WO2017107862A1 - 一种确定地震观测系统重复性整体量度的方法和装置 - Google Patents

一种确定地震观测系统重复性整体量度的方法和装置 Download PDF

Info

Publication number
WO2017107862A1
WO2017107862A1 PCT/CN2016/110294 CN2016110294W WO2017107862A1 WO 2017107862 A1 WO2017107862 A1 WO 2017107862A1 CN 2016110294 W CN2016110294 W CN 2016110294W WO 2017107862 A1 WO2017107862 A1 WO 2017107862A1
Authority
WO
WIPO (PCT)
Prior art keywords
baseline
observation system
pairs
monitoring
matching
Prior art date
Application number
PCT/CN2016/110294
Other languages
English (en)
French (fr)
Inventor
董凤树
全海燕
罗敏学
徐朝红
辛秀艳
景月红
Original Assignee
中国石油天然气集团公司
中国石油集团东方地球物理勘探有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团公司, 中国石油集团东方地球物理勘探有限责任公司 filed Critical 中国石油天然气集团公司
Priority to EP16877673.0A priority Critical patent/EP3396420B1/en
Publication of WO2017107862A1 publication Critical patent/WO2017107862A1/zh
Priority to US15/954,065 priority patent/US10809401B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/003Seismic data acquisition in general, e.g. survey design
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/308Time lapse or 4D effects, e.g. production related effects to the formation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2200/00Details of seismic or acoustic prospecting or detecting in general
    • G01V2200/10Miscellaneous details
    • G01V2200/14Quality control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/14Signal detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/10Aspects of acoustic signal generation or detection
    • G01V2210/16Survey configurations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/612Previously recorded data, e.g. time-lapse or 4D

Definitions

  • the invention relates to the field of petroleum exploration technology, and in particular to a method and device for determining the overall measure of repetitiveness of a seismic observation system.
  • Time-lapse earthquakes use seismic data before and after time-lapse, combined with seismic, development and logging data to comprehensively explain changes in reservoir differences, obtain major distribution areas of remaining oil, guide the adjustment of reservoir development plans, and identify residuals between wells.
  • the location of the oil enhances oil and gas recovery. Therefore, time-lapse earthquakes play an important role in reservoir management.
  • the existing seismic observation system repeatability evaluation techniques include shot point deviation evaluation, feather angle deviation evaluation, azimuth deviation evaluation, and repeatability evaluation of single offset.
  • the evaluation of shot deviation, the evaluation of the feather angle deviation, and the evaluation of the azimuth deviation are performed on the partial components of the system when the repeatability evaluation is performed; the repeatability evaluation of the single offset is although it is for the complete component, but Only one of the single inspection pairs is evaluated. For the case of multiple inspections, at present, there is no specific method for determining repeatability.
  • Embodiments of the present invention provide a method and apparatus for determining a repetitive overall metric of a seismic observation system to achieve an accurate determination of the repeatability of multiple shots in time-lapse seismic acquisition.
  • Embodiments of the present invention provide a method for determining a repetitive overall metric of a seismic observation system, including: selecting a baseline observation system and a monitoring observation system within a predetermined observation system; and performing an inspection check on the baseline observation system Matching the detection pairs of the monitoring observation system to obtain a plurality of matching relationships; calculating the plurality of matching relationships according to a predetermined multi-channel observation system repeatability calculation formula, and obtaining each of the plurality of matching relationships The overall repeatability of the observing system corresponding to the relationship; the minimum of the overall repeatability of the observing system corresponding to each of the plurality of matching relationships is taken as the overall measure of repetitiveness between the monitoring observing system and the baseline observing system .
  • the predetermined multi-channel observing system repeatability calculation formula is expressed as:
  • r denotes the overall repeatability of the observation system
  • m denotes the number of matched baseline inspection pairs in the current matching relationship
  • x i denotes the offset of the i-th baseline inspection pair in the current matching relationship
  • i 1, 2, ..., m
  • k(x i ) represents the weighting coefficient of the i-th baseline detection pair in the current matching relationship
  • r i represents the repeatability of the i-th baseline detection pair and the corresponding monitored detection pair in the current matching relationship.
  • the detection pairs of the baseline observation system are matched with the inspection pairs of the monitoring observation system to obtain a plurality of matching relationships, including: counting the number of inspection pairs of the baseline observation system and The number of detection pairs of the monitoring observation system is matched; according to the number of the inspection pairs of the baseline observation system and the statistical results of the number of inspection pairs of the monitoring observation system, a plurality of matching relationships are obtained.
  • matching the number of detection pairs of the baseline observation system and the number of detection pairs of the monitoring observation system to obtain a plurality of matching relationships including: when the monitoring observation system is fired If the number of detection pairs is greater than the number of inspection pairs of the baseline observation system, matching is performed to remove the remaining inspection observation system; when the number of inspection pairs of the monitoring observation system is smaller than that of the baseline observation system Number, for the checkpoint of one or more baseline observing systems remaining after matching, assigning a predetermined value as the repeatability of the collated pair of the one or more baseline observing systems and the corresponding monitoring observing system .
  • the baseline observing system and the monitoring observing system are selected within a predetermined observing system, including: selecting a baseline observing system and a monitoring observing system based on the bin of the center point and the range of the offset; or The baseline observing system and the monitoring observing system are selected according to the bin of the reflection point and the range of the offset.
  • An embodiment of the present invention further provides an apparatus for determining a repetitive overall metric of a seismic observation system, comprising: a selection module for selecting a baseline observation system and a monitoring observation system within a predetermined observation system; and a matching module for Comparing the detection pairs of the baseline observation system with the inspection pairs of the monitoring observation system to obtain a plurality of matching relationships; and calculating a module for performing the plurality of types according to a predetermined multi-channel observation system repeatability calculation formula
  • the matching relationship is respectively calculated, and the overall repeatability of the observing system corresponding to each matching relationship in the plurality of matching relationships is obtained; the metric module is configured to use the overall repetitiveness of the observing system corresponding to each of the plurality of matching relationships The minimum is used as a repetitive overall measure between the monitoring observing system and the baseline observing system.
  • the calculation module is specifically configured to calculate a predetermined multi-channel observing system repeatability according to the following formula:
  • r denotes the overall repeatability of the observation system
  • m denotes the number of matched baseline inspection pairs in the current matching relationship
  • x i denotes the offset of the i-th baseline inspection pair in the current matching relationship
  • i 1, 2, ..., m
  • k(x i ) represents the weighting coefficient of the i-th baseline detection pair in the current matching relationship
  • r i represents the repeatability of the i-th baseline detection pair and the corresponding monitored detection pair in the current matching relationship.
  • the matching module includes: a number counting unit, configured to count the number of the detected pairs of the baseline observation system and the number of the detected pairs of the monitoring observation system; and a relationship matching unit, configured to The number of inspections of the baseline observing system and the statistical results of the number of detection pairs of the monitoring observing system are matched to obtain a plurality of matching relationships.
  • the relationship matching unit includes: a culling subunit, configured to remove the remaining monitoring observations when the number of detection pairs of the monitoring observation system is greater than the number of detection pairs of the baseline observation system a system of detection pairs; an allocation subunit for the number of detection pairs of the monitoring observation system being smaller than the number of inspection pairs of the baseline observation system, and for the remaining one or more baseline observation systems Checking, assigning a predetermined value as the repeatability of the detected pair of the one or more baseline observing systems and the corresponding inspection observing system.
  • the selection module includes: a first selection unit, configured to select a baseline observation system and a monitoring observation system according to a bin of the center point and a range of the offset; or a second selection unit, configured to: According to the counter Baseline observing systems and monitoring observing systems are selected for the area of the spot and the range of the offset.
  • the baseline observation system and the monitoring observation system are selected first within the predetermined observation system, and then the inspection and observation observation system of the baseline observation system is selected.
  • the matching pairs are matched to obtain a variety of matching relationships, and then the multiple matching relationships are calculated according to the multi-channel observation system repeatability calculation formula, and the overall repeatability of the observation system corresponding to each matching relationship in multiple matching relationships can be obtained.
  • the minimum of the corresponding repeatability is used as a repetitive overall measure between the monitoring observing system and the baseline observing system.
  • FIG. 1 is a flow chart of determining an overall measure of repetitiveness of a seismic observation system according to an embodiment of the present invention
  • FIG. 2 is a flow chart for calculating the repeatability of an observation system in which a center point corresponding to each CMP panel belongs in accordance with a method of repetitive overall measurement of a seismic observation system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a variation curve of a weighting coefficient according to an offset of an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the repeatability of an observation system in which a center point corresponding to each CMP panel falls in a method for determining a repetitive overall metric of a seismic observation system according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of determining an overall measure of repetitiveness of a seismic observation system according to an embodiment of the present invention.
  • a method for determining the overall measure of repetitiveness of a seismic observation system is provided. As shown in FIG. 1, the following steps may be included:
  • Step 101 Select a baseline observing system and a monitoring observing system within a predetermined observing system
  • Seismic systems especially for time-lapse seismic systems, require seismic data acquisition in different situations.
  • the seismic system is collected.
  • the data collected for the first time is called baseline seismic data; after a period of human intervention, the data collected again according to the demand is called monitoring seismic data.
  • baseline seismic data After a period of human intervention, the data collected again according to the demand is called monitoring seismic data.
  • monitoring seismic data Through multiple explorations, seismic data of exploration targets at different times can be obtained, and the differences in seismic data of exploration targets at different times can be obtained, so that the influence of human intervention such as oil and gas exploitation on exploration targets can be obtained.
  • the baseline observation system and the monitoring observation system may be selected according to the bin of the center point and the range of the offset; or, according to the bin of the reflection point and the range of the offset, the baseline observation is selected.
  • Systems and monitoring observing systems may be selected according to the bin of the center point and the range of the offset; or, according to the bin of the reflection point and the range of the offset, the baseline observation is selected.
  • Step 102 Matching the detection pairs of the baseline observation system with the inspection pairs of the monitoring observation system to obtain multiple matching relationships
  • matching the inspection pairs of the baseline observation system with the inspection pairs of the monitoring observation system it is possible to repeatedly evaluate the multiple inspection pairs in the seismic acquisition.
  • matching the baseline observation system and the inspection pair of the observation observation system may include the following steps:
  • S1 separately count the number of detection pairs of the baseline observation system and the number of inspection pairs of the monitoring observation system
  • the following two situations can occur: when the number of inspection pairs of the monitoring observation system is greater than the number of inspection pairs of the baseline observation system, match After that, the remaining inspection observation systems can be eliminated; when the number of inspections of the monitoring observation system is smaller than the number of inspections of the baseline observation system, there is no corresponding inspection pair in the monitoring observation system corresponding to the baseline observation system.
  • a predetermined value is assigned as the repeatability of the detected pair of the one or more baseline observation systems and the corresponding inspection observation system.
  • Step 103 Calculate the plurality of matching relationships according to a predetermined multi-channel observing system repeatability calculation formula, and obtain an overall repeatability of the observing system corresponding to each matching relationship among the plurality of matching relationships;
  • the repeatability of the observation system significantly affects the repeatability of time-lapse seismic data.
  • the repeatability of the observation system can be expressed as the sum of the deviation of the observation system shot point from the detection point.
  • the repeatability of the observation system can be expressed as between the shot point of the monitoring observation system and the shot point of the baseline observation system.
  • the repeatability of the seismic waveform data can be calculated by normalizing the root mean square of the difference data of the two sets of seismic data in the given time window, and the calculation formula is as follows:
  • NRMS indicates the repeatability of the baseline inspection pair in the current matching relationship and the corresponding monitoring inspection.
  • Monitor indicates the seismic data monitored by the monitoring observation system in the current matching relationship.
  • Baseline indicates that the baseline observation system is observed in the current matching relationship.
  • the seismic data, N represents the number of sampling points of the seismic waveform data in the current matching relationship from the initial recording time t 1 to the ending recording time t 2 .
  • repeatability of the plurality of matching relationships obtained is calculated by using a predetermined multi-channel observation system repeatability calculation formula.
  • the repetitive calculation formula can be expressed as:
  • r denotes the overall repeatability of the observation system
  • m denotes the number of matched baseline inspection pairs in the current matching relationship
  • x i denotes the offset of the i-th baseline inspection pair in the current matching relationship
  • i 1, 2, ..., m
  • k(x i ) represents the weighting coefficient of the i-th baseline detection pair in the current matching relationship
  • r i represents the repeatability of the i-th baseline detection pair and the corresponding monitored detection pair in the current matching relationship.
  • the weighting coefficient k(x i ) remains unchanged during the process of calculating the repeatability of the current matching relationship and during the comparison of the overall repeatability of the observation system.
  • Step 104 The most repetitive of the overall observation system corresponding to each of the plurality of matching relationships The small value is used as a repetitive overall measure between the monitoring observing system and the baseline observing system.
  • each common center point in a certain region is calculated by the above method for determining the overall measure of repetitiveness of the seismic observation system (Common Mid Point, referred to as CMP)
  • CMP Common Mid Point
  • calculating the repeatability of the observation system in which the center point corresponding to each CMP panel falls within the above method for determining the repetitive overall metric of the seismic observation system may include the following steps:
  • Step 201 Select a baseline observation system and a monitoring observation system for each CMP panel according to the bin of the center point and the range of the offset;
  • Step 202 Matching the inspection pairs of the baseline observation system with the inspection pairs of the monitoring observation system to obtain a plurality of matching relationships
  • Step 203 Calculate a plurality of matching relationships according to a predetermined multi-channel observing system repeatability calculation formula, and obtain an overall repeatability of the observing system corresponding to each matching relationship in the plurality of matching relationships;
  • the predetermined multi-channel observing system repeatability calculation formula can be expressed as follows:
  • r denotes the overall repeatability of the observation system
  • m denotes the number of matched baseline inspection pairs in the current matching relationship
  • x i denotes the offset of the i-th baseline inspection pair in the current matching relationship
  • i 1, 2, ..., m
  • r i represents the repeatability of the i-th baseline detection pair and the corresponding monitored detection pair in the current matching relationship
  • k(x i ) represents the weighting coefficient of the i-th baseline detection pair in the current matching relationship
  • k(x i ) can be calculated by a function of a stretching coefficient threshold of 20% and a velocity function of 1500 (m/s) + 1000 (m/s 2 )t, as shown in FIG.
  • the weighting coefficient k(x i ) is a schematic diagram of the variation curve with the offset. It can be seen from Fig. 3 that when the offset is greater than 300, the weighting coefficient k(x i ) decreases as the offset increases. trend. It is worth noting that the weighting coefficient k(x i ) remains constant in calculating the repeatability of the current matching relationship and in comparing the overall repeatability of the observation system.
  • Step 204 The minimum value of the overall repeatability of the observing system corresponding to each of the plurality of matching relationships is used as a repetitive overall measure between the monitoring observing system and the baseline observing system.
  • Figure 4 shows a schematic diagram of the repeatability of the above observation system using a method of determining the overall measure of repetitiveness of the seismic observation system.
  • an embodiment of the present invention further provides an apparatus for determining a repetitive overall measure of a seismic observation system, as described in the following embodiments. Since the principle of the device to solve the problem of determining the repetitive overall measure of the seismic observation system is similar to the method of determining the overall measure of the repetitiveness of the seismic observation system, an implementation of the device for determining the overall measure of the repetitiveness of the seismic observation system can be referred to a determination. The implementation of the method of repetitive overall measurement of seismic observation systems will not be repeated here.
  • the term "unit” or "module” may implement a combination of software and/or hardware of a predetermined function.
  • FIG. 5 is a structural block diagram of an apparatus for determining a repetitive overall metric of a seismic observation system according to an embodiment of the present invention. As shown in FIG. 5, the method includes: a selection module 501, a matching module 502, a calculation module 503, and a metric module 504. The structure will be described below.
  • a selection module 501 for selecting a baseline observation system and a monitoring observation system within a predetermined observation system
  • the matching module 502 is configured to match the detection pairs of the baseline observation system with the inspection pairs of the monitoring observation system to obtain a plurality of matching relationships;
  • the calculating module 503 is configured to separately calculate the multiple matching relationships according to a predetermined multi-channel observing system repeatability calculation formula, and obtain an overall repeatability of the observing system corresponding to each matching relationship in the multiple matching relationships;
  • the metric module 504 is configured to use a minimum value of the overall repeatability of the observing system corresponding to each of the plurality of matching relationships as a repetitive overall metric between the monitoring observing system and the baseline observing system.
  • the calculation module is specifically configured to calculate a predetermined multi-channel observing system repeatability according to the following formula:
  • r denotes the overall repeatability of the observation system
  • m denotes the number of matched baseline inspection pairs in the current matching relationship
  • x i denotes the offset of the i-th baseline inspection pair in the current matching relationship
  • i 1, 2, ..., m
  • k(x i ) represents the weighting coefficient of the i-th baseline detection pair in the current matching relationship
  • r i represents the repeatability of the i-th baseline detection pair and the corresponding monitored detection pair in the current matching relationship.
  • the matching module includes: a number counting unit, configured to count the number of the detected pairs of the baseline observation system and the number of the detected pairs of the monitoring observation system; and a relationship matching unit, configured to The number of inspections of the baseline observing system and the statistical results of the number of detection pairs of the monitoring observing system are matched to obtain a plurality of matching relationships.
  • the relationship matching unit includes: a culling subunit for using the monitoring observing system
  • the number of detection pairs is greater than the number of inspection pairs of the baseline observation system, and the matching inspection observation system is eliminated, and the sub-units are allocated for the number of inspection pairs of the monitoring observation system being smaller than
  • the number of detection pairs of the baseline observing system is the detection pair of one or more baseline observing systems remaining after matching, and the predetermined value is assigned as the inspection pair and the corresponding monitoring observation of the one or more baseline observing systems. The repeatability of the system's inspection pairs.
  • the selection module includes: a first selection unit, configured to select a baseline observation system and a monitoring observation system according to a bin of the center point and a range of the offset; or a second selection unit, configured to: The baseline observing system and the monitoring observing system are selected according to the bin of the reflection point and the range of the offset.
  • the embodiment of the present invention achieves the following technical effects: in calculating the repeatability of the seismic observation system, first selecting a baseline observation system and a monitoring observation system within a predetermined observation system, Then, the detection pairs of the baseline observation system are matched with the detection pairs of the monitoring observation system, and various matching relationships are obtained. Then, according to the multi-channel observation system repeatability calculation formula, the above multiple matching relationships are respectively calculated, and various types can be obtained. The overall repeatability of the observing system corresponding to each matching relationship in the matching relationship, and the minimum of the corresponding repetitiveness is taken as the overall measure of repetitiveness between the monitoring observing system and the baseline observing system.
  • the above method solves the problem that the number of detection points of the baseline observation system and the monitoring observation system are different and the matching is uncertain, and the purpose of accurately determining the repeatability of multiple inspections in time-lapse seismic acquisition is improved, and the repeatability of the seismic observation system is improved. Monitoring efficiency.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps are performed in the order shown or described, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Fluid Mechanics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种确定地震观测系统重复性整体量度的方法和装置,其中,该方法包括:选定基线观测系统和监测观测系统(101);对基线观测系统的炮检对与监测观测系统的炮检对进行匹配,得到多种匹配关系(102);按照预定的多道观测系统重复性计算公式对多种匹配关系分别进行计算,得到多种匹配关系中各个匹配关系对应的观测系统整体重复性(103);将各个匹配关系对应的观测系统整体重复性中的最小值作为监测观测系统和基线观测系统之间的重复性整体量度(104)。通过上述方式解决了基线观测系统与监测观测系统炮检对数目不同以及匹配不确定的情况,实现了准确确定时移地震采集中的多炮检对重复性的目的,提高了地震观测系统重复性监控效率。

Description

一种确定地震观测系统重复性整体量度的方法和装置
本申请要求2015年12月25日递交的申请号为201510993665.1、发明名称为“一种确定地震观测系统重复性整体量度的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及石油勘探技术领域,特别涉及一种确定地震观测系统重复性整体量度的方法和装置。
背景技术
目前,许多老油田已进入开发中后期,岩石内部流体分布与油藏开发复杂,石油采收率平均值低,存在大量的剩余油。时移地震利用时移前后的地震资料,结合地震、开发和测井等资料来对油藏差异变化进行综合解释,得到剩余油的主要分布区域,指导油藏开发方案的调整,识别出井间剩余油的位置,提高油气采收率。因此,在油藏管理中,时移地震扮演着重要的角色。
时移地震成功的关键在于时移地震的可重复性情况,因此需要有效的时移地震数据重复性量度及一致性分析方法。在海上拖缆方式的时移地震采集中,已有的地震观测系统重复性评价技术有炮点偏离评价、羽角偏差评价、方位角偏差的评价以及单一炮检距的重复性评价。其中,炮点偏离评价、羽角偏差评价、方位角偏差的评价在对系统进行重复性评价时都是针对其中的部分分量进行的;单一炮检距的重复性评价,虽然是针对完整分量,但是只针对其中的单一炮检对进行评价,对于多炮检对的情况,目前,尚未有具体的确定重复性的方法公开。然而,发明人董凤树在本申请技术提出之前,已经对多道重复性的问题进行了系统的理论研究,形成了理论,同时计划了对所研究理论的公开和发表,实现了在本申请优先权日之后公开和发表了理论(董凤树.2016.时移地震观测系统重复性研究[博士论文].北京:中国科学院大学,中国科学院地质与地球物理研究所;董凤树,符力耘,全海燕等.2016.海上时移地震中多道匹配的观测系统重复性研究.地球物理学报,59(8):3056-3067,doi:10.6038/cjg20160828;Feng-Shu,D.,Li-Yun,F.,Hai-Yan,Q.,Ke-Tong,D.and Xiu-Yan,X.(2016),MATCHED MULTI-TRACE WEIGHTED RMS GEOMETRY REPEATABILITY FOR TIME-LAPSE SEISMIC.Chinese Journal of Geophysics,59:442–456.doi:10.1002/cjg2.20248)。
针对上述如何确定地震采集中的多炮检对重复性的问题,目前,尚未有有效的解决方案被公开提出。本发明是在上述理论的基础上完成的,发明的合理性受该理论的支持。
发明内容
本发明实施例提供了一种确定地震观测系统重复性整体量度的方法和装置,以达到准确确定时移地震采集中的多炮检对重复性的目的。
本发明实施例提供了一种确定地震观测系统重复性整体量度的方法,包括:在预定的观测系统范围内,选定基线观测系统和监测观测系统;对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
在一个实施例中,所述预定的多道观测系统重复性计算公式表示为:
Figure PCTCN2016110294-appb-000001
其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
在一个实施例中,对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系,包括:统计所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目;根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
在一个实施例中,根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系,包括:当所述监测观测系统的炮检对数目大于所述基线观测系统的炮检对数目,进行匹配后剔除剩余的监测观测系统的炮检对;当所述监测观测系统的炮检对数目小于所述基线观测系统的炮检对数目,为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
在一个实施例中,在预定的观测系统范围内,选定基线观测系统和监测观测系统,包括:根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;或者,根据反射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
本发明实施例还提供了一种确定地震观测系统重复性整体量度的装置,包括:选择模块,用于在预定的观测系统范围内,选定基线观测系统和监测观测系统;匹配模块,用于对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;计算模块,用于按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;度量模块,用于将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
在一个实施例中,所述计算模块具体用于按照以下公式计算预定的多道观测系统重复性:
Figure PCTCN2016110294-appb-000002
其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
在一个实施例中,所述匹配模块包括:数目统计单元,用于统计所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目;关系匹配单元,用于根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
在一个实施例中,所述关系匹配单元包括:剔除子单元,用于当所述监测观测系统的炮检对数目大于所述基线观测系统的炮检对数目,进行匹配后剔除剩余的监测观测系统的炮检对;分配子单元,用于当所述监测观测系统的炮检对数目小于所述基线观测系统的炮检对数目,为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
在一个实施例中,所述选择模块包括:第一选择单元,用于根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;或者,第二选择单元,用于根据反 射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
在本发明实施例中,在计算地震观测系统重复性的过程中,首先在预定的观测系统范围内,选定基线观测系统和监测观测系统,然后对基线观测系统的炮检对与监测观测系统的炮检对进行匹配,得到多种匹配关系,然后按照多道观测系统重复性计算公式对上述多种匹配关系分别进行计算,可以得到多种匹配关系中各个匹配关系对应的观测系统整体重复性,将对应的重复性中的最小值作为监测观测系统和基线观测系统之间的重复性整体量度。通过上述方式解决了基线观测系统与监测观测系统炮检对数目不同以及匹配不确定的情况,实现了准确确定时移地震采集中的多炮检对重复性的目的。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1是本发明实施例的一种确定地震观测系统重复性整体量度的流程图;
图2是本发明实施例的按照地震观测系统重复性整体量度的方法计算每个CMP面元所对应的中心点落在其中的观测系统的重复性的流程图;
图3是本发明实施例的加权系数随炮检距的变化曲线示意图;
图4是本发明实施例的采用确定地震观测系统重复性整体量度的方法计算每个CMP面元所对应的中心点落在其中的观测系统的重复性示意图;
图5是本发明实施例的一种确定地震观测系统重复性整体量度的一种结构框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。
考虑到对地震观测系统重复性进行评价时,如果要求得到准确的评价结果,则需要大量增加参与重复性评价的炮检对的数目;如果炮检对太少,则无法为地震观测系统提供可靠的评价。具体地,在本例中,提供了一种确定地震观测系统重复性整体量度的方法,如图1所示,可以包括以下步骤:
步骤101:在预定的观测系统范围内,选定基线观测系统和监测观测系统;
地震系统,尤其对于时移地震系统而言,进行地震数据采集时,需要对不同情况下 的地震系统进行采集。其中第一次采集得到的数据称为基线地震数据;在经历了一段时间的人为干预之后,根据需求进行再一次的采集得到的数据称为监测地震数据。通过多次勘探,可以获得勘探目标不同时间的地震数据,了解勘探目标不同时间的地震数据差异,从而可以得到人为干预例如油气开采对勘探目标的影响。
具体地,在本实施例中,可以根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;或者,根据反射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
步骤102:对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;
在本实施例中,通过对基线观测系统的炮检对与监测观测系统的炮检对进行匹配,从而可以对地震采集中的多炮检对进行重复性评价。具体地,对基线观测系统以及监测观测系统的炮检对进行匹配可以包括以下步骤:
S1:分别统计基线观测系统的炮检对数目以及监测观测系统的炮检对数目;
S2:根据基线观测系统的炮检对数目以及监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
当对基线观测系统的炮检对以及监测观测系统的炮检对进行匹配的时候,可以出现以下两种情况:当监测观测系统的炮检对数目大于基线观测系统的炮检对数目,进行匹配后可以剔除剩余的监测观测系统的炮检对;当监测观测系统的炮检对数目小于基线观测系统的炮检对数目,在监测观测系统没有相应的炮检对与基线观测系统相对应,可以为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
相应的,根据基线观测系统的炮检对数目以及监测观测系统的炮检对数目的统计结果进行匹配后,可以得到多种匹配关系。
例如,当监测观测系统的炮检对数目为五个,而基线观测系统的炮检对数目为三个时,将基线观测系统的三个炮检对和监测观测系统的三个炮检对进行匹配后,剔除剩余的两个监测观测系统的炮检对,最终可以得到5×4×3=60个匹配关系;当监测观测系统的炮检对数目为四个,而基线观测系统的炮检对数目为五个时,将基线观测系统的四个炮检对和监测观测系统的四个炮检对进行匹配后,剩余一个基线观测系统炮检对,分配一个预定值作为剩余的一个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性,最终可以得到5×4×3×2×1=120个匹配关系。
然而值得注意的是,上例中五个炮检对仅是一种示意性描述,在实际实现的时候,还可以有其它数量的炮检对,例如,六个、十个等,具体的炮检对数量本申请不作限定。
步骤103:按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;
研究表明,观测系统的重复性明显影响时移地震数据的重复性。观测系统的重复性可以表示为观测系统炮点偏离与检波点偏离之和,在本实施例中,观测系统的重复性可以表示为监测观测系统的炮点与基线观测系统的炮点之间的距离加上监测观测系统的检波点与基线观测系统的检波点之间的距离。具体的,可以通过对给定时窗内的两组地震数据的差数据的均方根进行归一化来计算地震波形数据的重复性,计算公式如下:
Figure PCTCN2016110294-appb-000003
Figure PCTCN2016110294-appb-000004
其中,NRMS表示当前匹配关系中的基线炮检对与对应的监测炮检对的重复性,Monitor表示当前匹配关系中监测观测系统监测到的地震数据,Baseline表示当前匹配关系中基线观测系统观测到的地震数据,N表示当前匹配关系中地震波形数据从起始记录时刻t1到结束记录时刻t2的采样点数目。
进一步的,运用预定的多道观测系统重复性计算公式对所得到的多种匹配关系的重复性分别进行计算。该重复性计算公式可以表示为:
Figure PCTCN2016110294-appb-000005
其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
在上述公式中,加权系数k(xi)在计算当前匹配关系的重复性的过程中以及在比较观测系统整体重复性的过程中保持不变。
经过上述计算,可以得到多种匹配关系中各个匹配关系对应的观测系统整体重复性。
步骤104:将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最 小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
下面以一个确定地震观测系统重复性整体量度的方法的具体应用实例来进行说明,在本实施例中,通过上述确定地震观测系统重复性整体量度的方法计算某一地区每个共中心点(Common Mid Point,简称为CMP)面元所对应的中心点落在其中的观测系统的重复性。然而值得注意的是,该具体实施例仅是为了更好地说明本发明,并不构成对本发明的不当限定。
如图2所示,通过上述确定地震观测系统重复性整体量度的方法计算每个CMP面元所对应的中心点落在其中的观测系统的重复性可以包括以下步骤:
步骤201:根据中心点所在面元以及炮检距范围,选定每个CMP面元的基线观测系统和监测观测系统;
步骤202:对基线观测系统的炮检对与监测观测系统的炮检对进行匹配,得到多种匹配关系;
步骤203:按照预定的多道观测系统重复性计算公式对多种匹配关系分别进行计算,得到多种匹配关系中各个匹配关系对应的观测系统整体重复性;
其中,该预定的多道观测系统重复性计算公式可以表示如下:
其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,在本实施例中,k(xi)可以通过拉伸系数门槛为20%,速度函数为1500(m/s)+1000(m/s2)t的函数进行计算,如图3所示为加权系数k(xi)随炮检距的变化曲线示意图,从图3中可以看出当炮检距大于300时,随着炮检距的增加,加权系数k(xi)呈减小的趋势。值得注意的是,在计算当前匹配关系的重复性以及在比较观测系统整体重复性的过程中加权系数k(xi)保持不变。
步骤204:将多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为监测观测系统和基线观测系统之间的重复性整体量度。
如图4所示为采用确定地震观测系统重复性整体量度的方法计算上述观测系统的重复性示意图。
基于同一发明构思,本发明实施例中还提供了一种确定地震观测系统重复性整体量度的装置,如下面的实施例所述。由于确定地震观测系统重复性整体量度的装置解决问题的原理与一种确定地震观测系统重复性整体量度的方法相似,因此一种确定地震观测系统重复性整体量度的装置的实施可以参见一种确定地震观测系统重复性整体量度的方法的实施,重复之处不再赘述。以下所使用的,术语“单元”或者“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可以被构想的。图5是本发明实施例的一种确定地震观测系统重复性整体量度的装置的一种结构框图,如图5所示,包括:选择模块501、匹配模块502、计算模块503、度量模块504,下面对该结构进行说明。
选择模块501,用于在预定的观测系统范围内,选定基线观测系统和监测观测系统;
匹配模块502,用于对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;
计算模块503,用于按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;
度量模块504,用于将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
在一个实施例中,所述计算模块具体用于按照以下公式计算预定的多道观测系统重复性:
Figure PCTCN2016110294-appb-000007
其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
在一个实施例中,所述匹配模块包括:数目统计单元,用于统计所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目;关系匹配单元,用于根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
在一个实施例中,所述关系匹配单元包括:剔除子单元,用于当所述监测观测系统 的炮检对数目大于所述基线观测系统的炮检对数目,进行匹配后剔除剩余的监测观测系统的炮检对;分配子单元,用于当所述监测观测系统的炮检对数目小于所述基线观测系统的炮检对数目,为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
在一个实施例中,所述选择模块包括:第一选择单元,用于根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;或者,第二选择单元,用于根据反射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
从以上的描述中,可以看出,本发明实施例实现了如下技术效果:在计算地震观测系统重复性的过程中,首先在预定的观测系统范围内,选定基线观测系统和监测观测系统,然后对基线观测系统的炮检对与监测观测系统的炮检对进行匹配,得到多种匹配关系,然后按照多道观测系统重复性计算公式对上述多种匹配关系分别进行计算,可以得到多种匹配关系中各个匹配关系对应的观测系统整体重复性,将对应的重复性中的最小值作为监测观测系统和基线观测系统之间的重复性整体量度。通过上述方式解决了基线观测系统与监测观测系统炮检对数目不同以及匹配不确定的情况,实现了准确确定时移地震采集中的多炮检对重复性的目的,提高了地震观测系统重复性监控效率。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种确定地震观测系统重复性整体量度的方法,其特征在于,包括:
    在预定的观测系统范围内,选定基线观测系统和监测观测系统;
    对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;
    按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;
    将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
  2. 如权利要求1所述的方法,其特征在于,所述预定的多道观测系统重复性计算公式表示为:
    Figure PCTCN2016110294-appb-100001
    其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
  3. 如权利要求1所述的方法,其特征在于,对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系,包括:
    统计所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目;
    根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
  4. 如权利要求3所述的方法,其特征在于,根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系,包括:
    当所述监测观测系统的炮检对数目大于所述基线观测系统的炮检对数目,进行匹配后剔除剩余的监测观测系统的炮检对;
    当所述监测观测系统的炮检对数目小于所述基线观测系统的炮检对数目,为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,在预定的观测系统范围内,选定基线观测系统和监测观测系统,包括:
    根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;
    或者,根据反射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
  6. 一种确定地震观测系统重复性整体量度的装置,其特征在于,包括:
    选择模块,用于在预定的观测系统范围内,选定基线观测系统和监测观测系统;
    匹配模块,用于对所述基线观测系统的炮检对与所述监测观测系统的炮检对进行匹配,得到多种匹配关系;
    计算模块,用于按照预定的多道观测系统重复性计算公式对所述多种匹配关系分别进行计算,得到所述多种匹配关系中各个匹配关系对应的观测系统整体重复性;
    度量模块,用于将所述多种匹配关系中各个匹配关系对应的观测系统整体重复性中的最小值作为所述监测观测系统和所述基线观测系统之间的重复性整体量度。
  7. 如权利要求6所述的装置,其特征在于,所述计算模块具体用于按照以下公式计算预定的多道观测系统重复性:
    Figure PCTCN2016110294-appb-100002
    其中,r表示观测系统整体重复性,m表示当前匹配关系中匹配的基线炮检对个数,xi表示当前匹配关系中第i个基线炮检对的炮检距,i=1,2,…,m,k(xi)表示当前匹配关系中第i个基线炮检对的加权系数,ri表示当前匹配关系中第i个基线炮检对与对应的监测炮检对的重复性。
  8. 如权利要求6所述的装置,其特征在于,所述匹配模块包括:
    数目统计单元,用于统计所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目;
    关系匹配单元,用于根据所述基线观测系统的炮检对数目以及所述监测观测系统的炮检对数目的统计结果进行匹配,得到多种匹配关系。
  9. 如权利要求8所述的装置,其特征在于,所述关系匹配单元包括:
    剔除子单元,用于当所述监测观测系统的炮检对数目大于所述基线观测系统的炮检对数目,进行匹配后剔除剩余的监测观测系统的炮检对;
    分配子单元,用于当所述监测观测系统的炮检对数目小于所述基线观测系统的炮检对数目,为进行匹配后剩余的一个或多个基线观测系统的炮检对,分配预定值作为所述 一个或多个基线观测系统的炮检对与对应的监测观测系统的炮检对的重复性。
  10. 如权利要求6至9中任一项所述的装置,其特征在于,所述选择模块包括:
    第一选择单元,用于根据中心点所在面元以及炮检距范围,选定基线观测系统和监测观测系统;
    或者,第二选择单元,用于根据反射点所在面元以及炮检距范围,选定基线观测系统和监测观测系统。
PCT/CN2016/110294 2015-12-25 2016-12-16 一种确定地震观测系统重复性整体量度的方法和装置 WO2017107862A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16877673.0A EP3396420B1 (en) 2015-12-25 2016-12-16 Method and device for determining overall measurement of seismic observation system repeatability
US15/954,065 US10809401B2 (en) 2015-12-25 2018-04-16 Method and device for determining overall measurement of seismic observation system repeatability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015109936651 2015-12-25
CN201510993665.1A CN105549083B (zh) 2015-12-25 2015-12-25 一种确定地震观测系统重复性整体量度的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/954,065 Continuation US10809401B2 (en) 2015-12-25 2018-04-16 Method and device for determining overall measurement of seismic observation system repeatability

Publications (1)

Publication Number Publication Date
WO2017107862A1 true WO2017107862A1 (zh) 2017-06-29

Family

ID=55828383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110294 WO2017107862A1 (zh) 2015-12-25 2016-12-16 一种确定地震观测系统重复性整体量度的方法和装置

Country Status (4)

Country Link
US (1) US10809401B2 (zh)
EP (1) EP3396420B1 (zh)
CN (1) CN105549083B (zh)
WO (1) WO2017107862A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568042A (zh) * 2021-07-21 2021-10-29 中海石油(中国)有限公司 一种提高时移地震数据可重复性的拖缆采集方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549083B (zh) 2015-12-25 2018-03-13 中国石油天然气集团公司 一种确定地震观测系统重复性整体量度的方法和装置
CN108614296B (zh) * 2018-06-06 2019-12-31 中国石油集团东方地球物理勘探有限责任公司 观测系统重复性确定方法及装置
CN112198550B (zh) * 2019-07-08 2023-09-26 中国石油天然气集团有限公司 一种时移地震数据可重复性度量方法及装置
CN113568040B (zh) * 2021-07-20 2024-01-26 中海石油(中国)有限公司 一种时移地震采集数据的可重复性分析方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901333B2 (en) * 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
CN103534614A (zh) * 2011-03-23 2014-01-22 离子地球物理学公司 用于分析时移地球物理调查中的数据的方法和设备
CN104024890A (zh) * 2011-12-28 2014-09-03 国际壳牌研究有限公司 通过加权叠加同时采集的波场来压制4d噪音
CN105549083A (zh) * 2015-12-25 2016-05-04 中国石油天然气集团公司 一种确定地震观测系统重复性整体量度的方法和装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704444A (en) * 1970-06-01 1972-11-28 Western Geophysical Co Seismic data processing method and system
US7773455B2 (en) * 2006-12-13 2010-08-10 Westerngeco L.L.C. Time-lapse seismic acquisition
US8103453B2 (en) * 2008-05-21 2012-01-24 Bp Corporation North America Inc. Method of seismic data interpolation by projection on convex sets
US8339898B2 (en) * 2008-05-25 2012-12-25 Westerngeco L.L.C. Processing seismic data using combined regularization and 4D binning
CN101598808B (zh) * 2008-06-04 2011-05-25 中国石油天然气集团公司 一种提高地震资料成像质量的方法
US9703809B2 (en) * 2011-03-23 2017-07-11 Ion Geophysical Corporation Method and apparatus for analyzing data in subsequent geophysical surveys
US9651693B2 (en) * 2012-12-17 2017-05-16 Cgg Services Sas Target-oriented 4D binning in common reflection point
US9684085B2 (en) * 2013-01-15 2017-06-20 Cgg Services Sas Wavefield modelling and 4D-binning for seismic surveys from different acquisition datums
EP2784553A3 (en) * 2013-03-26 2015-10-21 CGG Services SA Predicting sensitivity to positioning for seismic surveys
EP3014304A2 (en) * 2013-06-28 2016-05-04 CGG Services SA System and method for estimating repeatability using base data
CN104597493B (zh) * 2013-10-30 2017-04-05 中国石油天然气集团公司 基于实际地震数据的观测系统变观设计评价方法及装置
US9952341B2 (en) * 2014-12-09 2018-04-24 Chevron U.S.A. Inc. Systems and methods for aligning a monitor seismic survey with a baseline seismic survey
US10416327B2 (en) * 2015-06-04 2019-09-17 Exxonmobil Upstream Research Company Method for generating multiple free seismic images

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6901333B2 (en) * 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
CN103534614A (zh) * 2011-03-23 2014-01-22 离子地球物理学公司 用于分析时移地球物理调查中的数据的方法和设备
CN104024890A (zh) * 2011-12-28 2014-09-03 国际壳牌研究有限公司 通过加权叠加同时采集的波场来压制4d噪音
CN105549083A (zh) * 2015-12-25 2016-05-04 中国石油天然气集团公司 一种确定地震观测系统重复性整体量度的方法和装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DONG, SHUFENG ET AL.: "Matched multi-trace geometry repeatability for time lapse seismic", CHINESE JOURNAL OF GEOPHYSICS, vol. 59, no. 8, 31 August 2016 (2016-08-31), XP055483824, ISSN: 0001-5733 *
GUO, NIANMIN ET AL.: "Repeatability Measurement and Consistency Analysis Method of Time-Lapse Seismic Data", COMPUTING TECHNIQUES FOR GEOPHYSICAL AND GEOCHEMICAL EXPLORATION, vol. 34, no. 2, 31 March 2012 (2012-03-31), pages 186 - 192, XP009511862, ISSN: 1001-1749 *
See also references of EP3396420A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568042A (zh) * 2021-07-21 2021-10-29 中海石油(中国)有限公司 一种提高时移地震数据可重复性的拖缆采集方法和系统
CN113568042B (zh) * 2021-07-21 2024-01-26 中海石油(中国)有限公司 一种提高时移地震数据可重复性的拖缆采集方法和系统

Also Published As

Publication number Publication date
EP3396420A4 (en) 2019-10-02
CN105549083B (zh) 2018-03-13
EP3396420B1 (en) 2022-10-12
US20180231679A1 (en) 2018-08-16
CN105549083A (zh) 2016-05-04
EP3396420A1 (en) 2018-10-31
US10809401B2 (en) 2020-10-20

Similar Documents

Publication Publication Date Title
WO2017107862A1 (zh) 一种确定地震观测系统重复性整体量度的方法和装置
Verdon et al. Microseismic monitoring using a fiber-optic distributed acoustic sensor array
Coil Large scale structure of the universe
CN103954940B (zh) 雷达网基于交叉定位点聚类的集中式与分布式压制干扰鉴别方法
CN109991658B (zh) 一种基于“震源-台站”速度模型的微地震事件定位方法
US20230324574A1 (en) Stereoscopic identification method and apparatus for disturbance stress evolution process of underground cave surrounding rock
CN103926569B (zh) 三坐标雷达网基于交叉定位点关联的集中式与分布式压制干扰鉴别方法
Ojo et al. Estimations of sensor misorientation for broadband seismic stations in and around Africa
CN109884698B (zh) 基于目的层的地震勘探观测系统定量评价方法
Schaff et al. Lg‐wave cross correlation and epicentral double‐difference location in and near China
CN103776444B (zh) 天空模式图对仿生偏振导航精度影响的云计算控制方法
RU2591239C1 (ru) Системы и способы для оценивания возможности коллекторной системы
CN110646846B (zh) Vti介质各向异性参数确定方法、装置和设备
CN111965729B (zh) 可控震源组合中心实时监控方法、系统及装置
CN105204070B (zh) 一种炮偏检测方法及装置
CN104865601B (zh) 确定地震勘探中采集的地震记录的类型的方法
CN110231665B (zh) 基于重复线的捷联式航空重力测量精度评估方法
CN110824559B (zh) 共坐标点道集的生成方法及装置、计算机可读存储介质
RU2509890C1 (ru) Способ контроля и определения координат опасного состояния массива горных пород при подземных горных работах
Shebalin Large-scale short-term seismicity activation prior to the strongest earthquakes of Japan and the Kurile Islands
Zhu et al. A Multistep Method for Automatic Determination and Optimization of Microseismic P‐Phase Arrival Times in a Coal Mine
Khoshnavaz et al. Surface passive seismic monitoring by the local use of semblance
BR102014007152A2 (pt) sistemas e métodos sísmicos que empregam indicadores de disparo de repetitividade
CN111142160B (zh) 时间推移地震观测数据的分析方法及装置
RU2618485C2 (ru) Комплекс микросейсмического контроля разработки континентальных и шельфовых месторождений углеводородов на основе площадных систем наблюдения и суперкомпьютерных методов обработки информации

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE