of Examples 1 to 24 shown in Tables 1 and 3 have an alloy composition that satisfies the provisions of the present disclosure, and has a strength (0.2% yield strength) after being heated at 850 ° C. for 30 minutes and then subjected to an aging treatment. It is 120 MPa or more and the electrical conductivity is 40% IACS or more.
  • the copper alloy sheet before heating at 850 ° C. has a strength (0.2% proof stress) of 300 MPa or more, and is excellent in bending workability and solder wettability.
  • the copper alloy sheets of Comparative Examples 1 to 10 shown in Tables 2 and 4 are inferior in some characteristics as shown below. Since the comparative example 1 does not contain Ni and the total content [Ni + Fe] of Ni and Fe is small, the strength after the aging treatment is low. In Comparative Example 2, since the P content was excessive, cracks occurred during hot rolling, and it was not possible to proceed to the process after hot rolling. In Comparative Example 3, the Ni content is small, the total content of Ni and Fe [Ni + Fe] is small, and the P content is also small, so the strength after aging treatment is low. In Comparative Examples 4 and 5, the Sn or Mg content is excessive and the electrical conductivity after the aging treatment is low.
  • Comparative Example 6 the Zn content was excessive and the solder wettability was poor as described above.
  • Comparative Example 7 the total amount of elements other than the main elements (Al, Mn, etc.) exceeded 0.5% by mass, and thus the electrical conductivity after aging treatment was low. Since Comparative Example 8 does not contain Fe and the total content of Ni and Fe [Ni + Fe] is small, the strength after aging treatment is low. In Comparative Example 9, the total content of Ni and Fe [Ni + Fe] and P content was excessive, cracking occurred during hot rolling, and it was not possible to proceed to the process after hot rolling. Comparative Example 10 has a low Ni content and a low yield strength after aging treatment.
  • Examples 4, 7 and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2 are about typical ones (Examples 4, 7 and 10 and Comparative Examples 1 and 5 shown in Tables 1 and 2) among the copper alloy plates (plate thickness 0.3 mm) produced in [Example 1] at 1000 ° C. After heating for 30 minutes, cooling with water, further heating at 500 ° C. for 2 hours (aging treatment), and using the copper alloy plate as a test material, each measurement test of conductivity and mechanical properties is described in [Example 1]. Went in the way. The results are shown in Table 5.
  • Example 4 the cold-rolled copper alloy plate (thickness 0.6 mm) produced in [Example 1] was used. Further, 50% cold rolling was performed to produce a copper alloy plate having a plate thickness of 0.3 mm. Next, the copper alloy plate was subjected to a recrystallization treatment (with solution) that was held at 650 to 825 ° C. for 10 to 60 seconds.
  • Example 1 Using the obtained copper alloy plate as a test material, the measurement tests for conductivity, mechanical properties, and bending workability were performed by the methods described in [Example 1].
  • the obtained copper alloy plate was heated at 850 ° C. for 30 minutes and then water-cooled, and further subjected to aging treatment (precipitation treatment) at 500 ° C. for 2 hours.
  • aging treatment precipitation treatment
  • each measurement test of mechanical properties was performed.
  • Table 6 the compositions of Examples 4A, 7A and 10A are the same as the compositions of Examples 4, 7 and 10 in Table 1, and the compositions of Comparative Examples 1A and 5A are those of Comparative Examples 1 and 5 of Table 2. Same as composition.
  • the copper alloy sheets of Examples 4A, 7A, and 10A shown in Table 6 have an alloy composition that satisfies the provisions of the present disclosure, and has a strength (0.2% yield strength) after being heated at 850 ° C. for 30 minutes and then subjected to an aging treatment. It is 120 MPa or more and the electrical conductivity is 40% IACS or more.
  • the copper alloy sheet before heating at 850 ° C. has a strength (0.2% yield strength) of 100 MPa or more and excellent bending workability.
  • the copper alloy plate of Comparative Example 1A has low strength after aging treatment
  • the copper alloy of Comparative Example 5A has low conductivity after aging treatment.
  • Example 4 the cold-rolled copper alloy plate (thickness 0.6 mm) produced in [Example 1] was used. Further, cold rolling was performed to obtain a plate thickness of 0.32 mm. Next, after performing recrystallization treatment (with solution) at 650 to 825 ° C. for 10 to 60 seconds, finish cold rolling was performed to produce a copper alloy plate having a thickness of 0.3 mm.
  • Example 7 Using the obtained copper alloy plate as a test material, the measurement tests for conductivity, mechanical properties, and bending workability were performed by the method described in Example 1 above.
  • the obtained copper alloy plate was heated at 850 ° C. for 30 minutes and then water-cooled, and further subjected to aging treatment (precipitation treatment) at 500 ° C. for 2 hours.
  • aging treatment precipitation treatment
  • each measurement test of mechanical properties was performed.
  • Table 7 the compositions of Examples 4B, 7B and 10B are the same as the compositions of Examples 4, 7 and 10 in Table 1, and the compositions of Comparative Examples 1B and 5B are those of Comparative Examples 1 and 5 in Table 2. Same as composition.
  • the copper alloy sheets of Examples 4B, 7B, and 10B shown in Table 7 have the alloy composition that satisfies the provisions of the present disclosure, and have a strength (0.2% yield strength) after being heated at 850 ° C. for 30 minutes and then subjected to an aging treatment. It is 120 MPa or more and the electrical conductivity is 40% IACS or more.
  • the copper alloy sheet before heating at 850 ° C. has a strength (0.2% yield strength) of 100 MPa or more and excellent bending workability.
  • the copper alloy plate of Comparative Example 1B has low strength after aging treatment
  • the copper alloy of Comparative Example 5B has low conductivity after aging treatment.
  • Aspect 1 Ni: 0.2 to 0.95% by mass and Fe: 0.05 to 0.8% by mass; P: 0.03 to 0.2% by mass, with the balance being Cu and inevitable impurities;
  • Aspect 2 Ni: 0.2 to 0.95% by mass and Fe: 0.05 to 0.8% by mass; P: 0.03 to 0.2% by mass, with the balance being Cu and inevitable impurities;
  • the total content of Fe and Fe is [Ni + Fe] and the content of P is [P]
  • [Ni + Fe] is 0.25 to 1.0 mass%
  • [Ni + Fe] / [P] is 2 to 10 Yes
  • 0.2% proof stress is 100MPa or more, and has excellent bending workability. Heated at 850 ° C for 30 minutes, then water cooled, then 0.2% proof stress after aging treatment at 500 ° C for 2 hours.
  • a copper alloy plate for a heat-dissipating component characterized by including a process of heating to 650 ° C. or more and an aging treatment as part of a process for producing a heat-dissipating component, having a conductivity of 120 MPa or more and an electrical conductivity of 40% IACS or more.
  • Aspect 2 Furthermore, Co is contained in the range below 0.05 mass%, The copper alloy for heat radiating components described in aspect 1 characterized by the above-mentioned.
  • Aspect 3 Further, Embodiment 1 or 2 containing one or two of Sn and Mg in a range of Sn: 0.005 to 1.0 mass% and Mg: 0.005 to 0.2 mass%.
  • Aspect 4 Furthermore, the copper alloy plate for a heat radiating component according to any one of aspects 1 to 3, further comprising other elements so as to satisfy at least the following (i) or (ii): (I) 1.0% by mass or less of Zn (ii) 0.005 to 0.5% by mass in total of one or more of Si, Al, Mn, Cr, Ti, Zr, and Ag
  • the total content of Fe and Fe is [Ni + Fe] and the content of P is [P]
  • [Ni + Fe] is 0.25 to 1.0 mass%
  • [Ni + Fe] / [P] is 2 to 10
  • a heat radiating component comprising a copper alloy plate, having a (Ni, Fe) -P compound precipitated therein, having a 0.2% proof stress of 120 MPa or more and a conductivity of 40% IACS or more.
  • Aspect 6 The heat-radiating component described in aspect 5, wherein the copper alloy plate further contains Co in a range of less than 0.05% by mass.
  • Aspect 7 The copper alloy plate further contains one or two of Sn and Mg in a range of Sn: 0.005 to 1.0 mass% and Mg: 0.005 to 0.2 mass%.
  • Aspect 8 Furthermore, the heat dissipating component according to any one of aspects 5 to 7, further comprising other elements so as to satisfy at least the following (i) or (ii). (I) 1.0% by mass or less of Zn (ii) 0.005 to 0.5% by mass in total of one or more of Si, Al, Mn, Cr, Ti, Zr, and Ag Aspect 9: 9.
  • the heat dissipating component according to any one of aspects 5 to 8, wherein at least one of a Sn coating layer and a Ni coating layer is formed on at least a part of the outer surface.
  • Aspect 10 After processing the copper alloy plate for a heat-dissipating part described in any one of Embodiments 1 to 4 into a predetermined shape, a process of heating to 650 ° C. or higher is performed, followed by an aging treatment, and a 0.2% proof stress of 110 MPa or higher. And a method of manufacturing a heat radiating component, comprising obtaining a heat radiating component having a conductivity of 40% IACS or higher.
  • Aspect 11 After the aging treatment, at least one of a Sn coating layer and a Ni coating layer is formed on at least a part of the outer surface of the heat dissipation component.
  • Japanese Patent Application No. 2015-254645 and a Japanese patent application whose application date is September 8, 2016, Japanese Patent Application No. 2016-175464. Accompanied by claiming priority as a basic application. Japanese Patent Application No. 2015-254645 and Japanese Patent Application No. 2016-175464 are incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Conductive Materials (AREA)

Abstract

放熱部品を製造するプロセスの一部に650℃以上の温度に加熱するプロセスが含まれる場合に、製造後の放熱部品に十分な強度と放熱性能を持たせることができる銅合金板を提供する。 Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有し、Ni及びFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、かつ[Ni+Fe]/[P]が2~10であり、残部がCu及び不可避不純物からなる銅合金板。この銅合金板は、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上である。

Description

放熱部品用銅合金板
 本開示は、コンピューターのCPU、LEDランプ等から発生する熱を処理する放熱板、ヒートシンク、ヒートパイプ等に用いる放熱部品用銅合金板に関する。特に、放熱部品の製造プロセスの一部として、ろう付け、拡散接合、脱気等、高温に加熱するプロセスが含まれる場合に用いられる放熱部品用銅合金板に関する。
 デスク型PC、ノート型PC等に搭載されるCPUの動作速度の高速化及び高密度化が急速に進展し、これらのCPUからの発熱量が一段と増大している。CPUの温度が一定以上の温度に上昇すると、誤作動、熱暴走などの原因となるため、CPU等の半導体装置からの効果的な放熱は切実な問題となっている。
 半導体装置の熱を吸収し、大気中に放散させる放熱部品してヒートシンクが使われている。ヒートシンクには高熱伝導性が求められることから、素材として熱伝導率の大きい銅、アルミニウムなどが用いられる。しかし、対流熱抵抗が、ヒートシンクの性能を制限しており、発熱量が増大する高機能電子部品の放熱要求を満たすことが難しくなってきている。
 このため、より高い放熱性を有する放熱部品として、高い熱伝導性及び熱輸送能力を備える管状ヒートパイプ及び平面状ヒートパイプ(ベーパーチャンバ)が提案されている。ヒートパイプは、内部に封入した冷媒の蒸発(CPUからの吸熱)と凝縮(吸収した熱の放出)が循環的に行われることにより、ヒートシンクに比べて高い放熱特性を発揮する。また、ヒートパイプをヒートシンク及びファンといった放熱部品と組合せることにより、半導体装置の発熱問題を解決することが提案されている。
 放熱板、ヒートシンク、ヒートパイプ等に用いられる放熱部品の素材として、導電率及び耐食性に優れる純銅製(無酸素銅:C1020)の板又は管が多用されている。成形加工性を確保するため、素材として軟質の焼鈍材(O材)及び/又は1/4H調質材が用いられるが、後述する放熱部品の製造工程において、変形及び疵が発生しやすい、打抜き加工時にバリが出やすい、打抜き金型が磨耗しやすい等の問題がある。一方、特許文献1及び2には、放熱部品の素材としてFe-P系の銅合金板が記載されている。
 放熱板及びヒートシンクは、純銅板をプレス成形、打抜き加工、切削、穴開け加工、エッチングなどにより所定形状に加工後、必要に応じてNiめっき及び/又はSnめっきを行ってからはんだ、ろう、接着剤等でCPU等の半導体装置と接合する。
 管状ヒートパイプ(特許文献3参照)は、銅粉末を管内に焼結してウィックを形成し、加熱脱ガス処理後、一端をろう付け封止し、真空又は減圧下で管内に冷媒を入れてからもう一方の端部をろう付け封止して製造する。
 平面状ヒートパイプ(特許文献4及び5参照)は、管状ヒートパイプの放熱性能を更に向上させたものである。平面状ヒートパイプとして、冷媒の凝縮と蒸発を効率的に行うために、管状ヒートパイプと同様に、内面に粗面化加工、溝加工等を行ったものが提案されている。プレス成形、打抜き加工、切削、エッチングなどの加工を行った上下2枚の純銅板を、ろう付け、拡散接合、溶接等の方法により接合し、内部に冷媒を入れた後、ろう付け等の方法により封止する。接合工程で脱ガス処理が行われることがある。
 また、平面状ヒートパイプとして、外面部材と、外面部材の内部に収容される内部部材とより構成されたものが提案されている。内部部材は、冷媒の凝縮、蒸発及び輸送を促進するために、外面部材の内部に一又は複数配置されるもので、種々の形状のフィン、突起、穴、スリット等が加工されている。この形式の平面状ヒートパイプにおいても、内部部材を外面部材の内部に配置した後、ろう付け、拡散接合等の方法により外面部材と内部部材を接合一体化し、冷媒を入れた後、ろう付け等の方法により封止する。
特開2003-277853号公報 特開2014-189816号公報 特開2008-232563号公報 特開2007-315745号公報 特開2014-134347号公報
 これらの放熱部品の製造工程において、放熱板及びヒートシンクは、はんだ付け及びろう付けの工程で200~700℃程度に加熱される。管状ヒートパイプ及び平面状ヒートパイプは、焼結、脱ガス、りん銅ロウ(BCuP-2等)を用いたろう付け、拡散接合、溶接などの工程で800~1000℃程度に加熱される。
 例えば、ヒートパイプの素材として純銅板を用いた場合、650℃以上の温度で加熱をしたときの軟化が激しい。また、急激な結晶粒の粗大化が生じる。このため、ヒートシンク及び半導体装置への取付け、又はPC筐体への組込み等の際に、製造したヒートパイプが変形しやすく、ヒートパイプ内部の構造が変化してしまう。また、表面の凹凸が大きくなり、所期の放熱性能を発揮できなくなってしまう問題がある。また、このような変形を避けるには純銅板の厚さを厚くすればよいが、そうするとヒートパイプの質量、及び厚さが増大する。厚さが増大した場合、PC筐体内部の隙間が小さくなり、対流伝熱性能が低下する問題がある。
 また、特許文献1及び2に記載された銅合金板(Fe-P系)も、650℃以上の温度で加熱をすると軟化し、さらに純銅に比べて導電率が大きく低下する。このため、焼結、脱ガス、ろう付け、拡散接合、溶接等の工程を経て例えば平面状ヒートパイプを製造した場合、同ヒートパイプの搬送及びハンドリング、基盤への組込み工程等で容易に変形する。また、導電率が低下することで、ヒートパイプとしての所期の性能が出なくなる。
 本開示は、純銅又は銅合金板から放熱部品を製造するプロセスの一部に650℃以上の温度に加熱するプロセスが含まれる場合の上記問題点に鑑みてなされたもので、650℃以上の温度に加熱するプロセスを経て製造された放熱部品に、十分な強度と放熱性能を持たせることができる銅合金板を提供することを目的とする。
 析出硬化型銅合金は、溶体化処理後、時効処理を行うことで、強度及び導電率が向上する。しかし、析出硬化型銅合金は、溶体化処理後、冷間で塑性加工を加えて析出サイトとなる塑性歪みを合金中に導入した後、時効処理を行うのでなければ、時効処理による強度及び導電率の向上効果が低い場合がある。
 ろう付け、拡散接合、溶接等の加熱工程を経て製作されたベーパチャンバ等の放熱部品の場合、前記加熱工程後に塑性加工が加えられることはない。従って、前記放熱部品を析出強化型銅合金の板材から製作した場合に、溶体化処理に相当する上記加熱工程後、時効処理を施しても、強度及び導電率が十分向上しない場合がある。
 一方、発明者らは、析出硬化型銅合金のうちCu-(Ni,Fe)-P系合金において、Ni、Fe及びPの組成範囲及び[Ni+Fe]/P比を限定することにより、上記加熱工程後、塑性加工を加えることなく時効処理した場合でも、放熱部品の強度及び導電率が大きく向上することを見出し、本開示に到達した。
 本開示に係る放熱部品用銅合金板は、放熱部品を製造するプロセスの一部として、650℃以上に加熱するプロセスと時効処理が含まれる場合に用いられ、Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%、残部がCu及び不可避不純物からなり、Ni及びFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、かつ[Ni+Fe]/[P]が2~10であり、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上である。
 本開示に係る放熱部品用銅合金板は、必要に応じて、合金元素としてさらに、Coを0.05質量%未満の範囲で含有することができる。また、本開示に係る放熱部品用銅合金板は、必要に応じて、合金元素としてさらに、SnとMgの1種又は2種をSn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有し、又は/及びZnを1.0質量%以下の範囲で含有することができる。また、本開示に係る放熱部品用銅合金板は、必要に応じて、合金元素としてさらに、Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%含有することができる。
 本開示に係る銅合金板は、放熱部品を製造するプロセスの一部として、650℃以上に加熱するプロセスと時効処理が含まれる場合に使用される。つまり、本開示に係る銅合金板を用いて製造した放熱部品は、650℃以上に高温加熱後時効処理され、強度が向上している。
 本開示に係る銅合金板は、0.2%耐力が100MPa以上であり、優れた曲げ加工性を有する。そして、本開示に係る銅合金板は、850℃に30分加熱し、次いで500℃で2時間加熱する時効処理を行ったとき、0.2%耐力が120MPa以上、導電率が40%IACS以上である。本開示に係る銅合金板は、時効処理後の強度が高いため、この銅合金板を用いて製造したヒートパイプ等の放熱部品を、ヒートシンク及び半導体装置へ取り付け、又はPC筐体等に組み込む際に、該放熱部品が変形しにくい。また、本発明に係る銅合金板は、導電率が純銅板より低いが、時効処理後の強度が高いため薄肉化でき、放熱性能の点で導電率の低下分を補うことができる。
 以下、本発明の実施形態に係る放熱部品用銅合金板について、より詳細に説明する。
 本発明の実施形態に係る銅合金板は、プレス成形、打抜き加工、切削、エッチングなどにより所定形状に加工され、高温加熱(脱ガス、接合(ろう付け、拡散接合、溶接(TIG、MIG、レーザー等)、焼結等のための加熱)を経て、放熱部品に仕上げられる。放熱部品の種類及び製造方法により前記高温加熱の加熱条件が異なるが、本発明の実施形態では、前記高温加熱を650℃~1050℃程度で行う場合を想定している。本発明の実施形態に係る銅合金板は後述する組成の(Ni,Fe)-P系銅合金からなり、前記温度範囲内に加熱すると、母材に析出していた(Ni,Fe)-P化合物の少なくとも一部が固溶し、結晶粒が成長し、軟化及び導電率の低下が生じる。
 本発明の実施形態に係る銅合金板は、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の強度(0.2%耐力)が120MPa以上、導電率が40%IACS以上である。850℃で30分の加熱は、放熱部品の製造における前記高温加熱のプロセスを想定した加熱条件である。本発明の実施形態に係る銅合金板をこの条件で高温加熱すると、加熱前に析出していた(Ni,Fe)-P化合物が固溶し、結晶粒が成長し、軟化、及び導電率の低下が生じる。次いで前記銅合金板を時効処理すると、微細な(Ni,Fe)-P化合物が析出する。これにより、前記高温加熱により低下した強度及び導電率が顕著に改善する。
 前記時効処理は、(a)高温加熱後の冷却工程中に析出温度範囲に一定時間保持する、(b)高温加熱後室温まで冷却し、その後析出温度範囲に再加熱して一定時間保持する、(c)前記(a)の工程後、析出温度範囲に再加熱して一定時間保持する、等の方法で実施することができる。
 具体的な時効処理条件として、300~600℃の温度範囲で5分~10時間保持する条件が挙げられる。強度の向上を優先するときは微細な(Ni,Fe)-P化合物が生成する温度-時間条件を、導電率の向上を優先するときは固溶するNi、Fe及びPが減少する過時効気味の温度-時間条件を、適宜選定すればよい。
 時効処理後の銅合金板は、高温加熱後の純銅板に比べて導電率は低いが、強度は純銅板に比べて顕著に高くなる。この効果を得るため、本発明の実施形態に係る銅合金板を用いて製造したヒートパイプ等の放熱部品は、高温加熱後時効処理される。時効処理条件は、前記のとおりである。時効処理後の放熱部品(銅合金板)は強度が高く、ヒートシンク及び半導体装置へ取り付け、又はPC筐体等に組み込む際に、該放熱部品の変形を防止できる。また、本発明の実施形態に係る銅合金板(時効処理後)は、純銅板に比べて強度が高いため、薄肉化(0.1~1.0mm厚)することができ、そのことにより放熱部品の放熱性能を高め、純銅板と比べた場合の導電率の低下分を補うことができる。
 なお、本発明の実施形態に係る銅合金板は、高温加熱の温度が850℃未満(650℃以上)又は850℃超(1050℃以下)であっても、時効処理後に、120MPa以上の0.2%耐力、及び40%IACS以上の導電率を達成できる。
 本発明の実施形態に係る銅合金板は、650℃以上の温度に高温加熱される前に、プレス成形、打抜き加工、切削、エッチングなどにより、放熱部品に加工される。銅合金板は、前記加工に際しての搬送及びハンドリングにおいて容易に変形しない強度を有し、前記加工が支障なく実行できる機械的特性を有する必要がある。より具体的には、本発明の実施形態に係る銅合金板は、0.2%耐力が100MPa以上、及び優れた曲げ加工性を有する。以上の特性を満たしていれば、銅合金板の調質は問題にならない。例えば溶体化処理材、時効処理上がり、時効処理上り材を冷間圧延したものなど、いずれも使用可能である。
 曲げ加工においては、曲げ部で割れが発生しないことが求められる。さらに、曲げ線及びその近傍において、肌荒れが発生しないことが好ましい。同一材質の銅合金板であっても、曲げによる割れ及び肌荒れの発生しやすさは、曲げ半径Rと板厚tの比率R/tに依存する。銅合金板を用いてベーパーチャンバー等の放熱部品を製造する場合、銅合金板の曲げ加工性として、通常、圧延平行方向及び直角方向共にR/t≦2の曲げを行った場合に割れが発生しないことが求められる。銅合金板の曲げ加工性として、R/t≦1.5の曲げで割れが発生しないことが好ましく、R/t≦1.0の曲げで割れが発生しないことがより好ましい。銅合金板の曲げ加工性は、一般に板幅10mmの試験片で試験される(後述する実施例の曲げ加工性試験を参照)。銅合金板材を曲げ加工する場合、曲げ幅が大きいほど割れが発生しやすくなることから、放熱部品として特に曲げ幅が大きい場合には、R/t=1.0の曲げで割れが発生しないことが好ましく、さらにR/t=0.5の曲げで割れが発生しないことが好ましい。また、曲げ線及びその近傍で肌荒れを発生させないためには、銅合金板の表面において板幅方向に測定した平均結晶粒径(切断法)が20μm以下であることが好ましく、15μm以下であることがより好ましい。
 先に述べたとおり、本発明の実施形態に係る銅合金板を加工して製造した放熱部品は、650℃以上の温度に高温加熱すると軟化する。高温加熱後の放熱部品は、さらに時効処理を施す際の搬送及びハンドリングにおいて容易に変形しない強度を有することが好ましい。そのためには、850℃で30分加熱後水冷した段階で、50MPa以上の0.2%耐力を有することが好ましい。
 本発明の実施形態に係る銅合金板を用いて製造された放熱部品は、時効処理を受けた後、必要に応じて、耐食性及びはんだ付け性の向上を主目的として、少なくとも外表面の一部にSn被覆層が形成される。Sn被覆層には、電気めっき、無電解めっき、あるいはこれらのめっき後、Snの融点以下又は融点以上に加熱して形成されたものが含まれる。Sn被覆層には、Sn金属とSn合金が含まれ、Sn合金としては、Sn以外に合金元素としてBi,Ag,Cu,Ni,In及びZnのうち1種以上を合計で5質量%以下含むものが挙げられる。
 Sn被覆層の下に、Ni,Co,Fe等の下地めっきを形成することができる。これらの下地めっきは、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。前記下地めっきの上にCuをめっきし、さらにSnをめっき後、Snの融点以下又は融点以上に加熱する熱処理を行ってCu-Sn合金層を形成し、下地めっき、Cu-Sn合金層及びSn被覆層の3層構成とすることもできる。Cu-Sn合金層は、母材からのCuや合金元素の拡散を防止するバリアとしての機能、及び放熱部品の表面硬さを大きくすることによる傷つき防止の機能を有する。
 また、本発明の実施形態に係る銅合金板を用いて製造された放熱部品は、時効処理を受けた後、必要に応じて、少なくとも外表面の一部にNi被覆層が形成される。Ni被覆層は、母材からのCuや合金元素の拡散を防止するバリア、放熱部品の表面硬さを大きくすることによる傷つき防止、及び耐食性を向上させる機能を有する。
 次に本発明の実施形態に係る銅合金板の組成について説明する。
 本発明の実施形態に係る銅合金板は、Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有する。Ni及びFeの合計含有量[Ni+Fe]は0.25~1.0質量%の範囲内とされる。
 Ni及びFeは、Pとの間にP化合物を生成し、銅合金板の強度及び耐応力緩和特性を向上させる。なお、このP化合物は、Ni-P化合物、Fe-P化合物、及びNiの一部がFeで置換されたNi-Fe-P化合物の1種又は2種以上からなる。本発明の実施形態ではこのP化物を(Ni,Fe)-P化合物と表記している。P化合物は固溶温度が高く、銅合金板が650℃以上の高温(例えば850℃)に加熱されても一部は比較的安定に存在し、結晶粒径の粗大化が防止される。一方、銅合金板の加熱温度が高いほど、水冷後の凍結空孔濃度が高くなり、析出物の核生成サイトが増える。このため、続いて行われる時効処理により球状の析出物の数密度を増やすことができ、これは時効処理後の強度の向上に寄与する。
 Ni及びFeの合計含有量[Ni+Fe]が0.25質量%未満、又はP含有量が0.03質量%未満では、P化合物の析出量が少なく、銅合金板の強度及び耐応力緩和特性を向上させる効果が少ない。一方、[Ni+Fe]が1.0質量%を超え又はP含有量[P]が0.2質量%を超えると、粗大な酸化物、晶出物、析出物などが生成して熱間加工性が低下し、かつ銅合金板の強度、耐応力緩和特性及び曲げ加工性が低下する。また、Ni、Fe及びPの固溶量が増え、銅合金板の導電率が低下する。従って、[Ni+Fe]は0.25~1.0質量%、P含有量は0.03~0.2質量%とする。
 また、Ni及びFeの個々の含有量が、それぞれ0.2質量%未満、0.05質量%未満の場合、銅合金板の強度及び耐応力緩和特性を向上させる効果が少ない。従って、Ni及びFeの含有量の下限値は、それぞれ0.2質量%、0.05質量%とする。
 Ni及びFeの合計含有量[Ni+Fe]とP含有量[P]の含有量比[Ni+Fe]/[P]が、2未満又は10を超える場合、過剰となったNi、Fe又はPが固溶して、導電率が低下する。従って、含有量比[Ni+Fe]/[P]は2~10とする。[Ni+Fe]/[P]の下限値は好ましくは2.2、上限値は好ましくは9.5である。
 CoはCuマトリックス中にCo単独で析出して銅合金の耐熱性を向上させるため、必要に応じて添加される。また、Coは(Ni,Fe)-P化合物のNi又はFeの一部を置換し、銅合金板の強度及び耐応力緩和特性を向上させる。しかし、Coは高価であるので、Co含有量は0.05質量%未満とする。
 Snは銅合金母相に固溶して銅合金の強度を向上させる作用を有するため、必要に応じて添加される。また、Snの添加は耐応力緩和特性の向上にも有効である。放熱部品の使用環境が80℃又はそれ以上となると、クリ-プ変形が生じてCPU等の熱源との接触面が小さくなり、放熱性が低下するが、耐応力緩和特性を向上させることで、この現象を抑制できる。強度及び耐応力緩和特性の向上の効果を得るため、Sn含有量は0.005質量%以上とし、好ましくは0.01質量%以上、より好ましくは0.02質量%以上とする。一方、Sn含有量が1.0質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Sn含有量は1.0質量%以下とし、好ましくは0.6質量%以下、より好ましくは0.3質量%以下とする。
 Mgは、Snと同様に、銅合金母相に固溶して銅合金の強度及び耐応力緩和特性を向上させる作用を有するため、必要に応じて添加される。強度及び耐応力緩和特性の向上の効果を得るため、Mg含有量は0.005質量%以上とする。一方、Mg含有量が0.2質量%を超えると、銅合金板の曲げ加工性を低下させ、かつ時効処理後の導電率を低下させる。従って、Mg含有量は0.2質量%以下とし、好ましくは0.15質量%以下、より好ましくは0.05質量%以下とする。
 Znは、銅合金板の強度を向上させ、はんだの耐熱剥離性及びSnめっきの耐熱剥離性を改善する作用を有するため、必要に応じて添加される。放熱部品を半導体装置へ組み込むとき、はんだ付けが必要な場合があり、また、放熱部品を製造後、耐食性改善のためSnめっきを行う場合がある。このような放熱部品の製造に、Znを含有する銅合金板が好適に用いられる。しかし、Znの含有量が1.0質量%を越えると、はんだ濡れ性が低下するため、Znの含有量は1.0質量%以下とする。Znの含有量は好ましくは0.7質量%以下、より好ましくは0.5質量%以下とする。一方、Zn含有量が0.01質量%未満では、耐熱剥離性の改善には不十分であり、Znの含有量は0.01質量%以上であることが好ましい。Zn含有量は0.05質量%以上がより好ましく、0.1質量%以上がさらに好ましい。
 なお、本発明の実施形態に係る銅合金板がZnを含む場合、500℃以上の温度で加熱すると、加熱雰囲気によってはZnが気化し、銅合金板の表面性状を低下させたり、加熱炉を汚染することがある。Znの気化を防止するとの観点からは、Znの含有量は好ましくは0.5質量%以下とし、より好ましくは0.3質量%以下、さらに好ましくは0.2質量%以下とする。
 Si、Al、Mn、Cr、Ti、Zr及びAgは、銅合金の強度及び耐熱性を向上させる作用を有するため、これらの1種又は2種以上が必要に応じて添加される。これらの元素が添加される場合、含有量が多いと銅合金の導電率が低下するため、これらの元素の1種又は2種以上の合計含有量は0.5質量%以下に制限される。一方、上記作用を得るため、これらの元素の合計含有量の下限値は0.005質量以上とする。下限値は、より好ましくは0.01質量%、さらに好ましくは0.02質量%である。
 このうちSi、Al及びMnは、少量含有させても銅合金の導電率を低下させることから、それぞれ上限値を、Si:0.2質量%、Al:0.2質量%及びMn:0.1質量%とすることが好ましい。一方、上記作用を得るため、Si、Al及びMnは、それぞれ下限値を、Si:0.01質量%、Al:0.01質量%及びMn:0.01質量とすることが好ましい。Cr、Ti及びZrは、数μm~数10μm程度の酸化物系、硫化物系などの介在物を形成しやすく、冷間圧延により前記介在物と母材の間に隙間ができ、前記介在物が表面に存在したとき銅合金の耐食性を低下させる。従って、Cr、Ti及びZrの上限値は、Cr:0.2質量%、Ti:0.1質量%及びZr:0.05質量%とすることが好ましい。一方、上記作用を得るため、Cr、Ti及びZrは、それぞれ下限値を、Cr:0.005質量%、Ti:0.01質量%及びZr:0.005質量%とすることが好ましい。Agの上限値は0.5質量%とし、上記作用を得るため、下限値を0.01質量%とすることが好ましい。
 不可避不純物であるH、O、S、Pb、Bi、Sb、Se及びAsは、銅合金板が650℃以上の温度に長時間加熱されると粒界に集まり、加熱中及び加熱後の粒界割れ並びに粒界脆化等を引起す可能性があるため、これらの元素の含有量は低減することが好ましい。Hは、加熱中に粒界、及び/又は介在物と母材との界面に集まり、膨れを発生させることから、好ましくは1.5ppm(質量ppm、以下同じ)未満とし、より好ましくは1ppm未満とする。Oは、好ましくは20ppm未満、より好ましくは15ppm未満とする。S、Pb、Bi、Sb、Se及びAsは、好ましくは合計で30ppm未満、より好ましくは20ppm未満とする。特にBi、Sb、Se及びAsについては、好ましくはこれらの元素の合計含有量を10ppm未満、より好ましくは5ppm未満とする。
 本発明の実施形態に係る銅合金板は、前記組成を有する鋳塊を均熱処理後、(1)熱間圧延-冷間圧延-焼鈍、(2)熱間圧延-冷間圧延-焼鈍-冷間圧延、(3)熱間圧延-冷間圧延-焼鈍-冷間圧延-低温焼鈍、等の工程で製造できる。上記(1)~(3)において、冷間圧延-焼鈍の工程を複数回行ってもよい。
 前記焼鈍には、軟化焼鈍、再結晶焼鈍又は析出焼鈍(時効処理)が含まれる。軟化焼鈍又は再結晶焼鈍の場合は、加熱温度を600~950℃の範囲から、加熱時間を5秒~1時間の範囲から選定するとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合は、650~950℃で5秒~3分加熱する連続焼鈍を行うとよい。析出焼鈍の場合、前述したとおり、300~600℃程度の温度範囲に0.5~10時間保持する条件で行うとよい。軟化焼鈍又は再結晶焼鈍が溶体化処理を兼ねる場合、後工程で析出焼鈍を行うことができる。
 最終冷間圧延は、目標とする0.2%耐力と曲げ加工性に合わせて、加工率5~80%の範囲から選定するとよい。
 低温焼鈍は、銅合金板の延性の回復のため、銅合金板を再結晶させることなく軟化させるもので、連続焼鈍による場合は300~650℃の雰囲気に1秒~5分程度保持されるように定めるとよい。また、バッチ式焼鈍の場合は、銅合金板の実体温度が250℃~400℃に5分~1時間程度保持されるように定めるとよい。
 以上の製造方法により、0.2%耐力が100MPa以上で、優れた曲げ加工性を有する銅合金板を製造することができる。また、この銅合金板は、850℃で30分加熱し、次いで500℃で2時間加熱する時効処理をしたとき、120MPa以上の0.2%耐力及び40%IACS以上の導電率を有する。
 本発明の実施形態に係る銅合金板は、好ましくは、鋳塊を均熱処理し、熱間圧延した後、冷間圧延、溶体化を伴う再結晶処理、冷間圧延、時効処理の工程で製造される。溶体化を伴う再結晶処理後、冷間圧延を行うことなく時効処理を行い、続いて冷間圧延を行ってもよい。この製造方法の下で、前記組成の銅合金を用い、以下の条件で製造した銅合金板は、0.2%耐力が300MPa以上で、優れた曲げ加工性を有する。
 溶解及び鋳造は、連続鋳造、半連続鋳造などの通常の方法によって行うことができる。なお、銅溶解原料として、S、Pb、Bi、Se及びAs含有量の少ないものを使用することが好ましい。また、銅合金溶湯に被覆する木炭の赤熱化(水分除去)、地金、スクラップ原料、樋、鋳型の乾燥、及び溶湯の脱酸等に注意し、O及びHを低減することが好ましい。
 均質化処理は、鋳塊内部の温度が800℃以上の温度に到達後、30分以上保持することが好ましい。均質化処理の保持時間は1時間以上がより好ましく、2時間以上がさらに好ましい。
 均質化処理後、熱間圧延を800℃以上の温度で開始する。熱間圧延材に粗大な(Ni,Fe)-P析出物が形成されないように、熱間圧延は600℃以上の温度で終了し、その温度から水冷等の方法により急冷することが好ましい。熱間圧延後の急冷開始温度が600℃より低いと、粗大な(Ni,Fe)-P析出物が形成され、組織が不均一になりやすく、銅合金板(製品板)の強度が低下する。熱間圧延の終了温度は650℃以上の温度であることが好ましく、700℃以上の温度であることがさらに好ましい。なお、熱間圧延後急冷した熱間圧延材の組織は再結晶組織となる。後述の溶体化を伴う再結晶処理は熱間圧延後の急冷を行うことで兼ねることができる。
 熱間圧延後の冷間圧延により、銅合金板に一定の歪みを加えることで、続く再結晶処理後に、所望の再結晶組織(微細な再結晶組織)を有する銅合金板が得られる。
 溶体化を伴う再結晶処理は、650~950℃、好ましくは670~900℃で3分以下の保持の条件で行う。銅合金中のNi、Fe及びPの含有量が少ない場合は,上記温度範囲内のより低温領域で、Ni、Fe及びPの含有量が多い場合は、上記温度範囲内のより高温領域で行うことが好ましい。この再結晶処理により、Ni、Fe及びPを銅合金母材に固溶させると共に、曲げ加工性が良好となる再結晶組織(結晶粒径が1~20μm)を形成することができる。この再結晶処理の温度が650℃より低いと、Ni、Fe及びPの固溶量が少なくなり、強度が低下する。一方、再結晶処理の温度が950℃を超え又は処理時間が3分を超えると、再結晶粒が粗大化する。
 溶体化を伴う再結晶処理後は、(a)冷間圧延-時効処理、(b)冷間圧延-時効処理-冷間圧延、(c)冷間圧延-時効処理-冷間圧延-低温焼鈍、(d)時効処理-冷間圧延、(e)時効処理-冷間圧延-低温焼鈍、のいずれかの工程が選択できる。
 時効処理(析出焼鈍)は、加熱温度300~600℃程度で0.5~10時間保持する条件で行う。この加熱温度が300℃未満では析出量が少なく、600℃を超えると析出物が粗大化しやすい。加熱温度の下限は、好ましくは350℃とし、上限は好ましくは580℃、より好ましくは560℃とする。時効処理の保持時間は、加熱温度により適宜選択し、0.5~10時間の範囲内で行う。この保持時間が0.5時間以下では析出が不十分となり、10時間を越えても析出量が飽和し、生産性が低下する。保持時間の下限は、好ましくは1時間、より好ましくは2時間とする。
 表1及び2に示す組成の銅合金を鋳造し、それぞれ厚さ45mm、長さ85mm及び幅200mmの鋳塊を作製した。この銅合金において、不可避不純物であるHは1ppm未満、Oは15ppm未満、S、Pb、Bi、Sb、Se及びAsは合計で20ppm未満であった。
 各鋳塊に対し965℃で3時間の均熱処理を行い、続いて熱間圧延を行って板厚15mmの熱間圧延材とし、650℃以上の温度から焼き入れ(水冷)した。焼き入れ後の熱間圧延材の両面を1mmずつ研磨(面削)した後、目標板厚0.6mmまで冷間粗圧延し、650~950℃で10~60秒保持する再結晶処理(溶体化を伴う)を行った。次いで500℃で2時間の時効処理(析出焼鈍)後、50%の仕上げ冷間圧延を施し、板厚0.3mmの銅合金板を製造した。
 なお、表1及び2に示す実施例4,7及び10と比較例1及び5について、冷間粗圧延後の銅合金板(厚さ0.6mm)の一部(長さ2000mm)を、後述する[実施例3]及び[実施例4]に用いた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた銅合金板を供試材として、下記要領で、導電率、機械的特性、曲げ加工性及びはんだ濡れ性の各測定試験を行った。その結果を表3及び4に示す。
 また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、導電率及び機械的特性の各測定試験を行った。その結果を表3及び4に示す。
(導電率の測定)
 導電率の測定は,JIS-H0505に規定されている非鉄金属材料導電率測定法に準拠し,ダブルブリッジを用いた四端子法で行った。
(機械的特性)
 供試材から、長手方向が圧延平行方向となるようにJIS5号引張り試験片を切り出し、JIS-Z2241に準拠して引張り試験を実施して、耐力と伸びを測定した。耐力は永久伸び0.2%に相当する引張強さである。
(曲げ加工性)
 曲げ加工性の測定は、伸銅協会標準JBMA-T307に規定されるW曲げ試験方法に従い実施した。各供試材から幅10mm及び長さ30mmの試験片を切り出し、R/t=0.5となる冶具を用いて、G.W.(Good Way(曲げ軸が圧延方向に垂直))及びB.W.(Bad Way(曲げ軸が圧延方向に平行))の曲げを行った。次いで、曲げ部における割れの有無を100倍の光学顕微鏡により目視観察し、G.W.及びB.W.の双方で割れの発生がないものを○(合格)、G.W.又はB.W.のいずれか一方又は双方で割れが発生したものを×(不合格)、と評価した。
(はんだ濡れ性)
 各供試材から短冊状試験片を採取し、非活性フラックスを1秒間浸漬塗布した後、メニスコグラフ法にてはんだ濡れ時間を測定した。はんだは260±5℃に保持したSn-3質量%Ag-0.5質量%Cuを用い、浸漬速度を25mm/sec、浸漬深さを5mm、及び浸漬時間を5secの試験条件で実施した。はんだ濡れ時間が2秒以下のものをはんだ濡れ性が優れると評価した。なお、比較例6以外は、はんだ濡れ時間が2秒以下であった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び3に示す実施例1~24の銅合金板は、合金組成が本開示の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が300MPa以上であり、曲げ加工性やはんだ濡れ性も優れている。
 これに対し、表2及び4に示す比較例1~10の銅合金板は、以下に示すように、何らかの特性が劣る。
 比較例1は、Niを含まず、かつNi及びFeの合計含有量[Ni+Fe]が少ないため、時効処理後の強度が低い。
 比較例2は、P含有量が過剰なため、熱間圧延時に割れが生じて、熱間圧延後の工程に進むことができなかった。
 比較例3は、Ni含有量が少なく、かつNi及びFeの合計含有量[Ni+Fe]が少なく、P含有量も少ないため、時効処理後の強度が低い。
 比較例4、5は、それぞれSn又はMg含有量が過剰で、時効処理後の導電率が低い。
 比較例6は、Zn含有量が過剰で、先に述べたようにはんだ濡れ性が劣っていた。
 比較例7は、主要元素以外の元素(Al、Mn等)の合計が過剰で0.5質量%を超えたため、時効処理後の導電率が低い。
 比較例8は、Feを含まず、かつNi及びFeの合計含有量[Ni+Fe]が少ないため、時効処理後の強度が低い。
 比較例9は、Ni及びFeの合計含有量[Ni+Fe]及びP含有量が過剰で、熱間圧延時に割れが生じて、熱間圧延後の工程に進むことができなかった。
 比較例10は、Ni含有量が少なく、時効処理後の耐力が低い。
 [実施例1]で製造した銅合金板(板厚0.3mm)のうち代表的なもの(表1及び2に示す実施例4,7及び10と比較例1及び5)について、1000℃で30分間加熱後水冷し、さらに500℃で2時間加熱(時効処理)し、当該銅合金板を供試材として、導電率及び機械的特性の各測定試験を、[実施例1]に記載した方法で行った。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例4,7及び10は、1000℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。表5に示す数値(時効処理後の耐力と導電率)を、850℃で30分間加熱し、次いで時効処理した後の測定結果(表3参照)と比較すると、数値に大きい違いはない。
 一方、比較例1,5は、1000℃で30分間加熱し、次いで時効処理した後の強度又は導電率が基準(0.2%耐力が120MPa以上、導電率が40%IACS以上)に達していない。
 表1及び2に示す実施例4,7及び10と比較例1及び5について、[実施例1]で製造した冷間粗圧延後の銅合金板(厚さ0.6mm)を用い、これにさらに50%の冷間圧延を施し、板厚0.3mmの銅合金板を製造した。次いで、この銅合金板に650~825℃で10~60秒保持する再結晶処理(溶体化を伴う)を行った。
 得られた銅合金板を供試材として、前記[実施例1]に記載した方法で、導電率、機械的特性及び曲げ加工性の各測定試験を行った。また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、同様に導電率及び機械的特性の各測定試験を行った。その結果を表6に示す。表6において、実施例4A,7A及び10Aの組成は、表1の実施例4,7及び10の組成と同じであり、比較例1A及び5Aの組成は、表2の比較例1及び5の組成と同じである。
Figure JPOXMLDOC01-appb-T000006
 表6に示す実施例4A,7A及び10Aの銅合金板は、合金組成が本開示の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が100MPa以上であり、曲げ加工性も優れている。
 これに対し、比較例1Aの銅合金板は時効処理後の強度が低く、比較例5Aの銅合金は時効処理後の導電率が低い。
 表1及び2に示す実施例4,7及び10と比較例1及び5について、[実施例1]で製造した冷間粗圧延後の銅合金板(厚さ0.6mm)を用い、これにさらに冷間圧延を施し、板厚0.32mmとした。次いで、650~825℃で10~60秒保持する再結晶処理(溶体化を伴う)を行った後、仕上げ冷間圧延を施し、板厚0.3mmの銅合金板を製造した。
 得られた銅合金板を供試材として、前記実施例1に記載した方法で、導電率、機械的特性及び曲げ加工性の各測定試験を行った。また、得られた銅合金板を850℃で30分間加熱後水冷したもの、さらに500℃で2時間加熱する時効処理(析出処理)を行ったものを、それぞれ供試材として、同様に導電率及び機械的特性の各測定試験を行った。その結果を表7に示す。表7において、実施例4B,7B及び10Bの組成は、表1の実施例4,7及び10の組成と同じであり、比較例1B及び5Bの組成は、表2の比較例1及び5の組成と同じである。
Figure JPOXMLDOC01-appb-T000007
 表7に示す実施例4B,7B及び10Bの銅合金板は、合金組成が本開示の規定を満たし、850℃で30分間加熱し、次いで時効処理した後の強度(0.2%耐力)が120MPa以上で、かつ導電率が40%IACS以上である。また、850℃で加熱する前の銅合金板の特性は、強度(0.2%耐力)が100MPa以上であり、曲げ加工性も優れている。
 これに対し、比較例1Bの銅合金板は時効処理後の強度が低く、比較例5Bの銅合金は時効処理後の導電率が低い。
 本明細書の開示内容は、以下の態様を含む。
態様1:
 Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有し、残部がCu及び不可避不純物からなり、NiとFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、[Ni+Fe]/[P]が2~10であり、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とする放熱部品用銅合金板。
態様2:
 さらに、Coを0.05質量%未満の範囲で含有することを特徴とする態様1に記載された放熱部品用銅合金。
態様3:
 さらに、SnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする態様1又は2に記載された放熱部品用銅合金板。
態様4:
 さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする態様1~3のいずれかに記載された放熱部品用銅合金板。
(i)Znを1.0質量%以下
(ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
態様5:
 Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有し、残部がCu及び不可避不純物からなり、NiとFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、[Ni+Fe]/[P]が2~10である銅合金板からなり、(Ni,Fe)-P化合物が析出していて、120MPa以上の0.2%耐力及び40%IACS以上の導電率を有することを特徴とする放熱部品。
態様6:
 前記銅合金板が、さらにCoを0.05質量%未満の範囲で含有することを特徴とする態様5に記載された放熱部品。
態様7:
 前記銅合金板が、さらにSnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする態様5又は6に記載された放熱部品。
態様8:
 さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする態様5~7のいずれかに記載された放熱部品。
(i)Znを1.0質量%以下
(ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
態様9:
 外表面の少なくとも一部に、Sn被覆層及びNi被覆層の少なくとも1つが形成されていることを特徴とする態様5~8のいずれかに記載された放熱部品。
態様10:
 態様1~4のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱するプロセスを施し、続いて時効処理を行い、110MPa以上の0.2%耐力及び40%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。
態様11:
 時効処理後、放熱部品の外表面の少なくとも一部に、Sn被覆層及びNi被覆層の少なくとも1つを形成することを特徴とする態様10に記載された放熱部品の製造方法。
 本出願は、出願日が2015年12月25日である日本国特許出願、特願第2015-254645号及び出願日が2016年9月8日である日本国特許出願、特願第2016-175464号を基礎出願とする優先権主張を伴う。特願第2015-254645号及び特願第2016-175464号は参照することにより本明細書に取り込まれる。

Claims (19)

  1.  Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有し、残部がCu及び不可避不純物からなり、NiとFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、[Ni+Fe]/[P]が2~10であり、0.2%耐力が100MPa以上で優れた曲げ加工性を有し、850℃で30分加熱後水冷し、次いで500℃で2時間加熱する時効処理をした後の0.2%耐力が120MPa以上、導電率が40%IACS以上であり、放熱部品を製造するプロセスの一部に650℃以上に加熱するプロセスと時効処理が含まれることを特徴とする放熱部品用銅合金板。
  2.  さらに、Coを0.05質量%未満の範囲で含有することを特徴とする請求項1に記載された放熱部品用銅合金。
  3.  さらに、SnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする請求項1に記載された放熱部品用銅合金板。
  4.  さらに、SnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする請求項2に記載された放熱部品用銅合金板。
  5.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項1に記載された放熱部品用銅合金板。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  6.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項2に記載された放熱部品用銅合金板。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  7.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項3に記載された放熱部品用銅合金板。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  8.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項4に記載された放熱部品用銅合金板。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  9.  Ni:0.2~0.95質量%及びFe:0.05~0.8質量%と、P:0.03~0.2質量%を含有し、残部がCu及び不可避不純物からなり、NiとFeの合計含有量を[Ni+Fe]とし、Pの含有量を[P]としたとき、[Ni+Fe]が0.25~1.0質量%、[Ni+Fe]/[P]が2~10である銅合金板からなり、(Ni,Fe)-P化合物が析出していて、120MPa以上の0.2%耐力及び40%IACS以上の導電率を有することを特徴とする放熱部品。
  10.  前記銅合金板が、さらにCoを0.05質量%未満の範囲で含有することを特徴とする請求項9に記載された放熱部品。
  11.  前記銅合金板が、さらにSnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする請求項9に記載された放熱部品。
  12.  前記銅合金板が、さらにSnとMgの1種又は2種を、Sn:0.005~1.0質量%、Mg:0.005~0.2質量%の範囲で含有することを特徴とする請求項10に記載された放熱部品。
  13.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項9に記載された放熱部品。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  14.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項10に記載された放熱部品。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  15.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項11に記載された放熱部品。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  16.  さらに、少なくとも以下の(i)又は(ii)を満たすように、他の元素を含有することを特徴とする請求項12に記載された放熱部品。
    (i)Znを1.0質量%以下
    (ii)Si、Al、Mn、Cr、Ti、Zr、Agのうち1種又は2種以上を合計で0.005~0.5質量%
  17.  外表面の少なくとも一部に、Sn被覆層及びNi被覆層の少なくとも1つが形成されていることを特徴とする請求項9~16のいずれかに記載された放熱部品。
  18.  請求項1~8のいずれかに記載された放熱部品用銅合金板を所定形状に加工した後、650℃以上に加熱するプロセスを施し、続いて時効処理を行い、110MPa以上の0.2%耐力及び40%IACS以上の導電率を有する放熱部品を得ることを特徴とする放熱部品の製造方法。
  19.  時効処理後、放熱部品の外表面の少なくとも一部に、Sn被覆層及びNi被覆層の少なくとも1つを形成することを特徴とする請求項18に記載された放熱部品の製造方法。
PCT/JP2016/087840 2015-12-25 2016-12-19 放熱部品用銅合金板 WO2017110759A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680071395.1A CN108368566B (zh) 2015-12-25 2016-12-19 散热元件用铜合金板
KR1020187017439A KR20180081609A (ko) 2015-12-25 2016-12-19 방열 부품용 구리 합금판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-254645 2015-12-25
JP2015254645 2015-12-25
JP2016175464A JP6446007B2 (ja) 2015-12-25 2016-09-08 放熱部品用銅合金板
JP2016-175464 2016-09-08

Publications (1)

Publication Number Publication Date
WO2017110759A1 true WO2017110759A1 (ja) 2017-06-29

Family

ID=59090409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087840 WO2017110759A1 (ja) 2015-12-25 2016-12-19 放熱部品用銅合金板

Country Status (1)

Country Link
WO (1) WO2017110759A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062255A1 (ja) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法
JP2018059198A (ja) * 2016-10-05 2018-04-12 株式会社神戸製鋼所 放熱部品用銅合金板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602638A (ja) * 1983-06-21 1985-01-08 Mitsui Mining & Smelting Co Ltd 耐軟化高伝導性銅合金
JPH06177289A (ja) * 1992-12-10 1994-06-24 Showa Alum Corp プレートフィン型放熱器
JPH093571A (ja) * 1995-06-14 1997-01-07 Mitsubishi Shindoh Co Ltd ヒートシンク
JP2001335864A (ja) * 2000-05-25 2001-12-04 Kobe Steel Ltd 電気・電子部品用銅合金
JP2013231224A (ja) * 2012-05-01 2013-11-14 Sh Copper Products Co Ltd 曲げ加工性に優れた電気・電子部品用銅合金材
WO2016152648A1 (ja) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 放熱部品用銅合金板及び放熱部品
WO2016158607A1 (ja) * 2015-03-30 2016-10-06 株式会社神戸製鋼所 放熱部品用銅合金板及び放熱部品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602638A (ja) * 1983-06-21 1985-01-08 Mitsui Mining & Smelting Co Ltd 耐軟化高伝導性銅合金
JPH06177289A (ja) * 1992-12-10 1994-06-24 Showa Alum Corp プレートフィン型放熱器
JPH093571A (ja) * 1995-06-14 1997-01-07 Mitsubishi Shindoh Co Ltd ヒートシンク
JP2001335864A (ja) * 2000-05-25 2001-12-04 Kobe Steel Ltd 電気・電子部品用銅合金
JP2013231224A (ja) * 2012-05-01 2013-11-14 Sh Copper Products Co Ltd 曲げ加工性に優れた電気・電子部品用銅合金材
WO2016152648A1 (ja) * 2015-03-23 2016-09-29 株式会社神戸製鋼所 放熱部品用銅合金板及び放熱部品
WO2016158607A1 (ja) * 2015-03-30 2016-10-06 株式会社神戸製鋼所 放熱部品用銅合金板及び放熱部品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062255A1 (ja) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法
JP2018053310A (ja) * 2016-09-29 2018-04-05 株式会社神戸製鋼所 放熱部品用銅合金板
JP2018059198A (ja) * 2016-10-05 2018-04-12 株式会社神戸製鋼所 放熱部品用銅合金板
WO2018066414A1 (ja) * 2016-10-05 2018-04-12 株式会社神戸製鋼所 放熱部品用銅合金板、放熱部品、及び放熱部品の製造方法

Similar Documents

Publication Publication Date Title
JP6031549B2 (ja) 放熱部品用銅合金板
JP6031548B2 (ja) 放熱部品用銅合金板
JP6151813B1 (ja) ベーパチャンバーの製造方法
JP6850233B2 (ja) 放熱部品用銅合金板
JP6446011B2 (ja) 放熱部品用銅合金板及び放熱部品
WO2016152648A1 (ja) 放熱部品用銅合金板及び放熱部品
JP6446010B2 (ja) 放熱部品用銅合金板
KR20170130517A (ko) 방열 부품용 구리 합금판 및 방열 부품
JP6031576B2 (ja) 放熱部品用銅合金板
JP6732840B2 (ja) ベーパーチャンバー用銅合金板
WO2017110759A1 (ja) 放熱部品用銅合金板
JP2018162518A (ja) ベーパーチャンバー用銅合金板及びベーパーチャンバー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017439

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017439

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878648

Country of ref document: EP

Kind code of ref document: A1