WO2017109695A1 - Antenne et système de détection anticollision comprenant cette antenne - Google Patents

Antenne et système de détection anticollision comprenant cette antenne Download PDF

Info

Publication number
WO2017109695A1
WO2017109695A1 PCT/IB2016/057820 IB2016057820W WO2017109695A1 WO 2017109695 A1 WO2017109695 A1 WO 2017109695A1 IB 2016057820 W IB2016057820 W IB 2016057820W WO 2017109695 A1 WO2017109695 A1 WO 2017109695A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
antenna according
source
support
envelope
Prior art date
Application number
PCT/IB2016/057820
Other languages
English (en)
Inventor
Marc DE GAGNE
Original Assignee
Swisstip Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swisstip Sa filed Critical Swisstip Sa
Priority to CN201680073693.4A priority Critical patent/CN108370091A/zh
Priority to EP16822749.4A priority patent/EP3394926A1/fr
Priority to PCT/IB2016/057820 priority patent/WO2017109695A1/fr
Publication of WO2017109695A1 publication Critical patent/WO2017109695A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1408Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
    • H04L63/1416Event detection, e.g. attack signature detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/30Authentication, i.e. establishing the identity or authorisation of security principals
    • G06F21/31User authentication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/554Detecting local intrusion or implementing counter-measures involving event detection and direct action
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/50Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
    • G06F21/55Detecting local intrusion or implementing counter-measures
    • G06F21/56Computer malware detection or handling, e.g. anti-virus arrangements
    • G06F21/562Static detection
    • G06F21/564Static detection by virus signature recognition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/3208Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used
    • H01Q1/3233Adaptation for use in or on road or rail vehicles characterised by the application wherein the antenna is used particular used as part of a sensor or in a security system, e.g. for automotive radar, navigation systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/14Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
    • H04L63/1441Countermeasures against malicious traffic
    • H04L63/1483Countermeasures against malicious traffic service impersonation, e.g. phishing, pharming or web spoofing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/168Implementing security features at a particular protocol layer above the transport layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2119Authenticating web pages, e.g. with suspicious links

Definitions

  • the present invention relates to the field of collision avoidance detection. More particularly, the present invention relates to an antenna which coupled to a radiofrequency detection module delimits a marking zone adapted as required. The present invention further relates to the anti-collision detection system comprising this antenna.
  • Detection solutions based on radio wave (RF) detection are very effective but lack precision and may signal a presence when there is no risk of collision. They generate too many false alarms.
  • the directivity is only partial, the radiation remaining present 360 degrees as shown in Figure 1 in continuous lines.
  • the antenna is considered a guideline because the signal is pushed harder in a specific direction relative to all other points of the transmission circle.
  • Such antennas actually have radiation on the 3 axes simply of different forces. They are only partially directive.
  • the need for an increased accuracy of the RF transmission directivity arises regularly, as explained above for security marking, or for the detection of circulation, object, etc. whose field of action must be precise.
  • the present invention aims to develop an antenna that can generate a wave beam having an increased directivity.
  • the present invention thus aims to develop an antenna for obtaining a signal directed towards a precise target, to limit as much as possible any radiation out of the desired directivity, in particular to limit the lateral radiation and to suppress the radiation in the direction opposite to the target.
  • the wave beam thus generated is, as required, of variable width and can be reduced to a rectilinear RF beam, almost totally directive, such as a laser beam.
  • the present invention relates to a directional antenna for radiofrequency waves comprising:
  • the directional antenna has at least one or a suitable combination of the following characteristics:
  • the first metal layer and / or the second metal layer rest on a ground plane of a PCB;
  • the source antenna being disposed in the space delimited by the parabolic form and oriented to emit the radiofrequency radiation more marked towards the center of the parabolic form.
  • the support comprises a surface covered with a second radiofrequency radiation absorbing material, said surface being arranged facing the source antenna and of dimensions substantially equivalent to those of the source antenna surface;
  • the second absorbent material is interrupted at its center by a radiofrequency radiation reflector
  • the source antenna has on its face opposite to that facing the support, a third material absorbing radiofrequency radiation;
  • the source antenna is disposed on a plane support formed by the base of the envelope, said source antenna emitting radiofrequency radiation in a given direction opposite to the plane support;
  • the plane support is formed of the ground plane of the PCB
  • the lateral faces of the envelope are covered at their free ends inside the envelope of a fourth radiofrequency radiation absorbing material;
  • the fourth absorbent material is arranged in the form of a ring attached to the parabolic support;
  • the first absorbent material, and the first metal layer and the second metal layer disposed on either side of the first absorbent material extend throughout said base;
  • the first and second metal layers extend over the entire surface of the side walls of the envelope to the lid;
  • the second metal layer is formed by a wall of the housing;
  • the cover comprises a support for the source antenna and the third absorbent material;
  • the source antenna is a ceramic antenna or a trace on a printed circuit; it comprises a radio frequency module;
  • the ring has an opening to allow the passage of a radio frequency cable from the source antenna to the radio frequency module.
  • the present invention also relates to an anti-collision detection system comprising the antenna described above.
  • FIG. 1 represents, in the XZ and YZ planes, the radiation patterns of the directional antennas according to the invention (dashed lines) compared with the radiation diagrams of directional antennas according to the state of the art (continuous lines).
  • Figure 2 is a three-dimensional view of the housing forming the directional antenna according to the invention.
  • Figures 3 (a) (b) (c) show schematically in section different configurations of the antenna according to the invention with the path traveled by the radiation within the antenna. For the sake of clarity, the path is shown in FIGS. 3 (a) (b) only for a part of the antenna, a similar path obviously being traversed on the other side of the axis of symmetry of the antenna. antenna. For each configuration, the resulting markup zone is also represented.
  • Figure 4 shows a three-dimensional view of a portion of the antenna according to the invention.
  • the outer metal layer has not been shown and the inner metal layer is only partially represented. In the figure, it does not extend over the entire height of the antenna contrary to reality.
  • Figure 5 shows a three-dimensional view of the housing cover of the antenna according to the invention. The figure shows more precisely the support for the source antenna.
  • PCB Print circuit board
  • Reflection cone also called reflector
  • Source antenna PCB serving as a mechanical support for the latter
  • the antenna according to the invention is designed to be miniature and integrable in any electronic device whose dimensional constraints are important and requiring transmission of a highly directional radio signal.
  • the antenna according to the invention has a dimension of 60 mm * 60 mm * 20 mm or even smaller, volume less than 100 cm 3 and, preferably, for the microwave frequency band 24 to 60Ghz.
  • FIG. 1 illustrates the difference between the antennas with partial directivity known according to the state of the art (continuous lines) and those according to the invention having an almost total directivity that can go between a narrow beam (dashed lines in the center ) and a wide beam (outer dashed lines).
  • Figures 3 schematically show the different antenna configurations according to the invention that can modulate the beam width.
  • the beam is narrow with a longer range markup zone in the configuration of FIG. 3 (b).
  • the source antenna is disposed in the dish of a parabolic mirror and emits radiation towards said mirror.
  • the beam is wider, or almost rectangular.
  • the source antenna is disposed on a plane support and emits electromagnetic radiation in a direction opposite to the plane support.
  • the assembly forming the directional antenna according to the invention comprises for all configurations, a housing 1 provided with a lid 2 closing an envelope 3 incorporating in its interior volume a source antenna 4 emitting electromagnetic radiation, also called transmitting antenna, and a PCB 7 comprising an RF module 8 (see Figures 2 and 3).
  • the source antenna is said to be a directive because it emits preferentially in one direction, even if its directivity is only partial as shown in FIG. 1 for antennas according to the state of the art. It may be a ceramic antenna (ceramic patch antenna). It can also be a trace on PCB that offers polarization on specific points for directivity.
  • the envelope 3 defines the contours of a rectangular parallelepiped with a base 3a surmounted by lateral faces 3b closed by the cover 2.
  • This latter is made of a non-conductive material, for example in a plastic material.
  • the casing 3 forms, according to the invention, an anechoic micro-chamber making it possible to limit the harmful reflections inside the casing and to limit the range of the electromagnetic flux outside the micro-chamber.
  • the envelope is formed of a material 5a absorbing electromagnetic radiation. This material is for example made of silicone cavities or nitrile cavities. She is willing at least laterally with respect to the source antenna 4 to absorb the RF side waves and thus ensure the directivity of the RF beam.
  • the absorbent material 5a is disposed on the side faces 3b of the envelope 3.
  • the absorbent material 5a is surrounded by a first metal layer 6a turned towards the inside of the envelope, also called inner layer, and a second metallic layer 6b turned towards the outside of the envelope, also called the outer layer.
  • Each metal layer for example copper, forms a wall extending as the absorbent material 5a to the cover 2 with at least one of the two layers supported on the ground plane 7a of the PCB 7 disposed at the base 3a of the envelope.
  • the first layer 6a isolates the same as a Faraday cage and the second layer 6b cuts the possible radiation emitted by the first layer, for example by reverberation, vibration absorption, etc.
  • This double layer thus makes it possible to contain the flow in the restricted air gap between the surface of the transmitting antenna and the ground plane, which greatly limits the range of the radiation behind the antenna.
  • the minimum space required between the two layers is 0.5 mm.
  • the outer layer 6b which rests on the ground plane 7a of the PCB 7.
  • the outer layer 6b it is also conceivable for the outer layer 6b to be formed of a wall of the housing when the latter is metallic. In this case, the PCB must be arranged differently. It is then positioned on the other side of the base 3a between the support 9 which will be discussed later, and the inner layer 6a with, in this case, the latter which is based on the ground plane of the PCB.
  • This absorbent material 5b is in the form of a strip disposed at one end of the envelope on its first metal layer 6a at the junction with the cover.
  • the configurations 1 to 3 have different specificities.
  • the assembly comprises inside the envelope 3 a non-conducting support 9 of parabolic shape with the source antenna 4 located in the space delimited by the parabolic form.
  • This antenna serves as a transmitter at the focal point.
  • the present invention thus aims to contain the radiation of an antenna designed for PCB assembly, so very small, in the form of a beam using the trajectory inverse of a signal receiving antenna for which the parabolic form is usually used.
  • the position of the focal point is one of the key elements of the size of the final assembly of the antenna.
  • the transmitting antenna 4 To be miniature and to recover some of the lateral radiation, ie perpendicular to the desired directivity in order to have a maximum of energy but also of directivity, the transmitting antenna 4 must be as close as possible to the parabolic plate, ideally entirely contained within the volume of the parabolic plate .
  • the parabolic support is partially covered by a thin metal sheet 10, for example copper, ensuring reflection of the radiation from the source antenna.
  • the metal sheet may for example be formed by pressing on the support with a tool serving as a counterpart at the time of forming. It is stuck on a part of the parabolic surface of the plastic support.
  • the center of the parabola is non-reflective.
  • a central block 11 forms a non-copper zone through the support 9 in the center. It is substantially of the same dimensions as the source antenna 4 which is opposite and is covered opposite the antenna 4 by an absorbent material 5c disposed in the center of the dish.
  • an optional copper reflector 12 forming a cone is added to the center of the dish in the configuration 2 in order to parallelize the radiation from the center to the ends of the dish.
  • an RF absorbing material 5d is disposed at the rear of the antenna 4.
  • the absorbent material 5a and the metal layers 6a and 6b are disposed around the entire periphery 3a, 3b of the envelope 3 forming in the example a U-shaped section.
  • the strip 5b of absorbent material is arranged in the form of a ring between the support 9 and the cover 2 at the exit of the dish. This ring is preferably arranged laterally next to the absorbent material 5d.
  • This ring 5b visible in Figure 4 may include an opening 13 for the passage of the RF cable from the connector 16 of the antenna visible in Figure 5 to the connector (not shown) of the PCB ensuring a standard impedance of 50 ohms.
  • the cover 2 can be molded with a support 14 visible in Figure 5.
  • the antenna 4 can be mounted on a PCB 15 separate from the PCB 7 including the RF module.
  • This PCB 15 itself serves as a mechanical support which abuts on an inner wall of the support 14 as shown in FIG. 5.
  • the antenna 4 is mounted on one side of the PCB 15 and the absorbent material 5d of the other side of the PCB 15.
  • the shielding and insulation method described above can be applied to the same source antenna (for example the ceramic antenna or other) without the use of the parabolic portion which provides RF markup of more rectangular shape and configurable as shown in Figure 3 (c).
  • the source antenna 4 rests on a plane support which is the base 3a of the envelope 3. It is based on the ground plane 7a of the PCB 7 which is much larger than the antenna.
  • the source antenna emits in a direction opposite to the configurations 1 and 2.
  • the assembly always comprises on the lateral faces 3b of the envelope 3 the absorbent material 5a framed by the first 6a and second 6b layers with the inner layer 6a which rests on the ground plane 7a of the PCB. It is also conceivable that the outer layer 6b also rests on the ground plane 7a of the PCB.
  • the assembly may optionally include the band 5b of absorbent material at the outlet of the envelope. Depending on the desired opening angle, the presence of the absorbent strip 5b is required or not. If a wider beam is wanted, the band is not present.
  • the antenna assembly with the RF module according to the invention can be integrated within an anti-collision detection system comprising other detection means such as a camera and one or more detection components as follows:
  • the detection system may further comprise a power supply unit and a processor using the information from the various components. According to the invention, all the elements forming the detection system can be integrated within the same housing.
  • the detection system according to the invention thus takes into account the specific area of real danger and includes a set of detection components that can better target the risk of collisions and thus limit false alarms.
  • the RF module coupled to the antenna can also be used as a fixed distance radar.
  • the detection system can detect a risk of collision with a machine or a structure which has neither beacon nor anything (between the cranes, against a machine outside the building site, container and structure of the ship, pallet truck against structures storage, load of cranes against building and other structures, etc.). Again, it is necessary to limit the false alarms and thus to detect the proximity once enough close to the obstacle but not too much. Too far for induction detection, too close for a conventional radar because the speed of light being what it is, it would take a processor of enormous speed (and incredibly expensive and big) to arrive at calculate the traveling time of an EM wave over a few meters only.
  • the antenna according to the invention also has a radar option for such distances.
  • the antenna with its RF module having a known and configurable limited range, it offers a radar function as follows.
  • a second antenna as described above is used and serves as a receiver because the distance is too close for a single antenna can pass relatively quickly from transmission to listening to capture the reflection.
  • the second antenna with its own RF module is listening and as soon as the reflection of the received signal is acquired, a processor deduces the presence of the obstacle which is at the distance between zero and the accurately known range of the signal. 'antenna. Knowing the exact distance is not important, which is important is to detect the minimum distance that triggers a collision risk warning, which is very well done this fixed distance radar model. Nevertheless, it is necessary to isolate the two antennas to prevent the receiving antenna from mistakenly picking up the transmission of the transmitting antenna internally.
  • the RF module and the antenna form a marking system which may, although it is required, communicate with a beacon able to act accordingly to prevent danger the person carrying the tag .
  • the beacon can be integrated into a watch and vibrated when a markup zone has been detected.
  • the invention makes it possible to obtain a signal directed towards a precise target, to limit as much as possible any radiation out of the desired directivity while being so small that it is integrable with all applications requiring a reduced space.
  • the housing is not just a support for the antenna but is an integral part of the antenna. It plays an active role by serving as anechoic micro-chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

La présente invention se rapporte à une antenne directionnelle pour ondes radiofréquences comprenant: -une antenne source (4) dite directive émettant un rayonnement radiofréquence plus marqué dans une direction donnée, -une enveloppe (3) comprenant une base (3a) reliant des faces (3b) disposées latéralement par rapport à la direction donnée, aussi appelées faces latérales (3b), ladite antenne source (4) étant disposée à l'intérieur de l'enveloppe (3), caractérisée en ce que les faces latérales (3b) comprennent un premier matériau (5a) absorbant le rayonnement radiofréquence latéral et comprennent une première couche métallique (6a) et une seconde couche métallique (6b) disposées de part et d'autre du premier matériau (5a) absorbant.

Description

ANTENNE ET SYSTÈME DE DÉTECTION ANTICOLLISION COMPRENANT CETTE ANTENNE
OBJET DE L'INVENTION
[0001] La présente invention se rapporte au domaine de la détection anticollision. Plus particulièrement, la présente invention se rapporte à une antenne qui couplée à un module de détection radiofréquence délimite une zone de balisage adaptée selon les besoins. La présente invention se rapporte en outre au système de détection anticollision comprenant cette antenne.
ARRIERE-PLAN TECHNOLOGIQUE
[0002] Pour prévenir les collisions entre engins, entre engin et personnes ou encore entre engin et structures fixes, il est connu de munir les engins de systèmes de détection anticollision. Il existe plusieurs technologies (radar, onde radio, caméra, etc.) disponibles pour assurer la détection. Beaucoup de technologies (ultrasons, optiques, etc.) ne sont pas fiables dans tous les environnements climatiques (nuit, forte luminosité, pluie, neige, etc.) et dans des conditions difficiles (poussières, boue, etc.) que l'on retrouve entre autres sur les chantiers de construction.
[0003] Les solutions de détection basées sur une détection par ondes radio (RF) sont très efficaces mais manquent de précision et peuvent signaler une présence alors qu'il n'y a pas de risques de collision. Elles génèrent ainsi trop de fausses alarmes.
[0004] Pour améliorer la précision, il existe des antennes qualifiées de directives où la radiation n'est pas uniforme sur les 3 axes X, Y et Z. Ainsi, les systèmes de détection dans les documents WO 2004/090830, US 2008/0018472 et US 2011/0227748 mentionnent l'utilisation d'antennes directives ou d'antennes avec une configuration métallique spécifique permettant de façonner la forme de la zone de détection.
[0005] Dans les antennes dites directives, la directivité est seulement partielle, la radiation restant présente sur 360 degrés comme montré à la figure 1 en traits continus. L'antenne est considérée comme directive parce que le signal est poussé plus fort dans une direction spécifique par rapport à tous les autres points du cercle de transmission. De telles antennes ont en fait une radiation sur les 3 axes simplement de forces différentes. Elles ne sont que partiellement directives. Le besoin d'une précision accrue de la directivité de transmission RF se pose régulièrement, comme expliqué ci-dessus pour le balisage de sécurité, ou pour la détection de circulation, d'objet, etc. dont le champ d'action doit être précis.
BUTS DE L'INVENTION
[0006] La présente invention vise à développer une antenne qui permette de générer un faisceau d'ondes présentant une directivité accrue. La présente invention vise ainsi à développer une antenne permettant d'obtenir un signal dirigé vers une cible précise, de limiter au maximum toute radiation hors de la directivité souhaitée, notamment de limiter le rayonnement latéral et de supprimer le rayonnement dans la direction opposée à la cible. Le faisceau d'ondes ainsi généré est, selon les besoins, de largeur variable et peut être réduit à un faisceau d'ondes RF rectilignes, presque totalement directives, tel un faisceau laser.
[0007] Elle vise en outre à développer une antenne miniature afin de permettre son intégration dans tout appareil.
PRINCIPAUX ÉLÉMENTS CARACTÉRISTIQUES DE L'INVENTION
[0008] La présente invention se rapporte à une antenne directionnelle pour ondes radiofréquences comprenant :
- une antenne source dite directive émettant un rayonnement radiofréquence plus marqué dans une direction donnée,
- une enveloppe comprenant une base reliant des faces disposées latéralement par rapport à la direction donnée, aussi appelées faces latérales, ladite antenne source étant disposée à l'intérieur de l'enveloppe, caractérisée en ce que les faces latérales comprennent un premier matériau absorbant le rayonnement radiofréquence latéral et comprennent une première couche métallique et une seconde couche métallique disposées de part et d'autre du premier matériau absorbant. [0009] Selon des modes particuliers de l'invention, l'antenne directionnelle présente au moins une ou une combinaison appropriée des caractéristiques suivantes :
la première couche métallique et/ou la seconde couche métallique reposent sur un plan de masse d'un PCB ;
elle comprend à l'intérieur de l'enveloppe un support de forme parabolique recouvert partiellement d'une feuille métallique, l'antenne source étant disposée dans l'espace délimité par la forme parabolique et orientée pour émettre le rayonnement radiofréquence plus marqué vers le centre de la forme parabolique.
le support comporte une surface recouverte d'un second matériau absorbant le rayonnement radiofréquence, ladite surface étant disposée en regard de l'antenne source et de dimensions sensiblement équivalentes à celles de la surface de l'antenne source ;
le second matériau absorbant est interrompu en son centre par un réflecteur du rayonnement radiofréquence ;
l'antenne source comporte sur sa face opposée à celle en regard du support, un troisième matériau absorbant le rayonnement radiofréquence ;
l'antenne source est disposée sur un support plan formé par la base de l'enveloppe, ladite antenne source émettant un rayonnement radiofréquence dans une direction donnée opposée au support plan ;
le support plan est formé du plan de masse du PCB ;
les faces latérales de l'enveloppe sont recouvertes à leurs extrémités libres intérieures à l'enveloppe d'un quatrième matériau absorbant le rayonnement radiofréquence ;
le quatrième matériau absorbant est disposé sous forme d'un anneau accolé au support de forme parabolique ;
le premier matériau absorbant, et, la première couche métallique et la seconde couche métallique disposées de part et d'autre du premier matériau absorbant s'étendent dans toute ladite base ;
elle occupe un volume inférieur à 100 cm3 ;
elle comporte un boîtier muni de ladite enveloppe fermée par un couvercle ;
les première et seconde couches métalliques s'étendent sur toute la surface des parois latérales de l'enveloppe jusqu'au couvercle ;
la seconde couche métallique est formée par une paroi du boîtier ; le couvercle comporte un support pour l'antenne source et le troisième matériau absorbant ;
l'antenne source est une antenne céramique ou une trace sur un circuit imprimé ; elle comporte un module radiofréquence ;
l'anneau comporte une ouverture pour permettre le passage d'un câble radiofréquence depuis l'antenne source vers le module radiofréquence.
[0010] La présente invention se rapporte également à un système de détection anticollision comprenant l'antenne décrite ci-dessus.
BRÈVE DESCRIPTION DES FIGURES
[0011] La figure 1 représente dans les plans XZ et YZ les diagrammes de rayonnement des antennes directionnelles selon l'invention (traits pointillés) comparés aux diagrammes de rayonnement d'antennes directives selon l'état de l'art (traits continus).
[0012] La figure 2 est une vue tridimensionnelle du boîtier formant l'antenne directive selon l'invention.
[0013] Les figures 3 (a)(b)(c) représentent schématiquement en coupe différentes configurations de l'antenne selon l'invention avec le chemin parcouru par le rayonnement au sein de l'antenne. Pour des raisons de clarté, le chemin n'est montré aux figures 3(a)(b) que pour une partie de l'antenne, un chemin similaire étant évidemment parcouru de l'autre côté de l'axe de symétrie de l'antenne. Pour chaque configuration, la zone de balisage résultante est également représentée.
[0014] La figure 4 représente une vue tridimensionnelle d'une partie de l'antenne selon l'invention. Afin de visualiser l'anneau en matériau absorbant, la couche métallique externe n'a pas été représentée et la couche métallique interne n'est que partiellement représentée. Sur la figure, elle ne s'étend pas sur toute la hauteur de l'antenne contrairement à la réalité.
[0015] La figure 5 représente une vue tridimensionnelle du couvercle du boîtier de l'antenne selon l'invention. La figure montre plus précisément le support pour l'antenne source.
[0016] Légende
(1) Boîtier (2) Couvercle
(3) Enveloppe
(3a) Base
(3b) Faces latérales
(4) Antenne source
(5) Matière absorbante RF
(5a) Latérale et éventuellement sur la base de l'enveloppe pour l'absorption des ondes RF (5b) En sortie de l'enveloppe pour limiter la réfraction
(5c) Sur le bloc central
(5d) A l'arrière de l'antenne
(6) Couche métallique
(6a) Tournée vers l'intérieur du boîtier
(6b) Tournée vers l'extérieur du boîtier
(7) PCB (Printed circuit board ou circuit imprimé en français)
(7a) Plan de masse
(8) Module RF
(9) Support
(10) Feuille métallique
(11) Bloc central
(12) Cône de réflexion aussi appelé réflecteur
(13) Ouverture
(14) Support dans le couvercle
(15) PCB de l'antenne source servant de support mécanique à cette dernière
(16) Connecteur de l'antenne
DESCRIPTION DE L'INVENTION
[0017] L'antenne selon l'invention est conçue pour être miniature et intégrable dans tout appareil électronique dont les contraintes de dimensions sont importantes et requérant une transmission d'un signal radio hautement directionnelle. Typiquement, l'antenne selon l'invention a pour dimension 60 mm*60 mm*20 mm de profondeur voire plus petit, soit un volume inférieur à 100 cm3 et, ce, de préférence, pour la bande de fréquences micro-ondes 24 à 60Ghz.
[0018] La figure 1 illustre la différence entre les antennes à directivité partielle connue selon l'état de l'art (traits continus) et celles selon l'invention présentant une directivité presque totale pouvant aller entre un faisceau étroit (traits pointillés au centre) et un faisceau large (traits pointillés extérieurs).
[0019] Les figures 3 représentent schématiquement les différentes configurations d'antennes selon l'invention qui permettent de moduler la largeur du faisceau. Dans les configurations 1 et 2 des figures 3(a) et 3(b) respectivement, le faisceau est étroit avec une zone de balisage de portée plus importante dans le cas de la configuration de la figure 3(b). Dans ces configurations, l'antenne source est disposée dans l'assiette d'un miroir parabolique et émet un rayonnement en direction dudit miroir. Dans la configuration de la figure 3(c), le faisceau est plus large, voire quasiment rectangulaire. Dans cette configuration, l'antenne source est disposée sur un support plan et émet un rayonnement électromagnétique dans une direction opposée au support plan.
[0020] L'assemblage formant l'antenne directive selon l'invention comporte pour l'ensemble des configurations, un boîtier 1 muni d'un couvercle 2 fermant une enveloppe 3 intégrant dans son volume intérieur une antenne source 4 émettant un rayonnement électromagnétique, aussi appelée antenne émettrice, et un PCB 7 comprenant un module RF 8 (voir figures 2 et 3). L'antenne source est dite directive car elle émet préférentiellement dans une direction, même si sa directivité n'est que partielle comme montré à la figure 1 pour les antennes selon l'état de l'art. Il peut s'agir d'une antenne céramique (céramique patch antenna). Il peut également s'agir d'une trace sur PCB qui offre une polarisation sur points spécifiques pour la directivité.
[0021] Dans les exemples illustrés aux figures 3, l'enveloppe 3 définit les contours d'un parallélépipède rectangle avec une base 3a surmontée de faces latérales 3b fermées par le couvercle 2. Ce dernier est réalisé dans un matériau non conducteur, par exemple dans un matériau plastique. L'enveloppe 3 forme selon l'invention une micro-chambre anéchoïque permettant de limiter les réflexions néfastes à l'intérieur du boîtier et de limiter la portée du flux électromagnétique en dehors de la micro-chambre. Pour ce faire, l'enveloppe est formée d'une matière 5a absorbant le rayonnement électromagnétique. Cette matière est par exemple réalisée en silicone à cavités ou en nitrile à cavités. Elle est disposée au moins latéralement par rapport à l'antenne source 4 pour absorber les ondes RF latérales et assurer ainsi la directivité du faisceau RF. En d'autres mots, la matière absorbante 5a est disposée sur les faces latérales 3b de l'enveloppe 3. La matière absorbante 5a est encadrée par une première couche métallique 6a tournée vers l'intérieur de l'enveloppe, appelée aussi couche intérieure, et une seconde couche métallique 6b tournée vers l'extérieur de l'enveloppe, aussi appelée couche extérieure. Chaque couche métallique, par exemple en cuivre, forme un mur s' étendant tout comme la matière absorbante 5a jusqu'au couvercle 2 avec au moins une des deux couches s'appuyant sur le plan de masse 7a du PCB 7 disposé à la base 3a de l'enveloppe. La première couche 6a isole au même titre qu'une cage de Faraday et la seconde couche 6b coupe le rayonnement éventuel émis par la première couche par exemple par réverbération, vibrations à l'absorption, etc. Cette double couche permet ainsi de contenir le flux dans le jeu d'air restreint entre la surface de l'antenne émettrice et le plan de masse, ce qui limite grandement la portée du rayonnement derrière l'antenne. L'espace minimum requis entre les deux couches est de 0.5 mm. Dans la configuration des figures 3 où la couche extérieure est distincte d'une paroi du boîtier, c'est la couche extérieure 6b qui s'appuie sur le plan de masse 7a du PCB 7. Il est également envisageable que la couche extérieure 6b soit formée d'une paroi du boîtier lorsque ce dernier est métallique. Dans ce cas, le PCB doit être agencé différemment. Il est alors positionné de l'autre côté de la base 3a entre le support 9 dont on parlera plus loin, et la couche intérieure 6a avec, dans ce cas, cette dernière qui s'appuie sur le plan de masse du PCB.
[0022] Pour limiter la réfraction du rayonnement sur le coin métallique de la première couche 6a à hauteur du couvercle 2 et donc contenir la portée de l'antenne, il peut être avantageux de disposer une matière absorbante 5b à cet endroit. Cette matière absorbante 5b se présente sous forme d'une bande disposée à une extrémité de l'enveloppe sur sa première couche métallique 6a à la jonction avec le couvercle.
[0023] Afin de moduler la largeur et la portée du faisceau, les configurations 1 à 3 ont des spécificités différentes. Dans les configurations 1 et 2 des figures 3(a) et 3(b) respectivement, l'assemblage comporte à l'intérieur de l'enveloppe 3 un support 9 non conducteur de forme parabolique avec l'antenne source 4 localisée dans l'espace délimité par la forme parabolique. Cette antenne sert comme transmetteur au point de la focale. La présente invention vise ainsi à contenir le rayonnement d'une antenne conçue pour assemblage sur PCB, donc très petite, dans la forme d'un faisceau en utilisant la trajectoire inverse d'une antenne de réception de signal pour laquelle la forme parabolique est habituellement utilisée. La position du point de focal est un des éléments clés de la dimension de l'assemblage final de l'antenne. Pour être miniature et pour récupérer une partie de la radiation latérale, c.à.d. perpendiculaire à la directivité voulue afin d'avoir un maximum d'énergie mais aussi de directivité, l'antenne émettrice 4 doit être le plus proche possible de l'assiette parabolique, idéalement entièrement contenue à l'intérieur du volume de l'assiette parabolique.
[0024] Le support parabolique est couvert partiellement d'une feuille métallique 10 mince, par exemple en cuivre, assurant la réflexion du rayonnement issu de l'antenne source. La feuille métallique peut par exemple être formée par pression sur le support avec un outil servant de contrepartie au moment du formage. Elle est collée sur une partie de la surface parabolique du support plastique. Pour éviter un effet de résonnance qui détruirait le signal radio (la partie centrale de l'assemblage parabolique étant sujette au phénomène de résonance), le centre de la parabole est non réflectif. Ainsi, un bloc central 11 forme une zone non cuivrée traversant le support 9 au centre. Il est sensiblement de mêmes dimensions que l'antenne source 4 qui se trouve en face et est couvert en regard de l'antenne 4 par une matière absorbante 5c disposée au centre de la parabole. Pour compenser la perte d'énergie émise au centre de la focale, un réflecteur optionnel 12 en cuivre formant un cône est ajouté au centre de la parabole dans la configuration 2 afin de paralléliser le rayonnement du centre aux extrémités de la parabole.
[0025] Le rayonnement de l'antenne focale derrière celle-ci doit également être éliminé car le signal transmis n'aura pas parcouru la même distance que celui réfléchi par la parabole conduisant à un déphasage sur le contenu du signal et dès lors à une confusion sur le signal. Pour remédier à cet inconvénient, une matière absorbante RF 5d est disposée à l'arrière de l'antenne 4.
[0026] Comme déjà mentionné, la radiation latérale hors champs de la parabole doit aussi être stoppée pour assurer l'intégrité de la directivité de l'assemblage. Dès lors, la matière absorbante 5a et les couches métalliques 6a et 6b sont disposées sur tout le pourtour 3a, 3b de l'enveloppe 3 formant dans l'exemple une section en U. De même, pour limiter la réfraction à l'extrémité ouverte de l'enveloppe sur le coin de la première couche métallique 6a, la bande 5b de matériau absorbant est disposée sous forme d'anneau entre le support 9 et le couvercle 2 à la sortie de la parabole. De préférence, cet anneau est disposé latéralement en regard de la matière absorbante 5d. Cet anneau 5b visible à la figure 4 peut comporter une ouverture 13 permettant le passage du câble RF depuis le connecteur 16 de l'antenne visible à la figure 5 vers le connecteur (non représenté) du PCB assurant une impédance standard de 50 ohms.
[0027] Pour supporter l'antenne 4 et la matière absorbante 5d disposée derrière celle- ci, le couvercle 2 peut être moulé avec un support 14 visible à la figure 5. Selon l'invention, l'antenne 4 peut être montée sur un PCB 15 distinct du PCB 7 comprenant le module RF. Ce PCB 15 sert lui-même de support mécanique qui vient s'appuyer sur une paroi intérieure du support 14 comme montré à la figure 5. L'antenne 4 est montée d'un côté du PCB 15 et la matière absorbante 5d de l'autre côté du PCB 15.
[0028] La méthode de blindage et d'isolation décrite ci-dessus peut être appliquée sur la même antenne source (en exemple l'antenne céramique ou autres) sans l'usage de la partie parabolique ce qui permet d'obtenir un balisage RF de forme plus rectangulaire et configurable comme montré à la figure 3(c).
[0029] Dans la configuration 3, l'antenne source 4 repose sur un support plan qui est la base 3a de l'enveloppe 3. Elle s'appuie sur le plan de masse 7a du PCB 7 qui est beaucoup plus grand que l'antenne. L'antenne source émet dans une direction opposée par rapport aux configurations 1 et 2. L'assemblage comporte toujours sur les faces latérales 3b de l'enveloppe 3 la matière absorbante 5a encadrée par les première 6a et seconde 6b couches avec la couche intérieure 6a qui repose sur le plan de masse 7a du PCB. Il est également envisageable que la couche extérieure 6b repose aussi sur le plan de masse 7a du PCB. L'assemblage peut optionnellement comporter la bande 5b de matière absorbante en sortie de l'enveloppe. En fonction de l'angle d'ouverture souhaité, la présence de la bande absorbante 5b est requise ou non. Si un faisceau plus large est recherché, la bande n'est pas présente.
[0030] En conclusion, il est possible grâce à l'invention de moduler la zone spécifique de balayage en fonction de l'obstacle, du type d'engin, de sa vitesse, du mode opératoire. Les configurations 1 et 2 des figures 3(a) et 3(b) sont privilégiées pour le balisage sur des zones étroites comme dans le cas des transpalettes alors que la configuration de la figure 3(c) est privilégiée pour équiper des gros engins, des camions, la machinerie de construction, les foreuses, etc. En outre, pour chaque configuration, il est encore possible de changer l'angle de visée du faisceau en jouant sur la géométrie au sein de l'assemblage. Par exemple, en changeant la position de l'antenne émettrice par rapport à l'enveloppe dans le cas de la configuration avec parabole, on peut moduler l'angle de visée. Aussi dans le cas d'une antenne émettrice sous forme de traces sur PCB, le fait de modifier la surface du plan de masse ou encore la distance entre le plan de masse et la trace antenne change la géométrie de la zone RF ainsi que la proportion entre la portée du faisceau et sa largeur. Il s'agit de prendre la forme la plus pertinente pour chaque application.
[0031] L'assemblage antenne avec le module RF selon l'invention peut être intégré au sein d'un système de détection anticollision comprenant d'autres moyens de détection tels qu'une caméra et un ou plusieurs composants de détection comme suit :
o détection de personne
o signal de mise en marche du véhicule
o signal de recul
o signal d'opérations
o senseur de mouvement
o senseur de vitesse
o senseur d'inclinaison
o senseur de température
o et autres senseurs ou signaux appropriés.
[0032] Le système de détection peut en outre comporter un bloc d'alimentation et un processeur utilisant les informations issues des différents composants. Selon l'invention, l'ensemble des éléments formant le système de détection peut être intégré au sein d'un même boîtier.
[0033] Le système de détection selon l'invention tient ainsi compte de la zone spécifique de danger réel et comprend un ensemble de composants de détection qui permettent de mieux cibler le risque de collisions et donc de limiter les fausses alarmes.
[0034] On ajoutera que le module RF couplé à l'antenne peut en outre être utilisé comme radar à distance fixe. En effet, le système de détection peut détecter un risque de collision avec une machine ou une structure qui n'a ni balise, ni rien (entre les grues, contre une machine extérieure au chantier, porte conteneur et structure du navire, transpalette contre structures de stockage, charge de grues contre immeuble et autres structures, etc.). Encore une fois, il faut limiter les fausses alarmes et donc détecter la proximité une fois assez proche de l'obstacle mais pas trop. Trop loin pour la détection par induction, trop proche pour un radar conventionnel car la vitesse de la lumière étant ce qu'elle est, il faudrait un processeur d'une rapidité incroyable (et incroyablement cher et gros) pour arriver à calculer le temps de déplacement d'une onde EM sur quelques mètres seulement. Ainsi, l'antenne selon l'invention a aussi une option radar pour de telles distances. L'antenne avec son module RF ayant une portée limitée connue et configurable, elle offre une fonction radar de la manière suivante. Une deuxième antenne telle que décrite ci-dessus est utilisée et sert de récepteur car la distance est trop proche pour qu'une seule antenne puisse passer assez rapidement de transmission à écoute pour capter la réflexion. La deuxième antenne avec son propre module RF reste à l'écoute et aussitôt que la réflexion du signal reçu est acquise, un processeur en déduit la présence de l'obstacle qui se trouve à la distance entre zéro et la portée connue avec précision de l'antenne. Connaître la distance exacte n'est pas important, ce qui est important c'est de détecter la distance minimale qui déclenche une alerte de risque de collision, ce que fait très bien ce modèle radar à distance fixe. Il est néanmoins nécessaire d'isoler les deux antennes pour éviter que l'antenne réceptrice ne capte par erreur la transmission de l'antenne émettrice en interne.
[0035] Pour finir, on précisera que le module RF et l'antenne forment un système de balisage qui peut, bien que cela ne soit requis, communiquer avec une balise apte à agir en conséquence pour prévenir du danger la personne porteuse de la balise. A titre d'exemple, la balise peut être intégrée dans une montre et vibrée lorsqu'une zone de balisage a été détectée.
[0036] Avantages
[0037] L'invention permet d'obtenir un signal dirigé vers une cible précise, de limiter au maximum toute radiation hors de la directivité souhaitée tout en étant si petite qu'elle est intégrable à toutes applications nécessitant un espace réduit.
[0038] Le boîtier n'est pas juste un support pour l'antenne mais fait intégrante de l'antenne. Il joue un rôle actif en servant de micro-chambre anéchoïque.

Claims

REVENDICATIONS
1. Antenne directionnelle pour ondes radiofréquences comprenant :
- une antenne source (4) dite directive émettant un rayonnement radiofréquence plus marqué dans une direction donnée,
- une enveloppe (3) comprenant une base (3a) reliant des faces (3b) disposées latéralement par rapport à la direction donnée, aussi appelées faces latérales (3b), ladite antenne source (4) étant disposée à l'intérieur de l'enveloppe (3), caractérisée en ce que les faces latérales (3b) comprennent un premier matériau (5a) absorbant le rayonnement radiofréquence latéral et comprennent une première couche métallique (6a) et une seconde couche métallique (6b) disposées de part et d'autre du premier matériau (5a) absorbant.
2. Antenne selon la revendication 1, caractérisée en ce que la première (6a) et/ou la seconde (6b) couches métalliques reposent sur un plan de masse (7a) d'un PCB (7).
3. Antenne selon la revendication 1 ou 2, caractérisée en ce qu'elle comprend à l'intérieur de l'enveloppe (3) un support (9) de forme parabolique recouvert partiellement d'une feuille métallique (10), l'antenne source (4) étant disposée dans l'espace délimité par la forme parabolique et orientée pour émettre le rayonnement radiofréquence plus marqué vers le centre de la forme parabolique.
4. Antenne selon la revendication 3, caractérisée en ce que le support (9) comporte une surface recouverte d'un second matériau (5c) absorbant le rayonnement radiofréquence, ladite surface étant disposée en regard de l'antenne source (4) et de dimensions sensiblement équivalentes à celles de la surface de l'antenne source (4).
5. Antenne selon la revendication 4, caractérisée en ce que le second matériau absorbant (5c) est interrompu en son centre par un réflecteur (12) du rayonnement radiofréquence.
6. Antenne selon l'une quelconque des revendications 3 à 5, caractérisée en ce que l'antenne source (4) comporte sur sa face opposée à celle en regard du support (9), un troisième matériau (5d) absorbant le rayonnement radiofréquence.
7. Antenne selon la revendication 1 ou 2, caractérisée en ce que l'antenne source (4) est disposée sur un support plan formé par la base (3a) de l'enveloppe (3), ladite antenne source (4) émettant un rayonnement radiofréquence dans une direction donnée opposée au support plan.
8. Antenne selon revendication 7, caractérisée en ce que le support plan comprend le plan de masse (7a) du PCB (7).
9. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que les faces latérales (3b) de l'enveloppe (3) sont recouvertes à leurs extrémités libres intérieures à l'enveloppe (3) d'un quatrième matériau (5b) absorbant le rayonnement radiofréquence.
10. Antenne selon la revendication 9, caractérisée en ce que le quatrième matériau absorbant (5b) est disposé sous forme d'un anneau accolé au support (9) de forme parabolique.
11. Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le premier matériau absorbant (5a), et, la première couche métallique (6a) et la seconde couche métallique (6b) disposées de part et d'autre du premier matériau absorbant (5a) s'étendent dans toute ladite base (3a).
12. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle occupe un volume inférieur à 100 cm3.
13. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un boîtier (1) muni de ladite enveloppe (3) fermée par un couvercle (2).
14. Antenne selon la revendication 13, caractérisée en ce que les première (6a) et seconde (6b) couches métalliques s'étendent sur toute la surface des parois latérales (3b) de l'enveloppe (3) jusqu'au couvercle (2).
15. Antenne selon la revendication 13 ou 14, caractérisée en ce que la seconde couche métallique (6b) est formée par une paroi du boîtier (1).
16. Antenne selon l'une quelconque des revendications 13 à 15, caractérisée en ce que le couvercle (2) comporte un support (14) pour l'antenne source (4) et le troisième matériau absorbant (5d).
17. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce que l'antenne source (4) est une antenne céramique ou une trace sur un circuit imprimé.
18. Antenne selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comporte un module radiofréquence (8).
19. Antenne selon la revendication 18, caractérisée en ce que l'anneau comporte une ouverture (13) pour permettre le passage d'un câble radiofréquence depuis l'antenne source (4) vers le module radiofréquence (8).
20. Système de détection anticollision comprenant l'antenne selon l'une quelconque des revendications précédentes.
PCT/IB2016/057820 2010-03-23 2016-12-20 Antenne et système de détection anticollision comprenant cette antenne WO2017109695A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680073693.4A CN108370091A (zh) 2010-03-23 2016-12-20 天线以及包括这种天线的防碰撞检测系统
EP16822749.4A EP3394926A1 (fr) 2010-03-23 2016-12-20 Antenne et système de détection anticollision comprenant cette antenne
PCT/IB2016/057820 WO2017109695A1 (fr) 2015-12-22 2016-12-20 Antenne et système de détection anticollision comprenant cette antenne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15152018.6 2015-12-22
PCT/IB2016/057820 WO2017109695A1 (fr) 2015-12-22 2016-12-20 Antenne et système de détection anticollision comprenant cette antenne

Publications (1)

Publication Number Publication Date
WO2017109695A1 true WO2017109695A1 (fr) 2017-06-29

Family

ID=59091738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/057820 WO2017109695A1 (fr) 2010-03-23 2016-12-20 Antenne et système de détection anticollision comprenant cette antenne

Country Status (3)

Country Link
EP (1) EP3394926A1 (fr)
CN (1) CN108370091A (fr)
WO (1) WO2017109695A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787928A1 (fr) * 1998-12-23 2000-06-30 Thomson Csf Antenne a reflecteur large bande
WO2004090830A1 (fr) 2003-04-08 2004-10-21 Schauenburg Flexadux (Pty) Ltd Procede et systeme pour eviter des collisions
US20060092076A1 (en) * 2004-10-29 2006-05-04 Franson Steven J Patch array feed for an automotive radar antenna
US20080018472A1 (en) 2006-07-11 2008-01-24 John Dasilva Radio frequency identification based personnel safety system
US20110227748A1 (en) 2010-03-19 2011-09-22 Marlex Engineering Inc. Radio-frequency identification (rfid) safety system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2626547B2 (ja) * 1994-05-13 1997-07-02 日本電気株式会社 反射波防止型パラボラ空中線
CN2410833Y (zh) * 1999-09-22 2000-12-13 天津真美电声器材有限责任公司 雷达的声天线
US7855691B2 (en) * 2008-08-07 2010-12-21 Toyota Motor Engineering & Manufacturing North America, Inc. Automotive radar using a metamaterial lens
CN102751589A (zh) * 2011-04-20 2012-10-24 深圳光启高等理工研究院 一种超材料制成的微波天线
CN102800969B (zh) * 2011-06-29 2015-03-11 深圳光启高等理工研究院 波导馈源及天线
CN103036038B (zh) * 2011-07-26 2016-01-06 深圳光启高等理工研究院 一种后馈式雷达天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2787928A1 (fr) * 1998-12-23 2000-06-30 Thomson Csf Antenne a reflecteur large bande
WO2004090830A1 (fr) 2003-04-08 2004-10-21 Schauenburg Flexadux (Pty) Ltd Procede et systeme pour eviter des collisions
US20060092076A1 (en) * 2004-10-29 2006-05-04 Franson Steven J Patch array feed for an automotive radar antenna
US20080018472A1 (en) 2006-07-11 2008-01-24 John Dasilva Radio frequency identification based personnel safety system
US20110227748A1 (en) 2010-03-19 2011-09-22 Marlex Engineering Inc. Radio-frequency identification (rfid) safety system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"CRASH AVOIDANCE FLR SENSORS", MICROWAVE JOURNAL, HORIZON HOUSE PUBLICATIONS, NORWOOD, MA, US, vol. 37, no. 7, 1 July 1994 (1994-07-01), XP000468718, ISSN: 0192-6225 *

Also Published As

Publication number Publication date
EP3394926A1 (fr) 2018-10-31
CN108370091A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
EP2086053B1 (fr) Antenne imprimée presentant un diagramme bi-faisceaux
JP3895474B2 (ja) サブミリ波で機能する撮像システム
FR2805930A1 (fr) Dispositif d'antenne en boucle
EP2217944B1 (fr) Dispositif de detection d'objets, notamment d'objets dangereux
EP2660862B1 (fr) Dispositif microelectronique de transmission sans fil
CA3108751A1 (fr) Piece de carrosserie de vehicule comprenant au moins une antenne directive
FR2970095A1 (fr) Dispositif de detection d'une direction angulaire dans laquelle se trouve un objet
WO2013092928A1 (fr) Antenne élémentaire et antenne réseau mono ou bidimensionnelle correspondante
FR2836998A1 (fr) Controle de puissance pour des systemes radar
JP2006287579A (ja) 高周波モジュールおよび高周波モジュール群
EP3602689A1 (fr) Antenne electromagnetique
JP2020053918A (ja) アンテナ装置、及び車載ライト装置
EP0147325A2 (fr) Antenne à deux réflecteurs cylindro-paraboliques croisés, et son procédé de fabrication
WO2017109695A1 (fr) Antenne et système de détection anticollision comprenant cette antenne
FR2968838A1 (fr) Transducteur de son comportant au moins un element piezoelectrique
FR2954858A1 (fr) Antenne rayonnant un signal dans une direction de l'espace dependant de la frequence de ce signal
FR2941077A1 (fr) Systeme d'identification pour collecter des donnees provenant d'au moins un vehicule
CN116742336A (zh) 用于雷达装置的天线
FR3085234A1 (fr) Antenne pour emettre et/ou recevoir une onde electromagnetique, et systeme comprenant cette antenne
EP0142416B1 (fr) Système transducteur de sonar pour imagerie
FR3003700A1 (fr) Dispositif de reduction de signature radar d'antenne et systeme antennaire associe
WO2013004924A1 (fr) Dispositif pour détecter des objets tels que des mines
FR3111711A1 (fr) Ensemble de véhicule comprenant un capteur radar
FR3093961A1 (fr) Pièce de carrosserie de véhicule comprenant au moins une antenne directive
US11919464B2 (en) Occupancy detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16822749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE