WO2017109430A1 - Turbomachine à hélice à clipping inversé - Google Patents

Turbomachine à hélice à clipping inversé Download PDF

Info

Publication number
WO2017109430A1
WO2017109430A1 PCT/FR2016/053651 FR2016053651W WO2017109430A1 WO 2017109430 A1 WO2017109430 A1 WO 2017109430A1 FR 2016053651 W FR2016053651 W FR 2016053651W WO 2017109430 A1 WO2017109430 A1 WO 2017109430A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
downstream
upstream
turbomachine
air inlet
Prior art date
Application number
PCT/FR2016/053651
Other languages
English (en)
Inventor
Norman JODET
Jérémy GONZALEZ
Jacky MARDJONO
Laurence VION
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2017109430A1 publication Critical patent/WO2017109430A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/025Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the by-pass flow being at least partly used to create an independent thrust component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/072Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with counter-rotating, e.g. fan rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/325Application in turbines in gas turbines to drive unshrouded, high solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to turbomachines of open rotor counter-rotating type.
  • the "uncharted” fan motors are a type of turbomachine whose fan is fixed outside the engine crankcase, unlike conventional turbojet engines (type “Turbofan”) in which the fan is streamlined.
  • FIG. 1 the "Contra-Rotating Open Rotor” (CROR), represented by FIG. 1, is known, which is equipped with two propellers rotating in opposite directions. It is of great interest because of its particularly high propulsive performance.
  • This type of engine is to keep the speed and performance of a turbojet engine while maintaining fuel consumption similar to that of a turboprop engine.
  • the fact that the fan is no longer faired makes it possible to increase the diameter and the flow of air useful to the thrust.
  • the downstream propeller is of smaller diameter than the upstream propeller so that the end vortices emitted by the latter pass over the first, so as to avoid the generating impact of noise.
  • This option requires redesigning the blades of the downstream propeller by lengthening the ropes to ensure sufficient traction.
  • clipping does not prevent the impact of vortex structures when the aircraft is in incidence;
  • a second source of noise exists in the case of an open rotor type "puller” as shown in Figure 1.
  • the propellers 10, 1 1 are located upstream of an air inlet of a gas generator. It can be seen that the presence of the air inlet generates potential upwellings, in other words the distortion or heterogeneity, in the field traversed by the propellers.
  • the present invention proposes a turbomachine comprising at least two counter-rotating, non-keeled propellers having radially extending blades, including an upstream propeller and a downstream propeller, characterized in that:
  • the upstream propeller has a smaller diameter than the downstream propeller
  • the upstream propeller has a higher rotational speed than the downstream propeller.
  • the minimum distance between a trailing edge of a blade of the upstream propeller and a leading edge of a blade of the downstream propeller is less than twice the diameter of the upstream propeller;
  • the turbomachine comprises a gas generator having an air inlet downstream of the downstream propeller;
  • Said primary assembly is non-axisymmetric with respect to an axis of rotation of the propellers
  • the downstream propeller has a diameter of at least 1, 2 times the diameter of the upstream propeller.
  • FIG. 1 previously described represents an example of a contra-rotating open rotor
  • FIG. 2 represents a preferred embodiment of a turbomachine according to the invention.
  • turbomachine 1 comprising at least two propellers 10, 1 1 non-keeled, including an upstream propeller 10 and a downstream propeller 1 1, according to the fluid flow direction. It will be understood that other propellers may be arranged downstream of the first.
  • This turbomachine 1 is preferably of the "open-rotor" type, and thus comprises a primary assembly 4, or gas generator 4.
  • the gas generator 4 carries out the compression of air passing through an inlet 3, the combustion of fuel so to heat the compressed air, then its relaxation.
  • the gas generator 4 comprises a turbine rotating the propellers 10, 1 1, which are counter-rotating, that is to say that the upstream propeller 10 has a reverse direction of rotation of the downstream propeller January 1.
  • the primary assembly 4 is arranged in a nacelle 2 forming a housing.
  • a pylon 5 allows the mounting of the turbomachine 1 for example on an aircraft wing, or on the fuselage of an aircraft, so as to transmit the thrust generated by the rotation of the propellers 10, 1 January.
  • the tower 5 as shown in Figure 1 is located laterally, or substantially horizontal, with respect to the turbomachine, it is therefore preferably connected to the fuselage of the aircraft.
  • a radial pylon with respect to the turbomachine 1 is preferably connected to a wing of the aircraft.
  • the turbomachine is advantageously explained as an open-rotor "puller”, that is to say that the propellers 10, 1 1 are upstream of the gas generator 4 and come “pull” the turbomachine 1, rather than “pusher” , that is to say that the propellers 10, 1 1 are downstream of the gas generator 4 and “push” the turbomachine 1.
  • open-rotor "pusher” configurations can be considered in which the air inlet 3 is upstream of the propeller doublet 10, 1 1, or even between the two propellers 10, 1 1.
  • the gas generator 4 has either an axisymmetric configuration with an annular air inlet 3 around the casing downstream of the downstream propeller, or as can be seen in the figures a non and -axisymmetric and thus extend over only a portion of the circumference of the nacelle 2.
  • a non-axisymmetric configuration is preferred, because it prevents the pylon 5 from having to pass through the primary assembly 4.
  • each propeller 10, 1 1 has a plurality of blades 20, 21 extending substantially radially from the central casing.
  • the propellers 10, 1 1 define around the central casing a non-ducted fan of the turbomachine 1, i.e. a secondary assembly by analogy with the streamlined turbomachines with double flow (and in opposition with the primary assembly 4).
  • Each blade 20, 21 has a leading edge and a trailing edge.
  • the blades 2 of the propellers 10, 1 1 are of the same length.
  • the "radius" ie the distance to the axis of rotation of the helix 10, 1 1
  • the present turbomachine differs from the prior art in two points.
  • the speed of rotation of the propellers 10, 1 1 is chosen different.
  • the upstream propeller 10 (the small) has a rotational speed greater than the downstream propeller 1 1 (large).
  • downstream propeller 1 1 With a fixed upstream propeller, it is proposed to lengthen the downstream propeller 1 1 while reducing its rotational speed. In particular, this elongation is advantageously at least 20% (i.e. the downstream propeller 1 1 advantageously has a diameter of at least 1.2 times the diameter of the upstream helix 10).
  • the circular translation speed of the profile at the vortex impact zone is reduced since the rotational speed of the downstream propeller 1 1 is reduced, which implies the reduction of the intensity of the acoustic interaction.
  • the profile is defined as a section of the blade at a given height with respect to the axis of the turbomachine.
  • the vortex impacts a blade 21 of the downstream propeller 11 at a point where the chord (the chord is defined as the distance between the leading edge and the trailing edge at a given radius) is more important, since the blades 21 have a "belly" in the middle part.
  • the chord is defined as a distance between the leading edge and the trailing edge at a given radius).
  • D1 and D2 respectively the diameters of the upstream and downstream propellers 10 1;
  • L1 the minimum distance between the trailing edge of a blade 20 of the upstream propeller 10 and the leading edge of a blade 21 of the downstream propeller
  • L 2 the average distance over a radial extent of the air inlet 3 between the trailing edge of a blade 21 of the downstream propeller 11 and the plane of the air inlet 3 (in the open configuration rotor "puller");
  • the average distance over a radial extent of the air inlet is defined by integrating the distance between a minimum radius REAmin and a maximum radius REAmax of the air inlet 3.
  • the average rope on the air inlet radial extent of the air inlet 3 is defined by integrating the distance between a minimum radius REAmin and a maximum radius REAmax of the air inlet 3.
  • the minimum distance between a trailing edge of a blade 20 of the upstream propeller 10 and a leading edge of a blade 21 of the downstream propeller 11 is less than two. times the diameter of the upstream propeller 10; and / or, in the case of the open rotor "puller" configuration, the average distance over a radial extent of the air inlet 3 between a trailing edge of a blade 21 of the downstream propeller 10 and said inlet 3 is less than six times an average rope of the downstream propeller 1 1 on said radial extent of the air inlet 3.

Abstract

La présente invention concerne une turbomachine (1 ) comprenant au moins deux hélices non carénées (10, 11) contrarotatives et présentant des pales (20, 21) s'étendant radialement, dont une hélice amont (10) et une hélice aval (11 ), et un générateur de gaz (4) présentant une entrée d'air (3) en aval de l'hélice aval (11), caractérisée en ce que : - l'hélice amont (10) présente un diamètre inférieur à l'hélice aval (11); et - l'hélice amont (10) présente une vitesse de rotation supérieure à l'hélice aval (11).

Description

TURBOMACHINE A HELICE A CLIPPING INVERSE
DOMAINE TECHNIQUE GENERAL La présente invention concerne des turbomachines de type rotor ouvert contrarotatif.
ETAT DE L'ART Les moteurs à soufflantes « non carénées » (ou turbopropulseurs de type « Propfan » ou « Open rotor ») sont un type de turbomachine dont la soufflante est fixée en dehors du carter moteur, contrairement aux turboréacteurs classiques (de type « Turbofan ») dans lesquels la soufflante est carénée.
On connaît notamment le « Contra-Rotating Open Rotor » (CROR, rotor ouvert contrarotatif), représenté par la figure 1 , qui est équipé de deux hélices tournant dans des sens opposés. Il présente un grand intérêt de par son rendement propulsif particulièrement élevé.
Le but de ce type de moteur est ainsi de garder la vitesse et les performances d'un turboréacteur en conservant une consommation de carburant similaire à celle d'un turbopropulseur. Le fait que la soufflante ne soit plus carénée permet en effet d'augmenter le diamètre et le débit d'air utile à la poussée.
Toutefois, comme on le voit sur cette figure, l'absence de carénage entraîne des problèmes de certification, notamment acoustique. En effet, le bruit généré par les hélices d'open rotor se propage en champ libre. De plus, les sources de bruit sont nombreuses sur ce type d'architecture. Aux points de certification acoustique, il est connu qu'une des principales sources de bruit provient des structures tourbillonnaires issues des pales de l'hélice amont et venant impacter les pales de l'hélice aval. Les normes actuelles imposent un seuil maximum de bruit en zones proche sol, c'est-à- dire lors du décollage et de l'approche. Ces normes sont de plus en plus contraignantes avec le temps et il est important d'anticiper cette sévérisation pour que les moteurs les atteignent le jour de leur entrée en service.
Deux approches différentes existent pour réduire ce bruit d'interaction :
- le « clipping » : l'hélice aval est de diamètre inférieur à l'hélice amont de façon à ce que les tourbillons d'extrémité émis par cette dernière passent au-dessus de la première, de sorte à éviter l'impact générateur de bruit. Cette option nécessite cependant de redessiner les pales de l'hélice aval en allongeant les cordes de façon à assurer une traction suffisante. De plus, le clipping ne permet pas d'éviter l'impact des structures tourbillonnaires quand l'avion est en incidence ;
- modifier la géométrie des pales de l'hélice amont de sorte à réduire l'intensité des structures tourbillonnaires émises par la pale amont, et leur répartition dans le sillage. Cela permet que les fluctuations de charges instationnaires sur l'hélice aval soient de plus faible amplitude. On citera par exemple les demandes de brevet FR2980818 et FR2999151 . Cette option s'avère toutefois complexe, et nécessite de diminuer la charge de l'hélice amont et sa traction.
Une deuxième source de bruit existe dans le cas d'un open rotor de type « puller » tel que représenté sur la figure 1 . Dans le cas d'un open rotor de type « puller », les hélices 10, 1 1 sont situées en amont d'une entrée d'air d'un générateur de gaz. On constate que la présence de l'entrée de l'air génère des remontées de champ potentielles, en d'autres termes de la distorsion ou hétérogénéité, dans le champ traversé par les hélices.
Il serait donc souhaitable de trouver une architecture simple et efficace d'hélice non carénée qui s'affranchisse des limitations précédentes, et permette une amélioration sensible et constante des performances aéroacoustiques du moteur sans pertes de traction. PRESENTATION DE L'INVENTION
La présente invention propose une turbomachine comprenant au moins deux hélices non carénées contrarotatives et présentant des pales s'étendant radialement, dont une hélice amont et une hélice aval, caractérisé en ce que :
- l'hélice amont présente un diamètre inférieur à l'hélice aval ; et
- l'hélice amont présente une vitesse de rotation supérieure à l'hélice aval.
Selon d'autres caractéristiques avantageuses et non limitatives :
• la distance minimale entre un bord de fuite d'une pale de l'hélice amont et un bord d'attaque d'une pale de l'hélice aval est inférieure à deux fois le diamètre de l'hélice amont ;
• la turbomachine comprend un générateur de gaz présentant une entrée d'air en aval de l'hélice aval ;
• laquelle la distance moyenne sur une étendue radiale de l'entrée d'air entre un bord de fuite d'une pale de l'hélice aval et ladite entrée d'air est inférieure à six fois une corde moyenne de l'hélice aval sur ladite étendue radiale de l'entrée d'air ;
• ledit ensemble primaire est non-axisymétrique par rapport à un axe de rotation des hélices ;
• le produit du diamètre et de la vitesse de rotation de l'hélice amont est sensiblement égal au produit du diamètre et de la vitesse de rotation de l'hélice aval ;
• l'hélice aval présente un diamètre d'au moins 1 ,2 fois le diamètre de l'hélice amont. PRESENTATION DES FIGURES
D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description qui va suivre d'un mode de réalisation préférentiel. Cette description sera donnée en référence aux dessins annexés dans lesquels :
- la figure 1 précédemment décrite représente un exemple de rotor ouvert contra-rotatif ;
- la figure 2 représente un mode de réalisation préféré d'une turbomachine selon l'invention.
DESCRIPTION DETAILLEE
Open rotor
En référence à la figure 1 , est proposée une turbomachine 1 comprenant au moins deux hélices 10, 1 1 non-carénées, dont une hélice amont 10 et une hélice aval 1 1 , selon le sens d'écoulement de fluide. On comprendra que d'autres hélices peuvent être disposées en aval des premières.
Cette turbomachine 1 est préférentiellement de type « open-rotor », et comprend ainsi un ensemble primaire 4, ou générateur de gaz 4. Le générateur de gaz 4 réalise la compression d'air passant dans une entrée 3, la combustion de carburant de sorte à chauffer l'air compressé, puis sa détente. Le générateur de gaz 4 comprend une turbine entraînant en rotation les hélices 10, 1 1 , lesquelles sont contrarotatives, c'est-à-dire que l'hélice amont 10 présente un sens de rotation inverse de l'hélice aval 1 1 . L'ensemble primaire 4 est disposé dans une nacelle 2 formant un carter. Un pylône 5 permet le montage de la turbomachine 1 par exemple sur une aile d'aéronef, ou encore sur le fuselage d'un aéronef, de sorte à lui transmettre la poussée générée par la rotation des hélices 10, 1 1 . Le pylône 5 tel que représenté sur la figure 1 est situé de manière latérale, ou sensiblement horizontale, par rapport à la turbomachine, il est donc préférentiellement relié au fuselage de l'aéronef. Un pylône radial par rapport à la turbomachine 1 est préférentiellement relié à une aile de l'aéronef.
La turbomachine est comme expliqué avantageusement un open- rotor « puller », c'est-à-dire que les hélices 10, 1 1 sont en amont du générateur de gaz 4 et viennent « tirer » la turbomachine 1 , plutôt que « pusher », c'est-à-dire que les hélices 10, 1 1 sont en aval du générateur de gaz 4 et viennent « pousser » la turbomachine 1 . Il est à noter qu'on peut considérer des configurations d'open-rotor « pusher » dans lesquelles l'entrée d'air 3 se trouve en amont du doublet d'hélice 10, 1 1 , voire entre les deux hélices 10, 1 1 .
Dans la configuration open rotor « puller », le générateur de gaz 4 présente soit une configuration axisymétrique avec une entrée d'air 3 annulaire autour du carter en aval de l'hélice aval, soit comme l'on voit sur les figures une disposition non-axisymétrique et ainsi s'étendre sur seulement une portion de la circonférence de la nacelle 2. Une telle configuration non-axisymétrique est préférée, car elle permet d'éviter au pylône 5 de devoir traverser l'ensemble primaire 4.
Dans toutes les configurations, chaque hélice 10, 1 1 présente une pluralité de pales 20, 21 s'étendant sensiblement radialement depuis le carter central . Les hélices 10, 1 1 définissent autour du carter central une soufflante non-carénée de la turbomachine 1 , i.e. un ensemble secondaire par analogie avec les turbomachines carénées à double flux (et par opposition avec l'ensemble primaire 4). Chaque pale 20, 21 présente un bord d'attaque et un bord de fuite.
Configuration d'hélices
De façon connue, les pales 2 des hélices 10, 1 1 sont de même longueur. En d'autres termes, le « rayon » (i.e. la distance à l'axe de rotation de l'hélice 10, 1 1 ) de l'extrémité de toutes les pales 2 est constant. La présente turbomachine se distingue de l'art antérieur en deux points.
Tout d'abord elle présente un clipping « inversé », c'est-à-dire que l'hélice aval 1 1 est de diamètre supérieur à l'hélice amont 10. Cela peut sembler paradoxal car les tourbillons d'extrémité émis par l'hélice amont 10 vont directement impacter l'hélice aval 1 1 .
Et ensuite la vitesse de rotation des hélices 10, 1 1 est choisie différente. En particulier, l'hélice amont 10 (la petite) présente une vitesse de rotation supérieure à l'hélice aval 1 1 (la grande).
En résumé, à hélice amont fixée, il est proposé d'allonger l'hélice aval 1 1 tout en réduisant sa vitesse de rotation. En particulier, cet allongement est avantageusement au moins de 20% (i.e. l'hélice aval 1 1 présente avantageusement un diamètre d'au moins 1 ,2 fois le diamètre de l'hélice amont 10).
Cela permet de garder la vitesse de l'extrémité d'une pale 21 (vitesse de translation circulaire) de l'hélice aval 1 1 sensiblement constante. En particulier, de façon avantageuse, le produit du diamètre et de la vitesse de rotation de l'hélice amont 10 est inférieur, et encore plus avantageusement sensiblement égal, au produit du diamètre et de la vitesse de rotation de l'hélice aval 1 1 . D'où une traction toujours aussi efficace sans créer de déséquilibre entre les hélices 10, 1 1 , tout en ayant en pratique la réduction de l'intensité acoustique pour trois raisons :
- La vitesse de translation circulaire du profil au niveau de la zone d'impact du tourbillon est réduite puisque la vitesse de rotation de l'hélice aval 1 1 est réduite, ce qui implique la réduction de l'intensité de l'interaction acoustique. On définit le profil comme une section de la pale à une hauteur donnée par rapport à l'axe de la turbomachine.
- Avec une augmentation de diamètre de l'hélice aval 1 1 , le tourbillon vient impacter une pale 21 de l'hélice aval 1 1 à un endroit où la corde (on définit la corde comme la distance entre le bord d'attaque et le bord de fuite à un rayon donné) est plus importante, puisque les pales 21 présentent un « ventre » en partie médiane. On s'affranchit ainsi des effets de bord qui peuvent apparaître lorsque le tourbillon influe sur la tête de pale, là où la corde est la plus petite. On définit la corde comme une distance entre le bord d'attaque et le bord de fuite à un rayon donné).
- La concentration de charge aérodynamique (bruit de charge) est réduite par l'augmentation de la surface de la pale 21 d'hélice aval 1 1 . En plus d'avoir un effet direct sur la réduction du bruit propre, cette diminution de charge locale permet de réduire l'interaction avec la distorsion due à la présence de l'entrée d'air 3, car la fluctuation instationnaire est elle-même diminuée, ce d'autant plus que sur l'étendue de l'entrée d'air 3 la vitesse de translation circulaire est réduite.
Cas de mise en œuvre de la présente géométrie
En référence à la figure 2, si on appelle :
- D1 et D2 respectivement les diamètres des hélices amont 10 et aval 1 1 ;
- L1 la distance minimum entre le bord de fuite d'une pale 20 de l'hélice amont 10 et le bord d'attaque d'une pale 21 de l'hélice aval
1 1 ,
- L2 la distance moyenne sur une étendue radiale de l'entrée d'air 3 entre le bord de fuite d'une pale 21 de l'hélice aval 1 1 et le plan de l'entrée d'air 3 (dans la configuration open rotor « puller ») ;
- C2 la corde moyenne sur ladite étendue radiale de l'entrée d'air 3 de l'hélice aval 1 1 ;
La distance moyenne sur une étendue radiale de l'entrée d'air est définie par intégration de la distance entre un rayon minimum REAmin et un rayon maximum REAmax de l'entrée d'air 3. De la même manière, la corde moyenne sur l'étendue radiale de l'entrée d'air 3 est définie par intégration de la distance entre un rayon minimum REAmin et un rayon maximum REAmax de l'entrée d'air 3. Alors on constate que l'interaction tourbillonnaire devient critique si L1 /D1 < a, avec a un paramètre fonction de la configuration de la turbomachine 1 . En effet si L1 est très faible devant D1 alors on aura un impact fort (beaucoup d'énergie). De la même façon, dans la configuration open rotor « puller », l'interaction avec l'entrée d'air 3 devient critique si L2/C2< β, avec également β un paramètre fonction de la configuration de la turbomachine 1 . Si ces inégalités ne sont pas vérifiées, les interactions acoustiques apparaissent négligeables.
Ainsi, même si elle souhaitable sur n'importe quel open-rotor, les inventeurs ont constaté que la présente géométrie, c'est çà dire D1 /D2 < 1 et RPM2/RPM1 < 1 , ou encore D2 > D1 x RPM1/RPM2, avec RPM1 et RPM2 respectivement les vitesses de rotation de l'hélice amont 10 et de l'hélice aval 1 , prend tout son intérêt lorsque les deux inégalités précédentes sont vérifiées avec a=2 et β=6.
En d'autres termes de façon préférée, la distance minimale entre un bord de fuite d'une pale 20 de l'hélice amont 10 et un bord d'attaque d'une pale 21 de l'hélice aval 1 1 est inférieure à deux fois le diamètre de l'hélice amont 10 ; et/ou, dans le cas de la configuration open rotor « puller », la distance moyenne sur une étendue radiale de l'entrée d'air 3 entre un bord de fuite d'une pale 21 de l'hélice aval 10 et ladite entrée d'air 3 est inférieure à six fois une corde moyenne de l'hélice aval 1 1 sur ladite étendue radiale de l'entrée d'air 3.

Claims

REVENDICATIONS
1. Turbomachine (1 ) comprenant au moins deux hélices non carénées (10, 1 1 ) contrarotatives et présentant des pales (20, 21 ) s'étendant radialement, dont une hélice amont (10) et une hélice aval (1 1 ), et un générateur de gaz (4) présentant une entrée d'air (3) en aval de l'hélice aval (1 1 ), caractérisée en ce que :
- l'hélice amont (10) présente un diamètre inférieur à l'hélice aval (1 1 ) ; et
- l'hélice amont (10) présente une vitesse de rotation supérieure à l'hélice aval (1 1 ).
2. Turbomachine selon la revendication 1 , dans laquelle la distance minimale entre un bord de fuite d'une pale (20) de l'hélice amont (10) et un bord d'attaque d'une pale (21 ) de l'hélice aval (1 1 ) est inférieure à deux fois le diamètre de l'hélice amont (10).
3. Turbomachine selon l'une des revendications 1 et 2, dans laquelle la distance moyenne sur une étendue radiale de l'entrée d'air (3) entre un bord de fuite d'une pale (21 ) de l'hélice aval (10) et ladite entrée d'air (3) est inférieure à six fois une corde moyenne de l'hélice aval (1 1 ) sur ladite étendue radiale de l'entrée d'air (3).
4. Turbomachine selon l'une des revendications 1 à 3, dans laquelle ledit générateur de gaz (4) est non-axisymétrique par rapport à un axe de rotation des hélices (10, 1 1 ).
5. Turbomachine selon l'une des revendications 1 à 4, dans laquelle le produit du diamètre et de la vitesse de rotation de l'hélice amont (10) est sensiblement égal au produit du diamètre et de la vitesse de rotation de l'hélice aval (1 1 ).
6. Turbomachine selon l'une des revendications 1 à 5, dans laquelle l'hélice aval (1 1 ) présente un diamètre d'au moins 1 ,2 fois le diamètre de l'hélice amont (10).
PCT/FR2016/053651 2015-12-23 2016-12-22 Turbomachine à hélice à clipping inversé WO2017109430A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1563206A FR3046135B1 (fr) 2015-12-23 2015-12-23 Turbomachine a helice a clipping inverse
FR1563206 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017109430A1 true WO2017109430A1 (fr) 2017-06-29

Family

ID=55486876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/053651 WO2017109430A1 (fr) 2015-12-23 2016-12-22 Turbomachine à hélice à clipping inversé

Country Status (2)

Country Link
FR (1) FR3046135B1 (fr)
WO (1) WO2017109430A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111776207A (zh) * 2020-08-08 2020-10-16 许昌学院 遥感无人机及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834511A1 (de) * 1987-10-13 1990-04-12 Kastens Karl Propellergeblaese
FR2951502A1 (fr) * 2009-10-15 2011-04-22 Snecma Architecture de turbomachine ameliorant l'admission d'air
WO2015121579A1 (fr) * 2014-02-14 2015-08-20 Snecma Dispositif pour fixer des pales a calage variable d'une hélice non carénée d'une turbomachine
EP2930114A1 (fr) * 2014-01-06 2015-10-14 United Technologies Corporation Système propulsif réparti à hélices contrarotatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3834511A1 (de) * 1987-10-13 1990-04-12 Kastens Karl Propellergeblaese
FR2951502A1 (fr) * 2009-10-15 2011-04-22 Snecma Architecture de turbomachine ameliorant l'admission d'air
EP2930114A1 (fr) * 2014-01-06 2015-10-14 United Technologies Corporation Système propulsif réparti à hélices contrarotatives
WO2015121579A1 (fr) * 2014-02-14 2015-08-20 Snecma Dispositif pour fixer des pales a calage variable d'une hélice non carénée d'une turbomachine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111776207A (zh) * 2020-08-08 2020-10-16 许昌学院 遥感无人机及其控制方法
CN112498687A (zh) * 2020-08-08 2021-03-16 许昌学院 一种无人机及其控制方法

Also Published As

Publication number Publication date
FR3046135B1 (fr) 2019-04-12
FR3046135A1 (fr) 2017-06-30

Similar Documents

Publication Publication Date Title
EP3676480B1 (fr) Aube de redresseur de soufflante de turbomachine, ensemble de turbomachine comprenant une telle aube et turbomachine equipee de ladite aube ou dudit ensemble
CA2975570C (fr) Ensemble de redressement a performances aerodynamiques optimisees
EP3233627B1 (fr) Turbomachine à hélice multi-diamètres
EP2344381B1 (fr) Entree d&#39;air d&#39;un moteur d&#39;avion a helices propulsives non carenees
FR3028886B1 (fr) Organe de reduction de bruit de soufflante de turboreacteur
EP2895703A1 (fr) Turbomachine comportant une pluralité d&#39;aubes radiales fixes montées en amont de la soufflante
WO2016132073A1 (fr) Ensemble propulsif pour aeronef comprenant un turboreacteur a soufflante non carenee et un pylone d&#39;accrochage
FR3043984A1 (fr) Avion propulse par une turbomachine muni d&#39;un ecran acoustique
CA2850243A1 (fr) Pale pour une helice de turbomachine, notamment a soufflante non carenee, helice et turbomachine correspondantes
FR3074476A1 (fr) Turbopropulseur d&#39;aeronef comportant une helice non carenee
FR2680830A1 (fr) Procede pour ameliorer les caracteristiques de performances d&#39;une nacelle de moteur a turbine d&#39;avion et nacelle ainsi qu&#39;entree de nacelle obtenues a l&#39;aide de ce procede.
FR2982842A1 (fr) Avion
EP2569527B1 (fr) Dispositif pour attenuer le bruit emis par le jet d&#39;un moteur de propulsion d&#39;un aeronef
EP2946089B2 (fr) Manche d&#39;entrée d&#39;air acoustiquement optimisée
WO2017109430A1 (fr) Turbomachine à hélice à clipping inversé
FR2935348A1 (fr) Turbomachine a helices non carenees
FR3080886A1 (fr) Turbomachine a soufflante carenee
FR3082229A1 (fr) Turbomachine avec une aube partielle de compression
FR3101614A1 (fr) Système propulsif pour aéronef à turbomoteur déporté
FR3141445A1 (fr) Propulseur aeronautique a integration amelioree
WO2022148940A1 (fr) Dispositif d&#39;attenuation acoustique ameliore pour ensemble propulsif d&#39;aeronef
FR3125089A1 (fr) Propulseur aeronautique
FR3125090A1 (fr) Propulseur aeronautique
WO2024094948A1 (fr) Propulseur aeronautique a aerocoustique amelioree
FR3080837A1 (fr) Aeronef avec un module propulsif a helices non carenees agence a l&#39;arriere d&#39;un fuselage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829280

Country of ref document: EP

Kind code of ref document: A1