WO2017109910A1 - Electronic device, determination method, and determination program - Google Patents

Electronic device, determination method, and determination program Download PDF

Info

Publication number
WO2017109910A1
WO2017109910A1 PCT/JP2015/086106 JP2015086106W WO2017109910A1 WO 2017109910 A1 WO2017109910 A1 WO 2017109910A1 JP 2015086106 W JP2015086106 W JP 2015086106W WO 2017109910 A1 WO2017109910 A1 WO 2017109910A1
Authority
WO
WIPO (PCT)
Prior art keywords
user
value
pulse rate
data
regularity
Prior art date
Application number
PCT/JP2015/086106
Other languages
French (fr)
Japanese (ja)
Inventor
笠間 晃一朗
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/086106 priority Critical patent/WO2017109910A1/en
Publication of WO2017109910A1 publication Critical patent/WO2017109910A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals

Definitions

  • the present invention relates to an electronic device, a determination method, and a determination program.
  • the number of steps per day is measured with a wearable terminal, and the amount of exercise per day is determined by comparison with the standard number of steps.
  • it is performed to measure a daily pulse rate with a wearable terminal, and to detect a change in the pulse rate to determine a health condition.
  • the health condition and exercise amount are determined by comparison with general standard values, it may be affected by the characteristics of the individual being monitored, environmental information such as temperature and humidity, and accurate health. It is difficult to manage.
  • An object of one aspect is to provide an electronic device, a determination method, and a determination program that can improve the accuracy of health management.
  • the electronic device acquires exercise information related to the user's exercise or the environment in which the user exercises, and a resting pulse rate that is a pulse rate calculated when the user's exercise amount is a predetermined value or less.
  • the electronic device includes a first specifying unit that specifies the movement of the user or the regularity of the environment using the movement information.
  • the electronic device includes a second specifying unit that specifies a time-series change of the resting pulse rate using the resting pulse rate.
  • the electronic device includes a determination unit that determines a health state of the user based on the regularity and a time-series change in the resting pulse rate.
  • the accuracy of health management can be improved.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a system according to an embodiment.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the sensor terminal according to the embodiment.
  • FIG. 3 is a functional block diagram of a functional configuration example of the system according to the embodiment.
  • FIG. 4 is a flowchart illustrating a flow of processing according to the embodiment.
  • FIG. 5 is a flowchart showing the flow of basic information calculation processing (center value, cumulative value).
  • FIG. 6 is a flowchart showing the flow of the basic information calculation process (amplitude value).
  • FIG. 7 is a flowchart showing the flow of analysis data calculation processing.
  • FIG. 8 is a flowchart showing the flow of regularity analysis processing.
  • FIG. 9 is a flowchart showing the flow of the date interval check process.
  • FIG. 10 is a flowchart showing the flow of the reference value analysis process.
  • FIG. 1 is a diagram illustrating an example of the overall configuration of a system according to an embodiment.
  • a sensor terminal 10 a communication terminal 20, a user terminal 30, a platform 40, and a management server 50 are connected to be communicable with each other via a communication network such as the Internet.
  • this system is a cloud system in which the platform 40 and the management server 50 are installed on the cloud, and is a system that determines the health state of the user who uses the sensor terminal 10.
  • the sensor terminal 10 is a wearable terminal worn on a user's arm or the like, and includes various sensors such as an acceleration sensor, a temperature / humidity sensor, and an optical sensor.
  • the sensor terminal 10 transmits sensor values measured by various sensors to the communication terminal 20 using near field communication such as Bluetooth (registered trademark) or NFC (Near Field Radio Communication).
  • the communication terminal 20 is a gateway for communication between the sensor terminal 10 and each server on the cloud, and is a mobile terminal such as a smartphone or a mobile phone.
  • the communication terminal 20 receives the sensor value from the sensor terminal 10 using short-range wireless communication and stores it in the platform 40.
  • the communication terminal 20 has a cough sensor, detects the cough of the user holding the communication terminal 20, and stores the detected date and time and the number of detections in the platform 40 in association with each other.
  • the user terminal 30 is an electronic device such as a smartphone, a mobile phone, a personal computer, or a server.
  • the user terminal 30 accesses the platform 40 using a Web browser or the like, and browses a processing result by the management server 50 described later.
  • the platform 40 is a database server that is connected to various devices via a network and stores various data.
  • the platform 40 stores the sensor value transmitted from the communication terminal 20 in the DB, and stores the processing result by the management server 50 in the DB.
  • the management server 50 acquires various sensor values from the platform 40, and performs accurate health management in consideration of the characteristics of the individual to be monitored (user) and the influence of environmental information such as temperature and humidity.
  • the management server 50 acquires exercise information regarding the user's exercise or the environment in which the user exercises, and user vital information.
  • the management server 50 identifies regularity of the user's exercise or environment using the exercise information.
  • the management server 50 specifies the time-sequential change of the said vital information using vital information.
  • the management server 50 determines the health status of the user based on regularity and time-series changes in vital information.
  • the management server 50 performing a healthy life according to a comparison result between a combination of vital history information such as a pulse rate and the number of coughs and environmental information corresponding to the history information and a predetermined condition? Is output and a warning is output.
  • vital history information such as a pulse rate and the number of coughs and environmental information corresponding to the history information and a predetermined condition? Is output and a warning is output.
  • each device is common in that it has a processor and a memory, here, the sensor terminal 10 will be described as an example.
  • the communication terminal 20 has a cough sensor for detecting cough, but it may be a general cough sensor, and executes an algorithm for detecting cough using acceleration or the like. Also good.
  • FIG. 2 is a diagram illustrating a hardware configuration example of the sensor terminal 10 according to the embodiment.
  • the sensor terminal 10 includes an optical sensor 10a, a temperature / humidity sensor 10b, an acceleration sensor 10c, a short-range communication unit 10d, a memory 10e, and a processor 10f.
  • the optical sensor 10a is a sensor that measures a user's pulse rate.
  • the optical sensor 10a emits light, periodically measures the pulse rate using the reflected wave, and outputs the pulse rate to the processor 10f.
  • the optical sensor 10a is exemplified as the sensor for measuring the pulse rate, but the present invention is not limited to this, and other sensors such as a pulse sensor capable of measuring the pulse can also be employed.
  • the temperature / humidity sensor 10b periodically measures indoor (outdoor) or outdoor temperature (air temperature) and humidity in which the user is present, and outputs the result to the processor 10f.
  • the acceleration sensor 10c is a sensor that detects an acceleration value (m / s 2 ), for example, a three-axis sensor.
  • the acceleration sensor 10c measures acceleration values (acceleration vectors) for the x-axis, y-axis, and z-axis, and outputs the measurement results to the processor 10f.
  • the near field communication unit 10d is a communication interface that performs near field communication such as Bluetooth (registered trademark) or NFC.
  • the memory 10e is a storage device that stores programs and data. Examples of the memory 10e include RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
  • the processor 10f reads out and executes a program for executing processing to be described later from the memory 10e and starts various processes.
  • Examples of the processor 10f include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), a PLD (Programmable Logic Device), and the like.
  • the communication terminal 20 has the same functional configuration as that of a general smartphone, and the user terminal 30 and the platform 40 have the same functional configuration as that of a general server device.
  • the sensor terminal 10 and the management server 50 will be described.
  • FIG. 3 is a functional block diagram of a functional configuration example of the system according to the embodiment.
  • the sensor terminal 10 includes a sensor communication unit 11, a communication unit 12, a storage unit 13, and a control unit 14.
  • FIG. 3 shows the system configuration of FIG. 1 in a simplified manner.
  • the sensor communication unit 11 is a processing unit that controls communication with the optical sensor 10a, the temperature / humidity sensor 10b, and the acceleration sensor 10c of the sensor terminal 10, and is, for example, a sensor driver.
  • the sensor communication unit 11 receives sensor values from each sensor and outputs them to the control unit 14.
  • the communication unit 12 is a processing unit that controls communication with the communication terminal 20, and is, for example, a communication interface.
  • the communication unit 12 transmits various values generated by the control unit 14 to the platform 40.
  • the transmission timing can be periodically executed, can be executed by a user operation, and can be arbitrarily changed.
  • the storage unit 13 is a storage device that stores various types of information, and corresponds to the memory 10e in FIG.
  • the storage unit 13 stores various sensor values received by the sensor communication unit 11 and various values generated by the control unit 14.
  • the control unit 14 is a processing unit that controls the entire sensor terminal 10, and is, for example, a processor.
  • the control unit 14 includes a pulse calculation unit 15, a motion processing unit 16, and a temperature / humidity processing unit 17.
  • the pulse calculation unit 15, the motion processing unit 16, and the temperature / humidity processing unit 17 are an example of an electronic circuit such as a processor or an example of a process executed by the processor.
  • the pulse calculation unit 15 is a processing unit that calculates a resting pulse rate that is a pulse rate calculated when the amount of exercise is equal to or less than a predetermined value. Specifically, the pulse calculation unit 15 acquires the pulse rate measured by the optical sensor 10 a via the sensor communication unit 11. The pulse calculation unit 15 stores it in the storage unit 13 in association with the measured date and time.
  • the pulse calculation unit 15 receives information in which the date and time and the amount of exercise of the user are associated from the exercise processing unit 16. Then, for each date and time when the pulse rate is measured, the pulse calculation unit 15 extracts the pulse rate calculated at a timing when the amount of exercise is equal to or less than a predetermined value as a resting pulse rate. Thereafter, the pulse calculation unit 15 stores the date and time and the resting pulse rate in association with each other in a predetermined storage unit of the platform 40. The pulse calculation unit 15 can also store the measurement date and time of the pulse rate in association with the pulse rate in a predetermined storage unit of the platform 40.
  • the exercise processing unit 16 is a processing unit that identifies the user's exercise status. Specifically, the motion processing unit 16 acquires the acceleration value measured by the acceleration sensor 10 c via the sensor communication unit 11. Then, the motion processing unit 16 calculates an exercise intensity that is captured as the magnitude of the motion that occurred during the exercise from the acquired acceleration value. Thereafter, the exercise processing unit 16 stores the measurement date and time and the exercise intensity in the storage unit 13 in association with each other. In addition, the exercise processing unit 16 stores the measurement date and time and the exercise intensity in association with each other in a predetermined storage unit of the platform 40.
  • the motion processing unit 16 can use acceleration as the exercise intensity.
  • the exercise processing unit 16 can also use METs (Metabolic equivalents) indicating how many times the metabolism (calorie consumption) of the resting state is performed when performing an activity or exercise.
  • METs Metalabolic equivalents
  • the motion processing unit 16 can calculate METs by multiplying the acceleration by a predetermined coefficient.
  • the exercise processing unit 16 can use an activity amount as the exercise intensity.
  • the exercise processing unit 16 calculates the amount of activity (METs ⁇ time) as exercise intensity (METs) ⁇ time.
  • the exercise processing unit 16 can measure the number of steps using an acceleration or the like as an example of the amount of activity of the user, and can store the measurement date / time and the measured number of steps in the platform 40 in association with each other.
  • a step number sensor, a pedometer or the like can be adopted for the number of steps.
  • the temperature / humidity processing unit 17 is a processing unit that identifies temperature and humidity as user environment information. Specifically, the temperature / humidity processing unit 17 acquires the temperature and humidity measured by the temperature / humidity sensor 10 b via the sensor communication unit 11. Then, the temperature / humidity processing unit 17 corrects the acquired temperature and humidity by a general known method. Thereafter, the temperature / humidity processing unit 17 stores the measurement date and time and the measurement value (temperature or humidity) in the storage unit 13 in association with each other. The temperature / humidity processing unit 17 stores the measurement date and time and the measurement value (temperature or humidity) in a predetermined storage unit of the platform 40 in association with each other.
  • the temperature / humidity processing unit 17 calculates the WBGT of the measurement date / time using the measured temperature and humidity, stores the measurement date / time and the WBGT in association with each other in the storage unit 13, and stores the predetermined storage in the platform 40. Store in the department.
  • the temperature / humidity processing unit 17 can also use a table that uniquely identifies the WBGT from the temperature and humidity.
  • the temperature / humidity processing unit 17 can store the association in which the humidity and the temperature are associated with each other in the storage unit 13 or the like, and can uniquely specify the WBGT from the measured humidity and temperature. For example, when the humidity is 70% and the temperature is 20 ° C., the temperature / humidity processing unit 17 determines WBGT as X2. Note that numerical examples of WBGT are 23 and 25.
  • the management server 50 includes a communication unit 51, a storage unit 52, and a control unit 53.
  • the communication unit 51 is a processing unit that controls communication with other devices such as the platform 40, and is, for example, a communication interface.
  • the communication unit 51 receives various types of information from the platform 40 and transmits various types of information generated by the control unit 14 to the platform 40.
  • the storage unit 52 is a storage device that stores various types of information, such as a memory or a hard disk.
  • the storage unit 52 stores an analysis data DB 52a and an analysis result DB 52b.
  • the analysis data DB 52a is a database for storing analysis data used for user health management. Specifically, the analysis data DB 52a stores data acquired from the platform 40, data generated by the control unit 53 described later, intermediate data, and the like.
  • the analysis result DB 52b is a database that stores the estimation result of the user's health condition. Specifically, various analysis results generated by the control unit 53 to be described later, estimation results indicating the health state of each user, and the like are stored.
  • the control unit 53 is a processing unit that controls the entire management server 50, and is, for example, a processor.
  • the control unit 53 includes an acquisition unit 54, a data extraction unit 55, a regularity analysis unit 56, a reference value analysis unit 57, a rhythm analysis unit 58, and a warning unit 59.
  • the acquisition unit 54, the data extraction unit 55, the regularity analysis unit 56, the reference value analysis unit 57, the rhythm analysis unit 58, and the warning unit 59 are an example of an electronic circuit such as a processor or an example of a process executed by the processor. is there.
  • the acquisition unit 54 is a processing unit that acquires various data from the platform 40, outputs the data to each processing unit of the control unit 53, and stores the data in the storage unit 52. For example, when the acquisition unit 54 receives an instruction to start the estimation process of the user's health status from an administrator or the like, the acquisition unit 54 obtains information such as the pulse rate, resting pulse rate, exercise intensity, WBGT, and cough count generated by the sensor terminal 10. , Acquired from the platform 40 and stored in the analysis data DB 52a.
  • the data extraction unit 55 is a processing unit that extracts data used for regularity analysis, reference value analysis, and rhythm analysis from various sensor values acquired by the sensor terminal 10. Specifically, when an instruction to start processing is given, the data extraction unit 55 reads various data from the analysis data DB 52a. Then, the data extraction unit 55 extracts various data to be used for analysis in accordance with conditions specified in advance by an administrator or the like, and stores the extraction results in the analysis data DB 52a.
  • the data extraction unit 55 calculates the central value of the time series change of the resting pulse rate every 24 hours. For example, the data extraction unit 55 acquires the resting pulse rate for the past 90 days from the current time from the analysis data DB 52a. Subsequently, the data extraction unit 55 classifies the acquired resting pulse rate by dividing it every 24 hours from the current time. And the data extraction part 55 calculates the average of the pulse rate at rest for every 24 hours, and makes it the center value for every 24 hours. Thereafter, the data extraction unit 55 stores the calculated center value of the resting pulse rate every 24 hours in the analysis data DB 52a.
  • the data extraction unit 55 calculates the central value of the resting pulse rate on August 1 and the central value of the resting pulse rate at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data. If the resting pulse rate is 0 in 24 hours, the center value is 0.
  • the data extraction unit 55 calculates the amplitude value of the time series change of the resting pulse rate every 24 hours. For example, the data extraction unit 55 acquires the resting pulse rate for the past 90 days from the current time from the analysis data DB 52a. Subsequently, the data extraction unit 55 classifies the acquired resting pulse rate by dividing it every 24 hours from the current time. And the data extraction part 55 calculates
  • the data extraction unit 55 calculates the average value and stores it as an amplitude value in the analysis data DB 52a.
  • the data extraction unit 55 calculates the amplitude value of the resting pulse rate on August 1 and the amplitude value of the resting pulse rate at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data. If there is no pulse rate at rest in 24 hours, or if there is no amplitude and a maximum or minimum value cannot be obtained, the amplitude value is set to zero.
  • the data extraction unit 55 calculates the cumulative value of the number of coughs every 24 hours. For example, the data extraction unit 55 acquires cough detection data for the past 90 days from the current time from the analysis data DB 52a. At this time, the data extraction unit 55 counts the number of coughs on each day for 90 days, and also acquires the number of coughs per hour for each of 90 days. Subsequently, the data extraction unit 55 classifies the number of coughs by dividing it every 24 hours from the current time. Thereafter, the data extraction unit 55 calculates a cumulative value of the calculated number of coughs every 24 hours and stores it in the analysis data DB 52a.
  • the data extraction unit 55 calculates the cumulative value of the number of coughs on August 1 and the cumulative value of the number of coughs at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data.
  • the data extraction unit 55 calculates the cumulative value of the number of steps for every 24 hours. For example, the data extraction unit 55 acquires detection data of the number of steps for the past 90 days from the current time from the analysis data DB 52a. At this time, the data extraction unit 55 counts the number of steps for each day for 90 days, and also acquires the number of steps for each hour for 90 days. Subsequently, the data extraction unit 55 classifies the number of steps by dividing the number of steps every 24 hours from the current time. Thereafter, the data extraction unit 55 calculates the cumulative value of the calculated number of steps every 24 hours and stores it in the analysis data DB 52a.
  • the data extraction unit 55 calculates the cumulative value of the number of steps on August 1 and the cumulative value of the number of steps on each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data.
  • the data extraction unit 55 uses the data calculated from the basic information (center value) to calculate the average center value of the past 90 days and the average center of the past three days regarding the time series change of the resting pulse rate every 24 hours. Value and the average center value of the past one day are calculated and stored in the analysis data DB 52a.
  • the data extraction unit 55 calculates the average value for the past 90 days from the current time and sets it as the “average center value for the past 90 days”. Further, the data extraction unit 55 calculates an average value for the past three days from the current time and sets it as “average center value for the past three days”. Further, the data extraction unit 55 calculates an average value for the past one day from the current time, and sets it as “average center value for the past one day”. If the data calculated with the basic information (center value) includes an invalid value of 0, the average is calculated with the number of remaining cases excluding the corresponding data.
  • the data extraction unit 55 uses the data calculated with the basic information (amplitude value), the average amplitude value for the past 90 days and the average for the past three days for the time series change of the resting pulse rate every 24 hours.
  • the amplitude value and the average amplitude value for the past one day are calculated and stored in the analysis data DB 52a.
  • the data extraction unit 55 calculates the amplitude value for the past 90 days from the current time and sets it as the “average amplitude value for the past 90 days”. In addition, the data extraction unit 55 calculates an average value for the past three days from the current time, and sets it as “average amplitude value for the past three days”. Further, the data extraction unit 55 calculates an average value for the past one day from the current time and sets it as “average amplitude value for the past one day”. If the data calculated with the basic information (amplitude value) contains an invalid value of 0, the average is calculated with the number of remaining cases excluding the corresponding data.
  • the data extraction unit 55 uses the data calculated from the basic information (cumulative cough), the average value of the past 90 days, the average value of the past three days, about the cumulative value of the number of coughs every 24 hours, The average value for the past one day is calculated and stored in the analysis data DB 52a.
  • the data extraction unit 55 calculates the average value of cumulative values of cough for the past 90 days from the current time. In addition, the data extraction unit 55 calculates an average value of cumulative values of cough for the past three days from the current time. In addition, the data extraction unit 55 calculates an average value of cumulative values of cough for the past one day from the current time.
  • the data extraction unit 55 uses the data calculated with the basic information (accumulation of the number of steps), the average value of the past 90 days, the average value of the past three days, The daily average value is calculated and stored in the analysis data DB 52a.
  • the data extraction unit 55 calculates the average number of steps for the past 90 days from the current time. Further, the data extraction unit 55 calculates an average value of the number of steps in the past three days from the current time. Further, the data extraction unit 55 calculates the average value of the number of steps in the past one day from the current time.
  • the regularity analysis unit 56 is a processing unit that identifies regularity of the user's exercise or environment. Specifically, the regularity analysis unit 56 specifies the regularity of each user regarding the number of steps, the amount of activity, the WBGT, and the like using the basic information, analysis data, and the like calculated by the data extraction unit 55.
  • the regularity analysis of the number of steps will be described as an example.
  • the regularity analysis unit 56 extracts all data in the 7 am range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “ ⁇ (minus)” in the calculated value, and determines “regular” when the date intervals are substantially the same (for example, within ⁇ 2 days). For example, if the date interval varies within ⁇ 3 days or less, for example, it is judged as “short-term (within 5 days) irregular”, and if it is over 6 days, it is determined as “long-term (6 days or more). It is determined as “irregular”.
  • the regularity analysis unit 56 determines a long-term irregularity if there is at least six days or more, and a short-term irregularity if there is no more than six days and there is at least three days.
  • the regularity analysis unit 56 stores the regularity of the regularity analysis data of the number of steps (7 am) in the analysis result DB 52b.
  • the regularity analysis unit 56 extracts all data in the 3 pm range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “ ⁇ (minus)” in the value calculated here, and determines that the date interval is almost the same (for example, within ⁇ 2 days) as “regular”. However, if the date interval varies within ⁇ 3 days or less, it is judged as “short-term (less than 5 days) irregular”, and if it is more than 6 days, “long-term (more than 6 days) irregularity” "Rule”. Then, the regularity analysis unit 56 stores the regularity of the step count regularity analysis data (3 pm) in the analysis result DB 52b.
  • the regularity analysis unit 56 extracts all data in the midnight range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold value (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “ ⁇ (minus)” in the value calculated here, and determines that the date interval is almost the same (within ⁇ 2 days) as “regular”. If the date interval varies within ⁇ 3 days or less, it will be judged as “short-term (within 5 days) irregular”, and if it is over 6 days, “long-term (within 6 days) irregular” Is determined. The regularity analysis unit 56 stores the regularity of the step count regularity analysis data (0:00 am) in the analysis result DB 52b.
  • the regularity analysis unit 56 determines that there is an irregularity when there is a “long-term (6 days or more) irregularity” in the above-described determination of the regularity of the number of steps, and the regularity analysis data of the number of steps Are stored in the analysis result DB 52b.
  • the reference value analysis unit 57 is a processing unit that analyzes a health abnormality by specifying a time-series change of the vital information using the vital information and comparing it with the reference value. Specifically, the reference value analysis unit 57 performs reference value analysis on cough, the number of steps, the amount of activity, and the like using the basic information and analysis data calculated by the data extraction unit 55. Here, as an example, reference value analysis of cough and number of steps will be described.
  • the reference value analysis unit 57 subtracts “the average value of the cumulative value of the cough frequency every 24 hours for the past 90 days” from the “average value of the cumulative value of the cough frequency every 24 hours” for the past 90 days. Then, it is stored in the analysis result DB 52b as “difference between the current average value and the long-term average value” of the reference value analysis data of the number of coughs.
  • the reference value analysis unit 57 subtracts “the average value of the cumulative value of the cough frequency every 24 hours for the past one day” from the “average value of the cumulative value of the cough frequency for every 24 hours” for the past three days. Then, it is stored in the analysis result DB 52b as “difference between the current average value and the short-term average value” of the reference value analysis data of the number of coughs.
  • the reference value analysis unit 57 calculates a difference between the “difference between the current average value and the long-term average value” and the “difference between the current average value and the short-term average value”, and a difference equal to or greater than a threshold (for example, +5) is calculated. It is determined whether or not there is.
  • a threshold for example, +5
  • the reference value analysis unit 57 stores the difference in the cough regularity analysis data in the analysis result DB 52b.
  • the reference value analysis unit 57 includes “an average value for the past 90 days of the cumulative value of the number of coughs every 24 hours”, “an average value of the cumulative value of the number of coughs every 24 hours for the past three days”, “ The cough count threshold value (for example, 10 times) is subtracted from each of the “average value of the past 1 day of the cumulative value of cough counts every 24 hours”. Then, the reference value analysis unit 57 “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, “difference between current average value and threshold value” in the reference value analysis data 1 of the number of coughs Is stored in the analysis result DB 52b.
  • the reference value analysis unit 57 indicates that each of “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, and “difference between current average value and threshold value” is “+ (plus)”. It is determined whether or not. When there are two or more “+ (plus)” values, the reference value analysis unit 57 stores the difference in the cough regularity analysis data in the analysis result DB 52b.
  • the reference value analysis unit 57 subtracts “the average value of the accumulated value of the number of steps every 24 hours in the past 90 days” from “the average value of the accumulated value of the number of steps every 24 hours” to calculate the number of steps. It is stored in the analysis result DB 52b as “difference between current average value and long-term average value” of the reference value analysis data.
  • the reference value analysis unit 57 subtracts the “average value of the cumulative value of the number of steps every 24 hours for the past three days” from the “average value of the cumulative value of the number of steps for every 24 hours” to calculate the number of steps. It is stored in the analysis result DB 52b as “difference between the current average value and the short-term average value” of the reference value analysis data.
  • the reference value analysis unit 57 sets the difference between the current average value and the long-term average value and the difference between the current average value and the short-term average value as threshold values (for example, ⁇ 6000). ) It is determined whether it is the following value.
  • the reference value analysis unit 57 stores the difference in the reference value analysis data of the number of steps in the analysis result DB 52b.
  • the reference value analysis unit 57 includes “an average value for the past 90 days of the cumulative value of the number of steps every 24 hours”, “an average value of the accumulated value of the number of steps every 24 hours for the past three days”, “ A step count threshold value (for example, 8000 times) is subtracted from each of the “average value of the accumulated number of steps in the past one day”. Then, the reference value analysis unit 57 includes “difference between long-term average value and threshold”, “difference between short-term average value and threshold”, and “difference between current average value and threshold” of the reference value analysis data 1 of the number of steps. And stored in the analysis result DB 52b.
  • the reference value analysis unit 57 determines that “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, and “difference between current average value and threshold value” are “ ⁇ (minus)”. It is determined whether or not. When there are two or more “ ⁇ (minus)” values, the reference value analysis unit 57 stores the difference alarm of the reference value analysis data of the number of steps in the analysis result DB 52b.
  • the rhythm analysis unit 58 is a processing unit that analyzes circadian rhythms using time-series changes in the pulse rate at rest and analyzes health abnormalities. Specifically, the rhythm analysis unit 58 analyzes the circadian rhythm of the resting pulse rate using the basic information and analysis data calculated by the data extraction unit 55, and stores the analysis result in the analysis result DB 52b. .
  • the rhythm analysis unit 58 determines that each of the above-described “average center value for the past 90 days”, “average center value for the past three days”, and “average center value for the past one day” is in a certain range (for example, 10 bpm). ). Then, the rhythm analysis unit 58 stores the determination result in the analysis result DB 52b. Further, when there is a value exceeding a certain range, the rhythm analysis unit 58 stores it in the analysis result DB 52b as “alarm” of the circadian rhythm analysis data of the central value.
  • the rhythm analysis unit 58 has a predetermined range (for example, 10 bpm) of the above-mentioned “average amplitude value for the past 90 days”, “average amplitude value for the past 3 days”, and “average amplitude value for the past 1 day”. ). Then, the rhythm analysis unit 58 stores the determination result in the analysis result DB 52b. When there is a value exceeding a certain range, the rhythm analysis unit 58 stores the amplitude value in the analysis result DB 52b as an “alarm” of circadian rhythm analysis data.
  • a predetermined range for example, 10 bpm
  • the warning unit 59 is a processing unit that issues a warning to the user according to the analysis result by the control unit 53. Specifically, the warning unit 59 reads the analysis results by the regularity analysis unit 56, the reference value analysis unit 57, and the rhythm analysis unit 58 with reference to the analysis result DB 52b. Then, when an alarm is registered as an analysis result, the warning unit 59 transmits a warning message to a pre-designated mail address or transmits a warning message to a display or the like.
  • the warning unit 59 can also change the warning message depending on the type of alarm and the number of alarms. For example, when an alarm for circadian rhythm analysis data is registered, the warning unit 59 transmits a circadian rhythm warning message. Further, the warning unit 59 can classify warning levels into five levels according to the number of alarms, and can transmit a message corresponding to each warning level.
  • FIG. 4 is a flowchart illustrating a flow of processing according to the embodiment.
  • the management server 50 sets a reference date and time (S101), and executes extraction of the corresponding data (S102).
  • the management server 50 uses the data sensed by the sensor terminal 10 as input data, and sets the date and time of the top data of the number of steps in the input data as the reference current date and time.
  • the management server 50 reads the data from the file, extracts the data for 89 days and 23 hours from the current date, adds the input data to the extracted data, overwrites the file with the added data, and outputs the extracted data To do.
  • the management server 50 executes basic information (center value) calculation processing (S104), and the basic information (amplitude value). ) Is calculated (S105), and basic information (cumulative value) is calculated (S106).
  • S103 to S105 a calculation process will be performed for the pulse rate at rest.
  • S106 calculation processing is executed for the number of coughs and the number of steps. If there is no input data for a predetermined number of days (for example, 90 days) (S103: No), the process ends.
  • the management server 50 executes analysis data calculation processing (S107).
  • S107 calculation processing is executed for the center value and amplitude value of the resting pulse rate, the cumulative number of coughs, and the cumulative number of steps.
  • the management server 50 executes regularity analysis processing (S108), reference value analysis processing (S109), and circadian rhythm analysis processing (S110).
  • FIG. 5 is a flowchart showing the flow of basic information calculation processing (center value, cumulative value).
  • the data extraction unit 55 generates a parent list and a child list (S201), and when there is unprocessed data (S202: Yes), selects the unprocessed data (S203). For example, when there is data every 24 hours, the data extraction unit 55 selects unprocessed data. Also, here, initial values are set in the parent list and the child list, and the reference date and time is initially set.
  • the data extraction unit 55 adds the data of the child list to the parent list, and creates a new child list.
  • the target data is added to the child list (S206).
  • the data extraction unit 55 returns to S202 and repeats the subsequent processing.
  • the data extraction unit 55 executes S206 without executing S205. Note that the processing from S201 to S206 is referred to as 24-hour classification processing for classifying the sensing data to be analyzed.
  • the data extraction unit 55 determines whether there is data for 24 hours (S207). Here, if there is no data for 24 hours (S207: No), the process is terminated.
  • the data extraction unit 55 determines whether there is data that has not been processed by the basic information calculation process (S208).
  • the data extraction unit 55 extracts unprocessed data (S209), and sets the value of the extracted unprocessed data as a total value. Add (S210). Thereafter, the data extraction unit 55 repeats S208 and subsequent steps.
  • the data extraction unit 55 calculates the total value or calculates the average value as the center value (S211).
  • FIG. 6 is a flowchart showing the flow of the basic information calculation process (amplitude value).
  • the data extraction unit 55 executes the 24-hour classification process (S301), and then sets a reference value (S302). For example, the data extraction unit 55 acquires the top data as the reference value.
  • the data extraction unit 55 determines whether or not the value of the data to be processed is larger than the reference value (S305).
  • the data extraction unit 55 determines whether or not the minimum value is being calculated (S306). Then, when the local minimum value is being calculated (S306: Yes), the data extraction unit 55 sets the reference value to the local minimum value, and if there is a local maximum value, adds the difference to the list (S307).
  • the data extraction unit 55 updates the reference value with the value of the data to be processed (S308), sets the state to the maximum value calculation (S309), and then repeats S304 and subsequent steps. On the other hand, if it is determined in S306 that the minimum value is not being calculated (S306: No), the data extraction unit 55 executes S308 without executing S307.
  • the data extraction unit 55 determines whether the value of the processing target data is smaller than the reference value (S310).
  • the data extraction unit 55 determines whether the maximum value is being calculated (S311). If the local maximum is being calculated (S311: Yes), the data extraction unit 55 sets the reference value to the local maximum, and if there is a local minimum, adds the difference to the list (S312).
  • the data extraction unit 55 updates the reference value with the value of the data to be processed (S313), sets the state to the minimum value calculation (S314), and then repeats S304 and subsequent steps.
  • S310 when the value of the data to be processed is the same as the reference value (S310: No), S304 and subsequent steps are repeated.
  • S311: No when it is determined in S310 that the maximum value is not being calculated (S311: No), the data extraction unit 55 executes S313 without executing S312.
  • the data extraction unit 55 ends the process when there is no unprocessed data in S304 (S304: No).
  • FIG. 7 is a flowchart showing the flow of analysis data calculation processing.
  • the data extraction unit 55 reads the data, and when the read data is not invalid data (S402: Yes), the value of the read data Is added to the total value (S403), and the number of data is counted up (S404). If the read data is invalid data (S402: No), the data extraction unit 55 executes S405 without executing S403 and S404.
  • the data extraction unit 55 calculates and holds an average value for the past one day (S406).
  • the data extraction unit 55 determines whether 3 is set for the number of loops (S407).
  • the data extraction unit 55 calculates and holds an average value for the past three days (S408).
  • the data extraction unit 55 repeats S401 and subsequent steps.
  • the data extraction unit 55 calculates and holds an average value for the past 90 days (S409).
  • FIG. 8 is a flowchart showing the flow of regularity analysis processing.
  • the regularity analysis unit 56 extracts data for 30 days from data for 90 days (S501), and determines whether there is data to be processed (S502).
  • the regularity analysis unit 56 determines whether the data is data at the time of AM7 and no determination result (S503).
  • the regularity analysis unit 56 performs the date interval check (S504) and repeats S502 and subsequent steps when the data is data at AM7 and no determination result (S503: Yes).
  • the regularity analysis unit 56 determines whether or not the data is data at PM3 and no determination result when the data is not data at AM7 or is not data without a determination result (S503: No). Is determined (S505).
  • the regularity analysis unit 56 performs the date interval check (S506), and then repeats S502 and subsequent steps.
  • the regularity analysis unit 56 determines whether or not the data is the data at the time of AM0 and without the determination result when the data is not the data at the time of PM3 or the data without the determination result (S505: No). Is determined (S507).
  • the regularity analysis unit 56 performs a date interval check (S508), and then repeats S502 and subsequent steps. If the data is not at AM0 or is not data without a determination result (S507: No), the regularity analysis unit 56 repeats S502 and subsequent steps without executing S508.
  • the regularity analysis unit 56 indicates that the determination result is “No determination result in each time zone” or “No. “Short-circuit irregularity” is set, and “Regular” is set otherwise (S509).
  • FIG. 9 is a flowchart showing the flow of the date interval check process.
  • the regularity analysis unit 56 subtracts the determination result from the data to be processed (S601), and if the subtraction value is positive (S602: No), the process ends.
  • the regularity analysis unit 56 calculates a date difference if there is a previous negative date and time (S603). Subsequently, if the date difference is 6 days or more, the regularity analysis unit 56 sets “long-term irregular” as the determination result (S604). The regularity analysis unit 56 holds the subtraction value if it is larger than the difference between the previous dates (S605).
  • FIG. 10 is a flowchart showing the flow of the reference value analysis process.
  • the reference value analysis unit 57 calculates and holds the difference (A) between the average value for one day and the average value for 90 days (S701). Subsequently, the reference value analysis unit 57 calculates and holds the difference (B) between the average value for one day and the average value for three days (S702).
  • the reference value analysis unit 57 performs determination based on the determination value for the difference (A) and the difference (B), and holds the determination result (S703). For example, the reference value analysis unit 57 determines whether there is a value greater than or equal to the determination value when the determination value is positive among the differences (A) or the difference (B), and determines when the determination value is negative. It is determined whether there is a value less than or equal to the value.
  • the reference value analysis unit 57 calculates and holds the difference between the average value for 90 days and the threshold (S704), and calculates and holds the difference between the average value for 3 days and the threshold (S705). ) Calculate and hold the difference between the average value for one day and the threshold (S706).
  • the reference value analysis unit 57 performs determination using the threshold value and each difference, and holds the determination result (S707). For example, the reference value analysis unit 57 determines whether or not there is a value greater than or equal to the determination value when the determination value is positive among the differences from the threshold, and a value equal to or less than the determination value when the determination value is negative. It is determined whether or not there is, and the determined number is held.
  • the reference value analysis unit 57 executes alarm determination (S708). For example, the reference value analysis unit 57 sets an alarm based on the determination result of the difference from the average value for one day and the determination result of the difference from the threshold.
  • the rhythm analysis unit 58 determines whether all of the average values for 90 days, 3 days, and 1 day are within the determination value. If there is an average value that is not within the determination value or an average value that is not within the determination value, Set alarms based on numbers, etc.
  • the management server 50 estimates whether a healthy life is being performed according to a comparison result between a combination of vital history information and environmental information corresponding to the history information and a predetermined condition, and warns. Can be output. As a result, since the management server 50 can take into account the characteristics of the individual being monitored and the influence of environmental information such as temperature and humidity, it is possible to improve the accuracy of health management.
  • Each numerical value described in the above embodiment is an example, and can be arbitrarily changed.
  • the average value may be calculated in the past 30 days instead of the past 90 days.
  • an example using the pulse rate and the number of coughs as an example of vital information has been described.
  • the present invention is not limited to this example.
  • blood pressure, body temperature, sweating amount, etc. Can be processed.
  • the target of regularity determination processing has been described by the number of steps.
  • the amount of activity and WBGT can be similarly processed.
  • the reference value determination target has been described by taking cough and the number of steps as an example, the amount of activity can be similarly processed.
  • the period in the reference information extraction process described in the above embodiment can be arbitrarily changed.
  • the reference information is extracted in the past 1 day, the past 3 days, and the past 90 days, and the alarm is determined.
  • the reference information is extracted in the past 1 day, the past 5 days, and the past 30 days, and the alarm is determined. It is also possible to output a warning when an alarm is detected in each. By measuring in a plurality of spans in this way, recent physical condition can be taken into consideration, and accuracy can be improved.
  • warning In the above embodiment, an example is described in which an alarm is determined in each analysis process, and a warning is issued when an alarm is detected.
  • the present invention is not limited to this.
  • a warning can be issued only when an alarm is detected in all analysis processes or when a specified number of alarms are detected, and the type of warning is changed depending on the number of alarms in each analysis process. You can also.
  • [system] 2 and FIG. 3 does not necessarily have to be physically configured as illustrated. That is, it can be configured to be distributed or integrated in arbitrary units.
  • the acquisition unit 54 and the data extraction unit 55 can be integrated.
  • the sensor terminal 10 may have each process part which the management server 50 has, and the communication terminal 20 may have each process part which the management server 50 has, and each process part which the sensor terminal 10 has.
  • all or any part of each processing function performed in each device is realized by a CPU (Central Processing Unit) and a program analyzed and executed by the CPU, or hardware by wired logic. Can be realized as
  • CPU Central Processing Unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Signal Processing (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

An electronic device that obtains exercise information relating to exercise by a user or the environment in which the user exercises. The electronic device also obtains vital information such as the number of times the user coughs. The electronic device then uses the exercise information and identifies the regularity of the user exercise or environment. The electronic device uses the vital information and identifies chronological change in said vital information. Then the electronic device determines the health condition of the user, on the basis of the regularity and the chronological change in vital information.

Description

電子機器、判定方法および判定プログラムElectronic device, determination method, and determination program
 本発明は、電子機器、判定方法および判定プログラムに関する。 The present invention relates to an electronic device, a determination method, and a determination program.
 近年、ウェアラブル端末のように体に身に着ける電子機器が普及し、自分で健康管理を行うことが行われている。例えば、ウェアラブル端末で一日の歩数を測定し、標準歩数と比較して、一日の運動量を判断することが行われている。また、ウェアラブル端末で一日の脈拍数を測定し、脈拍数の変動を検出して健康状態を判断することが行われている。 In recent years, electronic devices that can be worn on the body, such as wearable terminals, have become widespread, and health management has been carried out on their own. For example, the number of steps per day is measured with a wearable terminal, and the amount of exercise per day is determined by comparison with the standard number of steps. In addition, it is performed to measure a daily pulse rate with a wearable terminal, and to detect a change in the pulse rate to determine a health condition.
特開2013-025380号公報JP 2013-025380 A
 しかしながら、上記技術では、一般的な標準値との比較によって健康状態や運動量を判定するので、被監視者個人の特性や、温度や湿度などの環境情報の影響を受けることがあり、正確な健康管理を行うことが難しい。 However, in the above technology, since the health condition and exercise amount are determined by comparison with general standard values, it may be affected by the characteristics of the individual being monitored, environmental information such as temperature and humidity, and accurate health. It is difficult to manage.
 1つの側面では、健康管理の精度向上を図ることができる電子機器、判定方法および判定プログラムを提供することを目的とする。 An object of one aspect is to provide an electronic device, a determination method, and a determination program that can improve the accuracy of health management.
 第1の案では、電子機器は、ユーザの運動またはユーザが運動する環境に関する運動情報と、前記ユーザの運動量が所定値以下の場合に算出された脈拍数である安静時脈拍数を取得する取得部を有する。電子機器は、前記運動情報を用いて前記ユーザの運動または前記環境の規則性を特定する第1特定部を有する。電子機器は、前記安静時脈拍数を用いて当該安静時脈拍数の時系列の変化を特定する第2特定部を有する。電子機器は、前記規則性と前記安静時脈拍数の時系列の変化とに基づいて、前記ユーザの健康状態を判定する判定部を有する。 In the first proposal, the electronic device acquires exercise information related to the user's exercise or the environment in which the user exercises, and a resting pulse rate that is a pulse rate calculated when the user's exercise amount is a predetermined value or less. Part. The electronic device includes a first specifying unit that specifies the movement of the user or the regularity of the environment using the movement information. The electronic device includes a second specifying unit that specifies a time-series change of the resting pulse rate using the resting pulse rate. The electronic device includes a determination unit that determines a health state of the user based on the regularity and a time-series change in the resting pulse rate.
 一実施形態によれば、健康管理の精度向上を図ることができる。 According to one embodiment, the accuracy of health management can be improved.
図1は、実施例にかかるシステムの全体構成例を示す図である。FIG. 1 is a diagram illustrating an example of the overall configuration of a system according to an embodiment. 図2は、実施例にかかるセンサ端末のハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating a hardware configuration example of the sensor terminal according to the embodiment. 図3は、実施例にかかるシステムの機能構成例を示す機能ブロック図である。FIG. 3 is a functional block diagram of a functional configuration example of the system according to the embodiment. 図4は、実施例にかかる処理の流れを示すフローチャートである。FIG. 4 is a flowchart illustrating a flow of processing according to the embodiment. 図5は、基本情報算出処理(中心値、累積値)の流れを示すフローチャートである。FIG. 5 is a flowchart showing the flow of basic information calculation processing (center value, cumulative value). 図6は、基本情報算出処理(振幅値)の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of the basic information calculation process (amplitude value). 図7は、分析データ算出処理の流れを示すフローチャートである。FIG. 7 is a flowchart showing the flow of analysis data calculation processing. 図8は、規則性分析処理の流れを示すフローチャートである。FIG. 8 is a flowchart showing the flow of regularity analysis processing. 図9は、日付間隔チェック処理の流れを示すフローチャートである。FIG. 9 is a flowchart showing the flow of the date interval check process. 図10は、基準値分析処理の流れを示すフローチャートである。FIG. 10 is a flowchart showing the flow of the reference value analysis process.
 以下に、本発明にかかる電子機器、判定方法および判定プログラムの実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。 Hereinafter, embodiments of an electronic apparatus, a determination method, and a determination program according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[全体構成]
 図1は、実施例にかかるシステムの全体構成例を示す図である。図1に示すように、このシステムは、センサ端末10、通信端末20、ユーザ端末30、プラットフォーム40、管理サーバ50が、インターネットなどの通信網を介して相互に通信可能に接続される。すなわち、このシステムは、プラットフォーム40や管理サーバ50がクラウド上に設置されたクラウドシステムであり、センサ端末10を使用するユーザの健康状態を判定するシステムである。
[overall structure]
FIG. 1 is a diagram illustrating an example of the overall configuration of a system according to an embodiment. As shown in FIG. 1, in this system, a sensor terminal 10, a communication terminal 20, a user terminal 30, a platform 40, and a management server 50 are connected to be communicable with each other via a communication network such as the Internet. That is, this system is a cloud system in which the platform 40 and the management server 50 are installed on the cloud, and is a system that determines the health state of the user who uses the sensor terminal 10.
 センサ端末10は、ユーザの腕等に装着されるウェアラブル端末などであり、加速度センサ、温湿度センサ、光センサなどの各種センサを有する。このセンサ端末10は、各種センサで測定したセンサ値等を、ブルートゥース(登録商標)やNFC(Near Field radio Communication)などの近距離通信などを用いて、通信端末20に送信する。 The sensor terminal 10 is a wearable terminal worn on a user's arm or the like, and includes various sensors such as an acceleration sensor, a temperature / humidity sensor, and an optical sensor. The sensor terminal 10 transmits sensor values measured by various sensors to the communication terminal 20 using near field communication such as Bluetooth (registered trademark) or NFC (Near Field Radio Communication).
 通信端末20は、センサ端末10とクラウド上の各サーバとの通信におけるゲートウェイであり、例えばスマートフォンや携帯電話などの移動体端末である。この通信端末20は、近距離無線通信を用いてセンサ端末10からセンサ値を受信し、プラットフォーム40に格納する。また、通信端末20は、咳センサを有し、通信端末20を保持するユーザの咳を検出し、検出日時と検出回数などを対応付けてプラットフォーム40に格納する。 The communication terminal 20 is a gateway for communication between the sensor terminal 10 and each server on the cloud, and is a mobile terminal such as a smartphone or a mobile phone. The communication terminal 20 receives the sensor value from the sensor terminal 10 using short-range wireless communication and stores it in the platform 40. Moreover, the communication terminal 20 has a cough sensor, detects the cough of the user holding the communication terminal 20, and stores the detected date and time and the number of detections in the platform 40 in association with each other.
 ユーザ端末30は、スマートフォン、携帯電話、パーソナルコンピュータ、サーバなどの電子機器であり、Webブラウザ等を用いてプラットフォーム40にアクセスし、後述する管理サーバ50による処理結果を閲覧する。 The user terminal 30 is an electronic device such as a smartphone, a mobile phone, a personal computer, or a server. The user terminal 30 accesses the platform 40 using a Web browser or the like, and browses a processing result by the management server 50 described later.
 プラットフォーム40は、ネットワークを介して各種装置と接続され、各種データを記憶するデータベースサーバである。例えば、プラットフォーム40は、通信端末20から送信されたセンサ値をDBに記憶し、管理サーバ50による処理結果をDBに記憶する。 The platform 40 is a database server that is connected to various devices via a network and stores various data. For example, the platform 40 stores the sensor value transmitted from the communication terminal 20 in the DB, and stores the processing result by the management server 50 in the DB.
 管理サーバ50は、プラットフォーム40から各種センサ値を取得し、被監視者個人(ユーザ)の特性や、温度や湿度などの環境情報の影響を考慮して、正確な健康管理を行う。 The management server 50 acquires various sensor values from the platform 40, and performs accurate health management in consideration of the characteristics of the individual to be monitored (user) and the influence of environmental information such as temperature and humidity.
 このような状態において、管理サーバ50は、ユーザの運動またはユーザが運動する環境に関する運動情報と、ユーザのバイタル情報とを取得する。管理サーバ50は、運動情報を用いてユーザの運動または環境の規則性を特定する。そして、管理サーバ50は、バイタル情報を用いて当該バイタル情報の時系列の変化を特定する。その後、管理サーバ50は、規則性とバイタル情報の時系列の変化とに基づいて、ユーザの健康状態を判定する。 In such a state, the management server 50 acquires exercise information regarding the user's exercise or the environment in which the user exercises, and user vital information. The management server 50 identifies regularity of the user's exercise or environment using the exercise information. And the management server 50 specifies the time-sequential change of the said vital information using vital information. Thereafter, the management server 50 determines the health status of the user based on regularity and time-series changes in vital information.
 例えば、管理サーバ50は、脈拍数や咳の回数などのバイタルの履歴情報と、履歴情報に対応する環境情報との組み合わせと所定の条件との比較結果に応じて健康的な生活を行っているかを推定し、警告を出力する。 For example, is the management server 50 performing a healthy life according to a comparison result between a combination of vital history information such as a pulse rate and the number of coughs and environmental information corresponding to the history information and a predetermined condition? Is output and a warning is output.
[ハードウェア構成]
 次に、システムの各装置のハードウェア構成について説明する。なお、各装置は、プロセッサとメモリを有する点で共通していることから、ここでは、センサ端末10を例にして説明する。なお、通信端末20は、咳を検出するための咳センサを有しているが、一般的な咳センサであってもよく、加速度等を用いて咳を検出するようなアルゴリズムを実行していてもよい。
[Hardware configuration]
Next, the hardware configuration of each device in the system will be described. Since each device is common in that it has a processor and a memory, here, the sensor terminal 10 will be described as an example. The communication terminal 20 has a cough sensor for detecting cough, but it may be a general cough sensor, and executes an algorithm for detecting cough using acceleration or the like. Also good.
 図2は、実施例にかかるセンサ端末10のハードウェア構成例を示す図である。図2に示すように、センサ端末10は、光センサ10a、温湿度センサ10b、加速度センサ10c、近距離通信部10d、メモリ10e、プロセッサ10fを有する。 FIG. 2 is a diagram illustrating a hardware configuration example of the sensor terminal 10 according to the embodiment. As shown in FIG. 2, the sensor terminal 10 includes an optical sensor 10a, a temperature / humidity sensor 10b, an acceleration sensor 10c, a short-range communication unit 10d, a memory 10e, and a processor 10f.
 光センサ10aは、ユーザの脈拍数を測定するセンサであり、例えば光を放射し、その反射波によって脈拍数を定期的に測定して、プロセッサ10fに出力する。なお、ここでは、脈拍数を測定するセンサとして光センサ10aを例示したが、これに限定されるものではなく、脈拍を測定できる脈拍センサなど他のセンサを採用することもできる。 The optical sensor 10a is a sensor that measures a user's pulse rate. For example, the optical sensor 10a emits light, periodically measures the pulse rate using the reflected wave, and outputs the pulse rate to the processor 10f. Here, the optical sensor 10a is exemplified as the sensor for measuring the pulse rate, but the present invention is not limited to this, and other sensors such as a pulse sensor capable of measuring the pulse can also be employed.
 温湿度センサ10bは、ユーザがいる屋内または屋外の温度(気温)と湿度を定期的に測定して、プロセッサ10fに出力する。加速度センサ10cは、加速度値(m/s)を検出するセンサであり、例えば3軸センサである。例えば、加速度センサ10cは、x軸、y軸、z軸それぞれの加速度値(加速度ベクトル)を測定して、プロセッサ10fに測定結果を出力する。 The temperature / humidity sensor 10b periodically measures indoor (outdoor) or outdoor temperature (air temperature) and humidity in which the user is present, and outputs the result to the processor 10f. The acceleration sensor 10c is a sensor that detects an acceleration value (m / s 2 ), for example, a three-axis sensor. For example, the acceleration sensor 10c measures acceleration values (acceleration vectors) for the x-axis, y-axis, and z-axis, and outputs the measurement results to the processor 10f.
 近距離通信部10dは、ブルートゥース(登録商標)やNFCなどの近距離通信を実行する通信インタフェースである。メモリ10eは、プログラムやデータを記憶する記憶装置である。メモリ10eの一例としては、SDRAM(Synchronous Dynamic Random Access Memory)等のRAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ等が挙げられる。 The near field communication unit 10d is a communication interface that performs near field communication such as Bluetooth (registered trademark) or NFC. The memory 10e is a storage device that stores programs and data. Examples of the memory 10e include RAM (Random Access Memory) such as SDRAM (Synchronous Dynamic Random Access Memory), ROM (Read Only Memory), flash memory, and the like.
 プロセッサ10fは、後述する処理を実行するプログラムをメモリ10eから読み出して実行して各種プロセスを起動する。プロセッサ10fの一例としては、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、PLD(Programmable Logic Device)等が挙げられる。 The processor 10f reads out and executes a program for executing processing to be described later from the memory 10e and starts various processes. Examples of the processor 10f include a CPU (Central Processing Unit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), a PLD (Programmable Logic Device), and the like.
[機能構成]
 次に、システムの各装置の機能構成について説明する。なお、通信端末20は、一般的なスマートフォン等と同様の機能構成を有し、ユーザ端末30やプラットフォーム40は、一般的なサーバ装置と同様の機能構成を有するので、詳細な説明は省略する。ここでは、センサ端末10と管理サーバ50について説明する。
[Function configuration]
Next, the functional configuration of each device in the system will be described. The communication terminal 20 has the same functional configuration as that of a general smartphone, and the user terminal 30 and the platform 40 have the same functional configuration as that of a general server device. Here, the sensor terminal 10 and the management server 50 will be described.
(センサ端末10の機能構成)
 図3は、実施例にかかるシステムの機能構成例を示す機能ブロック図である。図3に示すように、センサ端末10は、センサ通信部11、通信部12、記憶部13、制御部14を有する。なお、説明上、図3は、図1のシステム構成を簡略化して示すこととする。
(Functional configuration of sensor terminal 10)
FIG. 3 is a functional block diagram of a functional configuration example of the system according to the embodiment. As illustrated in FIG. 3, the sensor terminal 10 includes a sensor communication unit 11, a communication unit 12, a storage unit 13, and a control unit 14. For the sake of explanation, FIG. 3 shows the system configuration of FIG. 1 in a simplified manner.
 センサ通信部11は、センサ端末10が有する光センサ10a、温湿度センサ10b、加速度センサ10cとの通信を制御する処理部であり、例えばセンサドライバなどである。このセンサ通信部11は、各センサからセンサ値を受信して制御部14に出力する。 The sensor communication unit 11 is a processing unit that controls communication with the optical sensor 10a, the temperature / humidity sensor 10b, and the acceleration sensor 10c of the sensor terminal 10, and is, for example, a sensor driver. The sensor communication unit 11 receives sensor values from each sensor and outputs them to the control unit 14.
 通信部12は、通信端末20との間の通信を制御する処理部であり、例えば通信インタフェースである。この通信部12は、制御部14が生成した各種値をプラットフォーム40に送信する。なお、送信するタイミングは、定期的に実行することもでき、ユーザ操作で実行することもでき、任意に設定変更することができる。 The communication unit 12 is a processing unit that controls communication with the communication terminal 20, and is, for example, a communication interface. The communication unit 12 transmits various values generated by the control unit 14 to the platform 40. The transmission timing can be periodically executed, can be executed by a user operation, and can be arbitrarily changed.
 記憶部13は、各種情報を記憶する記憶装置であり、図2のメモリ10eに対応する。例えば、記憶部13は、センサ通信部11が受信した各種センサ値や制御部14が生成した各種値などを記憶する。 The storage unit 13 is a storage device that stores various types of information, and corresponds to the memory 10e in FIG. For example, the storage unit 13 stores various sensor values received by the sensor communication unit 11 and various values generated by the control unit 14.
 制御部14は、センサ端末10全体を司る処理部であり、例えばプロセッサなどである。制御部14は、脈拍算出部15、運動処理部16、温湿度処理部17を有する。例えば、脈拍算出部15、運動処理部16、温湿度処理部17は、プロセッサなどの電子回路の一例やプロセッサなどが実行するプロセスの一例である。 The control unit 14 is a processing unit that controls the entire sensor terminal 10, and is, for example, a processor. The control unit 14 includes a pulse calculation unit 15, a motion processing unit 16, and a temperature / humidity processing unit 17. For example, the pulse calculation unit 15, the motion processing unit 16, and the temperature / humidity processing unit 17 are an example of an electronic circuit such as a processor or an example of a process executed by the processor.
 脈拍算出部15は、運動量が所定値以下の場合に算出された脈拍数である安静時脈拍数を算出する処理部である。具体的には、脈拍算出部15は、センサ通信部11を介して、光センサ10aが測定した脈拍数を取得する。脈拍算出部15は、測定された日時と対応付けて記憶部13に格納する。 The pulse calculation unit 15 is a processing unit that calculates a resting pulse rate that is a pulse rate calculated when the amount of exercise is equal to or less than a predetermined value. Specifically, the pulse calculation unit 15 acquires the pulse rate measured by the optical sensor 10 a via the sensor communication unit 11. The pulse calculation unit 15 stores it in the storage unit 13 in association with the measured date and time.
 また、脈拍算出部15は、運動処理部16から、日時とユーザの運動量とが対応付けられた情報を受信する。そして、脈拍算出部15は、脈拍数が測定された各日時について、運動量が所定値以下のタイミングで算出された脈拍数を安静時脈拍数として抽出する。その後、脈拍算出部15は、日時と安静時脈拍数とを対応付けてプラットフォーム40の所定の記憶部に格納する。なお、脈拍算出部15は、脈拍数の測定日時と脈拍数とを対応付けて、プラットフォーム40の所定の記憶部に格納することもできる。 Further, the pulse calculation unit 15 receives information in which the date and time and the amount of exercise of the user are associated from the exercise processing unit 16. Then, for each date and time when the pulse rate is measured, the pulse calculation unit 15 extracts the pulse rate calculated at a timing when the amount of exercise is equal to or less than a predetermined value as a resting pulse rate. Thereafter, the pulse calculation unit 15 stores the date and time and the resting pulse rate in association with each other in a predetermined storage unit of the platform 40. The pulse calculation unit 15 can also store the measurement date and time of the pulse rate in association with the pulse rate in a predetermined storage unit of the platform 40.
 運動処理部16は、ユーザの運動状況を特定する処理部である。具体的には、運動処理部16は、センサ通信部11を介して、加速度センサ10cが測定した加速度値を取得する。そして、運動処理部16は、取得した加速度値から運動時に発生した動きの大きさとして捉える運動強度を算出する。その後、運動処理部16は、測定日時と運動強度を対応付けて記憶部13に格納する。また、運動処理部16は、測定日時と運動強度とを対応付けて、プラットフォーム40の所定の記憶部に格納する。 The exercise processing unit 16 is a processing unit that identifies the user's exercise status. Specifically, the motion processing unit 16 acquires the acceleration value measured by the acceleration sensor 10 c via the sensor communication unit 11. Then, the motion processing unit 16 calculates an exercise intensity that is captured as the magnitude of the motion that occurred during the exercise from the acquired acceleration value. Thereafter, the exercise processing unit 16 stores the measurement date and time and the exercise intensity in the storage unit 13 in association with each other. In addition, the exercise processing unit 16 stores the measurement date and time and the exercise intensity in association with each other in a predetermined storage unit of the platform 40.
 例えば、運動処理部16は、運動強度として加速度を用いることができる。また、運動処理部16は、活動や運動を行った時に安静状態の何倍の代謝(カロリー消費)をしているかを表すMETs(Metabolic equivalents)を用いることもできる。例えば、運動処理部16は、加速度に所定係数を乗算することでMETsを算出することができる。また、運動処理部16は、運動強度として活動量を用いることができる。例えば、運動処理部16は、運動強度(METs)×時間として活動量(METs・時間)を算出する。 For example, the motion processing unit 16 can use acceleration as the exercise intensity. The exercise processing unit 16 can also use METs (Metabolic equivalents) indicating how many times the metabolism (calorie consumption) of the resting state is performed when performing an activity or exercise. For example, the motion processing unit 16 can calculate METs by multiplying the acceleration by a predetermined coefficient. The exercise processing unit 16 can use an activity amount as the exercise intensity. For example, the exercise processing unit 16 calculates the amount of activity (METs · time) as exercise intensity (METs) × time.
 また、運動処理部16は、ユーザの活動量の一例として加速度等を用いて歩数を計測し、計測日時と計測した歩数とを対応付けてプラットフォーム40へ格納することもできる。なお、歩数は、歩数センサや歩数計などを採用することもできる。 Also, the exercise processing unit 16 can measure the number of steps using an acceleration or the like as an example of the amount of activity of the user, and can store the measurement date / time and the measured number of steps in the platform 40 in association with each other. For the number of steps, a step number sensor, a pedometer or the like can be adopted.
 温湿度処理部17は、ユーザの環境情報として温度や湿度を特定する処理部である。具体的には、温湿度処理部17は、センサ通信部11を介して、温湿度センサ10bが測定した温度や湿度を取得する。そして、温湿度処理部17は、取得した温度や湿度を、一般的な公知の手法により補正する。その後、温湿度処理部17は、測定日時と測定値(温度または湿度)を対応付けて記憶部13に格納する。また、温湿度処理部17は、測定日時と測定値(温度または湿度)を対応付けて、プラットフォーム40の所定の記憶部に格納する。 The temperature / humidity processing unit 17 is a processing unit that identifies temperature and humidity as user environment information. Specifically, the temperature / humidity processing unit 17 acquires the temperature and humidity measured by the temperature / humidity sensor 10 b via the sensor communication unit 11. Then, the temperature / humidity processing unit 17 corrects the acquired temperature and humidity by a general known method. Thereafter, the temperature / humidity processing unit 17 stores the measurement date and time and the measurement value (temperature or humidity) in the storage unit 13 in association with each other. The temperature / humidity processing unit 17 stores the measurement date and time and the measurement value (temperature or humidity) in a predetermined storage unit of the platform 40 in association with each other.
 また、温湿度処理部17は、測定された温度および湿度を用いて、測定日時のWBGTを算出し、測定日時とWBGTとを対応付けて記憶部13に格納するとともに、プラットフォーム40の所定の記憶部に格納する。 Further, the temperature / humidity processing unit 17 calculates the WBGT of the measurement date / time using the measured temperature and humidity, stores the measurement date / time and the WBGT in association with each other in the storage unit 13, and stores the predetermined storage in the platform 40. Store in the department.
 例えば、温湿度処理部17は、予め指定した算出式を用いてWBGTを算出することができる。例を挙げると、温湿度処理部17は、「WBGT=α×温度+β×湿度、(αとβは予め定めた計数)」で算出することができる。 For example, the temperature / humidity processing unit 17 can calculate the WBGT using a calculation formula designated in advance. For example, the temperature / humidity processing unit 17 can calculate “WBGT = α × temperature + β × humidity (α and β are predetermined counts)”.
 また、温湿度処理部17は、温度と湿度から一意にWBGTを特定する表を用いることもできる。例えば、温湿度処理部17は、湿度と温度とを対応付けた対応付けを記憶部13等に記憶し、測定された湿度と温度とからWBGTを一意に特定することもできる。例を挙げると、湿度が70%かつ温度が20℃の場合、温湿度処理部17は、WBGTをX2と決定する。なお、WBGTの数値例としては、23や25などである。 The temperature / humidity processing unit 17 can also use a table that uniquely identifies the WBGT from the temperature and humidity. For example, the temperature / humidity processing unit 17 can store the association in which the humidity and the temperature are associated with each other in the storage unit 13 or the like, and can uniquely specify the WBGT from the measured humidity and temperature. For example, when the humidity is 70% and the temperature is 20 ° C., the temperature / humidity processing unit 17 determines WBGT as X2. Note that numerical examples of WBGT are 23 and 25.
(管理サーバ50の機能構成)
 図3に示すように、管理サーバ50は、通信部51、記憶部52、制御部53を有する。通信部51は、プラットフォーム40などの他の装置との間の通信を制御する処理部であり、例えば通信インタフェースである。この通信部51は、プラットフォーム40から各種情報を受信し、制御部14が生成した各種情報をプラットフォーム40に送信する。
(Functional configuration of the management server 50)
As illustrated in FIG. 3, the management server 50 includes a communication unit 51, a storage unit 52, and a control unit 53. The communication unit 51 is a processing unit that controls communication with other devices such as the platform 40, and is, for example, a communication interface. The communication unit 51 receives various types of information from the platform 40 and transmits various types of information generated by the control unit 14 to the platform 40.
 記憶部52は、各種情報を記憶する記憶装置であり、例えばメモリやハードディスクなどである。この記憶部52は、分析用データDB52aと分析結果DB52bとを記憶する。 The storage unit 52 is a storage device that stores various types of information, such as a memory or a hard disk. The storage unit 52 stores an analysis data DB 52a and an analysis result DB 52b.
 分析用データDB52aは、ユーザの健康管理に用いる分析用データを記憶するデータベースである。具体的には、分析用データDB52aは、プラットフォーム40から取得されたデータや、後述する制御部53が生成したデータや途中データなどを記憶する。 The analysis data DB 52a is a database for storing analysis data used for user health management. Specifically, the analysis data DB 52a stores data acquired from the platform 40, data generated by the control unit 53 described later, intermediate data, and the like.
 分析結果DB52bは、ユーザの健康状態の推定結果を記憶するデータベースである。具体的には、後述する制御部53によって生成された各種分析結果、ユーザごとの健康状態を示す推定結果などを記憶する。 The analysis result DB 52b is a database that stores the estimation result of the user's health condition. Specifically, various analysis results generated by the control unit 53 to be described later, estimation results indicating the health state of each user, and the like are stored.
 制御部53は、管理サーバ50全体を司る処理部であり、例えばプロセッサなどである。制御部53は、取得部54、データ抽出部55、規則性分析部56、基準値分析部57、リズム分析部58、警告部59を有する。例えば、取得部54、データ抽出部55、規則性分析部56、基準値分析部57、リズム分析部58、警告部59は、プロセッサなどの電子回路の一例やプロセッサなどが実行するプロセスの一例である。 The control unit 53 is a processing unit that controls the entire management server 50, and is, for example, a processor. The control unit 53 includes an acquisition unit 54, a data extraction unit 55, a regularity analysis unit 56, a reference value analysis unit 57, a rhythm analysis unit 58, and a warning unit 59. For example, the acquisition unit 54, the data extraction unit 55, the regularity analysis unit 56, the reference value analysis unit 57, the rhythm analysis unit 58, and the warning unit 59 are an example of an electronic circuit such as a processor or an example of a process executed by the processor. is there.
 取得部54は、プラットフォーム40から各種データを取得して制御部53の各処理部に出力し、記憶部52に格納する処理部である。例えば、取得部54は、ユーザの健康状態を推定処理の開始指示を管理者等から受け付けると、センサ端末10が生成した脈拍数、安静時脈拍数、運動強度、WBGT、咳回数などの情報を、プラットフォーム40から取得し、分析用データDB52aに格納する。 The acquisition unit 54 is a processing unit that acquires various data from the platform 40, outputs the data to each processing unit of the control unit 53, and stores the data in the storage unit 52. For example, when the acquisition unit 54 receives an instruction to start the estimation process of the user's health status from an administrator or the like, the acquisition unit 54 obtains information such as the pulse rate, resting pulse rate, exercise intensity, WBGT, and cough count generated by the sensor terminal 10. , Acquired from the platform 40 and stored in the analysis data DB 52a.
 データ抽出部55は、センサ端末10が取得した各種センサ値から、規則性分析、基準値分析、リズム分析に使用するデータを抽出する処理部である。具体的には、データ抽出部55は、処理開始が指示されると、分析用データDB52aから各種データを読み込む。そして、データ抽出部55は、管理者等が予め指定した条件等にしたがって、分析に用いるための各種データを抽出し、抽出結果を分析用データDB52aに格納する。 The data extraction unit 55 is a processing unit that extracts data used for regularity analysis, reference value analysis, and rhythm analysis from various sensor values acquired by the sensor terminal 10. Specifically, when an instruction to start processing is given, the data extraction unit 55 reads various data from the analysis data DB 52a. Then, the data extraction unit 55 extracts various data to be used for analysis in accordance with conditions specified in advance by an administrator or the like, and stores the extraction results in the analysis data DB 52a.
 ここで、データ抽出部55が抽出する各情報の抽出例として、基本情報と分析用データについて具体例を挙げて説明する。 Here, as an extraction example of each information extracted by the data extraction unit 55, basic information and analysis data will be described with specific examples.
(基本情報(中心値)の抽出例)
 データ抽出部55は、24時間ごとの安静時脈拍数の時系列変化の中心値を算出する。例えば、データ抽出部55は、現時刻から過去90日分の安静時脈拍数を分析用データDB52aから取得する。続いて、データ抽出部55は、取得した安静時脈拍数を現時刻から24時間ごとに区切って分類する。そして、データ抽出部55は、24時間ごとの安静時脈拍数の平均を算出し、それを24時間ごとの中心値とする。その後、データ抽出部55は、算出した24時間ごとの安静時脈拍数の中心値を、分析用データDB52aに格納する。
(Example of basic information (center value) extraction)
The data extraction unit 55 calculates the central value of the time series change of the resting pulse rate every 24 hours. For example, the data extraction unit 55 acquires the resting pulse rate for the past 90 days from the current time from the analysis data DB 52a. Subsequently, the data extraction unit 55 classifies the acquired resting pulse rate by dividing it every 24 hours from the current time. And the data extraction part 55 calculates the average of the pulse rate at rest for every 24 hours, and makes it the center value for every 24 hours. Thereafter, the data extraction unit 55 stores the calculated center value of the resting pulse rate every 24 hours in the analysis data DB 52a.
 例えば、データ抽出部55は、8月1日の安静時脈拍数の中心値と、8月1日の0時から24時までの各時間における安静時脈拍数の中心値とを算出する。データ抽出部55は、90日分のデータについてこれらのデータを算出する。なお、24時間で安静時脈拍数が0件の場合は、中心値を0とする。 For example, the data extraction unit 55 calculates the central value of the resting pulse rate on August 1 and the central value of the resting pulse rate at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data. If the resting pulse rate is 0 in 24 hours, the center value is 0.
(基本情報(振幅値)の抽出例)
 データ抽出部55は、24時間ごとの安静時脈拍数の時系列変化の振幅値を算出する。例えば、データ抽出部55は、現時刻から過去90日分の安静時脈拍数を分析用データDB52aから取得する。続いて、データ抽出部55は、取得した安静時脈拍数を現時刻から24時間ごとに区切って分類する。そして、データ抽出部55は、24時間ごとの安静時脈拍数の時系列変化の極大値と極小値を求め、隣接する極小値と極大値の差分値を算出する。ここで、データ抽出部55は、差分値が複数ある場合は、その平均値を算出し、それを振幅値として、分析用データDB52aに格納する。
(Example of basic information (amplitude value) extraction)
The data extraction unit 55 calculates the amplitude value of the time series change of the resting pulse rate every 24 hours. For example, the data extraction unit 55 acquires the resting pulse rate for the past 90 days from the current time from the analysis data DB 52a. Subsequently, the data extraction unit 55 classifies the acquired resting pulse rate by dividing it every 24 hours from the current time. And the data extraction part 55 calculates | requires the maximum value and minimum value of the time-sequential change of the pulse rate at rest for every 24 hours, and calculates the difference value of the adjacent minimum value and maximum value. Here, when there are a plurality of difference values, the data extraction unit 55 calculates the average value and stores it as an amplitude value in the analysis data DB 52a.
 例えば、データ抽出部55は、8月1日の安静時脈拍数の振幅値と、8月1日の0時から24時までの各時間における安静時脈拍数の振幅値とを算出する。データ抽出部55は、90日分のデータについてこれらのデータを算出する。なお、24時間で安静時脈拍数がない、または、振幅がなく極大値や極小値が取れない場合は、振幅値を0とする。 For example, the data extraction unit 55 calculates the amplitude value of the resting pulse rate on August 1 and the amplitude value of the resting pulse rate at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data. If there is no pulse rate at rest in 24 hours, or if there is no amplitude and a maximum or minimum value cannot be obtained, the amplitude value is set to zero.
(基本情報(咳の累積)の抽出例)
 データ抽出部55は、24時間ごとの咳の回数の累積値を算出する。例えば、データ抽出部55は、現時刻から過去90日分の咳の検出データを分析用データDB52aから取得する。このとき、データ抽出部55は、90日分の各日における咳の回数を計数し、さらに、90日分それぞれについて1時間毎の咳の回数も取得する。続いて、データ抽出部55は、咳の回数を現時刻から24時間ごとに区切って分類する。その後、データ抽出部55は、算出した24時間ごとの咳の回数の累積値を算出して、分析用データDB52aに格納する。
(Extraction example of basic information (cumulative cough))
The data extraction unit 55 calculates the cumulative value of the number of coughs every 24 hours. For example, the data extraction unit 55 acquires cough detection data for the past 90 days from the current time from the analysis data DB 52a. At this time, the data extraction unit 55 counts the number of coughs on each day for 90 days, and also acquires the number of coughs per hour for each of 90 days. Subsequently, the data extraction unit 55 classifies the number of coughs by dividing it every 24 hours from the current time. Thereafter, the data extraction unit 55 calculates a cumulative value of the calculated number of coughs every 24 hours and stores it in the analysis data DB 52a.
 例えば、データ抽出部55は、8月1日の咳の回数の累積値と、8月1日の0時から24時までの各時間における咳の回数の累積値とを算出する。データ抽出部55は、90日分のデータについてこれらのデータを算出する。 For example, the data extraction unit 55 calculates the cumulative value of the number of coughs on August 1 and the cumulative value of the number of coughs at each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data.
(基本情報(歩数の累積)の抽出例)
 データ抽出部55は、24時間ごとの歩数の回数の累積値を算出する。例えば、データ抽出部55は、現時刻から過去90日分の歩数の検出データを分析用データDB52aから取得する。このとき、データ抽出部55は、90日分の各日における歩数の回数を計数し、さらに、90日分それぞれについて1時間毎の歩数の回数も取得する。続いて、データ抽出部55は、歩数の回数を現時刻から24時間ごとに区切って分類する。その後、データ抽出部55は、算出した24時間ごとの歩数の回数の累積値を算出して、分析用データDB52aに格納する。
(Example of extracting basic information (cumulative number of steps))
The data extraction unit 55 calculates the cumulative value of the number of steps for every 24 hours. For example, the data extraction unit 55 acquires detection data of the number of steps for the past 90 days from the current time from the analysis data DB 52a. At this time, the data extraction unit 55 counts the number of steps for each day for 90 days, and also acquires the number of steps for each hour for 90 days. Subsequently, the data extraction unit 55 classifies the number of steps by dividing the number of steps every 24 hours from the current time. Thereafter, the data extraction unit 55 calculates the cumulative value of the calculated number of steps every 24 hours and stores it in the analysis data DB 52a.
 例えば、データ抽出部55は、8月1日の歩数の回数の累積値と、8月1日の0時から24時までの各時間における歩数の回数の累積値とを算出する。データ抽出部55は、90日分のデータについてこれらのデータを算出する。 For example, the data extraction unit 55 calculates the cumulative value of the number of steps on August 1 and the cumulative value of the number of steps on each time from 0:00 to 24:00 on August 1. The data extraction unit 55 calculates these data for 90 days worth of data.
(分析用データの抽出例)
 次に、上述した基本情報や分析用データ52aに記憶される各種データを用いて、分析に使用する各データの平均値を算出する例について説明する。なお、ここで例示する数値例はあくまで例示であり、任意に設定変更することができる。
(Example of extracting data for analysis)
Next, an example of calculating an average value of each data used for analysis using the basic information and various data stored in the analysis data 52a will be described. In addition, the numerical example illustrated here is an illustration to the last, and can change a setting arbitrarily.
 まず、データ抽出部55は、基本情報(中心値)で算出したデータを用いて、24時間ごとの安静時脈拍数の時系列変化についての過去90日間の平均中心値、過去3日間の平均中心値、過去1日間の平均中心値を算出し、分析用データDB52aに格納する。 First, the data extraction unit 55 uses the data calculated from the basic information (center value) to calculate the average center value of the past 90 days and the average center of the past three days regarding the time series change of the resting pulse rate every 24 hours. Value and the average center value of the past one day are calculated and stored in the analysis data DB 52a.
 例えば、データ抽出部55は、現時刻から過去90日間の平均値を算出し、それを「過去90日間の平均中心値」とする。また、データ抽出部55は、現時刻から過去3日間の平均値を算出し、それを「過去3日間の平均中心値」とする。また、データ抽出部55は、現時刻から過去1日間の平均値を算出し、それを「過去1日間の平均中心値」とする。なお、基本情報(中心値)で算出したデータ内に無効値の0が含まれていた場合は、該当データを除いた残りの件数で平均を算出する。 For example, the data extraction unit 55 calculates the average value for the past 90 days from the current time and sets it as the “average center value for the past 90 days”. Further, the data extraction unit 55 calculates an average value for the past three days from the current time and sets it as “average center value for the past three days”. Further, the data extraction unit 55 calculates an average value for the past one day from the current time, and sets it as “average center value for the past one day”. If the data calculated with the basic information (center value) includes an invalid value of 0, the average is calculated with the number of remaining cases excluding the corresponding data.
 続いて、データ抽出部55は、基本情報(振幅値)で算出したデータを用いて、24時間ごとの安静時脈拍数の時系列変化についての過去90日間の平均振幅値、過去3日間の平均振幅値、過去1日間の平均振幅値を算出し、分析用データDB52aに格納する。 Subsequently, the data extraction unit 55 uses the data calculated with the basic information (amplitude value), the average amplitude value for the past 90 days and the average for the past three days for the time series change of the resting pulse rate every 24 hours. The amplitude value and the average amplitude value for the past one day are calculated and stored in the analysis data DB 52a.
 例えば、データ抽出部55は、現時刻から過去90日間の振幅値を算出し、それを「過去90日間の平均振幅値」とする。また、データ抽出部55は、現時刻から過去3日間の平均値を算出し、それを「過去3日間の平均振幅値」とする。また、データ抽出部55は、現時刻から過去1日間の平均値を算出し、それを「過去1日間の平均振幅値」とする。なお、基本情報(振幅値)で算出したデータ内に無効値の0が含まれていた場合は、該当データを除いた残りの件数で平均を算出する。 For example, the data extraction unit 55 calculates the amplitude value for the past 90 days from the current time and sets it as the “average amplitude value for the past 90 days”. In addition, the data extraction unit 55 calculates an average value for the past three days from the current time, and sets it as “average amplitude value for the past three days”. Further, the data extraction unit 55 calculates an average value for the past one day from the current time and sets it as “average amplitude value for the past one day”. If the data calculated with the basic information (amplitude value) contains an invalid value of 0, the average is calculated with the number of remaining cases excluding the corresponding data.
 続いて、データ抽出部55は、基本情報(咳の累積)で算出したデータを用いて、24時間ごとの咳の回数の累積値についての過去90日間の平均値、過去3日間の平均値、過去1日間の平均値を算出し、分析用データDB52aに格納する。 Subsequently, the data extraction unit 55 uses the data calculated from the basic information (cumulative cough), the average value of the past 90 days, the average value of the past three days, about the cumulative value of the number of coughs every 24 hours, The average value for the past one day is calculated and stored in the analysis data DB 52a.
 例えば、データ抽出部55は、現時刻から過去90日間の咳の累積値の平均値を算出する。また、データ抽出部55は、現時刻から過去3日間の咳の累積値の平均値を算出する。また、データ抽出部55は、現時刻から過去1日間の咳の累積値の平均値を算出する。 For example, the data extraction unit 55 calculates the average value of cumulative values of cough for the past 90 days from the current time. In addition, the data extraction unit 55 calculates an average value of cumulative values of cough for the past three days from the current time. In addition, the data extraction unit 55 calculates an average value of cumulative values of cough for the past one day from the current time.
 続いて、データ抽出部55は、基本情報(歩数の累積)で算出したデータを用いて、24時間ごとの歩数の累積値についての過去90日間の平均値、過去3日間の平均値、過去1日間の平均値を算出し、分析用データDB52aに格納する。 Subsequently, the data extraction unit 55 uses the data calculated with the basic information (accumulation of the number of steps), the average value of the past 90 days, the average value of the past three days, The daily average value is calculated and stored in the analysis data DB 52a.
 例えば、データ抽出部55は、現時刻から過去90日間の歩数の平均値を算出する。また、データ抽出部55は、現時刻から過去3日間の歩数の平均値を算出する。また、データ抽出部55は、現時刻から過去1日間の歩数の平均値を算出する。 For example, the data extraction unit 55 calculates the average number of steps for the past 90 days from the current time. Further, the data extraction unit 55 calculates an average value of the number of steps in the past three days from the current time. Further, the data extraction unit 55 calculates the average value of the number of steps in the past one day from the current time.
 図3に戻り、規則性分析部56は、ユーザの運動または環境の規則性を特定する処理部である。具体的には、規則性分析部56は、データ抽出部55によって算出された基本情報や分析データ等を用いて、歩数、活動量、WBGTなどについてユーザ個々の規則性を特定する。ここでは、一例として歩数の規則性分析について説明する。 3, the regularity analysis unit 56 is a processing unit that identifies regularity of the user's exercise or environment. Specifically, the regularity analysis unit 56 specifies the regularity of each user regarding the number of steps, the amount of activity, the WBGT, and the like using the basic information, analysis data, and the like calculated by the data extraction unit 55. Here, the regularity analysis of the number of steps will be described as an example.
 例えば、規則性分析部56は、基本情報(歩数の累積)で算出した過去30日間の各データのうち午前7時台のデータを全て抽出し、それぞれの値から判定しきい値(例えば20歩)を減算する。続いて、規則性分析部56は、ここで算出した値に「-(マイナス)」がある日付を全て抽出し、日付間隔がほぼ同じ(例えば±2日内)の場合は「規則的」と判定し、日付間隔が例えば±3日以上ばらつく期間が5日間以内の場合は「短期的(5日間以内)な不規則」と判定し、6日間以上の場合は「長期的(6日間以上)な不規則」と判定する。 For example, the regularity analysis unit 56 extracts all data in the 7 am range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “− (minus)” in the calculated value, and determines “regular” when the date intervals are substantially the same (for example, within ± 2 days). For example, if the date interval varies within ± 3 days or less, for example, it is judged as “short-term (within 5 days) irregular”, and if it is over 6 days, it is determined as “long-term (6 days or more). It is determined as “irregular”.
 なお、規則性分析部56は、6日間以上が1回でもあれば、長期的不規則、6日間以上がなく、3日間以上が1回でもあれば短期的不規則と判定する。規則性分析部56は、歩数の規則性分析データの規則性(午前7時)として、分析結果DB52bに格納する。 Note that the regularity analysis unit 56 determines a long-term irregularity if there is at least six days or more, and a short-term irregularity if there is no more than six days and there is at least three days. The regularity analysis unit 56 stores the regularity of the regularity analysis data of the number of steps (7 am) in the analysis result DB 52b.
 また、規則性分析部56は、基本情報(歩数の累積)で算出した過去30日間の各データのうち午後3時台のデータを全て抽出し、それぞれの値から判定しきい値(例えば20歩)を減算する。続いて、規則性分析部56は、ここで算出した値に「-(マイナス)」がある日付を全て抽出し、日付間隔がほぼ同じ(例えば±2日内)の場合は「規則的」と判定し、日付間隔が±3日以上ばらつく期間が5日間以内の場合は「短期的(5日間以内)な不規則」と判定し、6日間以上の場合は「長期的(6日間以上)な不規則」と判定する。そして、規則性分析部56は、歩数の規則性分析データの規則性(午後3時)として、分析結果DB52bに格納する。 Further, the regularity analysis unit 56 extracts all data in the 3 pm range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “− (minus)” in the value calculated here, and determines that the date interval is almost the same (for example, within ± 2 days) as “regular”. However, if the date interval varies within ± 3 days or less, it is judged as “short-term (less than 5 days) irregular”, and if it is more than 6 days, “long-term (more than 6 days) irregularity” "Rule". Then, the regularity analysis unit 56 stores the regularity of the step count regularity analysis data (3 pm) in the analysis result DB 52b.
 また、規則性分析部56は、基本情報(歩数の累積)で算出した過去30日間の各データのうち午前0時台のデータを全て抽出し、それぞれの値から判定しきい値(例えば20歩)を減算する。続いて、規則性分析部56は、ここで算出した値に「-(マイナス)」がある日付を全て抽出し、日付間隔がほぼ同じ(±2日内)の場合は「規則的」と判定し、日付間隔が±3日以上ばらつく期間が5日間以内の場合は「短期的(5日間以内)な不規則」と判定し、6日間以上の場合は「長期的(6日間以上)な不規則」と判定する。そして、規則性分析部56は、歩数の規則性分析データの規則性(午前0時)として、分析結果DB52bに格納する。 In addition, the regularity analysis unit 56 extracts all data in the midnight range from the data for the past 30 days calculated by the basic information (cumulative number of steps), and determines a determination threshold value (for example, 20 steps) from each value. ) Is subtracted. Subsequently, the regularity analysis unit 56 extracts all dates having “− (minus)” in the value calculated here, and determines that the date interval is almost the same (within ± 2 days) as “regular”. If the date interval varies within ± 3 days or less, it will be judged as “short-term (within 5 days) irregular”, and if it is over 6 days, “long-term (within 6 days) irregular” Is determined. The regularity analysis unit 56 stores the regularity of the step count regularity analysis data (0:00 am) in the analysis result DB 52b.
 ここで、規則性分析部56は、上述した歩数の規則性の判定について、「長期的(6日間以上)な不規則」がある場合は、不規則ありと判定し、歩数の規則性分析データの不規則アラームとして、分析結果DB52bに格納する。 Here, the regularity analysis unit 56 determines that there is an irregularity when there is a “long-term (6 days or more) irregularity” in the above-described determination of the regularity of the number of steps, and the regularity analysis data of the number of steps Are stored in the analysis result DB 52b.
 図3に戻り、基準値分析部57は、バイタル情報を用いて当該バイタル情報の時系列の変化を特定し、基準値との比較を行って、健康異常を分析する処理部である。具体的には、基準値分析部57は、データ抽出部55によって算出された基本情報や分析データ等を用いて、咳、歩数、活動量などについて基準値分析を実行する。ここでは、一例として咳と歩数の基準値分析について説明する。 Referring back to FIG. 3, the reference value analysis unit 57 is a processing unit that analyzes a health abnormality by specifying a time-series change of the vital information using the vital information and comparing it with the reference value. Specifically, the reference value analysis unit 57 performs reference value analysis on cough, the number of steps, the amount of activity, and the like using the basic information and analysis data calculated by the data extraction unit 55. Here, as an example, reference value analysis of cough and number of steps will be described.
(咳の基準値分析)
 例えば、基準値分析部57は、「24時間ごとの咳の回数の累積値の過去1日間の平均値」から「24時間ごとの咳の回数の累積値の過去90日間の平均値」を減算し、咳の回数の基準値分析データの「現在平均値と長期平均値との差分」として、分析結果DB52bに格納する。
(Reference value analysis of cough)
For example, the reference value analysis unit 57 subtracts “the average value of the cumulative value of the cough frequency every 24 hours for the past 90 days” from the “average value of the cumulative value of the cough frequency every 24 hours” for the past 90 days. Then, it is stored in the analysis result DB 52b as “difference between the current average value and the long-term average value” of the reference value analysis data of the number of coughs.
 また、基準値分析部57は、「24時間ごとの咳の回数の累積値の過去1日間の平均値」から「24時間ごとの咳の回数の累積値の過去3日間の平均値」を減算し、咳の回数の基準値分析データの「現在平均値と短期平均値との差分」として、分析結果DB52bに格納する。 Further, the reference value analysis unit 57 subtracts “the average value of the cumulative value of the cough frequency every 24 hours for the past one day” from the “average value of the cumulative value of the cough frequency for every 24 hours” for the past three days. Then, it is stored in the analysis result DB 52b as “difference between the current average value and the short-term average value” of the reference value analysis data of the number of coughs.
 さらに、基準値分析部57は、「現在平均値と長期平均値との差分」と「現在平均値と短期平均値との差分」との差分を算出し、閾値(例えば+5)以上の差があるか否かを判定する。ここで、基準値分析部57は、閾値以上の差がある場合、咳の規則性分析データの差分アラームとして、分析結果DB52bに格納する。 Further, the reference value analysis unit 57 calculates a difference between the “difference between the current average value and the long-term average value” and the “difference between the current average value and the short-term average value”, and a difference equal to or greater than a threshold (for example, +5) is calculated. It is determined whether or not there is. Here, when there is a difference greater than or equal to the threshold, the reference value analysis unit 57 stores the difference in the cough regularity analysis data in the analysis result DB 52b.
 また、基準値分析部57は、「24時間ごとの咳の回数の累積値の過去90日間の平均値」、「24時間ごとの咳の回数の累積値の過去3日間の平均値」、「24時間ごとの咳の回数の累積値の過去1日間の平均値」のそれぞれから、咳回数閾値(例えば10回)を減算する。そして、基準値分析部57は、咳の回数の基準値分析データ1の「長期平均値と閾値との差分」、「短期平均値と閾値との差分」、「現在平均値と閾値との差分」として、分析結果DB52bに格納する。 In addition, the reference value analysis unit 57 includes “an average value for the past 90 days of the cumulative value of the number of coughs every 24 hours”, “an average value of the cumulative value of the number of coughs every 24 hours for the past three days”, “ The cough count threshold value (for example, 10 times) is subtracted from each of the “average value of the past 1 day of the cumulative value of cough counts every 24 hours”. Then, the reference value analysis unit 57 “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, “difference between current average value and threshold value” in the reference value analysis data 1 of the number of coughs Is stored in the analysis result DB 52b.
 そして、基準値分析部57は、「長期平均値と閾値との差分」、「短期平均値と閾値との差分」、「現在平均値と閾値との差分」のそれぞれが「+(プラス)」か否かを判定する。そして、基準値分析部57は、「+(プラス)」の値が2つ以上ある場合、咳の規則性分析データの差分アラームとして、分析結果DB52bに格納する。 Then, the reference value analysis unit 57 indicates that each of “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, and “difference between current average value and threshold value” is “+ (plus)”. It is determined whether or not. When there are two or more “+ (plus)” values, the reference value analysis unit 57 stores the difference in the cough regularity analysis data in the analysis result DB 52b.
(歩数の基準値分析規則性)
 例えば、基準値分析部57は、「24時間ごとの歩数の累積値の過去1日間の平均値」から「24時間ごとの歩数の累積値の過去90日間の平均値」を減算し、歩数の基準値分析データの「現在平均値と長期平均値との差分」として、分析結果DB52bに格納する。
(Regularity analysis of the standard value of the number of steps)
For example, the reference value analysis unit 57 subtracts “the average value of the accumulated value of the number of steps every 24 hours in the past 90 days” from “the average value of the accumulated value of the number of steps every 24 hours” to calculate the number of steps. It is stored in the analysis result DB 52b as “difference between current average value and long-term average value” of the reference value analysis data.
 また、基準値分析部57は、「24時間ごとの歩数の累積値の過去1日間の平均値」から「24時間ごとの歩数の累積値の過去3日間の平均値」を減算し、歩数の基準値分析データの「現在平均値と短期平均値との差分」として、分析結果DB52bに格納する。 Further, the reference value analysis unit 57 subtracts the “average value of the cumulative value of the number of steps every 24 hours for the past three days” from the “average value of the cumulative value of the number of steps for every 24 hours” to calculate the number of steps. It is stored in the analysis result DB 52b as “difference between the current average value and the short-term average value” of the reference value analysis data.
 さらに、基準値分析部57は、歩数の基準値分析データについて、「現在平均値と長期平均値との差分」と「現在平均値と短期平均値との差分」とが、閾値(例えば-6000)以下の値であるか否かを判定する。ここで、基準値分析部57は、閾値以下の差がある場合、歩数の基準値分析データの差分アラームとして、分析結果DB52bに格納する。 Further, the reference value analysis unit 57 sets the difference between the current average value and the long-term average value and the difference between the current average value and the short-term average value as threshold values (for example, −6000). ) It is determined whether it is the following value. Here, when there is a difference equal to or smaller than the threshold value, the reference value analysis unit 57 stores the difference in the reference value analysis data of the number of steps in the analysis result DB 52b.
 また、基準値分析部57は、「24時間ごとの歩数の累積値の過去90日間の平均値」、「24時間ごとの歩数の累積値の過去3日間の平均値」、「24時間ごとの歩数の累積値の過去1日間の平均値」のそれぞれから、歩数回数閾値(例えば8000回)を減算する。そして、基準値分析部57は、歩数の基準値分析データ1の「長期平均値と閾値との差分」、「短期平均値と閾値との差分」、「現在平均値と閾値との差分」として、分析結果DB52bに格納する。 In addition, the reference value analysis unit 57 includes “an average value for the past 90 days of the cumulative value of the number of steps every 24 hours”, “an average value of the accumulated value of the number of steps every 24 hours for the past three days”, “ A step count threshold value (for example, 8000 times) is subtracted from each of the “average value of the accumulated number of steps in the past one day”. Then, the reference value analysis unit 57 includes “difference between long-term average value and threshold”, “difference between short-term average value and threshold”, and “difference between current average value and threshold” of the reference value analysis data 1 of the number of steps. And stored in the analysis result DB 52b.
 そして、基準値分析部57は、「長期平均値と閾値との差分」、「短期平均値と閾値との差分」、「現在平均値と閾値との差分」のそれぞれが「-(マイナス)」か否かを判定する。そして、基準値分析部57は、「-(マイナス)」の値が2つ以上ある場合、歩数の基準値分析データの差分アラームとして、分析結果DB52bに格納する。 Then, the reference value analysis unit 57 determines that “difference between long-term average value and threshold value”, “difference between short-term average value and threshold value”, and “difference between current average value and threshold value” are “− (minus)”. It is determined whether or not. When there are two or more “− (minus)” values, the reference value analysis unit 57 stores the difference alarm of the reference value analysis data of the number of steps in the analysis result DB 52b.
 リズム分析部58は、安静時脈拍数の時系列変化を用いて、概日リズムを分析して、健康異常を分析する処理部である。具体的には、リズム分析部58は、データ抽出部55によって算出された基本情報や分析データ等を用いて、安静時脈拍数の概日リズムを分析し、分析結果を分析結果DB52bに格納する。 The rhythm analysis unit 58 is a processing unit that analyzes circadian rhythms using time-series changes in the pulse rate at rest and analyzes health abnormalities. Specifically, the rhythm analysis unit 58 analyzes the circadian rhythm of the resting pulse rate using the basic information and analysis data calculated by the data extraction unit 55, and stores the analysis result in the analysis result DB 52b. .
 例えば、リズム分析部58は、上述した「過去90日間の平均中心値」、「過去3日間の平均中心値」、「過去1日間の平均中心値」のそれぞれの値が一定範囲(例えば、10bpm)内であるかを判定する。そして、リズム分析部58は、判定結果を分析結果DB52bに格納する。また、リズム分析部58は、一定範囲を超える値がある場合、中心値の概日リズム分析データの「アラーム」として、分析結果DB52bに格納する。 For example, the rhythm analysis unit 58 determines that each of the above-described “average center value for the past 90 days”, “average center value for the past three days”, and “average center value for the past one day” is in a certain range (for example, 10 bpm). ). Then, the rhythm analysis unit 58 stores the determination result in the analysis result DB 52b. Further, when there is a value exceeding a certain range, the rhythm analysis unit 58 stores it in the analysis result DB 52b as “alarm” of the circadian rhythm analysis data of the central value.
 また、リズム分析部58は、上述した「過去90日間の平均振幅値」、「過去3日間の平均振幅値」、「過去1日間の平均振幅値」のそれぞれの値が一定範囲(例えば、10bpm)内であるかを判定する。そして、リズム分析部58は、判定結果を分析結果DB52bに格納する。また、リズム分析部58は、一定範囲を超える値がある場合、振幅値の概日リズム分析データの「アラーム」として、分析結果DB52bに格納する。 Further, the rhythm analysis unit 58 has a predetermined range (for example, 10 bpm) of the above-mentioned “average amplitude value for the past 90 days”, “average amplitude value for the past 3 days”, and “average amplitude value for the past 1 day”. ). Then, the rhythm analysis unit 58 stores the determination result in the analysis result DB 52b. When there is a value exceeding a certain range, the rhythm analysis unit 58 stores the amplitude value in the analysis result DB 52b as an “alarm” of circadian rhythm analysis data.
 警告部59は、制御部53による分析結果にしたがってユーザに警告を発行する処理部である。具体的には、警告部59は、分析結果DB52bを参照して、規則性分析部56、基準値分析部57、リズム分析部58のそれぞれによる分析結果を読み出す。そして、警告部59は、分析結果としてアラームが登録されている場合には、予め指定されたメールアドレスに警告メッセージを送信したり、ディスプレイ等に警告メッセージを送信したりする。 The warning unit 59 is a processing unit that issues a warning to the user according to the analysis result by the control unit 53. Specifically, the warning unit 59 reads the analysis results by the regularity analysis unit 56, the reference value analysis unit 57, and the rhythm analysis unit 58 with reference to the analysis result DB 52b. Then, when an alarm is registered as an analysis result, the warning unit 59 transmits a warning message to a pre-designated mail address or transmits a warning message to a display or the like.
 また、警告部59は、アラームの種類やアラームの数によって、警告メッセージを変更することもできる。例えば、警告部59は、概日リズム分析データのアラームが登録されている場合には、概日リズムの警告メッセージを送信する。また、警告部59は、アラームの数によって、警告レベルを5段階に分類し、各警告レベルに応じたメッセージを送信することができる。 The warning unit 59 can also change the warning message depending on the type of alarm and the number of alarms. For example, when an alarm for circadian rhythm analysis data is registered, the warning unit 59 transmits a circadian rhythm warning message. Further, the warning unit 59 can classify warning levels into five levels according to the number of alarms, and can transmit a message corresponding to each warning level.
[処理の流れ]
 次に、上述した各処理について説明する。ここでは、全体的な処理の流れ、基本情報の抽出、分析データの算出、規則性の分析、基準性の分析、概日リズムの分析について説明する。
[Process flow]
Next, each process described above will be described. Here, the overall processing flow, extraction of basic information, calculation of analysis data, analysis of regularity, analysis of standardity, and analysis of circadian rhythm will be described.
(全体的な処理)
 図4は、実施例にかかる処理の流れを示すフローチャートである。図4に示すように、管理サーバ50は、基準日時を設定し(S101)、該当データの抽出を実行する(S102)。例えば、管理サーバ50は、センサ端末10がセンシングしたデータを入力データとし、入力データのうち歩数の先頭データの日時を基準の現在日時として設定する。また、管理サーバ50は、データをファイルから読み込み、現在日時から89日と23時間のデータを抽出し、抽出データに入力されたデータを追加し、追加したデータでファイルを上書き、抽出データを出力する。
(Overall processing)
FIG. 4 is a flowchart illustrating a flow of processing according to the embodiment. As shown in FIG. 4, the management server 50 sets a reference date and time (S101), and executes extraction of the corresponding data (S102). For example, the management server 50 uses the data sensed by the sensor terminal 10 as input data, and sets the date and time of the top data of the number of steps in the input data as the reference current date and time. Also, the management server 50 reads the data from the file, extracts the data for 89 days and 23 hours from the current date, adds the input data to the extracted data, overwrites the file with the added data, and outputs the extracted data To do.
 続いて、管理サーバ50は、入力データが所定日数分(例えば、90日分)ある場合(S103:Yes)、基本情報(中心値)の算出処理を実行し(S104)、基本情報(振幅値)の算出処理を実行し(S105)、基本情報(累積値)の算出処理を実行する(S106)。なお、上記例で説明すると、S103からS105では、安静時脈拍数を対象として算出処理を実行する。S106では、咳の回数と歩数を対象として算出処理を実行する。また、入力データが所定日数分(例えば、90日分)ない場合(S103:No)、処理が終了する。 Subsequently, when the input data is for a predetermined number of days (for example, 90 days) (S103: Yes), the management server 50 executes basic information (center value) calculation processing (S104), and the basic information (amplitude value). ) Is calculated (S105), and basic information (cumulative value) is calculated (S106). In addition, if demonstrated in the said example, in S103 to S105, a calculation process will be performed for the pulse rate at rest. In S106, calculation processing is executed for the number of coughs and the number of steps. If there is no input data for a predetermined number of days (for example, 90 days) (S103: No), the process ends.
 そして、管理サーバ50は、分析データ算出処理を実行する(S107)。なお、上記例で説明すると、S107では、安静時脈拍数の中心値や振幅値、咳の累積回数、歩数の累積回数を対象として算出処理を実行する。 Then, the management server 50 executes analysis data calculation processing (S107). In the above example, in S107, calculation processing is executed for the center value and amplitude value of the resting pulse rate, the cumulative number of coughs, and the cumulative number of steps.
 その後、管理サーバ50は、規則性分析処理を実行し(S108)、基準値分析処理(S109)、概日リズム分析処理(S110)を実行する。 Thereafter, the management server 50 executes regularity analysis processing (S108), reference value analysis processing (S109), and circadian rhythm analysis processing (S110).
(基本情報算出処理:中心値・累積値)
 次に、中心値と累積値それぞれを対象として基本情報の算出処理について説明する。図5は、基本情報算出処理(中心値、累積値)の流れを示すフローチャートである。
(Basic information calculation processing: center value / cumulative value)
Next, the basic information calculation process for each of the center value and the accumulated value will be described. FIG. 5 is a flowchart showing the flow of basic information calculation processing (center value, cumulative value).
 図5に示すように、データ抽出部55は、親リストと子リストを生成し(S201)、未処理のデータがある場合(S202:Yes)、未処理のデータを選択する(S203)。例えば、データ抽出部55は、24時間毎のデータがある場合、分類未処理のデータを選択する。また、ここでは、親リストと子リストに初期値を設定し、はじめは基準日時を設定する。 As shown in FIG. 5, the data extraction unit 55 generates a parent list and a child list (S201), and when there is unprocessed data (S202: Yes), selects the unprocessed data (S203). For example, when there is data every 24 hours, the data extraction unit 55 selects unprocessed data. Also, here, initial values are set in the parent list and the child list, and the reference date and time is initially set.
 続いて、データ抽出部55は、選択したデータの日にち(もしくは日時)が子リストのデータと日にちが異なる場合(S204:Yes)、子リストのデータを親リストに追加し、新たな子リストを生成する(S205)、子リストに対象データを追加する(S206)。 Subsequently, when the date (or date / time) of the selected data is different from the date of the child list (S204: Yes), the data extraction unit 55 adds the data of the child list to the parent list, and creates a new child list. The target data is added to the child list (S206).
 その後、データ抽出部55は、S202に戻って以降の処理を繰り返す。なお、S204において、データ抽出部55は、選択したデータの日にち(もしくは日時)が子リストのデータと日にちが同じ場合(S204:No)、S205を実行することなく、S206を実行する。なお、S201からS206の処理を、分析対象のセンシングデータを分類する24時間分類処理と呼ぶこととする。 Thereafter, the data extraction unit 55 returns to S202 and repeats the subsequent processing. In S204, if the date (or date) of the selected data is the same as the date of the child list (S204: No), the data extraction unit 55 executes S206 without executing S205. Note that the processing from S201 to S206 is referred to as 24-hour classification processing for classifying the sensing data to be analyzed.
 そして、S202において未処理のデータがなくなった場合(S202:No)、データ抽出部55は、24時間分のデータがあるか否かを判定する(S207)。ここで、24時間分のデータがない場合(S207:No)、処理を終了する。 When there is no unprocessed data in S202 (S202: No), the data extraction unit 55 determines whether there is data for 24 hours (S207). Here, if there is no data for 24 hours (S207: No), the process is terminated.
 一方、データ抽出部55は、24時間分のデータがある場合(S207:Yes)、基本情報の算出処理が未処理のデータがあるか否かを判定する(S208)。 On the other hand, if there is data for 24 hours (S207: Yes), the data extraction unit 55 determines whether there is data that has not been processed by the basic information calculation process (S208).
 そして、データ抽出部55は、基本情報の算出処理が未処理のデータがある場合(S208:Yes)、未処理のデータを抽出し(S209)、抽出した未処理のデータの値を合計値に加算する(S210)。その後、データ抽出部55は、S208以降を繰り返す。 Then, when there is unprocessed data for basic information calculation processing (S208: Yes), the data extraction unit 55 extracts unprocessed data (S209), and sets the value of the extracted unprocessed data as a total value. Add (S210). Thereafter, the data extraction unit 55 repeats S208 and subsequent steps.
 一方、データ抽出部55は、基本情報の算出処理が未処理のデータがない場合(S208:No)、合計値を算出する、または、中心値となる平均値を算出する(S211)。 On the other hand, when there is no unprocessed data for the basic information calculation process (S208: No), the data extraction unit 55 calculates the total value or calculates the average value as the center value (S211).
(基本情報算出処理:振幅値)
 次に、振幅値を対象として基本情報の算出処理について説明する。図6は、基本情報算出処理(振幅値)の流れを示すフローチャートである。
(Basic information calculation processing: amplitude value)
Next, basic information calculation processing will be described with respect to amplitude values. FIG. 6 is a flowchart showing the flow of the basic information calculation process (amplitude value).
 図6に示すように、データ抽出部55は、24時間分類処理を実行した後(S301)、基準値を設定する(S302)。例えば、データ抽出部55は、基準値として先頭のデータを取得する。 As shown in FIG. 6, the data extraction unit 55 executes the 24-hour classification process (S301), and then sets a reference value (S302). For example, the data extraction unit 55 acquires the top data as the reference value.
 続いて、データ抽出部55は、24時間分のデータがある場合(S302:Yes)、S303以降を実行し、24時間分のデータがない場合(S302:No)、処理を終了する。 Subsequently, when there is data for 24 hours (S302: Yes), the data extraction unit 55 executes S303 and subsequent steps, and ends the process when there is no data for 24 hours (S302: No).
 そして、データ抽出部55は、未処理のデータがある場合(S304:Yes)、処理対象のデータの値が基準値より大きいか否かを判定する(S305)。 Then, when there is unprocessed data (S304: Yes), the data extraction unit 55 determines whether or not the value of the data to be processed is larger than the reference value (S305).
 ここで、データ抽出部55は、処理対象のデータの値が基準値より大きい場合(S305:Yes)、極小値算出中か否かを判定する(S306)。そして、データ抽出部55は、極小値算出中である場合(S306:Yes)、基準値を極小値に設定し、極大値があれば差分をリストに追加する(S307)。 Here, when the value of the data to be processed is larger than the reference value (S305: Yes), the data extraction unit 55 determines whether or not the minimum value is being calculated (S306). Then, when the local minimum value is being calculated (S306: Yes), the data extraction unit 55 sets the reference value to the local minimum value, and if there is a local maximum value, adds the difference to the list (S307).
 その後、データ抽出部55は、処理対象のデータの値で基準値を更新し(S308)、状態を極大値算出中に設定した後(S309)、S304以降を繰り返す。一方、データ抽出部55は、S306において極小値算出中ではないと判定した場合(S306:No)、S307を実行することなくS308を実行する。 Thereafter, the data extraction unit 55 updates the reference value with the value of the data to be processed (S308), sets the state to the maximum value calculation (S309), and then repeats S304 and subsequent steps. On the other hand, if it is determined in S306 that the minimum value is not being calculated (S306: No), the data extraction unit 55 executes S308 without executing S307.
 また、S305において、処理対象のデータの値が基準値以下の場合(S305:No)、データ抽出部55は、処理対象のデータの値が基準値より小さいか否かを判定する(S310)。 In S305, when the value of the processing target data is equal to or less than the reference value (S305: No), the data extraction unit 55 determines whether the value of the processing target data is smaller than the reference value (S310).
 そして、データ抽出部55は、処理対象のデータの値が基準値より小さい場合(S310:Yes)、極大値算出中か否かを判定する(S311)。そして、データ抽出部55は、極大値算出中である場合(S311:Yes)、基準値を極大値に設定し、極小値があれば差分をリストに追加する(S312)。 Then, when the value of the data to be processed is smaller than the reference value (S310: Yes), the data extraction unit 55 determines whether the maximum value is being calculated (S311). If the local maximum is being calculated (S311: Yes), the data extraction unit 55 sets the reference value to the local maximum, and if there is a local minimum, adds the difference to the list (S312).
 その後、データ抽出部55は、処理対象のデータの値で基準値を更新し(S313)、状態を極小値算出中に設定した後(S314)、S304以降を繰り返す。また、S310において、処理対象のデータの値が基準値と同じ場合(S310:No)、S304以降を繰り返す。一方、データ抽出部55は、S310において極大値算出中ではないと判定した場合(S311:No)、S312を実行することなくS313を実行する。 Thereafter, the data extraction unit 55 updates the reference value with the value of the data to be processed (S313), sets the state to the minimum value calculation (S314), and then repeats S304 and subsequent steps. In S310, when the value of the data to be processed is the same as the reference value (S310: No), S304 and subsequent steps are repeated. On the other hand, when it is determined in S310 that the maximum value is not being calculated (S311: No), the data extraction unit 55 executes S313 without executing S312.
 なお、データ抽出部55は、S304において未処理のデータがなくなった場合(S304:No)、処理を終了する。 The data extraction unit 55 ends the process when there is no unprocessed data in S304 (S304: No).
(分析データ算出処理)
 次に、分析データ算出処理について説明する。図7は、分析データ算出処理の流れを示すフローチャートである。
(Analysis data calculation process)
Next, analysis data calculation processing will be described. FIG. 7 is a flowchart showing the flow of analysis data calculation processing.
 図7に示すように、データ抽出部55は、未処理のデータがある場合(S401:Yes)、データを読み出し、読み出したデータが無効データではない場合(S402:Yes)、読み出したデータの値を合計値に加算し(S403)、データ数をカウントアップする(S404)。なお、データ抽出部55は、読み出したデータが無効データである場合(S402:No)、S403とS404を実行することなく、S405を実行する。 As illustrated in FIG. 7, when there is unprocessed data (S401: Yes), the data extraction unit 55 reads the data, and when the read data is not invalid data (S402: Yes), the value of the read data Is added to the total value (S403), and the number of data is counted up (S404). If the read data is invalid data (S402: No), the data extraction unit 55 executes S405 without executing S403 and S404.
 その後、データ抽出部55は、ループ数に1が設定されている場合(S405:Yes)、過去1日間の平均値を算出して保持する(S406)。一方、S406を実行した後、または、ループ数に1が設定されていない場合(S405:No)、データ抽出部55は、ループ数に3が設定されているか否かを判定する(S407)。 Thereafter, when 1 is set as the number of loops (S405: Yes), the data extraction unit 55 calculates and holds an average value for the past one day (S406). On the other hand, after executing S406, or when 1 is not set for the number of loops (S405: No), the data extraction unit 55 determines whether 3 is set for the number of loops (S407).
 ここで、データ抽出部55は、ループ数に3が設定されている場合(S407:Yes)、過去3日間の平均値を算出して保持する(S408)。一方、S408を実行した後、または、ループ数に3が設定されていない場合(S407:No)、データ抽出部55は、S401以降を繰り返す。 Here, when 3 is set as the number of loops (S407: Yes), the data extraction unit 55 calculates and holds an average value for the past three days (S408). On the other hand, after executing S408, or when 3 is not set as the number of loops (S407: No), the data extraction unit 55 repeats S401 and subsequent steps.
 そして、データ抽出部55は、S401において未処理のデータがなくなった場合(S401:No)、過去90日間の平均値を算出して保持する(S409)。 Then, when there is no unprocessed data in S401 (S401: No), the data extraction unit 55 calculates and holds an average value for the past 90 days (S409).
(規則性分析処理)
 次に、規則性分析処理について説明する。図8は、規則性分析処理の流れを示すフローチャートである。図8に示すように、規則性分析部56は、90日分のデータから30日分のデータを抽出し(S501)、処理対象のデータがあるか否かを判定する(S502)。
(Regularity analysis processing)
Next, regularity analysis processing will be described. FIG. 8 is a flowchart showing the flow of regularity analysis processing. As shown in FIG. 8, the regularity analysis unit 56 extracts data for 30 days from data for 90 days (S501), and determines whether there is data to be processed (S502).
 そして、規則性分析部56は、データがある場合(S502:Yes)、当該データがAM7時かつ判定結果なしのデータであるか否かを判定する(S503)。ここで、規則性分析部56は、当該データがAM7時かつ判定結果なしのデータである場合(S503:Yes)、日付間隔チェックを実行した後(S504)、S502以降を繰り返す。 Then, when there is data (S502: Yes), the regularity analysis unit 56 determines whether the data is data at the time of AM7 and no determination result (S503). Here, the regularity analysis unit 56 performs the date interval check (S504) and repeats S502 and subsequent steps when the data is data at AM7 and no determination result (S503: Yes).
 一方、規則性分析部56は、当該データがAM7時のデータではない、または、判定結果なしのデータではない場合(S503:No)、当該データがPM3時かつ判定結果なしのデータであるか否かを判定する(S505)。 On the other hand, the regularity analysis unit 56 determines whether or not the data is data at PM3 and no determination result when the data is not data at AM7 or is not data without a determination result (S503: No). Is determined (S505).
 ここで、当該データがPM3時かつ判定結果なしのデータである場合(S505:Yes)、規則性分析部56は、日付間隔チェックを実行した後(S506)、S502以降を繰り返す。 Here, when the data is PM3 and there is no determination result (S505: Yes), the regularity analysis unit 56 performs the date interval check (S506), and then repeats S502 and subsequent steps.
 一方、規則性分析部56は、当該データがPM3時のデータではない、または、判定結果なしのデータではない場合(S505:No)、当該データがAM0時かつ判定結果なしのデータであるか否かを判定する(S507)。 On the other hand, the regularity analysis unit 56 determines whether or not the data is the data at the time of AM0 and without the determination result when the data is not the data at the time of PM3 or the data without the determination result (S505: No). Is determined (S507).
 ここで、当該データがAM0時かつ判定結果なしのデータである場合(S507:Yes)、規則性分析部56は、日付間隔チェックを実行した後(S508)、S502以降を繰り返す。また、当該データがAM0時ではない、または、判定結果なしのデータではない場合(S507:No)、規則性分析部56は、S508を実行することなく、S502以降を繰り返す。 Here, when the data is AM0 and no determination result (S507: Yes), the regularity analysis unit 56 performs a date interval check (S508), and then repeats S502 and subsequent steps. If the data is not at AM0 or is not data without a determination result (S507: No), the regularity analysis unit 56 repeats S502 and subsequent steps without executing S508.
 なお、S502において、処理対象のデータがなくなった場合(S502:No)、規則性分析部56は、各時間帯で判定結果がない場合、日付間隔が3日以上の場合は、判定結果に「短絡的な不規則」を設定し、それ以外は「規則的」を設定する(S509)。 In S502, when there is no data to be processed (S502: No), the regularity analysis unit 56 indicates that the determination result is “No determination result in each time zone” or “No. “Short-circuit irregularity” is set, and “Regular” is set otherwise (S509).
(日付間隔チェック処理)
 次に、規則性分析処理内で実行される日付間隔チェック処理について説明する。図9は、日付間隔チェック処理の流れを示すフローチャートである。
(Date interval check process)
Next, the date interval check process executed in the regularity analysis process will be described. FIG. 9 is a flowchart showing the flow of the date interval check process.
 図9に示すように、規則性分析部56は、処理対象のデータから判定結果を減算し(S601)、減算値がプラスであれば(S602:No)、処理を終了する。 As shown in FIG. 9, the regularity analysis unit 56 subtracts the determination result from the data to be processed (S601), and if the subtraction value is positive (S602: No), the process ends.
 一方、規則性分析部56は、減算値がマイナスである場合(S602:Yes)、前回のマイナス日時があれば、日付の差分を算出する(S603)。続いて、規則性分析部56は、日付の差分が6日以上の場合は、判定結果に「長期的な不規則」を設定する(S604)。また、規則性分析部56は、前回の日付の差分より大きければ減算値を保持する(S605)。 On the other hand, if the subtraction value is negative (S602: Yes), the regularity analysis unit 56 calculates a date difference if there is a previous negative date and time (S603). Subsequently, if the date difference is 6 days or more, the regularity analysis unit 56 sets “long-term irregular” as the determination result (S604). The regularity analysis unit 56 holds the subtraction value if it is larger than the difference between the previous dates (S605).
(基準値分析処理)
 次に、基準値分析処理について説明する。図10は、基準値分析処理の流れを示すフローチャートである。図10に示すように、基準値分析部57は、1日分の平均値と90日分の平均値との差(A)を算出して保持する(S701)。続いて、基準値分析部57は、1日分の平均値と3日分の平均値との差(B)を算出して保持する(S702)。
(Standard value analysis processing)
Next, the reference value analysis process will be described. FIG. 10 is a flowchart showing the flow of the reference value analysis process. As shown in FIG. 10, the reference value analysis unit 57 calculates and holds the difference (A) between the average value for one day and the average value for 90 days (S701). Subsequently, the reference value analysis unit 57 calculates and holds the difference (B) between the average value for one day and the average value for three days (S702).
 その後、基準値分析部57は、差(A)と差(B)に対して判定値による判定を実行し、判定結果を保持する(S703)。例えば、基準値分析部57は、差(A)または差(B)のうち、判定値がプラスの場合は判定値以上の値があるか否かを判定し、判定値がマイナスの場合は判定値以下の値があるか否かを判定する。 Thereafter, the reference value analysis unit 57 performs determination based on the determination value for the difference (A) and the difference (B), and holds the determination result (S703). For example, the reference value analysis unit 57 determines whether there is a value greater than or equal to the determination value when the determination value is positive among the differences (A) or the difference (B), and determines when the determination value is negative. It is determined whether there is a value less than or equal to the value.
 続いて、基準値分析部57は、90日分の平均値と閾値との差分を算出して保持し(S704)、3日分の平均値と閾値との差分を算出して保持し(S705)、1日分の平均値と閾値との差分を算出して保持する(S706)。 Subsequently, the reference value analysis unit 57 calculates and holds the difference between the average value for 90 days and the threshold (S704), and calculates and holds the difference between the average value for 3 days and the threshold (S705). ) Calculate and hold the difference between the average value for one day and the threshold (S706).
 その後、基準値分析部57は、閾値と各差分を用いた判定を実行し、判定結果を保持する(S707)。例えば、基準値分析部57は、閾値との差分のうち、判定値がプラスの場合は判定値以上の値があるか否かを判定し、判定値がマイナスの場合は判定値以下の値があるか否かを判定し、判定した数を保持する。 Thereafter, the reference value analysis unit 57 performs determination using the threshold value and each difference, and holds the determination result (S707). For example, the reference value analysis unit 57 determines whether or not there is a value greater than or equal to the determination value when the determination value is positive among the differences from the threshold, and a value equal to or less than the determination value when the determination value is negative. It is determined whether or not there is, and the determined number is held.
 そして、基準値分析部57は、アラーム判定を実行する(S708)。例えば、基準値分析部57は、1日分の平均値との差分の判定結果、閾値との差分の判定結果に基づいて、アラームを設定する。 Then, the reference value analysis unit 57 executes alarm determination (S708). For example, the reference value analysis unit 57 sets an alarm based on the determination result of the difference from the average value for one day and the determination result of the difference from the threshold.
(概日リズム分析処理)
 最後に概日リズム分析処理について説明する。リズム分析部58は、90日分、3日分、1日分の平均値のすべてが判定値以内かを判定し、判定値以内ではない平均値がある場合または判定値以内ではない平均値の数等に基づいて、アラームを設定する。
(Circadian rhythm analysis process)
Finally, the circadian rhythm analysis process will be described. The rhythm analysis unit 58 determines whether all of the average values for 90 days, 3 days, and 1 day are within the determination value. If there is an average value that is not within the determination value or an average value that is not within the determination value, Set alarms based on numbers, etc.
[効果]
 上述したように、管理サーバ50は、バイタルの履歴情報と、履歴情報に対応する環境情報との組み合わせと所定の条件との比較結果に応じて健康的な生活を行っているかを推定し、警告を出力することができる。この結果、管理サーバ50は、被監視者個人の特性や、温度や湿度などの環境情報の影響を考慮することができるので、健康管理の精度向上を図ることができる。
[effect]
As described above, the management server 50 estimates whether a healthy life is being performed according to a comparison result between a combination of vital history information and environmental information corresponding to the history information and a predetermined condition, and warns. Can be output. As a result, since the management server 50 can take into account the characteristics of the individual being monitored and the influence of environmental information such as temperature and humidity, it is possible to improve the accuracy of health management.
 また、過去1日間、過去3日間、過去90日間のように複数のスパンで処理を実行し、それぞれの出力結果に基づいて健康的な生活を行っているかを推定することができる。したがって、長いスパンや1つのスパンだけで判定すると、最近の体調不良により正確に推定できないことが想定される。しかし、複数のスパンで測定することで、最近の体調も考慮することができ、正確性を向上させることができる。 Also, it is possible to estimate whether a healthy life is being performed based on the output results of each of the processes executed in a plurality of spans such as the past 1 day, the past 3 days, and the past 90 days. Therefore, if it is determined only by a long span or one span, it is assumed that it cannot be accurately estimated due to a recent poor physical condition. However, by measuring in a plurality of spans, recent physical condition can be taken into consideration, and accuracy can be improved.
 さて、これまで本発明の実施例について説明したが、本発明は上述した実施例以外にも、種々の異なる形態にて実施されてよいものである。 The embodiments of the present invention have been described so far, but the present invention may be implemented in various different forms other than the above-described embodiments.
[数値]
 上記実施例で説明した各数値が一例であり、任意に設定変更することができる。例えば、平均値の算出は、過去90日間ではなく過去30日間であってもよい。また、上記実施例では、バイタル情報の例として、脈拍数や咳の回数を用いた例を説明したが、これに限定されるものではなく、例えば血圧、体温、発汗量などを用いても同様に処理することができる。
[Numeric]
Each numerical value described in the above embodiment is an example, and can be arbitrarily changed. For example, the average value may be calculated in the past 30 days instead of the past 90 days. In the above embodiment, an example using the pulse rate and the number of coughs as an example of vital information has been described. However, the present invention is not limited to this example. For example, blood pressure, body temperature, sweating amount, etc. Can be processed.
[処理順]
 また、上記実施例で説明した処理の順序は、矛盾のない範囲内で適宜変更することができる。例えば、規則性分析処理、基準値分析処理、概日リズム分析処理は、いずれを先に実行してもよく、順不同である。
[Processing order]
In addition, the order of the processes described in the above embodiments can be changed as appropriate within a consistent range. For example, the regularity analysis process, the reference value analysis process, and the circadian rhythm analysis process may be executed first, and are in no particular order.
[処理項目]
 また、上記実施例では、規則性の判定処理の対象を歩数で説明したが、活動量やWBGTについても同様に処理することができる。また、基準値判定の対象を咳と歩数を例にして説明したが、活動量についても同様に処理することができる。
[Process Item]
In the above-described embodiment, the target of regularity determination processing has been described by the number of steps. However, the amount of activity and WBGT can be similarly processed. In addition, although the reference value determination target has been described by taking cough and the number of steps as an example, the amount of activity can be similarly processed.
[期間]
 また、上記実施例で説明した基準情報の抽出処理における期間等は任意に設定変更することができる。また、過去1日間、過去3日間、過去90日間で基準情報等を抽出してアラーム判定を行い、同様に、過去1日間、過去5日間、過去30日間で基準情報等を抽出してアラーム判定を行い、それぞれでアラームが検出されたときに警告を出力するようにすることもできる。このように複数のスパンで測定することで、最近の体調も考慮することができ、正確性を向上させることができる。
[period]
In addition, the period in the reference information extraction process described in the above embodiment can be arbitrarily changed. In addition, the reference information is extracted in the past 1 day, the past 3 days, and the past 90 days, and the alarm is determined. Similarly, the reference information is extracted in the past 1 day, the past 5 days, and the past 30 days, and the alarm is determined. It is also possible to output a warning when an alarm is detected in each. By measuring in a plurality of spans in this way, recent physical condition can be taken into consideration, and accuracy can be improved.
[警告]
 上記実施例では、各分析処理においてアラームの判定を行い、アラームが検出された場合には警告を発行する例を説明したが、これに限定されるものではない。例えば、すべての分析処理においてアラームが検出された場合や予め指定した数のアラームが検出されたときにのみ警告を発行することもでき、各分析処理によるアラームの数によって警告の種別を変更することもできる。
[warning]
In the above embodiment, an example is described in which an alarm is determined in each analysis process, and a warning is issued when an alarm is detected. However, the present invention is not limited to this. For example, a warning can be issued only when an alarm is detected in all analysis processes or when a specified number of alarms are detected, and the type of warning is changed depending on the number of alarms in each analysis process. You can also.
[システム]
 また、図2や図3に示した各装置の各構成は、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、任意の単位で分散または統合して構成することができる。例えば、取得部54とデータ抽出部55を統合することができる。また、管理サーバ50が有する各処理部をセンサ端末10が有していてもよく、管理サーバ50が有する各処理部とセンサ端末10が有する各処理部を通信端末20が有していてもよい。さらに、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPU(Central Processing Unit)および当該CPUにて解析実行されるプログラムにて実現され、あるいは、ワイヤードロジックによるハードウェアとして実現され得る。
[system]
2 and FIG. 3 does not necessarily have to be physically configured as illustrated. That is, it can be configured to be distributed or integrated in arbitrary units. For example, the acquisition unit 54 and the data extraction unit 55 can be integrated. Moreover, the sensor terminal 10 may have each process part which the management server 50 has, and the communication terminal 20 may have each process part which the management server 50 has, and each process part which the sensor terminal 10 has. . Further, all or any part of each processing function performed in each device is realized by a CPU (Central Processing Unit) and a program analyzed and executed by the CPU, or hardware by wired logic. Can be realized as
 また、本実施例において説明した各処理のうち、自動的におこなわれるものとして説明した処理の全部または一部を手動的におこなうこともできる。あるいは、手動的におこなわれるものとして説明した処理の全部または一部を公知の方法で自動的におこなうこともできる。この他、上記文書中や図面中で示した処理手順、制御手順、具体的名称、各種のデータやパラメータを含む情報については、特記する場合を除いて任意に変更することができる。 Of all the processes described in the present embodiment, all or a part of the processes described as being automatically performed can be manually performed. Alternatively, all or part of the processing described as being performed manually can be automatically performed by a known method. In addition, the processing procedure, control procedure, specific name, and information including various data and parameters shown in the above-described document and drawings can be arbitrarily changed unless otherwise specified.
 10 センサ端末
 11 センサ通信部
 12 通信部
 13 記憶部
 14 制御部
 15 脈拍算出部
 16 運動処理部
 17 温湿度処理部
 50 管理サーバ
 51 通信部
 52 記憶部
 52a 分析用データDB
 52b 分析結果DB
 53 制御部
 54 取得部
 55 データ抽出部
 56 規則性分析部
 57 基準値分析部
 58 リズム分析部
 59 警告部
DESCRIPTION OF SYMBOLS 10 Sensor terminal 11 Sensor communication part 12 Communication part 13 Storage part 14 Control part 15 Pulse calculation part 16 Motion processing part 17 Temperature / humidity processing part 50 Management server 51 Communication part 52 Storage part 52a Data DB for analysis
52b Analysis result DB
53 Control Unit 54 Acquisition Unit 55 Data Extraction Unit 56 Regularity Analysis Unit 57 Reference Value Analysis Unit 58 Rhythm Analysis Unit 59 Warning Unit

Claims (6)

  1.  ユーザの運動またはユーザが運動する環境に関する運動情報と、前記ユーザの運動量が所定値以下の場合に算出された脈拍数である安静時脈拍数を取得する取得部と、
     前記運動情報を用いて前記ユーザの運動または前記環境の規則性を特定する第1特定部と、
     前記安静時脈拍数を用いて当該安静時脈拍数の時系列の変化を特定する第2特定部と、
     前記規則性と前記安静時脈拍数の時系列の変化とに基づいて、前記ユーザの健康状態を判定する判定部と
     を有することを特徴とする電子機器。
    An acquisition unit that acquires a user's exercise or exercise information related to an environment in which the user exercises, and a resting pulse rate that is a pulse rate calculated when the user's exercise amount is equal to or less than a predetermined value;
    A first specifying unit that specifies the user's exercise or regularity of the environment using the exercise information;
    A second specifying unit for specifying a time-series change of the resting pulse rate using the resting pulse rate;
    An electronic apparatus comprising: a determination unit that determines the health state of the user based on the regularity and a time-series change of the resting pulse rate.
  2.  前記取得部は、複数の期間において、前記運動情報と前記安静時脈拍数とを取得し、
     前記第1特定部は、前記複数の期間それぞれにおいて前記運動情報の規則性を特定し、
     前記第2特定部は、前記複数の期間それぞれにおいて前記安静時脈拍数の時系列の変化を特定し、
     前記判定部は、前記複数の期間それぞれで特定された前記運動情報の規則性のうち他の規則性とは異なる規則性が検出された場合、かつ、前記複数の期間それぞれで特定された前記安静時脈拍数の時系列の変化のうち他の時系列の変化とは異なる変化が検出された場合に、前記ユーザの健康状態に対する警告を出力することを特徴とする請求項1に記載の電子機器。
    The acquisition unit acquires the exercise information and the resting pulse rate in a plurality of periods,
    The first specifying unit specifies regularity of the exercise information in each of the plurality of periods,
    The second specifying unit specifies a time-series change of the resting pulse rate in each of the plurality of periods,
    The determination unit detects the rest specified in each of the plurality of periods when a regularity different from other regularity among the regularity of the exercise information specified in each of the plurality of periods is detected. 2. The electronic device according to claim 1, wherein a warning for the health condition of the user is output when a change different from other time series changes is detected among time series changes in time pulse rate. .
  3.  前記取得部は、前記ユーザのバイタル情報をさらに取得し、
     前記判定部は、前記バイタル情報と予め定めた基準値とを比較した比較結果を算出し、
    前記規則性と前記安静時脈拍数の時系列の変化とさらに、前記比較結果を用いて、前記ユーザの健康状態を判定することを特徴とする請求項1に記載の電子機器。
    The acquisition unit further acquires vital information of the user,
    The determination unit calculates a comparison result by comparing the vital information with a predetermined reference value,
    The electronic device according to claim 1, wherein the health condition of the user is determined by using the regularity, a time-series change in the resting pulse rate, and the comparison result.
  4.  前記取得部は、前記運動情報として、所定期間内における前記ユーザの歩数を取得し、前記バイタル情報として、前記所定期間内におけるユーザの咳の回数を取得し、
     前記第1特定部は、前記所定期間における前記歩数の規則性を特定し、
     前記判定部は、前記咳の回数と閾値とを比較した比較結果を算出し、前記歩数の規則性、前記咳の回数の比較結果、前記安静時脈拍数の時系列の変化とを用いて、前記ユーザの健康状態を判定することを特徴とする請求項3に記載の電子機器。
    The acquisition unit acquires the number of steps of the user within a predetermined period as the exercise information, acquires the number of coughs of the user within the predetermined period as the vital information,
    The first specifying unit specifies regularity of the number of steps in the predetermined period,
    The determination unit calculates a comparison result comparing the number of coughs and a threshold, using the regularity of the number of steps, the comparison result of the number of coughs, and the time series change of the resting pulse rate, The electronic device according to claim 3, wherein a health state of the user is determined.
  5.  電子機器が、
     ユーザの運動またはユーザが運動する環境に関する運動情報と、前記ユーザの運動量が所定値以下の場合に算出された脈拍数である安静時脈拍数を取得し、
     前記運動情報を用いて前記ユーザの運動または前記環境の規則性を特定し、
     前記安静時脈拍数を用いて当該安静時脈拍数の時系列の変化を特定し、
     前記規則性と前記安静時脈拍数の時系列の変化とに基づいて、前記ユーザの健康状態を判定する
     処理を実行することを特徴とする判定方法。
    Electronics
    Obtaining resting pulse rate which is a pulse rate calculated when the exercise information of the user or the environment in which the user exercises and the amount of exercise of the user is a predetermined value or less,
    Using the exercise information to identify the user's exercise or the regularity of the environment,
    Using the resting pulse rate to identify a time-series change of the resting pulse rate,
    The determination method characterized by performing the process which determines the said user's health state based on the said regularity and the time-sequential change of the said pulse rate at rest.
  6.  電子機器に、
     ユーザの運動またはユーザが運動する環境に関する運動情報と、前記ユーザの運動量が所定値以下の場合に算出された脈拍数である安静時脈拍数を取得し、
     前記運動情報を用いて前記ユーザの運動または前記環境の規則性を特定し、
     前記安静時脈拍数を用いて当該安静時脈拍数の時系列の変化を特定し、
     前記規則性と前記安静時脈拍数の時系列の変化とに基づいて、前記ユーザの健康状態を判定する
     処理を実行させることを特徴とする判定プログラム。
    Electronic equipment,
    Obtaining resting pulse rate which is a pulse rate calculated when the exercise information of the user or the environment in which the user exercises and the amount of exercise of the user is a predetermined value or less,
    Using the exercise information to identify the user's exercise or the regularity of the environment,
    Using the resting pulse rate to identify a time-series change of the resting pulse rate,
    A determination program for executing a process for determining a health state of the user based on the regularity and a time-series change of the resting pulse rate.
PCT/JP2015/086106 2015-12-24 2015-12-24 Electronic device, determination method, and determination program WO2017109910A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086106 WO2017109910A1 (en) 2015-12-24 2015-12-24 Electronic device, determination method, and determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086106 WO2017109910A1 (en) 2015-12-24 2015-12-24 Electronic device, determination method, and determination program

Publications (1)

Publication Number Publication Date
WO2017109910A1 true WO2017109910A1 (en) 2017-06-29

Family

ID=59089826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086106 WO2017109910A1 (en) 2015-12-24 2015-12-24 Electronic device, determination method, and determination program

Country Status (1)

Country Link
WO (1) WO2017109910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107669248A (en) * 2017-09-29 2018-02-09 长春市万易科技有限公司 Old man's dynamic pulse continuous detecting system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880287A (en) * 1994-09-13 1996-03-26 Seiko Epson Corp Portable small size electronic instrument
JP2009142333A (en) * 2007-12-11 2009-07-02 Sharp Corp Exercise supporting device, exercise supporting method, exercise supporting system, exercise supporting control program and recording medium
JP2010152658A (en) * 2008-12-25 2010-07-08 Omron Healthcare Co Ltd Feature extraction device
JP2011092307A (en) * 2009-10-28 2011-05-12 Toyota Home Kk Life management system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0880287A (en) * 1994-09-13 1996-03-26 Seiko Epson Corp Portable small size electronic instrument
JP2009142333A (en) * 2007-12-11 2009-07-02 Sharp Corp Exercise supporting device, exercise supporting method, exercise supporting system, exercise supporting control program and recording medium
JP2010152658A (en) * 2008-12-25 2010-07-08 Omron Healthcare Co Ltd Feature extraction device
JP2011092307A (en) * 2009-10-28 2011-05-12 Toyota Home Kk Life management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107669248A (en) * 2017-09-29 2018-02-09 长春市万易科技有限公司 Old man's dynamic pulse continuous detecting system and method
CN107669248B (en) * 2017-09-29 2024-02-02 长春市万易科技有限公司 Dynamic pulse continuous detection system and method for old people

Similar Documents

Publication Publication Date Title
JP6684797B2 (en) System and method for providing connectivity between wearable devices
CN104169680B (en) Use the Level Change of baroceptor monitoring device
JP6121069B2 (en) Heart rate monitoring device
CN106886675B (en) Method and system for monitoring continuous biomedical signals
JP2018506763A (en) System and method for generating health data using wearable device measurements
CN108701397B (en) Baby tracker
KR20160120331A (en) Activity recognition using accelerometer data
JP2008206575A (en) Information management system and server
JP6134872B1 (en) Device, method and system for counting the number of cycles of periodic motion of a subject
EP3366206A1 (en) Measurement and estimation of sleep quality
WO2017017986A1 (en) Biological monitoring device and biological monitoring program
CN107909771A (en) A kind of personnel's tumble alarm system and its implementation based on wireless sensor network
KR102476825B1 (en) Method and apparatus for providing IoT service based on data platform
CN108511067A (en) Method for early warning and electronic equipment
CN105708439A (en) Wearable monitoring device
US20180310867A1 (en) System and method for stress level management
EP2541474A1 (en) Monitoring a user activity using a mobile device
WO2018207051A1 (en) A system and method for monitoring human performance
WO2017109919A1 (en) Electronic device, wbgt determination method, and wbgt determination program
CN106821349A (en) For the event generation method and device of wearable custodial care facility
WO2017109910A1 (en) Electronic device, determination method, and determination program
US20200375505A1 (en) Method and apparatus for health prediction by analyzing body behaviour pattern
CN105549745A (en) Monitoring method utilizing wearable device
EP3354193B1 (en) Information processing device, digestion ratio estimating method, information processing system and digestion ratio estimating program
US20150220613A1 (en) Relationship estimation device and relationship estimation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP