WO2017110672A1 - Organic el display device and method for producing same - Google Patents

Organic el display device and method for producing same Download PDF

Info

Publication number
WO2017110672A1
WO2017110672A1 PCT/JP2016/087536 JP2016087536W WO2017110672A1 WO 2017110672 A1 WO2017110672 A1 WO 2017110672A1 JP 2016087536 W JP2016087536 W JP 2016087536W WO 2017110672 A1 WO2017110672 A1 WO 2017110672A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
display device
layer
black matrix
substrate
Prior art date
Application number
PCT/JP2016/087536
Other languages
French (fr)
Japanese (ja)
Inventor
剛 平瀬
岡本 哲也
亨 妹尾
通 園田
越智 貴志
石田 守
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017110672A1 publication Critical patent/WO2017110672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/126Shielding, e.g. light-blocking means over the TFTs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • H05B33/28Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode of translucent electrodes

Definitions

  • the present invention relates to an organic EL display device and a manufacturing method thereof.
  • Patent Document 1 in an organic electroluminescence device having at least a lower electrode, a light emitting layer, an upper electrode, and a sealing member on a light-transmitting substrate, the light-transmitting substrate is used to improve the durability of the device. Insulating columnar convex portions are formed in a dotted manner, and the lower surface of the sealing member and the upper surface of the upper electrode are held in a non-contact state.
  • a black matrix is provided as a light shielding layer so as to partition a plurality of sub-pixels arranged in a matrix.
  • the black matrix may be plastically deformed, so that the surface remains depressed and may not completely return.
  • the present invention has been made in view of such a point, and an object of the present invention is to improve resistance to pressing in an organic EL display device including a light shielding layer that partitions sub-pixels.
  • an organic EL display device includes an organic EL element provided in a display region and a light shielding layer provided to partition a plurality of sub-pixels arranged in the display region.
  • the light-shielding layer is made of metal.
  • the light shielding layer is made of metal, the resistance to pressing can be improved in the organic EL display device including the light shielding layer that partitions the sub-pixels.
  • FIG. 1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of an organic EL display device taken along line II-II in FIG. It is sectional drawing which shows the internal structure of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. It is sectional drawing of the organic electroluminescent layer which comprises the organic electroluminescent display apparatus which concerns on the 1st Embodiment of this invention. It is a top view of the light shielding layer which comprises the organic electroluminescence display which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the organic EL display device 50a along the line II-II in FIG.
  • FIG. 3 is a cross-sectional view showing the internal configuration of the organic EL display device 50a.
  • FIG. 4 is a cross-sectional view of the organic EL layer 16 constituting the organic EL display device 50a.
  • FIG. 5 is a plan view of a black matrix 32a provided as a light shielding layer constituting the organic EL display device 50a.
  • the organic EL display device 50a is provided between the element substrate 20a and the counter substrate 40a provided so as to face each other, and the element substrate 20a and the counter substrate 40a. And a filler layer 25 filled so as to be surrounded by a seal layer (not shown).
  • an organic EL element 19a which will be described later, is provided in a rectangular shape in plan view, whereby a display area D for displaying an image is defined in a rectangular shape.
  • a plurality of pixels are arranged in a matrix. In each pixel of the display area D, as shown in FIG.
  • a sub pixel Pr for performing red gradation display a sub pixel Pg for performing green gradation display, and a blue gradation Sub-pixels Pb for performing display are arranged so as to be adjacent to each other. That is, the plurality of subpixels Pr, Pg, and Pb are arranged in a matrix in the display area D.
  • the element substrate 20 a includes a first resin substrate 10, a first base coat film 11 provided in order on the first resin substrate 10, and an organic EL element provided on the first base coat film 11. 19a.
  • the first resin substrate 10 is, for example, a plastic substrate made of polyimide resin.
  • the first base coat film 11 is an inorganic insulating film such as a silicon oxide film or a silicon nitride film.
  • the organic EL element 19 a includes a plurality of TFTs 12, an interlayer insulating film 13, a plurality of first electrodes 14, an edge cover 15, and a plurality of organic EL layers 16 that are sequentially provided on the first base coat layer 11.
  • the second electrode 17 and the sealing film 18 are provided.
  • the TFT 12 is a switching element provided for each subpixel on the base coat layer 11 as shown in FIG.
  • the TFT 12 includes, for example, a gate electrode provided on the base coat layer 11, a gate insulating film provided so as to cover the gate electrode, and a semiconductor layer provided on the gate insulating film so as to overlap the gate electrode. And a source electrode and a drain electrode provided on the semiconductor layer so as to face each other.
  • the bottom gate type TFT 12 is illustrated, but the TFT 12 may be a top gate type TFT.
  • the interlayer insulating film 13 is provided so as to cover a portion other than a part of the drain electrode of each TFT 12.
  • the interlayer insulating film 13 is made of, for example, a colorless and transparent organic resin material such as an acrylic resin.
  • the plurality of first electrodes 14 are provided in a matrix on the interlayer insulating film 13 so as to correspond to the plurality of subpixels.
  • the first electrode 14 is connected to the drain electrode of each TFT 12 through a contact hole formed in the interlayer insulating film 13.
  • the first electrode 14 has a function of injecting holes into the organic EL layer 16.
  • the first electrode 14 is more preferably formed of a material having a large work function in order to improve the efficiency of hole injection into the organic EL layer 16.
  • the first electrode 14 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And metal materials such as lithium fluoride (LiF).
  • the material constituting the first electrode 14 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidation.
  • the material constituting the first electrode 14 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. There may be.
  • the first electrode 14 may be formed by laminating a plurality of layers made of the above materials. Examples of the material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the edge cover 15 is provided in a lattice shape so as to cover the peripheral edge portion of each first electrode 14.
  • the material constituting the edge cover 15 include silicon nitride (SiO 2 ), silicon nitride such as trisilicon tetranitride (Si 3 N 4 ) (SiNx (x is a positive number)), silicon oxynite.
  • An inorganic film such as a ride (SiNO) or an organic film such as a polyimide resin, an acrylic resin, a polysiloxane resin, or a novolac resin can be used.
  • the plurality of organic EL layers 16 are arranged on each first electrode 14 and are provided in a matrix so as to correspond to the plurality of sub-pixels.
  • the organic EL layer 16 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer provided in this order on the first electrode 14. 5 is provided.
  • the hole injection layer 1 is also called an anode buffer layer, and has a function of improving the efficiency of hole injection from the first electrode 14 to the organic EL layer 16 by bringing the energy levels of the first electrode 14 and the organic EL layer 16 close to each other.
  • a material constituting the hole injection layer for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples include hydrazone derivatives and stilbene derivatives.
  • the hole transport layer 2 has a function of improving the hole transport efficiency from the first electrode 14 to the organic EL layer 16.
  • examples of the material constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole.
  • Derivatives imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples include hydrogenated amorphous silicon carbide, zinc sulfide, and zinc selenide.
  • the light emitting layer 3 when voltage is applied by the first electrode 14 and the second electrode 17, holes and electrons are injected from the first electrode 14 and the second electrode 17, respectively, and the holes and electrons are recombined. It is an area.
  • the light emitting layer 3 is formed of a material having high light emission efficiency. Examples of the material constituting the light emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives.
  • the electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3.
  • examples of the material constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
  • the electron injection layer 5 has a function of bringing the energy levels of the second electrode 17 and the organic EL layer 16 closer to each other, and improving the efficiency with which electrons are injected from the second electrode 17 into the organic EL layer 16.
  • the drive voltage of the organic EL element 18 can be lowered.
  • the electron injection layer 5 is also called a cathode buffer layer.
  • a material constituting the electron injection layer 5 for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride.
  • Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like can be given.
  • the second electrode 17 is provided so as to cover each organic EL layer 16 and the edge cover 15.
  • the second electrode 17 has a function of injecting electrons into the organic EL layer 16.
  • the second electrode 17 is more preferably composed of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 16.
  • the second electrode 17 for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And lithium fluoride (LiF).
  • the second electrode 17 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO 2).
  • the second electrode 17 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. .
  • the second electrode 17 may be formed by stacking a plurality of layers made of the above materials.
  • Examples of materials having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), and sodium.
  • (Na) / potassium (K) lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al) Etc.
  • the sealing film 18 is provided so as to cover the stacked body of the plurality of first electrodes 14, the edge cover 15, the plurality of organic EL layers 16, and the second electrode 17.
  • the sealing film 18 has a function of protecting the organic EL layer 16 from moisture and oxygen.
  • silicon nitride SiNx (Si 2 N 3 ) such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and trisilicon tetranitride (Si 3 N 4 ).
  • x is a positive number
  • inorganic materials such as silicon carbonitride (SiCN), and organic materials such as acrylate, polyurea, parylene, polyimide, and polyamide.
  • the counter substrate 40 a is provided as a second resin substrate 30, a second base coat film 31 provided on the second resin substrate 30, and a light shielding layer on the second base coat film 31.
  • the second resin substrate 30 is a plastic substrate made of polyimide resin, for example. Further, one surface of the second resin substrate 30 is ashed to form a clean surface 30a (see FIG. 6).
  • the second base coat film 31 is, for example, an oxide film such as a silicon oxide film, a silicon oxynitride film, or an aluminum oxide film.
  • the black matrix 32a is provided in a lattice shape so as to partition a plurality of subpixels Pr, Pg, and Pb.
  • the black matrix 32a is formed of, for example, a metal film such as an alloy film of nickel and tungsten or molybdenum, or a metal oxide film such as a titanium oxide film.
  • the line width of the black matrix 32a in the display region D is, for example, 3 ⁇ m or more and 30 ⁇ m or less.
  • the thickness of the black matrix 32a is, for example, not less than 0.1 ⁇ m and not more than 0.3 ⁇ m.
  • the red layer 33r, the green layer 33g, and the blue layer 33b are each formed of, for example, an acrylic photosensitive resin colored in red, green, and blue.
  • the filler layer 25 is made of, for example, a thermosetting epoxy resin or silicone resin.
  • the filler layer 25 contains, for example, a metal oxide such as calcium oxide, barium oxide, and aluminum oxide, activated carbon, silica gel, zeolite, and the like, and has a getter function for adsorbing moisture, oxygen, and the like.
  • the seal layer surrounding the filler layer 25 is formed of an epoxy resin, an acrylic resin, a polyimide resin, a phenol resin, or the like having ultraviolet curable properties and / or thermosetting properties.
  • the organic EL display device 50a having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby displaying an image. Configured to do.
  • FIGS. 6 and 7 are first and second explanatory views showing a method of manufacturing the organic EL display device 50a.
  • the manufacturing method of the organic EL display device 50a of this embodiment includes an element substrate manufacturing process, a counter substrate manufacturing process, and a bonding process.
  • the first base coat film 11 and the organic EL element 19a (TFT 12, the interlayer insulating film 13, the first electrode 14, the edge cover 15 and the organic layer are formed on the surface of the first resin substrate 10 made of polyimide resin using a known method.
  • the EL layer 16 the hole injection layer 1, the hole transport layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5
  • the second electrode 17, and the sealing film 19 the element substrate 20a is formed. Is made.
  • ⁇ Opposite substrate manufacturing process> First, as shown in steps (a) and (b) of FIG. 6, for example, one surface of the second resin substrate 30 made of polyimide resin is ashed with plasma to remove organic foreign matters attached to the surface. Then, the clean surface 30 a is formed on one surface of the second resin substrate 30.
  • a silicon oxide film or silicon oxynitride is formed on the clean surface 30a of the second resin substrate 30 by, for example, a chemical vapor deposition (CVD) method, a vapor deposition method or a sputtering method.
  • An oxide film 31 is formed by forming an oxide film such as a film to a thickness of about 100 nm to 500 nm.
  • a silicon oxide film, a silicon oxynitride film, or the like is exemplified as the oxide film 31.
  • a vapor deposition method or ALD atomic
  • the film is deposited to a thickness of about 5 nm to 100 nm by the layer deposition method.
  • a metal film 32 such as an alloy film of nickel and tungsten or molybdenum is formed on the entire substrate on which the oxide film 31 has been formed by, for example, vapor deposition or sputtering.
  • the film is formed to a thickness of about 0.1 ⁇ m to 0.3 ⁇ m.
  • the black matrix 32a is formed by patterning the metal film 32 using photolithography.
  • step (f) of FIG. 7 the entire substrate on which the black matrix 32a is formed is colored with red, green or blue, for example, by spin coating or slit coating. Apply a functional resin. Thereafter, the coated film is exposed, developed and baked to form a colored layer of a selected color (for example, the red layer 33r) with a thickness of about 0.7 ⁇ m to 2.5 ⁇ m. Furthermore, as shown in step (g) and step (h) in FIG. 7, the same steps are repeated for the other two colors, so that the other two colored layers (for example, the green layer 33g and the blue layer 33b). Is formed to a thickness of about 0.7 ⁇ m to 2.5 ⁇ m.
  • the counter substrate 40a can be manufactured as described above.
  • a sealant is arranged in a frame shape on the surface of the element substrate 20a by a dispenser method, and a filler is dropped and arranged inside the sealant.
  • the reduced pressure atmosphere for example, 100 Pa or less
  • the reduced pressure atmosphere is released.
  • the outer surfaces of the element substrate 20a and the counter substrate 40a are pressurized.
  • bonding may be performed in a dry atmosphere (dew point minus 30 ° C. or less (preferably dew point minus 70 ° C. or less)).
  • the sealing material sandwiched between the element substrate 20a and the counter substrate 40a is irradiated with ultraviolet rays (about 0.5 J / cm 2 to 10 J / cm 2 (preferably about 1 J / cm 2 to 6 J / cm 2 )). Thereafter, the irradiated bonded body is heated (for example, about 70 ° C. to 120 ° C. for about 10 minutes to 2 hours) to cure the sealing material and the filler, thereby forming the sealing material and the filler layer 25. .
  • the organic EL display device 50a can be manufactured as described above.
  • the black matrix 32a provided as the light shielding layer is made of metal, the Young's modulus of the black matrix 32a is about several hundred GPa. Accordingly, even if the surface of the organic EL display device 50a is pressed, the black matrix 32a in that portion is not plastically deformed. Therefore, the organic EL display device 50a including the black matrix 32a that partitions the sub-pixels Pr, Pg, and Pb. , Resistance to pressing can be improved. Further, since the black matrix 32a is made of metal, not only resistance against pressing but also resistance to bending can be improved.
  • a resin black matrix used in a liquid crystal display device or the like has a relatively low Young's modulus (for example, 10 GPa or less)
  • an organic EL display provided with such a resin black matrix.
  • the black matrix is plastically deformed, so that there is a possibility that the surface remains depressed and cannot completely return.
  • the black matrix 32a is formed on the second resin substrate 30 by forming the second base coat film 31 made of an oxide film on the clean surface 30a whose surface is ashed.
  • the second base coat film 31 is provided. Furthermore, since the black matrix 32a has a thickness of 0.1 ⁇ m or more and 0.3 ⁇ m or less and a line width in the display region D of 30 ⁇ m or less, the contact area between the layers increases, and the second resin substrate 30 and the filler layer The film peeling between 25 can be suppressed.
  • the film thickness of the black matrix 32a is smaller than that of the resin black matrix, the amount of the filler constituting the filler layer 25 is increased, but the process control for arranging the filler on the substrate is performed. It becomes easy. Therefore, a process with relatively low accuracy using a dispenser, a transfer sheet material, or the like can be applied.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of the organic EL display device 50b of the present embodiment.
  • FIG. 9 is a cross-sectional view showing the internal configuration of the organic EL display device 50b.
  • the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the organic EL display device 50a in which the colored layers 33r, 33g, and 33b are provided on the counter substrate 40a is illustrated.
  • the colored layers 13r, 13g, and 13b are provided on the element substrate 20b.
  • the organic EL display device 50b is exemplified.
  • the organic EL display device 50b is provided between the element substrate 20b and the counter substrate 40b provided so as to face each other, and the element substrate 20b and the counter substrate 40b. And a filler layer 25 filled so as to be surrounded by a seal layer (not shown).
  • an organic EL element 19b which will be described later, is provided in a rectangular shape in plan view, whereby a display area D for image display is defined in a rectangular shape, and the display area D includes a plurality of display areas D. Pixels are arranged in a matrix. In each pixel of the display area D, as shown in FIG. 7, for example, a sub pixel Pr for performing red gradation display, a sub pixel Pg for performing green gradation display, and a blue gradation Sub-pixels Pb for performing display are arranged so as to be adjacent to each other.
  • the element substrate 20 b includes a first resin substrate 10, a first base coat film 11 provided in order on the first resin substrate 10, and an organic EL element provided on the first base coat film 11. 19b.
  • the organic EL element 19 b includes a plurality of TFTs 12, a colored layer (a red layer 13 r, a green layer 13 g, a blue layer 13 b) and a plurality of first electrodes 14 that are sequentially provided on the first base coat layer 11. , An edge cover 15, a plurality of organic EL layers 16, a second electrode 17, and a sealing film 18.
  • the red layer 13r, the green layer 13g, and the blue layer 13b are provided so as to cover a portion other than a part of the drain electrode of each TFT 12, like the interlayer insulating film 15 of the first embodiment.
  • the red layer 13r, the green layer 13g, and the blue layer 13b are each formed of, for example, an acrylic photosensitive resin colored in red, green, and blue.
  • the counter substrate 40 b is provided as a second resin substrate 30, a second base coat film 31 provided on the second resin substrate 30, and a light shielding layer on the second base coat film 31. And a black matrix 32a formed from the formed metal.
  • the organic EL display device 50b having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby displaying an image. Configured to do.
  • the material of the interlayer insulating film 13 is changed from a colorless one to a predetermined color in the element substrate manufacturing process, It can be manufactured by omitting the formation of the colored layers (red layer 33r, green layer 33g, and blue layer 33b) in the counter substrate manufacturing step.
  • the effects (1) to (3) described above can be obtained.
  • the black matrix 32a provided as the light shielding layer is made of metal, the Young's modulus of the black matrix 32a is about several hundred GPa. Accordingly, even if the surface of the organic EL display device 50b is pressed, the black matrix 32a in that portion is not plastically deformed. Therefore, the organic EL display device 50b provided with the black matrix 32a that partitions the sub-pixels Pr, Pg, and Pb. , Resistance to pressing can be improved. Further, since the black matrix 32a is made of metal, not only resistance to pressing but also resistance to bending can be improved.
  • FIG. 10 is a plan view showing a schematic configuration of the organic EL display device 50c of the present embodiment.
  • FIG. 11 is a cross-sectional view showing a schematic configuration of the organic EL display device 50c taken along line XI-XI in FIG.
  • the structure of the display region D of the organic EL display devices 50a and 50b has been mainly described.
  • the structure of the region F will be mainly described.
  • the organic EL display device 50c is provided between the element substrate 20c and the counter substrate 40c provided so as to face each other, and the element substrate 20c and the counter substrate 40c. And a filler layer 25 filled so as to be surrounded by (not shown).
  • a non-display area F is provided in a frame shape around a rectangular display area D.
  • the configuration of the display area D of the element substrate 20c is substantially the same as the configuration of the display area D of the element substrate 20a of the first embodiment.
  • the second electrode 17 in the display area D is extended on the laminated film of the first base coat layer 11, the interlayer insulating film 13, and the edge cover 15.
  • the extended portion is a common electrode 17c.
  • a contact portion C, which will be described later, of the common electrode 17c is exposed from the sealing film 18, as shown in FIG.
  • the configuration of the display area D of the element substrate 20a of the first embodiment is exemplified as the configuration of the display area D of the element substrate 20c.
  • the display area D of the element substrate 20b of the second embodiment is illustrated. It may be substantially the same as the configuration.
  • the configuration of the display area D of the counter substrate 40c is substantially the same as the configuration of the display area D of the counter substrate 40a of the first embodiment.
  • the black matrix 32a of the display area D is extended so as to reach the contact portion C as shown in FIGS.
  • the configuration of the display area D of the counter substrate 40a of the first embodiment is exemplified as the configuration of the display area D of the counter substrate 40c.
  • the display area D of the counter substrate 40b of the second embodiment is exemplified. It may be substantially the same as the configuration.
  • the common electrode 17c on the element substrate 20c and the black matrix 32a on the counter substrate 40c are electrically connected via the hole filler 26.
  • the contact portion C is configured.
  • the hole filler 26 is obtained by dispersing conductive particles 26 a in, for example, a thermosetting epoxy resin or the like.
  • the configuration in which one contact portion C is provided in the non-display area F is illustrated, but a plurality of contact portions C may be provided in the non-display area F.
  • the contact portion C may be provided so as to overlap the black matrix 32a at the outermost part of the display area D. Further, when the counter substrate 40c is provided with a touch panel, the touch panel and the common electrode 17c on the element substrate 20c may be electrically connected in the configuration as the contact portion C.
  • the organic EL display device 50c having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby generating an image. It is configured to display.
  • the following effect (4) can be obtained in addition to the effects (1) to (3) described above.
  • the organic EL display devices 50a to 50c in which the black matrix 32a (light shielding layer) is provided on the counter substrates 40a to 40c are exemplified, but the black matrix (light shielding layer) is the second of the element substrates 20a to 20c.
  • the black matrix (light shielding layer) is electrically connected to a common electrode that is electrically connected to the cathode (second electrode 17).
  • the organic EL display device provided with the black matrix for stripe arrangement has been exemplified, but the present invention can also be applied to an organic EL display device provided with a black matrix for stripe arrangement. it can.
  • an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer has been exemplified.
  • a three-layer structure of a hole injection layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be employed.
  • the organic EL display device using the first electrode as an anode and the second electrode as a cathode has been exemplified.
  • the present invention reverses the stacked structure of the organic EL layers and uses the first electrode as a cathode.
  • the present invention can also be applied to an organic EL display device using the second electrode as an anode.
  • the organic EL display device including the element substrate using the TFT electrode connected to the first electrode as the drain electrode is illustrated.
  • the present invention is not limited to the TFT connected to the first electrode.
  • the present invention can also be applied to an organic EL display device including an element substrate whose electrode is called a source electrode.
  • the present invention is useful for flexible organic EL display devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided is an organic EL display device (50a) which is equipped with: an organic EL element disposed in a display region; and a light shielding layer (32a) disposed so as to compartmentalize a plurality of sub-pixels (Pr), (Pg), and (Pb) arranged in the display region, wherein the light shielding layer (32a) is formed of a metal.

Description

有機EL表示装置及びその製造方法Organic EL display device and manufacturing method thereof
 本発明は、有機EL表示装置及びその製造方法に関するものである。 The present invention relates to an organic EL display device and a manufacturing method thereof.
 近年、液晶表示装置に代わる表示装置として、有機EL(electroluminescence)素子を用いた自発光型の有機EL表示装置が注目されている。 In recent years, a self-luminous organic EL display device using an organic EL (electroluminescence) element has attracted attention as a display device that replaces a liquid crystal display device.
 例えば、特許文献1には、透光性基板上に下部電極、発光層、上部電極及び封止部材を少なくとも有する有機エレクトロルミネッセンス素子において、素子の耐久性を向上させるために、透光性基板上に絶縁性の柱状凸部を点在させて形成し、封止部材の下面と上部電極の上面とを非接触状態に保持することが開示されている。 For example, in Patent Document 1, in an organic electroluminescence device having at least a lower electrode, a light emitting layer, an upper electrode, and a sealing member on a light-transmitting substrate, the light-transmitting substrate is used to improve the durability of the device. Insulating columnar convex portions are formed in a dotted manner, and the lower surface of the sealing member and the upper surface of the upper electrode are held in a non-contact state.
特開2007-335327号公報JP 2007-335327 A
 ところで、有機EL表示装置には、マトリクス状に配列された複数のサブ画素を区画するようにブラックマトリクスが遮光層として設けられている。そして、ブラックマトリクスを備えた有機EL表示装置では、例えば、その表面を押圧すると、ブラックマトリクスが塑性変形することにより、その表面が凹んだままで完全に戻り切らない場合がある。 Incidentally, in the organic EL display device, a black matrix is provided as a light shielding layer so as to partition a plurality of sub-pixels arranged in a matrix. In an organic EL display device including a black matrix, for example, when the surface is pressed, the black matrix may be plastically deformed, so that the surface remains depressed and may not completely return.
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、サブ画素を区画する遮光層を備えた有機EL表示装置において、押圧に対する耐性を向上させることにある。 The present invention has been made in view of such a point, and an object of the present invention is to improve resistance to pressing in an organic EL display device including a light shielding layer that partitions sub-pixels.
 上記目的を達成するために、本発明に係る有機EL表示装置は、表示領域に設けられた有機EL素子と、前記表示領域に配列された複数のサブ画素を区画するように設けられた遮光層とを備えた有機EL表示装置であって、前記遮光層は、金属から形成されていることを特徴とする。 In order to achieve the above object, an organic EL display device according to the present invention includes an organic EL element provided in a display region and a light shielding layer provided to partition a plurality of sub-pixels arranged in the display region. The light-shielding layer is made of metal.
 本発明によれば、遮光層が金属から形成されているので、サブ画素を区画する遮光層を備えた有機EL表示装置において、押圧に対する耐性を向上させることができる。 According to the present invention, since the light shielding layer is made of metal, the resistance to pressing can be improved in the organic EL display device including the light shielding layer that partitions the sub-pixels.
本発明の第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。1 is a plan view showing a schematic configuration of an organic EL display device according to a first embodiment of the present invention. 図1中のII-II線に沿った有機EL表示装置の概略構成を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic configuration of an organic EL display device taken along line II-II in FIG. 本発明の第1の実施形態に係る有機EL表示装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置を構成する有機EL層の断面図である。It is sectional drawing of the organic electroluminescent layer which comprises the organic electroluminescent display apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置を構成する遮光層の平面図である。It is a top view of the light shielding layer which comprises the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を示す第1の説明図である。It is 1st explanatory drawing which shows the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る有機EL表示装置の製造方法を示す第2の説明図である。It is 2nd explanatory drawing which shows the manufacturing method of the organic electroluminescence display which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る有機EL表示装置の内部構成を示す断面図である。It is sectional drawing which shows the internal structure of the organic electroluminescence display which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る有機EL表示装置の概略構成を示す平面図である。It is a top view which shows schematic structure of the organic electroluminescence display which concerns on the 3rd Embodiment of this invention. 図10中のXI-XI線に沿った有機EL表示装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the organic electroluminescence display along the XI-XI line | wire in FIG.
 以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の各実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the following embodiments.
 《第1の実施形態》
 図1~図7は、本発明に係る有機EL表示装置の第1の実施形態を示している。ここで、図1は、本実施形態の有機EL表示装置50aの概略構成を示す平面図である。また、図2は、図1中のII-II線に沿った有機EL表示装置50aの概略構成を示す断面図である。また、図3は、有機EL表示装置50aの内部構成を示す断面図である。また、図4は、有機EL表示装置50aを構成する有機EL層16の断面図である。また、図5は、有機EL表示装置50aを構成する遮光層として設けられたブラックマトリクス32aの平面図である。
<< First Embodiment >>
1 to 7 show a first embodiment of an organic EL display device according to the present invention. Here, FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 50a of the present embodiment. FIG. 2 is a cross-sectional view showing a schematic configuration of the organic EL display device 50a along the line II-II in FIG. FIG. 3 is a cross-sectional view showing the internal configuration of the organic EL display device 50a. FIG. 4 is a cross-sectional view of the organic EL layer 16 constituting the organic EL display device 50a. FIG. 5 is a plan view of a black matrix 32a provided as a light shielding layer constituting the organic EL display device 50a.
 有機EL表示装置50aは、図1~図3に示すように、互いに対向するように設けられた素子基板20a及び対向基板40aと、素子基板20a及び対向基板40aの間に設けられ、枠状のシール層(不図示)に囲まれるように充填された充填材層25とを備えている。ここで、有機EL表示装置50aでは、図1に示すように、後述する有機EL素子19aが平面視で矩形状に設けられることにより、画像表示を行う表示領域Dが矩形状に規定され、表示領域Dには、複数の画素がマトリクス状に配列されている。そして、表示領域Dの各画素では、図2に示すように、例えば、赤色の階調表示を行うためのサブ画素Pr、緑色の階調表示を行うためのサブ画素Pg、及び青色の階調表示を行うためのサブ画素Pbが互いに隣り合うように配列されている。すなわち、複数のサブ画素Pr、Pg及びPbは、表示領域Dにおいて、マトリクス状に配列されている。 As shown in FIGS. 1 to 3, the organic EL display device 50a is provided between the element substrate 20a and the counter substrate 40a provided so as to face each other, and the element substrate 20a and the counter substrate 40a. And a filler layer 25 filled so as to be surrounded by a seal layer (not shown). Here, in the organic EL display device 50a, as shown in FIG. 1, an organic EL element 19a, which will be described later, is provided in a rectangular shape in plan view, whereby a display area D for displaying an image is defined in a rectangular shape. In the region D, a plurality of pixels are arranged in a matrix. In each pixel of the display area D, as shown in FIG. 2, for example, a sub pixel Pr for performing red gradation display, a sub pixel Pg for performing green gradation display, and a blue gradation Sub-pixels Pb for performing display are arranged so as to be adjacent to each other. That is, the plurality of subpixels Pr, Pg, and Pb are arranged in a matrix in the display area D.
 素子基板20aは、図3に示すように、第1樹脂基板10と、第1樹脂基板10上に順に設けられた第1ベースコート膜11と、第1ベースコート膜11上に設けられた有機EL素子19aとを備えている。 As shown in FIG. 3, the element substrate 20 a includes a first resin substrate 10, a first base coat film 11 provided in order on the first resin substrate 10, and an organic EL element provided on the first base coat film 11. 19a.
 第1樹脂基板10は、例えば、ポリイミド樹脂製等のプラスチック基板である。 The first resin substrate 10 is, for example, a plastic substrate made of polyimide resin.
 第1ベースコート膜11は、例えば、酸化シリコン膜、窒化シリコン膜等の無機絶縁膜である。 The first base coat film 11 is an inorganic insulating film such as a silicon oxide film or a silicon nitride film.
 有機EL素子19aは、図3に示すように、第1ベースコート層11上に順に設けられた複数のTFT12、層間絶縁膜13、複数の第1電極14、エッジカバー15、複数の有機EL層16、第2電極17及び封止膜18を備えている。 As shown in FIG. 3, the organic EL element 19 a includes a plurality of TFTs 12, an interlayer insulating film 13, a plurality of first electrodes 14, an edge cover 15, and a plurality of organic EL layers 16 that are sequentially provided on the first base coat layer 11. The second electrode 17 and the sealing film 18 are provided.
 TFT12は、図3に示すように、ベースコート層11上に各サブ画素毎に設けられたスイッチング素子である。ここで、TFT12は、例えば、ベースコート層11上に設けられたゲート電極と、ゲート電極を覆うように設けられたゲート絶縁膜と、ゲート絶縁膜上にゲート電極と重なるように設けられた半導体層と、半導体層上に互いに対峙するように設けられたソース電極及びドレイン電極とを備えている。なお、本実施形態では、ボトムゲート型のTFT12を例示したが、TFT12は、トップゲート型のTFTであってもよい。 The TFT 12 is a switching element provided for each subpixel on the base coat layer 11 as shown in FIG. Here, the TFT 12 includes, for example, a gate electrode provided on the base coat layer 11, a gate insulating film provided so as to cover the gate electrode, and a semiconductor layer provided on the gate insulating film so as to overlap the gate electrode. And a source electrode and a drain electrode provided on the semiconductor layer so as to face each other. In the present embodiment, the bottom gate type TFT 12 is illustrated, but the TFT 12 may be a top gate type TFT.
 層間絶縁膜13は、図3に示すように、各TFT12のドレイン電極の一部以外を覆うように設けられている。ここで、層間絶縁膜13は、例えば、アクリル樹脂等の無色透明な有機樹脂材料により構成されている。 As shown in FIG. 3, the interlayer insulating film 13 is provided so as to cover a portion other than a part of the drain electrode of each TFT 12. Here, the interlayer insulating film 13 is made of, for example, a colorless and transparent organic resin material such as an acrylic resin.
 複数の第1電極14は、図3に示すように、複数のサブ画素に対応するように、層間絶縁膜13上にマトリクス状に設けられている。ここで、第1電極14は、図3に示すように、層間絶縁膜13に形成されたコンタクトホールを介して、各TFT12のドレイン電極に接続されている。また、第1電極14は、有機EL層16にホール(正孔)を注入する機能を有している。また、第1電極14は、有機EL層16への正孔注入効率を向上させるために、仕事関数の大きな材料で形成するのがより好ましい。ここで、第1電極14を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等の金属材料が挙げられる。また、第1電極14を構成する材料は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、又はフッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金であっても構わない。さらに、第1電極14を構成する材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物等であってもよい。また、第1電極14は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数の大きな材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)等が挙げられる。 As shown in FIG. 3, the plurality of first electrodes 14 are provided in a matrix on the interlayer insulating film 13 so as to correspond to the plurality of subpixels. Here, as shown in FIG. 3, the first electrode 14 is connected to the drain electrode of each TFT 12 through a contact hole formed in the interlayer insulating film 13. The first electrode 14 has a function of injecting holes into the organic EL layer 16. The first electrode 14 is more preferably formed of a material having a large work function in order to improve the efficiency of hole injection into the organic EL layer 16. Here, as a material constituting the first electrode 14, for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And metal materials such as lithium fluoride (LiF). The material constituting the first electrode 14 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidation. Astatine (AtO 2 ), lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), etc. An alloy may be used. Further, the material constituting the first electrode 14 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. There may be. The first electrode 14 may be formed by laminating a plurality of layers made of the above materials. Examples of the material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
 エッジカバー15は、図3に示すように、各第1電極14の周縁部を覆うように格子状に設けられている。ここで、エッジカバー15を構成する材料としては、例えば、酸化シリコン(SiO)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、シリコンオキシナイトライド(SiNO)等の無機膜、又はポリイミド樹脂、アクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂等の有機膜が挙げられる。 As shown in FIG. 3, the edge cover 15 is provided in a lattice shape so as to cover the peripheral edge portion of each first electrode 14. Here, examples of the material constituting the edge cover 15 include silicon nitride (SiO 2 ), silicon nitride such as trisilicon tetranitride (Si 3 N 4 ) (SiNx (x is a positive number)), silicon oxynite. An inorganic film such as a ride (SiNO) or an organic film such as a polyimide resin, an acrylic resin, a polysiloxane resin, or a novolac resin can be used.
 複数の有機EL層16は、図3に示すように、各第1電極14上に配置され、複数のサブ画素に対応するように、マトリクス状に設けられている。ここで、有機EL層16は、図4に示すように、第1電極14上に順に設けられた正孔注入層1、正孔輸送層2、発光層3、電子輸送層4及び電子注入層5を備えている。 As shown in FIG. 3, the plurality of organic EL layers 16 are arranged on each first electrode 14 and are provided in a matrix so as to correspond to the plurality of sub-pixels. Here, as shown in FIG. 4, the organic EL layer 16 includes a hole injection layer 1, a hole transport layer 2, a light emitting layer 3, an electron transport layer 4, and an electron injection layer provided in this order on the first electrode 14. 5 is provided.
 正孔注入層1は、陽極バッファ層とも呼ばれ、第1電極14と有機EL層16とのエネルギーレベルを近づけ、第1電極14から有機EL層16への正孔注入効率を改善する機能を有している。ここで、正孔注入層1を構成する材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体等が挙げられる。 The hole injection layer 1 is also called an anode buffer layer, and has a function of improving the efficiency of hole injection from the first electrode 14 to the organic EL layer 16 by bringing the energy levels of the first electrode 14 and the organic EL layer 16 close to each other. Have. Here, as a material constituting the hole injection layer 1, for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, Examples include hydrazone derivatives and stilbene derivatives.
 正孔輸送層2は、第1電極14から有機EL層16への正孔の輸送効率を向上させる機能を有している。ここで、正孔輸送層2を構成する材料としては、例えば、ポルフィリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水素化アモルファスシリコン、水素化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛等が挙げられる。 The hole transport layer 2 has a function of improving the hole transport efficiency from the first electrode 14 to the organic EL layer 16. Here, examples of the material constituting the hole transport layer 2 include porphyrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylene vinylene, polysilane, triazole derivatives, oxadiazole. Derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydrogenated amorphous silicon, Examples include hydrogenated amorphous silicon carbide, zinc sulfide, and zinc selenide.
 発光層3は、第1電極14及び第2電極17による電圧印加の際に、第1電極14及び第2電極17から正孔及び電子がそれぞれ注入されると共に、正孔及び電子が再結合する領域である。ここで、発光層3は、発光効率が高い材料により形成されている。そして、発光層3を構成する材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、オキサゾール誘導体、ベンズイミダゾール誘導体、チアジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシラン等が挙げられる。 In the light emitting layer 3, when voltage is applied by the first electrode 14 and the second electrode 17, holes and electrons are injected from the first electrode 14 and the second electrode 17, respectively, and the holes and electrons are recombined. It is an area. Here, the light emitting layer 3 is formed of a material having high light emission efficiency. Examples of the material constituting the light emitting layer 3 include metal oxinoid compounds [8-hydroxyquinoline metal complexes], naphthalene derivatives, anthracene derivatives, diphenylethylene derivatives, vinylacetone derivatives, triphenylamine derivatives, butadiene derivatives, and coumarin derivatives. Benzoxazole derivatives, oxadiazole derivatives, oxazole derivatives, benzimidazole derivatives, thiadiazole derivatives, benzthiazole derivatives, styryl derivatives, styrylamine derivatives, bisstyrylbenzene derivatives, tristyrylbenzene derivatives, perylene derivatives, perinone derivatives, aminopyrene derivatives, Pyridine derivatives, rhodamine derivatives, acuidine derivatives, phenoxazone, quinacridone derivatives, rubrene, poly-p-phenylene vinyle , Polysilane, and the like.
 電子輸送層4は、電子を発光層3まで効率良く移動させる機能を有している。ここで、電子輸送層4を構成する材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物等が挙げられる。 The electron transport layer 4 has a function of efficiently moving electrons to the light emitting layer 3. Here, examples of the material constituting the electron transport layer 4 include organic compounds such as oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, and fluorenone derivatives. , Silole derivatives, metal oxinoid compounds and the like.
 電子注入層5は、第2電極17と有機EL層16とのエネルギーレベルを近づけ、第2電極17から有機EL層16へ電子が注入される効率を向上させる機能を有し、この機能により、有機EL素子18の駆動電圧を下げることができる。なお、電子注入層5は、陰極バッファ層とも呼ばれる。ここで、電子注入層5を構成する材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)等が挙げられる。 The electron injection layer 5 has a function of bringing the energy levels of the second electrode 17 and the organic EL layer 16 closer to each other, and improving the efficiency with which electrons are injected from the second electrode 17 into the organic EL layer 16. The drive voltage of the organic EL element 18 can be lowered. The electron injection layer 5 is also called a cathode buffer layer. Here, as a material constituting the electron injection layer 5, for example, lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), barium fluoride. Inorganic alkali compounds such as (BaF 2 ), aluminum oxide (Al 2 O 3 ), strontium oxide (SrO), and the like can be given.
 第2電極17は、図3に示すように、各有機EL層16及びエッジカバー15を覆うように設けられている。また、第2電極17は、有機EL層16に電子を注入する機能を有している。また、第2電極17は、有機EL層16への電子注入効率を向上させるために、仕事関数の小さな材料で構成するのがより好ましい。ここで、第2電極17を構成する材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)、フッ化リチウム(LiF)等が挙げられる。また、第2電極17は、例えば、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、アスタチン(At)/酸化アスタチン(AtO)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等の合金により形成されていてもよい。また、第2電極17は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)等の導電性酸化物により形成されていてもよい。また、第2電極17は、上記材料からなる層を複数積層して形成されていてもよい。なお、仕事関数が小さい材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)/銅(Cu)、マグネシウム(Mg)/銀(Ag)、ナトリウム(Na)/カリウム(K)、リチウム(Li)/アルミニウム(Al)、リチウム(Li)/カルシウム(Ca)/アルミニウム(Al)、フッ化リチウム(LiF)/カルシウム(Ca)/アルミニウム(Al)等が挙げられる。 As shown in FIG. 3, the second electrode 17 is provided so as to cover each organic EL layer 16 and the edge cover 15. The second electrode 17 has a function of injecting electrons into the organic EL layer 16. The second electrode 17 is more preferably composed of a material having a small work function in order to improve the efficiency of electron injection into the organic EL layer 16. Here, as a material constituting the second electrode 17, for example, silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au) , Calcium (Ca), titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) And lithium fluoride (LiF). In addition, the second electrode 17 is, for example, magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), sodium (Na) / potassium (K), astatine (At) / oxidized astatine (AtO 2). ), Lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al), etc. May be. The second electrode 17 may be formed of a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), indium zinc oxide (IZO), or the like. . The second electrode 17 may be formed by stacking a plurality of layers made of the above materials. Examples of materials having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), magnesium (Mg) / copper (Cu), magnesium (Mg) / silver (Ag), and sodium. (Na) / potassium (K), lithium (Li) / aluminum (Al), lithium (Li) / calcium (Ca) / aluminum (Al), lithium fluoride (LiF) / calcium (Ca) / aluminum (Al) Etc.
 封止膜18は、図3に示すように、複数の第1電極14、エッジカバー15、複数の有機EL層16及び第2電極17の積層体を覆うように設けられている。そして、封止膜18は、有機EL層16を水分や酸素から保護する機能を有している。ここで、封止膜18を構成する材料としては、例えば、酸化シリコン(SiO)や酸化アルミニウム(Al)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx(xは正数))、炭窒化ケイ素(SiCN)等の無機材料、アクリレート、ポリ尿素、パリレン、ポリイミド、ポリアミド等の有機材料が挙げられる。 As illustrated in FIG. 3, the sealing film 18 is provided so as to cover the stacked body of the plurality of first electrodes 14, the edge cover 15, the plurality of organic EL layers 16, and the second electrode 17. The sealing film 18 has a function of protecting the organic EL layer 16 from moisture and oxygen. Here, as a material constituting the sealing film 18, for example, silicon nitride (SiNx (Si 2 N 3 ) such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and trisilicon tetranitride (Si 3 N 4 ). x is a positive number)), inorganic materials such as silicon carbonitride (SiCN), and organic materials such as acrylate, polyurea, parylene, polyimide, and polyamide.
 対向基板40aは、図2及び図3に示すように、第2樹脂基板30と、第2樹脂基板30上に設けられた第2ベースコート膜31と、第2ベースコート膜31上に遮光層として設けられた金属から形成されたブラックマトリクス32aと、ブラックマトリクス32aの各サブ画素Pr、Pg及びPbの開口部分に着色層としてそれぞれ設けられた赤色層33r、緑色層33g及び青色層33bとを備えている。 2 and 3, the counter substrate 40 a is provided as a second resin substrate 30, a second base coat film 31 provided on the second resin substrate 30, and a light shielding layer on the second base coat film 31. A black matrix 32a formed from the formed metal, and a red layer 33r, a green layer 33g, and a blue layer 33b provided as colored layers in the openings of the sub-pixels Pr, Pg, and Pb of the black matrix 32a, respectively. Yes.
 第2樹脂基板30は、例えば、ポリイミド樹脂製等のプラスチック基板である。また、第2樹脂基板30の一方の表面は、アッシングされて清浄面30a(図6参照)になっている。 The second resin substrate 30 is a plastic substrate made of polyimide resin, for example. Further, one surface of the second resin substrate 30 is ashed to form a clean surface 30a (see FIG. 6).
 第2ベースコート膜31は、例えば、酸化シリコン膜、酸窒化シリコン膜、酸化アルミニウム膜等の酸化膜である。 The second base coat film 31 is, for example, an oxide film such as a silicon oxide film, a silicon oxynitride film, or an aluminum oxide film.
 ブラックマトリクス32aは、図2及び図5に示すように、複数のサブ画素Pr、Pg、及びPbを区画するように格子状に設けられている。また、ブラックマトリクス32aは、例えば、ニッケルとタングステン若しくはモリブデンとの合金膜等の金属膜、又は酸化チタン膜等の金属酸化物膜により形成されている。ここで、表示領域Dにおけるブラックマトリクス32aの線幅は、例えば、3μm以上30μm以下である。また、ブラックマトリクス32aの厚さは、例えば、0.1μm以上0.3μm以下である。 As shown in FIGS. 2 and 5, the black matrix 32a is provided in a lattice shape so as to partition a plurality of subpixels Pr, Pg, and Pb. The black matrix 32a is formed of, for example, a metal film such as an alloy film of nickel and tungsten or molybdenum, or a metal oxide film such as a titanium oxide film. Here, the line width of the black matrix 32a in the display region D is, for example, 3 μm or more and 30 μm or less. The thickness of the black matrix 32a is, for example, not less than 0.1 μm and not more than 0.3 μm.
 赤色層33r、緑色層33g及び青色層33bは、例えば、赤、緑及び青に着色されたアクリル系の感光性樹脂によりそれぞれ形成されている。 The red layer 33r, the green layer 33g, and the blue layer 33b are each formed of, for example, an acrylic photosensitive resin colored in red, green, and blue.
 充填材層25は、例えば、熱硬化性を有するエポキシ樹脂やシリコーン樹脂により構成されている。また、充填材層25は、例えば、酸化カルシウム、酸化バリウム、酸化アルミニウムのような金属酸化物、活性炭、シリカゲル、ゼオライト等を含有して、水分や酸素等を吸着させるゲッター機能を有している。ここで、充填材層25を囲むシール層は、紫外線硬化性及び/又は熱硬化性を有するエポキシ樹脂、アクリル樹脂、ポリイミド樹脂、フェノール樹脂等により形成されている。 The filler layer 25 is made of, for example, a thermosetting epoxy resin or silicone resin. The filler layer 25 contains, for example, a metal oxide such as calcium oxide, barium oxide, and aluminum oxide, activated carbon, silica gel, zeolite, and the like, and has a getter function for adsorbing moisture, oxygen, and the like. . Here, the seal layer surrounding the filler layer 25 is formed of an epoxy resin, an acrylic resin, a polyimide resin, a phenol resin, or the like having ultraviolet curable properties and / or thermosetting properties.
 上記構成の有機EL表示装置50aは、可撓性を有し、各サブ画素Pr、Pg、及びPbにおいて、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。 The organic EL display device 50a having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby displaying an image. Configured to do.
 次に、本実施形態の有機EL表示装置50aの製造方法について、図6及び図7を用いて説明する。ここで、図6及び図7は、有機EL表示装置50aの製造方法を示す第1及び第2の説明図である。なお、本実施形態の有機EL表示装置50aの製造方法は、素子基板作製工程、対向基板作製工程及び貼合工程を備える。 Next, a method for manufacturing the organic EL display device 50a of the present embodiment will be described with reference to FIGS. Here, FIGS. 6 and 7 are first and second explanatory views showing a method of manufacturing the organic EL display device 50a. In addition, the manufacturing method of the organic EL display device 50a of this embodiment includes an element substrate manufacturing process, a counter substrate manufacturing process, and a bonding process.
 <素子基板作製工程>
 例えば、ポリイミド樹脂製の第1樹脂基板10の表面に、周知の方法を用いて、第1ベースコート膜11及び有機EL素子19a(TFT12、層間絶縁膜13、第1電極14、エッジカバー15、有機EL層16(正孔注入層1、正孔輸送層2、発光層3、電子輸送層4、電子注入層5)、第2電極17、封止膜19)を形成することにより、素子基板20aを作製する。
<Element substrate manufacturing process>
For example, the first base coat film 11 and the organic EL element 19a (TFT 12, the interlayer insulating film 13, the first electrode 14, the edge cover 15 and the organic layer are formed on the surface of the first resin substrate 10 made of polyimide resin using a known method. By forming the EL layer 16 (the hole injection layer 1, the hole transport layer 2, the light emitting layer 3, the electron transport layer 4, the electron injection layer 5), the second electrode 17, and the sealing film 19), the element substrate 20a is formed. Is made.
 <対向基板作製工程>
 まず、図6の工程(a)及び工程(b)に示すように、例えば、ポリイミド樹脂製の第2樹脂基板30の一方の表面をプラズマでアッシングすることにより、表面に付着した有機異物を除去して、第2樹脂基板30の一方の表面に清浄面30aを形成する。
<Opposite substrate manufacturing process>
First, as shown in steps (a) and (b) of FIG. 6, for example, one surface of the second resin substrate 30 made of polyimide resin is ashed with plasma to remove organic foreign matters attached to the surface. Then, the clean surface 30 a is formed on one surface of the second resin substrate 30.
 続いて、図6の工程(c)に示すように、第2樹脂基板30の清浄面30aに、例えば、CVD(chemical vapor deposition)法、蒸着法又はスパッタリング法により、酸化シリコン膜や酸窒化シリコン膜等の酸化膜を厚さ100nm~500nm程度に成膜して、酸化膜31を形成する。なお、本実施形態の製造方法では、酸化膜31として酸化シリコン膜や酸窒化シリコン膜等を例示したが、酸化膜31として酸化アルミニウム等を形成する場合には、例えば、蒸着法又はALD(atomic layer deposition)法により、厚さ5nm~100nm程度に成膜することになる。 Subsequently, as shown in step (c) of FIG. 6, a silicon oxide film or silicon oxynitride is formed on the clean surface 30a of the second resin substrate 30 by, for example, a chemical vapor deposition (CVD) method, a vapor deposition method or a sputtering method. An oxide film 31 is formed by forming an oxide film such as a film to a thickness of about 100 nm to 500 nm. In the manufacturing method of the present embodiment, a silicon oxide film, a silicon oxynitride film, or the like is exemplified as the oxide film 31. However, when aluminum oxide or the like is formed as the oxide film 31, for example, a vapor deposition method or ALD (atomic) is used. The film is deposited to a thickness of about 5 nm to 100 nm by the layer deposition method.
 さらに、図6の工程(d)に示すように、酸化膜31が形成された基板全体に、例えば、蒸着法又はスパッタリング法により、ニッケルとタングステン又はモリブデンとの合金膜等の金属膜32を厚さ0.1μm~0.3μm程度に成膜する。その後、図7の工程(e)に示すように、金属膜32をフォトリソグラフィを用いてパターニングすることにより、ブラックマトリクス32aを形成する。 Further, as shown in step (d) of FIG. 6, a metal film 32 such as an alloy film of nickel and tungsten or molybdenum is formed on the entire substrate on which the oxide film 31 has been formed by, for example, vapor deposition or sputtering. The film is formed to a thickness of about 0.1 μm to 0.3 μm. Thereafter, as shown in step (e) of FIG. 7, the black matrix 32a is formed by patterning the metal film 32 using photolithography.
 続いて、図7の工程(f)に示すように、ブラックマトリクス32aが形成された基板全体に、例えば、スピンコート法又はスリットコート法により、赤、緑又は青に着色されたアクリル系の感光性樹脂を塗布する。その後、その塗布膜に対して、露光、現像及び焼成を行うことにより、選択した色の着色層(例えば、赤色層33r)を厚さ0.7μm~2.5μm程度に形成する。さらに、図7の工程(g)及び工程(h)に示すように、他の2色についても同様な工程を繰り返して、他の2色の着色層(例えば、緑色層33g及び青色層33b)を厚さ0.7μm~2.5μm程度に形成する。 Subsequently, as shown in step (f) of FIG. 7, the entire substrate on which the black matrix 32a is formed is colored with red, green or blue, for example, by spin coating or slit coating. Apply a functional resin. Thereafter, the coated film is exposed, developed and baked to form a colored layer of a selected color (for example, the red layer 33r) with a thickness of about 0.7 μm to 2.5 μm. Furthermore, as shown in step (g) and step (h) in FIG. 7, the same steps are repeated for the other two colors, so that the other two colored layers (for example, the green layer 33g and the blue layer 33b). Is formed to a thickness of about 0.7 μm to 2.5 μm.
 以上のようにして、対向基板40aを製造することができる。 The counter substrate 40a can be manufactured as described above.
 <貼合工程>
 まず、例えば、上記素子基板作製工程で素子基板20aの表面に、ディスペンサ方式により、シール材を枠状に配置すると共に、シール材の内側に充填材を滴下して配置する。
<Bonding process>
First, for example, in the element substrate manufacturing step, a sealant is arranged in a frame shape on the surface of the element substrate 20a by a dispenser method, and a filler is dropped and arranged inside the sealant.
 続いて、シール材及び充填材が配置された素子基板20aと、上記対向基板作製工程で作製された対向基板40aとを減圧雰囲気(例えば、100Pa以下)で貼り合わせた後に、その減圧雰囲気を開放することにより、素子基板20a及び対向基板40aの外側の表面を加圧する。なお、本実施形態では、減圧雰囲気で貼り合わせる製造方法を例示したが、乾燥雰囲気(露点マイナス30℃以下程度(好ましくは露点マイナス70℃以下程度))で貼り合わせてもよい。 Subsequently, after the element substrate 20a on which the sealing material and the filler are arranged and the counter substrate 40a manufactured in the counter substrate manufacturing step are bonded together in a reduced pressure atmosphere (for example, 100 Pa or less), the reduced pressure atmosphere is released. By doing so, the outer surfaces of the element substrate 20a and the counter substrate 40a are pressurized. In the present embodiment, the manufacturing method in which bonding is performed in a reduced-pressure atmosphere is illustrated, but bonding may be performed in a dry atmosphere (dew point minus 30 ° C. or less (preferably dew point minus 70 ° C. or less)).
 さらに、例えば、素子基板20a及び対向基板40aに挟まれたシール材に紫外線(0.5J/cm~10J/cm程度(好ましくは1J/cm~6J/cm程度))を照射した後に、その被照射貼合体を加熱(例えば、70℃~120℃程度で10分~2時間程度)することにより、シール材及び充填材を硬化させて、シール材及び充填材層25を形成する。 Further, for example, the sealing material sandwiched between the element substrate 20a and the counter substrate 40a is irradiated with ultraviolet rays (about 0.5 J / cm 2 to 10 J / cm 2 (preferably about 1 J / cm 2 to 6 J / cm 2 )). Thereafter, the irradiated bonded body is heated (for example, about 70 ° C. to 120 ° C. for about 10 minutes to 2 hours) to cure the sealing material and the filler, thereby forming the sealing material and the filler layer 25. .
 以上のようにして、有機EL表示装置50aを製造することができる。 The organic EL display device 50a can be manufactured as described above.
 以上説明したように、本実施形態の有機EL表示装置50a及びその製造方法によれば、以下の効果を得ることができる。 As described above, according to the organic EL display device 50a of this embodiment and the manufacturing method thereof, the following effects can be obtained.
 (1)遮光層として設けられたブラックマトリクス32aが金属から形成されているため、ブラックマトリクス32aのヤング率が数100GPa程度になる。これにより、仮に有機EL表示装置50aの表面を押圧しても、その部分のブラックマトリクス32aが塑性変形しないため、サブ画素Pr、Pg及びPbを区画するブラックマトリクス32aを備えた有機EL表示装置50aにおいて、押圧に対する耐性を向上させることができる。また、ブラックマトリクス32aが金属から形成されているため、押圧に対する耐性だけでなく、曲げに対する耐性も向上させることができる。ここで、液晶表示装置等で使用される樹脂製のブラックマトリクスは、比較的低いヤング率(例えば、10GPa以下)を有しているため、そのような樹脂製のブラックマトリクスを備えた有機EL表示装置では、その表面を押圧すると、ブラックマトリクスが塑性変形することにより、その表面が凹んだままで完全に戻り切らないおそれがある。 (1) Since the black matrix 32a provided as the light shielding layer is made of metal, the Young's modulus of the black matrix 32a is about several hundred GPa. Accordingly, even if the surface of the organic EL display device 50a is pressed, the black matrix 32a in that portion is not plastically deformed. Therefore, the organic EL display device 50a including the black matrix 32a that partitions the sub-pixels Pr, Pg, and Pb. , Resistance to pressing can be improved. Further, since the black matrix 32a is made of metal, not only resistance against pressing but also resistance to bending can be improved. Here, since a resin black matrix used in a liquid crystal display device or the like has a relatively low Young's modulus (for example, 10 GPa or less), an organic EL display provided with such a resin black matrix. In the apparatus, when the surface is pressed, the black matrix is plastically deformed, so that there is a possibility that the surface remains depressed and cannot completely return.
 (2)対向基板40aの第2樹脂基板30は、その表面がアッシングされた清浄面30aに酸化膜からなる第2ベースコート膜31が形成されることにより、ブラックマトリクス32aが第2樹脂基板30上に第2ベースコート膜31を介して設けられている。さらに、ブラックマトリクス32aは、厚さが0.1μm以上0.3μm以下であり、表示領域Dにおける線幅が30μm以下であるため、層間の接触面積が増え、第2樹脂基板30と充填材層25との間の膜剥がれを抑制することができる。 (2) As for the second resin substrate 30 of the counter substrate 40a, the black matrix 32a is formed on the second resin substrate 30 by forming the second base coat film 31 made of an oxide film on the clean surface 30a whose surface is ashed. The second base coat film 31 is provided. Furthermore, since the black matrix 32a has a thickness of 0.1 μm or more and 0.3 μm or less and a line width in the display region D of 30 μm or less, the contact area between the layers increases, and the second resin substrate 30 and the filler layer The film peeling between 25 can be suppressed.
 (3)樹脂製のブラックマトリクスと比較して、ブラックマトリクス32aの膜厚が薄くなるため、充填材層25を構成する充填材の量が増えるものの、基板上に充填材を配置するプロセス制御が容易になる。従って、ディスペンサや転写シート材等を用いた比較的低い精度のプロセスを適用することができる。 (3) Since the film thickness of the black matrix 32a is smaller than that of the resin black matrix, the amount of the filler constituting the filler layer 25 is increased, but the process control for arranging the filler on the substrate is performed. It becomes easy. Therefore, a process with relatively low accuracy using a dispenser, a transfer sheet material, or the like can be applied.
 《第2の実施形態》
 図8及び図9は、本発明に係る有機EL表示装置の第2の実施形態を示している。ここで、図8は、本実施形態の有機EL表示装置50bの概略構成を示す断面図である。また、図9は、有機EL表示装置50bの内部構成を示す断面図である。なお、以下の実施形態において、図1~図7と同じ部分については同じ符号を付して、その詳細な説明を省略する。
<< Second Embodiment >>
8 and 9 show a second embodiment of the organic EL display device according to the present invention. Here, FIG. 8 is a cross-sectional view showing a schematic configuration of the organic EL display device 50b of the present embodiment. FIG. 9 is a cross-sectional view showing the internal configuration of the organic EL display device 50b. In the following embodiments, the same parts as those in FIGS. 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
 上記実施形態1では、着色層33r、33g及び33bが対向基板40aに設けられた有機EL表示装置50aを例示したが、本実施形態では、着色層13r、13g及び13bが素子基板20bに設けられた有機EL表示装置50bを例示する。 In the first embodiment, the organic EL display device 50a in which the colored layers 33r, 33g, and 33b are provided on the counter substrate 40a is illustrated. However, in the present embodiment, the colored layers 13r, 13g, and 13b are provided on the element substrate 20b. The organic EL display device 50b is exemplified.
 有機EL表示装置50bは、図8及び図9に示すように、互いに対向するように設けられた素子基板20b及び対向基板40bと、素子基板20b及び対向基板40bの間に設けられ、枠状のシール層(不図示)に囲まれるように充填された充填材層25とを備えている。ここで、有機EL表示装置50bでは、後述する有機EL素子19bが平面視で矩形状に設けられることにより、画像表示を行う表示領域Dが矩形状に規定され、表示領域Dには、複数の画素がマトリクス状に配列されている。そして、表示領域Dの各画素では、図7に示すように、例えば、赤色の階調表示を行うためのサブ画素Pr、緑色の階調表示を行うためのサブ画素Pg、及び青色の階調表示を行うためのサブ画素Pbが互いに隣り合うように配列されている。 As shown in FIGS. 8 and 9, the organic EL display device 50b is provided between the element substrate 20b and the counter substrate 40b provided so as to face each other, and the element substrate 20b and the counter substrate 40b. And a filler layer 25 filled so as to be surrounded by a seal layer (not shown). Here, in the organic EL display device 50b, an organic EL element 19b, which will be described later, is provided in a rectangular shape in plan view, whereby a display area D for image display is defined in a rectangular shape, and the display area D includes a plurality of display areas D. Pixels are arranged in a matrix. In each pixel of the display area D, as shown in FIG. 7, for example, a sub pixel Pr for performing red gradation display, a sub pixel Pg for performing green gradation display, and a blue gradation Sub-pixels Pb for performing display are arranged so as to be adjacent to each other.
 素子基板20bは、図9に示すように、第1樹脂基板10と、第1樹脂基板10上に順に設けられた第1ベースコート膜11と、第1ベースコート膜11上に設けられた有機EL素子19bとを備えている。 As shown in FIG. 9, the element substrate 20 b includes a first resin substrate 10, a first base coat film 11 provided in order on the first resin substrate 10, and an organic EL element provided on the first base coat film 11. 19b.
 有機EL素子19bは、図9に示すように、第1ベースコート層11上に順に設けられた複数のTFT12、着色層(赤色層13r、緑色層13g、青色層13b)、複数の第1電極14、エッジカバー15、複数の有機EL層16、第2電極17及び封止膜18を備えている。 As shown in FIG. 9, the organic EL element 19 b includes a plurality of TFTs 12, a colored layer (a red layer 13 r, a green layer 13 g, a blue layer 13 b) and a plurality of first electrodes 14 that are sequentially provided on the first base coat layer 11. , An edge cover 15, a plurality of organic EL layers 16, a second electrode 17, and a sealing film 18.
 赤色層13r、緑色層13g、青色層13bは、図9に示すように、上記実施形態1の層間絶縁膜15と同様に、各TFT12のドレイン電極の一部以外を覆うように設けられている。ここで、赤色層13r、緑色層13g、青色層13bは、例えば、赤、緑及び青に着色されたアクリル系の感光性樹脂によりそれぞれ形成されている。 As shown in FIG. 9, the red layer 13r, the green layer 13g, and the blue layer 13b are provided so as to cover a portion other than a part of the drain electrode of each TFT 12, like the interlayer insulating film 15 of the first embodiment. . Here, the red layer 13r, the green layer 13g, and the blue layer 13b are each formed of, for example, an acrylic photosensitive resin colored in red, green, and blue.
 対向基板40bは、図8及び図9に示すように、第2樹脂基板30と、第2樹脂基板30上に設けられた第2ベースコート膜31と、第2ベースコート膜31上に遮光層として設けられた金属から形成されたブラックマトリクス32aとを備えている。 As shown in FIGS. 8 and 9, the counter substrate 40 b is provided as a second resin substrate 30, a second base coat film 31 provided on the second resin substrate 30, and a light shielding layer on the second base coat film 31. And a black matrix 32a formed from the formed metal.
 上記構成の有機EL表示装置50bは、可撓性を有し、各サブ画素Pr、Pg、及びPbにおいて、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。 The organic EL display device 50b having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby displaying an image. Configured to do.
 また、本実施形態の有機EL表示装置50bは、上記実施形態1の製造方法において、素子基板作製工程で層間絶縁膜13の材料を無色のものから所定の色に着色されたものに変更し、対向基板作製工程で着色層(赤色層33r、緑色層33g及び青色層33b)の形成を省略することにより、製造することができる。 Further, in the organic EL display device 50b of the present embodiment, in the manufacturing method of the first embodiment, the material of the interlayer insulating film 13 is changed from a colorless one to a predetermined color in the element substrate manufacturing process, It can be manufactured by omitting the formation of the colored layers (red layer 33r, green layer 33g, and blue layer 33b) in the counter substrate manufacturing step.
 以上説明したように、本実施形態の有機EL表示装置50b及びその製造方法によれば、上述の(1)~(3)の効果を得ることができる。 As described above, according to the organic EL display device 50b and the manufacturing method thereof of the present embodiment, the effects (1) to (3) described above can be obtained.
 (1)について詳述すると、遮光層として設けられたブラックマトリクス32aが金属から形成されているので、ブラックマトリクス32aのヤング率が数100GPa程度になる。これにより、仮に有機EL表示装置50bの表面を押圧しても、その部分のブラックマトリクス32aが塑性変形しないので、サブ画素Pr、Pg及びPbを区画するブラックマトリクス32aを備えた有機EL表示装置50bにおいて、押圧に対する耐性を向上させることができる。また、ブラックマトリクス32aが金属から形成されているので、押圧に対する耐性だけでなく、曲げに対する耐性も向上させることができる。 Describing in detail about (1), since the black matrix 32a provided as the light shielding layer is made of metal, the Young's modulus of the black matrix 32a is about several hundred GPa. Accordingly, even if the surface of the organic EL display device 50b is pressed, the black matrix 32a in that portion is not plastically deformed. Therefore, the organic EL display device 50b provided with the black matrix 32a that partitions the sub-pixels Pr, Pg, and Pb. , Resistance to pressing can be improved. Further, since the black matrix 32a is made of metal, not only resistance to pressing but also resistance to bending can be improved.
 《第3の実施形態》
 図10及び図11は、本発明に係る有機EL表示装置の第3の実施形態を示している。ここで、図10は、本実施形態の有機EL表示装置50cの概略構成を示す平面図である。また、図11は、図10中のXI-XI線に沿った有機EL表示装置50cの概略構成を示す断面図である。
<< Third Embodiment >>
10 and 11 show a third embodiment of the organic EL display device according to the present invention. Here, FIG. 10 is a plan view showing a schematic configuration of the organic EL display device 50c of the present embodiment. FIG. 11 is a cross-sectional view showing a schematic configuration of the organic EL display device 50c taken along line XI-XI in FIG.
 上記実施形態1及び2では、有機EL表示装置50a及び50bの表示領域Dの構造を中心に説明したが、本実施形態では、有機EL表示装置50cの表示領域Dの周囲に設けられた非表示領域Fの構造を中心に説明する。 In the first and second embodiments, the structure of the display region D of the organic EL display devices 50a and 50b has been mainly described. However, in this embodiment, the non-display provided around the display region D of the organic EL display device 50c. The structure of the region F will be mainly described.
 有機EL表示装置50cは、図11に示すように、互いに対向するように設けられた素子基板20c及び対向基板40cと、素子基板20c及び対向基板40cの間に設けられ、枠状のシール層(不図示)に囲まれるように充填された充填材層25とを備えている。ここで、有機EL表示装置50cでは、図10に示すように、矩形状の表示領域Dの周囲に非表示領域Fが枠状に設けられている。 As shown in FIG. 11, the organic EL display device 50c is provided between the element substrate 20c and the counter substrate 40c provided so as to face each other, and the element substrate 20c and the counter substrate 40c. And a filler layer 25 filled so as to be surrounded by (not shown). Here, in the organic EL display device 50c, as shown in FIG. 10, a non-display area F is provided in a frame shape around a rectangular display area D.
 素子基板20cの表示領域Dの構成は、上記実施形態1の素子基板20aの表示領域Dの構成と実質的に同じになっている。また、素子基板20cの非表示領域Fでは、図11に示すように、第1ベースコート層11、層間絶縁膜13及びエッジカバー15の積層膜上に表示領域Dの第2電極17が延設され、その延設部分が共通電極17cになっている。ここで、共通電極17cの後述するコンタクト部Cは、図11に示すように、封止膜18から露出している。なお、本実施形態では、素子基板20cの表示領域Dの構成として、上記実施形態1の素子基板20aの表示領域Dの構成を例示したが、上記実施形態2の素子基板20bの表示領域Dの構成と実質的に同じであってもよい。 The configuration of the display area D of the element substrate 20c is substantially the same as the configuration of the display area D of the element substrate 20a of the first embodiment. In the non-display area F of the element substrate 20c, as shown in FIG. 11, the second electrode 17 in the display area D is extended on the laminated film of the first base coat layer 11, the interlayer insulating film 13, and the edge cover 15. The extended portion is a common electrode 17c. Here, a contact portion C, which will be described later, of the common electrode 17c is exposed from the sealing film 18, as shown in FIG. In the present embodiment, the configuration of the display area D of the element substrate 20a of the first embodiment is exemplified as the configuration of the display area D of the element substrate 20c. However, the display area D of the element substrate 20b of the second embodiment is illustrated. It may be substantially the same as the configuration.
 対向基板40cの表示領域Dの構成は、上記実施形態1の対向基板40aの表示領域Dの構成と実質的に同じになっている。また、対向基板40cの非表示領域Fでは、図10及び図11に示すように、表示領域Dのブラックマトリクス32aがコンタクト部Cに到達するように延設されている。なお、本実施形態では、対向基板40cの表示領域Dの構成として、上記実施形態1の対向基板40aの表示領域Dの構成を例示したが、上記実施形態2の対向基板40bの表示領域Dの構成と実質的に同じであってもよい。 The configuration of the display area D of the counter substrate 40c is substantially the same as the configuration of the display area D of the counter substrate 40a of the first embodiment. In the non-display area F of the counter substrate 40c, the black matrix 32a of the display area D is extended so as to reach the contact portion C as shown in FIGS. In the present embodiment, the configuration of the display area D of the counter substrate 40a of the first embodiment is exemplified as the configuration of the display area D of the counter substrate 40c. However, the display area D of the counter substrate 40b of the second embodiment is exemplified. It may be substantially the same as the configuration.
 上記構成の有機EL表示装置50cの非表示領域Fでは、図11に示すように、素子基板20c上の共通電極17cと、対向基板40c上のブラックマトリクス32aとがホール充填材26を介して電気的に接続されることにより、コンタクト部Cが構成されている。これにより、ブラックマトリクス32aに静電気が発生しても、その静電気に起因するTFT12の動作不良を低減することができる。ここで、ホール充填材26は、図11に示すように、例えば、熱硬化性のエポキシ樹脂等中に、導電粒子26aが分散されたものである。なお、本実施形態では、非表示領域Fに1つのコンタクト部Cが設けられた構成を例示したが、コンタクト部Cは、非表示領域Fに複数設けられていてもよい。また、コンタクト部Cは、表示領域Dの最外部でブラックマトリクス32aと重なるように設けられていてもよい。また、対向基板40cにタッチパネルが設けられている場合には、そのタッチパネルと、素子基板20c上の共通電極17cとを上記コンタクト部Cのような構成で電気的に接続してもよい。 In the non-display area F of the organic EL display device 50c having the above configuration, as shown in FIG. 11, the common electrode 17c on the element substrate 20c and the black matrix 32a on the counter substrate 40c are electrically connected via the hole filler 26. Thus, the contact portion C is configured. Thereby, even if static electricity occurs in the black matrix 32a, it is possible to reduce malfunction of the TFT 12 due to the static electricity. Here, as shown in FIG. 11, the hole filler 26 is obtained by dispersing conductive particles 26 a in, for example, a thermosetting epoxy resin or the like. In the present embodiment, the configuration in which one contact portion C is provided in the non-display area F is illustrated, but a plurality of contact portions C may be provided in the non-display area F. Further, the contact portion C may be provided so as to overlap the black matrix 32a at the outermost part of the display area D. Further, when the counter substrate 40c is provided with a touch panel, the touch panel and the common electrode 17c on the element substrate 20c may be electrically connected in the configuration as the contact portion C.
 また、上記構成の有機EL表示装置50cは、可撓性を有し、各サブ画素Pr、Pg、及びPbにおいて、TFT12を介して有機EL層16の発光層3を適宜発光させることにより、画像表示を行うように構成されている。 In addition, the organic EL display device 50c having the above configuration has flexibility, and in each of the subpixels Pr, Pg, and Pb, the light emitting layer 3 of the organic EL layer 16 appropriately emits light through the TFT 12, thereby generating an image. It is configured to display.
 以上説明したように、本実施形態の有機EL表示装置50cによれば、上述の(1)~(3)の効果に加えて、以下の(4)の効果を得ることができる。 As described above, according to the organic EL display device 50c of the present embodiment, the following effect (4) can be obtained in addition to the effects (1) to (3) described above.
 (4)素子基板20c上の共通電極17cと、対向基板40c上のブラックマトリクス32aとが電気的に接続されているので、ブラックマトリクス32aに静電気が発生しても、その静電気に起因するTFT12の不安定な動作を低減することができる。 (4) Since the common electrode 17c on the element substrate 20c and the black matrix 32a on the counter substrate 40c are electrically connected, even if static electricity is generated in the black matrix 32a, the TFT 12 caused by the static electricity is generated. Unstable operation can be reduced.
 《その他の実施形態》
 上記各実施形態では、ブラックマトリクス32a(遮光層)が対向基板40a~40cに設けられた有機EL表示装置50a~50cを例示したが、ブラックマトリクス(遮光層)は、素子基板20a~20cの第1ベースコート層11上であってTFT12に無機絶縁膜を介して設けられていてもよい。この場合、ブラックマトリクス(遮光層)は、陰極(第2電極17)に導通するコモン電極に電気的に接続されている。
<< Other Embodiments >>
In each of the above-described embodiments, the organic EL display devices 50a to 50c in which the black matrix 32a (light shielding layer) is provided on the counter substrates 40a to 40c are exemplified, but the black matrix (light shielding layer) is the second of the element substrates 20a to 20c. One over the base coat layer 11 and may be provided on the TFT 12 via an inorganic insulating film. In this case, the black matrix (light shielding layer) is electrically connected to a common electrode that is electrically connected to the cathode (second electrode 17).
 また、上記各実施形態では、ストライプ配列用のブラックマトリクスを備えた有機EL表示装置を例示したが、本発明は、デルタ配列用のブラックマトリクスを備えた有機EL表示装置等にも適用することができる。 Further, in each of the above embodiments, the organic EL display device provided with the black matrix for stripe arrangement has been exemplified, but the present invention can also be applied to an organic EL display device provided with a black matrix for stripe arrangement. it can.
 また、上記各実施形態では、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層の5層積層構造の有機EL層を例示したが、有機EL層は、例えば、正孔注入層兼正孔輸送層、発光層、及び電子輸送層兼電子注入層の3層積層構造であってもよい。 In each of the above embodiments, an organic EL layer having a five-layer structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer has been exemplified. A three-layer structure of a hole injection layer / hole transport layer, a light emitting layer, and an electron transport layer / electron injection layer may be employed.
 また、上記各実施形態では、第1電極を陽極とし、第2電極を陰極とした有機EL表示装置を例示したが、本発明は、有機EL層の積層構造を反転させ、第1電極を陰極とし、第2電極を陽極とした有機EL表示装置にも適用することができる。 In each of the above embodiments, the organic EL display device using the first electrode as an anode and the second electrode as a cathode has been exemplified. However, the present invention reverses the stacked structure of the organic EL layers and uses the first electrode as a cathode. The present invention can also be applied to an organic EL display device using the second electrode as an anode.
 また、上記各実施形態では、第1電極に接続されたTFTの電極をドレイン電極とした素子基板を備えた有機EL表示装置を例示したが、本発明は、第1電極に接続されたTFTの電極をソース電極と呼ぶ素子基板を備えた有機EL表示装置にも適用することができる。 In each of the above embodiments, the organic EL display device including the element substrate using the TFT electrode connected to the first electrode as the drain electrode is illustrated. However, the present invention is not limited to the TFT connected to the first electrode. The present invention can also be applied to an organic EL display device including an element substrate whose electrode is called a source electrode.
 以上説明したように、本発明は、フレキシブルな有機EL表示装置について有用である。 As described above, the present invention is useful for flexible organic EL display devices.
 D   表示領域
 F   非表示領域
 Pr,Pg,Pb  サブ画素
 17   第2電極(陰極)
 17c  共通電極
 19a,19b  有機EL素子
 20a,20b,20c  素子基板
 30   第2樹脂基板
 30a  清浄面
 31   第2ベースコート膜(酸化膜)
 32a  ブラックマトリクス(遮光層)
 33r  赤色層(着色層)
 33g  緑色層(着色層)
 33b  青色層(着色層)
 40a,40b,40c  対向基板
 50a,50b,50c  有機EL表示装置
D Display area F Non-display area Pr, Pg, Pb Subpixel 17 Second electrode (cathode)
17c Common electrode 19a, 19b Organic EL element 20a, 20b, 20c Element substrate 30 Second resin substrate 30a Clean surface 31 Second base coat film (oxide film)
32a Black matrix (shading layer)
33r Red layer (colored layer)
33g Green layer (colored layer)
33b Blue layer (colored layer)
40a, 40b, 40c Counter substrate 50a, 50b, 50c Organic EL display device

Claims (10)

  1.  表示領域に設けられた有機EL素子と、
     前記表示領域に配列された複数のサブ画素を区画するように設けられた遮光層とを備えた有機EL表示装置であって、
     前記遮光層は、金属から形成されていることを特徴とする有機EL表示装置。
    An organic EL element provided in the display region;
    An organic EL display device comprising a light shielding layer provided so as to partition a plurality of sub-pixels arranged in the display region,
    The organic EL display device, wherein the light shielding layer is made of metal.
  2.  前記複数のサブ画素は、マトリクス状に設けられ、
     前記遮光層は、ブラックマトリクスであることを特徴とする請求項1に記載の有機EL表示装置。
    The plurality of sub-pixels are provided in a matrix.
    The organic EL display device according to claim 1, wherein the light shielding layer is a black matrix.
  3.  前記有機EL素子を有する素子基板と、
     前記素子基板に対向するように設けられた対向基板とを備え、
     前記ブラックマトリクスは、前記対向基板に設けられていることを特徴とする請求項2に記載の有機EL表示装置。
    An element substrate having the organic EL element;
    A counter substrate provided to face the element substrate,
    The organic EL display device according to claim 2, wherein the black matrix is provided on the counter substrate.
  4.  前記ブラックマトリクスの開口部分には、前記各サブ画素に対応する着色層が設けられていることを特徴とする請求項3に記載の有機EL表示装置。 4. The organic EL display device according to claim 3, wherein a colored layer corresponding to each of the sub-pixels is provided in an opening portion of the black matrix.
  5.  前記有機EL素子を有する素子基板と、
     前記素子基板に対向するように設けられた対向基板とを備え、
     前記ブラックマトリクスは、前記素子基板に設けられていることを特徴とする請求項2に記載の有機EL表示装置。
    An element substrate having the organic EL element;
    A counter substrate provided to face the element substrate,
    The organic EL display device according to claim 2, wherein the black matrix is provided on the element substrate.
  6.  前記ブラックマトリクスの開口部分には、前記各サブ画素に対応する着色層が設けられていることを特徴とする請求項5に記載の有機EL表示装置。 The organic EL display device according to claim 5, wherein a colored layer corresponding to each of the sub-pixels is provided in an opening portion of the black matrix.
  7.  前記ブラックマトリクスは、前記表示領域の周りに設けられた非表示領域において、前記有機EL素子の陰極に導通する共通電極に電気的に接続されていることを特徴とする請求項3又は4に記載の有機EL表示装置。 The said black matrix is electrically connected to the common electrode which conducts to the cathode of the said organic EL element in the non-display area | region provided around the said display area, The Claim 3 or 4 characterized by the above-mentioned. Organic EL display device.
  8.  前記対向基板は、前記ブラックマトリクスが設けられた樹脂基板を有し、
     前記樹脂基板の表面には、酸化膜が設けられ、
     前記ブラックマトリクスは、前記樹脂基板上に前記酸化膜を介して設けられていることを特徴とする請求項3又は4に記載の有機EL表示装置。
    The counter substrate has a resin substrate provided with the black matrix,
    An oxide film is provided on the surface of the resin substrate,
    The organic EL display device according to claim 3, wherein the black matrix is provided on the resin substrate via the oxide film.
  9.  前記表示領域における前記ブラックマトリクスは、線幅が30μm以下であり、厚さが0.1μm以上0.3μm以下であることを特徴とする請求項8に記載の有機EL表示装置。 The organic EL display device according to claim 8, wherein the black matrix in the display region has a line width of 30 µm or less and a thickness of 0.1 µm or more and 0.3 µm or less.
  10.  請求項8又は9に記載の有機EL表示装置を製造する方法であって、
     前記素子基板を作製する素子基板作製工程と、
     前記対向基板を作製する対向基板作製工程と、
     前記素子基板作製工程で作製された素子基板、及び前記対向基板作製工程で作製された対向基板を貼り合わせる貼合工程とを備え、
     前記対向基板作製工程では、前記樹脂基板の表面をアッシングして清浄面を形成した後に、該清浄面に前記酸化膜を形成し、該酸化膜上に前記ブラックマトリクスを形成することを特徴とする有機EL表示装置の製造方法。
    A method for producing the organic EL display device according to claim 8 or 9,
    An element substrate manufacturing step of manufacturing the element substrate;
    A counter substrate manufacturing step of manufacturing the counter substrate;
    The element substrate manufactured in the element substrate manufacturing step, and a bonding step of bonding the counter substrate manufactured in the counter substrate manufacturing step,
    In the counter substrate manufacturing step, the surface of the resin substrate is ashed to form a clean surface, and then the oxide film is formed on the clean surface, and the black matrix is formed on the oxide film. A method for manufacturing an organic EL display device.
PCT/JP2016/087536 2015-12-24 2016-12-16 Organic el display device and method for producing same WO2017110672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-251523 2015-12-24
JP2015251523 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017110672A1 true WO2017110672A1 (en) 2017-06-29

Family

ID=59090190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087536 WO2017110672A1 (en) 2015-12-24 2016-12-16 Organic el display device and method for producing same

Country Status (1)

Country Link
WO (1) WO2017110672A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273327A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Organic electroluminescent display device
US20080169750A1 (en) * 2007-01-15 2008-07-17 Kim Mihae Electroluminescent display
JP2012174334A (en) * 2011-02-17 2012-09-10 Dainippon Printing Co Ltd Organic el panel and manufacturing method therefor
JP2012215843A (en) * 2011-03-31 2012-11-08 Jsr Corp Method for forming pixel pattern, color filter, and display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273327A (en) * 2006-03-31 2007-10-18 Dainippon Printing Co Ltd Organic electroluminescent display device
US20080169750A1 (en) * 2007-01-15 2008-07-17 Kim Mihae Electroluminescent display
JP2012174334A (en) * 2011-02-17 2012-09-10 Dainippon Printing Co Ltd Organic el panel and manufacturing method therefor
JP2012215843A (en) * 2011-03-31 2012-11-08 Jsr Corp Method for forming pixel pattern, color filter, and display element

Similar Documents

Publication Publication Date Title
US10497901B2 (en) Display device
WO2018179035A1 (en) Display device
WO2019130480A1 (en) Display device and method for manufacturing same
WO2014034051A1 (en) Manufacturing method for organic el display device, and organic el display device manufactured by such method
WO2017002372A1 (en) Method for manufacturing display device
WO2018229991A1 (en) Display device and production method therefor
WO2016132721A1 (en) Organic el display device
CN109644531B (en) Organic EL display device and method for manufacturing the same
US10468467B2 (en) Organic electroluminescence display device
WO2016125477A1 (en) Display device and method for producing same
WO2020174612A1 (en) Display device
WO2016088355A1 (en) Organic el display device
WO2017033440A1 (en) Organic el display device
WO2019163030A1 (en) Display device and method of manufacture therefor
WO2017141870A1 (en) Method for producing organic el display device, and organic el display device
WO2016147645A1 (en) Organic el display device
WO2020039555A1 (en) Display device
WO2019187121A1 (en) Display device
US10497907B1 (en) Method for manufacturing display device by UV-curing organic layer of sealing film
WO2018173177A1 (en) Organic el display device and method for producing same
WO2017043057A1 (en) Organic el display device
WO2018179288A1 (en) Display device and production method therefor
WO2017110672A1 (en) Organic el display device and method for producing same
WO2016166958A1 (en) Organic el display device
WO2019142261A1 (en) Display device and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP