WO2017107407A1 - 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法 - Google Patents

一种燃料电池汽车的多箱体甲醇水存储系统及使用方法 Download PDF

Info

Publication number
WO2017107407A1
WO2017107407A1 PCT/CN2016/085834 CN2016085834W WO2017107407A1 WO 2017107407 A1 WO2017107407 A1 WO 2017107407A1 CN 2016085834 W CN2016085834 W CN 2016085834W WO 2017107407 A1 WO2017107407 A1 WO 2017107407A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosion
methanol water
proof
water storage
alcohol
Prior art date
Application number
PCT/CN2016/085834
Other languages
English (en)
French (fr)
Inventor
向华
Original Assignee
广东合即得能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东合即得能源科技有限公司 filed Critical 广东合即得能源科技有限公司
Priority to CA2958446A priority Critical patent/CA2958446C/en
Priority to US15/444,337 priority patent/US10461344B2/en
Publication of WO2017107407A1 publication Critical patent/WO2017107407A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/70Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by fuel cells
    • B60L50/72Constructional details of fuel cells specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to the field of electric vehicle technology, and in particular, to a multi-chamber methanol water storage system for a fuel cell vehicle and a method of using the same.
  • Hydrogen is one of the most ideal energy sources in the 21st century. When burning the same weight of coal, gasoline and hydrogen, hydrogen produces the most energy, and its combustion products are water, no ash and exhaust gas. It does not pollute the environment; while coal and oil combustion mainly produces co ⁇ nso 2 , which can produce greenhouse effect and acid rain, respectively. The reserves of coal and oil are limited, and hydrogen is mainly stored in water. The only product after combustion is water, which can continuously produce hydrogen and never run out. Hydrogen is widely distributed, and water is the large "warehouse" of hydrogen, which contains 11% hydrogen. About 1.5% of the hydrogen in the soil; hydrogen, coal, natural gas, animals and plants, etc. contain hydrogen.
  • the main body of hydrogen exists in the form of compound water, and about 70% of the earth's surface is covered by water, and the amount of water stored is large. Therefore, hydrogen can be said to be an "inexhaustible and inexhaustible" source of energy. If hydrogen can be produced from a suitable method, then hydrogen will also be a relatively inexpensive energy source.
  • An electric vehicle is a vehicle that is driven by a vehicle power source and drives a wheel with a motor.
  • Electric vehicles include pure electric vehicles, hybrid vehicles and fuel cell vehicles.
  • a fuel cell vehicle refers to an electric vehicle equipped with a fuel cell as a power source for obtaining a driving force.
  • Fuel cells require hydrogen as an electrochemical reaction material during power generation.
  • the hydrogen used in the fuel cell is derived from a hydrogen carrying device or a hydrogen producing device.
  • a fuel cell vehicle in the prior art uses a solar photovoltaic power generation system to generate electricity, then supplies electric energy to a hydrogen production system to produce hydrogen, then stores the prepared hydrogen, and then supplies the hydrogen to the fuel cell to generate electricity. Finally, the automobile motor is driven.
  • the hydrogen production system is usually an electrolysis water hydrogen production system.
  • the patents involved in this aspect include: 1. Chinese patent document: CN201310556749.X—Inventive fuel cell hybrid electric vehicle energy management system; 2. Chinese patent document: CN201010126519.6- Clean and sustainable fuel cell vehicle hydrogen production method; 3. Chinese patent document: CN201310556 851.X—a kind of fuel cell and solar co-powered electric vehicle; 4. Chinese patent document: CN2013105831 06.4—a solar-based automobile Hydrogen fuel preparation system; 5.CN201410238360.5 - an integrated hydrogen energy storage and recycling equipment.
  • the storage of fuel one is hydrogen storage
  • the other is that the storage of fuel is the same as that of the existing automobile fuel tank, and its storage device is a major factor related to automobile safety.
  • the performance of the methanol water storage device determines the performance of the fuel cell vehicle.
  • the storage device has the following disadvantages: First, a few fuel cell vehicles are designed with an explosion-proof and explosion-proof methanol water storage device; second, methanol used in existing fuel cell vehicles
  • the water storage device is relatively simple in design, poor in explosion-proof performance or directly references the fuel tank structure of the motor vehicle. In the case of a strong collision, gun, fire, etc. of a fuel cell vehicle, it is highly prone to an explosion accident, causing personal injury to the fuel cell vehicle user.
  • the technical problem to be solved by the present invention is to provide a multi-chamber methanol water storage system for a fuel cell vehicle, which is not only effective for ensuring the use of the above-mentioned prior art.
  • the present invention also provides a method of using the methanol water storage system.
  • a multi-chamber methanol water storage system for a fuel cell vehicle comprising a main accommodating box, and a plurality of explosion-proof methanol water is fixed in the main accommodating box
  • the storage tank body, each of the explosion-proof methanol water storage tanks is connected by a conveying passage provided with a conveying pump; wherein each of the explosion-proof methanol water storage tanks is provided with an alcohol injection port, an alcohol outlet port and a vent valve;
  • the alcohol injection port and the explosion-proof methanol water storage tank are of a unitary structure, and all the alcohol injection ports are connected to the alcohol injection port assembly provided on the main container through the liquid pipe;
  • the ventilation valve Provided on the alcohol injection port, and connected to the space of the main accommodating box through a pneumatic pipe and/or a total vent hole provided on the main accommodating box; the alcohol outlet is provided in the
  • the explosion-proof methanol water stores the bottom of the tank, and is connected to the
  • the explosion-proof methanol water storage box comprises a casing outer casing, a plurality of layers of explosion-proof layers and a casing inner body, and the plurality of explosion-proof layers are located in the casing outer casing and the casing a sandwich formed between the gallbladder, and the casing outer casing encloses the plurality of explosion-proof layers and the inner casing, wherein the inner casing communicates with the alcohol injection port; the plurality of explosion-proof layers
  • the rib layer, the high-strength rubber layer, the explosion-proof agent filling layer, the explosion-proof material filling layer and the protective net layer are arranged in sequence, and the rib layer is used for connecting the tank body and the casing shell;
  • the tank body is a methanol water storage space, and the inner side is coated with an anti-methanol corrosion layer.
  • the protective mesh layer is a strip-shaped barrier explosion-proof aluminum foil mesh or a spherical barrier explosion-proof aluminum foil mesh or a roll-shaped barrier explosion-proof aluminum foil mesh, and the thickness of the barrier explosion-proof aluminum foil mesh is 0.015-0.025 mm.
  • the inner tank of the tank is a stainless steel tank body, and an anti-methanol corrosive agent is coated on the inner surface thereof.
  • the protective mesh layer is a protective net made of at least one flame retardant nylon.
  • the explosion-proof material filling layer is filled with an aluminum alloy explosion-proof material and/or a porous metal foam material.
  • the explosion-proof agent filling layer and the explosion-proof material filling layer are also a vacuum filling layer, and the explosion-proof agent filling layer and the explosion-proof material filling layer are respectively filled with an explosion-proof agent and an explosion-proof material, and then pumped through Vacuum, a vacuum explosion-proof buffer layer is formed.
  • the upper end of the alcohol injection port assembly is further provided with a sealing cover, and the sealing cover is further provided with a pressure reducing valve.
  • the main accommodating box is a steel plate main accommodating box
  • the explosion-proof methanol water storage box body passes through Over-welding and consolidation of the main container, and a gap between the main container and the explosion-proof methanol water storage tank and each of the explosion-proof methanol water storage tanks is filled with an anti-explosive agent .
  • the multi-pass valve is further provided with a flow meter, and the multi-pass valve activates a matching number of valves according to the methanol water flow measured by the flow meter; the output end of the multi-pass valve further A transfer pump is provided, and the integrated output methanol water is delivered to the hydrogen production equipment of the fuel cell vehicle.
  • Step A the methanol water storage system supplies alcohol to the fuel cell vehicle, and selects the plurality of explosion-proof methanol
  • One of the water storage tanks is mainly used for the alcohol tank body, and the matching valve is opened by the multi-pass valve, so that the methanol water in the main tank of the alcohol supply tank is sent along the pipeline to the hydrogen plant of the fuel cell vehicle through the pipeline;
  • the transfer pump located on the conveying path between the explosion-proof methanol water storage tanks transports the methanol water to the main alcohol supply tank, and the main alcohol tank continues to transport the methanol water; Converting the corresponding valve of the multi-pass valve to convert the other explosion-proof methanol water storage tank storing methanol water into the main alcohol supply tank, and supplying the hydrogen supply equipment to the fuel cell vehicle by the main alcohol tank after
  • each explosion-proof methanol water storage tank is automatically smashed under the action of negative pressure, so that the pressure of the entire methanol water storage system is always maintained within a certain range, thereby ensuring smooth supply of alcohol;
  • Step B injecting alcohol oxime into the methanol water storage system, and smashing the alcohol injection port assembly, providing the following two ways of injecting alcohol
  • the methanol water is injected through the liquid injection channel of the alcohol injection port matched with any explosion-proof methanol water storage tank, the methanol water in the explosion-proof methanol water storage tank is full, and the other connected with the snoring a transfer pump between the explosion-proof methanol water storage tanks, and transporting the methanol water in the explosion-proof methanol water storage tank to other explosion-proof methanol water storage tanks;
  • the alcohol injection port assembly directly injects methanol water into the explosion-proof methanol water storage tank through the liquid path channel;
  • a positive pressure is formed in the explosion-proof methanol water storage tank in which each of the methanol water is injected.
  • the air in the explosion-proof methanol water storage tank filled with methanol water is discharged into the atmosphere or the explosion-proof methanol water storage tank which is injected with methanol water through the corresponding liquid injection channel or the conveying channel.
  • the liquid injection channel of the explosion-proof methanol water storage tank filled with methanol water is discharged to ensure that the air inside each explosion-proof methanol water storage tank can be smoothly discharged, so that each explosion-proof methanol water storage tank can be Fill the methanol water smoothly, and close the sealing cap on the main container after adding the alcohol.
  • the beneficial effects of the present invention are as follows: First, through the methanol water storage system of the present invention, filling the vacancy of the non-explosion-proof and anti-explosion storage system of the fuel cell vehicle using methanol water as a raw material, Fuel cell vehicle safety performance, Secondly, by setting a composite layer explosion-proof layer, the tank for storing or storing methanol water has explosion-proof performance, and there are dangerous situations such as vehicle collision, rollover accident or military encounter with bullets and bomb attacks. No explosion occurs to ensure the safety of personnel and property on the vehicle. Third, the storage system of the present invention has a large amount of alcohol storage, and can effectively ensure the convenience and reliability of using alcohol and alcohol.
  • FIG. 1 is a schematic view of a first embodiment of a methanol water storage system of the present invention
  • FIG. 2 is a schematic view showing a second embodiment of the methanol water storage system of the present invention.
  • FIG. 3 is a schematic structural view of an explosion-proof methanol water storage box of the present invention.
  • FIG. 4 is a schematic side view and a schematic view of an explosion-proof layer of the methanol water storage device of the present invention.
  • Embodiment 1 with reference to FIG. 1, FIG. 3-4, a multi-chamber methanol water storage system for a fuel cell vehicle
  • the main accommodating box 2 is provided with four explosion-proof methanol water storage tanks 1 , and the four explosion-proof methanol water storage tanks 1 are connected by a conveying passage 6 provided with a conveying pump 5 .
  • Each of the explosion-proof methanol water storage tanks 1 is provided with an alcohol injection port 14, an alcohol outlet 15 and a venting valve 16, and the alcohol injection port 14 is integrated with the explosion-proof methanol water storage tank 1.
  • the ventilation valve 16 is disposed on the alcohol injection port 14, and Communicating into the space of the main accommodating box 2 through the airway duct 41 and/or the total venting hole 4 provided on the main accommodating box 2 (note that the alcohol filling port 14 assembly 3 and The total venting hole 4 is disposed at the upper end of the main accommodating box 2, the drawing does not indicate the arrangement thereof and the trajectory stroke of the liquid path pipe 31 and the air path pipe 41; the alcohol outlet port 15 is provided in the explosion-proof methanol water storage box.
  • the pipeline 7 is provided with a multi-pass valve 8, the multi-valve is connected to each of the alcohol outlets 15 and integrated to output methanol water.
  • the multi-way valve 8 is further provided with a flow meter (not shown), and the multi-way valve 8 opens a matching number of valves according to the methanol water flow measured by the flow meter; the output end of the multi-way valve 8 is further A transfer pump 5 is provided, by which the integrated output methanol water is delivered to the hydrogen production equipment of the fuel cell vehicle.
  • the upper end of the alcohol injection port 14 assembly 3 is further provided with a sealing cover 9, and the sealing cover 9 is further provided with a pressure reducing valve.
  • the main accommodating box 2 is a steel plate main accommodating box 2
  • the explosion-proof methanol water storage box body 1 is consolidated with the main accommodating box 2 by welding, and the main accommodating box 2 and the An explosion-proof agent is also filled in the gap between the explosion-proof methanol water storage tanks 1 and each of the explosion-proof methanol water storage tanks 1.
  • the explosion-proof methanol water storage tank 1 includes a casing casing 11, a plurality of layers of explosion-proof layers 12, and a casing inner casing 13 in which the plurality of explosion-proof layers 12 are located. And a sandwich formed between the inner casing of the casing, and the casing 11 covers the plurality of explosion-proof layers 12 and the inner casing 13, the casing 13 and the chamber
  • the plurality of explosion-proof layers 12 are connected;
  • the plurality of explosion-proof layers 12 include a rib layer 121, a high-strength rubber layer 122, an explosion-proof agent filling layer 123, an explosion-proof material filling layer 124, and a protective mesh layer 125, which are sequentially disposed, and
  • the rib layer 121 is used for connecting the tank body 13 and the tank casing 11;
  • the tank body 13 is a methanol water storage space, and the inner side is coated with a methanol corrosion resistant layer (not shown)
  • the tank body 13 is a stainless steel tank body
  • the service life of the tank 133 of the explosion-proof methanol water storage tank 1 can be prolonged, thereby prolonging the service life of the storage system and the fuel cell vehicle, and ensuring that the reserve methanol water is cleaned. Therefore, the fuel cell automobile hydrogen production equipment can efficiently produce hydrogen.
  • the plurality of layers of the explosion-proof layer 122 The setting order is designed to be changed according to requirements, that is, in practice, the rib layer 12121, the high-strength rubber layer 12222, the explosion-proof agent filling layer 12323, the explosion-proof material filling layer 12424, and the protective mesh layer 12525 are not limited.
  • the explosion-proof layer 122 is provided in the order.
  • the protective mesh layer 125 is a strip-shaped barrier explosion-proof aluminum foil mesh or a spherical barrier explosion-proof aluminum foil mesh or a roll-shaped barrier explosion-proof aluminum foil mesh, and the barrier explosion-proof aluminum foil mesh has a thickness of 0.015-0.025 mm.
  • the protective mesh layer 125 may also select at least one protective net made of flame retardant nylon.
  • the explosion-proof material filling layer 124 is filled with an aluminum alloy explosion-proof material and/or a porous metal foam material.
  • the explosion-proof agent filling layer 123 and the explosion-proof material filling layer 124 are also a vacuum filling layer, and the explosion-proof agent filling layer 123 and the explosion-proof material filling layer 124 are respectively filled with an explosion-proofing agent and an explosion-proof material, and then evacuated. , forming a vacuum explosion-proof buffer layer.
  • a multi-chamber methanol water storage system of a fuel cell vehicle includes a main accommodating box 2, and the main accommodating box 2 is welded and the main capacity
  • the box 2 fixes two explosion-proof methanol water storage tanks 1 arranged in parallel, and the two explosion-proof methanol water storage tanks 1 are connected by a conveying passage 6 provided with a transfer pump 5; wherein each of the explosion-proof methanol water storage
  • the tank body 1 is provided with an alcohol injection port 14, an alcohol outlet port 15 and a venting valve 16, wherein the alcohol injection port 14 and the explosion-proof methanol water storage tank 1 are of an integral structure, and all the alcohol injection ports 14 pass through the liquid path pipe.
  • the vent valve 16 is disposed on the alcohol injection port 14 and communicates to the main accommodating through the airway pipe 41
  • the space of the tank 2 and/or the total venting hole 4 provided on the main accommodating box 2 (it is to be noted that the alcohol filling port 14 assembly 3 and the total venting hole 4 are disposed at the upper end of the main accommodating box 2).
  • the drawing does not indicate the arrangement thereof and the path travel of the liquid path pipe 31 and the air path pipe 41; the alcohol outlet 15 is provided in the above-mentioned prevention
  • the methanol water storage tank 1 is bottomed, and the hydrogen production equipment of the fuel cell vehicle is connected through a pipeline 7, and the pipeline 7 is provided with a multi-pass valve 8, and the multi-valve is connected to each of the alcohol outlets 15 to integrally output methanol water.
  • the multi-way valve 8 is further provided with a flow meter (not shown), and the multi-way valve 8 opens a matching number of valves according to the methanol water flow measured by the flow meter; the output end of the multi-way valve 8 is further A transfer pump 5 is provided, by which the integrated output methanol water is delivered to the hydrogen production equipment of the fuel cell vehicle.
  • the upper end of the alcohol injection port 14 assembly 3 is further provided with a sealing cover 9, and the sealing cover 9 is further provided with a pressure reducing valve.
  • the main accommodating box 2 is a steel plate main accommodating box 2, between the main accommodating box 2 and the explosion-proof methanol water storage tank 1, between the explosion-proof methanol water storage tanks 1
  • the gap is also filled with an explosion-proof agent.
  • the two explosion-proof methanol water storage tanks 1 each include a casing casing 11, a plurality of layers of explosion-proof layers 12, and a casing inner casing 13, and the plurality of explosion-proof layers 12 are located at The casing 11 and the casing
  • the casing 13 is formed on the interlayer between the inner casings 13, and the casing 11 covers the plurality of explosion-proof layers 12 and the inner casing 13, and the casing 13 is connected to the alcohol injection port 14.
  • the plurality of layers of the explosion-proof layer 12 include a rib layer 121, a high-strength rubber layer 122, an explosion-proof agent filling layer 123, a blast-proof material filling layer 124, and a protective mesh layer 125, which are sequentially disposed, and the rib layer 121 is used for Connecting the inner casing 13 and the casing 11; the casing 13 is a methanol water storage space, and the inner side is coated with a methanol corrosion resistant layer (not shown), the casing
  • the bladder 13 is a stainless steel tank body 13 and is coated with an anti-methanol corrosive agent on its inner surface.
  • the service life of the tank 133 of the explosion-proof methanol water storage tank 1 can be prolonged, thereby prolonging the service life of the storage system and the fuel cell vehicle, and ensuring that the reserve methanol water is cleaned. Therefore, the fuel cell automobile hydrogen production equipment can efficiently produce hydrogen.
  • the order of setting the plurality of layers of the explosion-proof layer 122 can be modified according to requirements, that is, in practice, the rib layer 12121, the high-strength rubber layer 12222, and the explosion-proof filling layer are not limited.
  • the explosion-proof layer 122 is disposed in the order of 12323, the explosion-proof material filling layer 12 424 and the protective mesh layer 12525.
  • the protective mesh layer 125 is a strip-shaped barrier explosion-proof aluminum foil mesh or a spherical barrier explosion-proof aluminum foil mesh or a roll-shaped barrier explosion-proof aluminum foil mesh, and the barrier explosion-proof aluminum foil mesh has a thickness of 0.015-0.025 mm.
  • the protective mesh layer 125 may also select at least one protective net made of flame retardant nylon.
  • the explosion-proof material filling layer 124 is filled with an aluminum alloy explosion-proof material and/or a porous metal foam material.
  • the explosion-proof agent filling layer 123 and the explosion-proof material filling layer 124 are also a vacuum filling layer, and the explosion-proof agent filling layer 123 and the explosion-proof material filling layer 124 are respectively filled with an explosion-proofing agent and an explosion-proof material, and then evacuated. , forming a vacuum explosion-proof buffer layer. . It should be noted that, in practice, the number of the explosion-proof methanol water storage tanks 1 can be determined according to the requirements and the shape and size of the main container 2 .
  • Step A when the methanol water storage system supplies alcohol to the fuel cell automobile, one of the plurality of explosion-proof methanol water storage tanks 1 is selected as the main alcohol supply tank, and is matched by the multi-pass valve 8
  • the valve causes the methanol water in the main supply tank to be sent to the hydrogen production equipment of the fuel cell vehicle through the transfer pump 5 along the pipeline 7; when the amount of methanol water in the main supply tank is reduced or exhausted, the ⁇ is located in each explosion-proof methanol water storage
  • the transfer pump 5 on the conveying path 6 between the tanks 1 delivers methanol water to the main alcohol supply tank, and the main alcohol tank continues to transport the methanol water; or the corresponding valve of the closed multi-pass valve 8 is stored to store the methanol water.
  • the other explosion-proof methanol water storage tank 1 is converted into a main alcohol supply tank, and the main hydrogen supply tank is supplied with alcohol to the hydrogen production equipment of the fuel cell vehicle;
  • the methanol water in the explosion-proof methanol water storage tank 1 is exhausted; during the consumption or depletion of methanol water, a negative pressure is formed in the main alcohol tank, and under the action of the vacuum suction, other explosion-proof methanol water storage tanks
  • the air in 1 enters the main explosion-proof methanol water storage tank 1 through the communicating vent valve 16 to ensure that the pressure of each explosion-proof methanol water storage tank 1 is the same, and the total negative pressure of the entire methanol water storage system reaches a prescribed value.
  • each explosion-proof methanol water storage tank 1 is automatically smashed under the action of the negative pressure, so that the pressure of the entire methanol water storage system is always maintained within a certain range, thereby ensuring smooth supply of alcohol;
  • Step B injecting alcohol oxime into the methanol water storage system, and smashing the alcohol injection port 14 assembly 3, providing the following two ways:
  • the methanol water is injected through the liquid channel of the alcohol injection port 14 matched with any explosion-proof methanol water storage tank 1, and the methanol water in the explosion-proof methanol water storage tank 1 is filled with sputum, snoring and a transfer pump 5 between the other explosion-proof methanol water storage tanks 1 connected to each other, and transporting the methanol water in the explosion-proof methanol water storage tank 1 to the other explosion-proof methanol water storage tank 1;
  • Corresponding alcohol injection port 14 liquid passage or conveying passage 6 corresponds to the explosion-proof methanol water storage tank 1 which is discharged into the atmosphere or is being injected with methanol water, and finally the injection of the explosion-proof methanol water storage tank 1 into which the methanol water is injected
  • the liquid passage of the alcohol port 14 is discharged to ensure that the air inside each explosion-proof methanol water storage tank 1 can be smoothly discharged, so that each explosion-proof methanol water storage tank 1 can be filled with methanol water smoothly, and the lid is tight after the alcohol is added.
  • the methanol water storage system of the invention fills a gap of a non-explosion-proof and anti-explosion storage system of a fuel cell vehicle using methanol water as a raw material, and improves safety performance of the fuel cell vehicle; and reserves or stores methanol by setting a composite layer explosion-proof layer
  • the water tank has explosion-proof performance, and does not explode in the event of a vehicle collision, rollover accident or military encounter with bullets and bomb attacks, ensuring the safety of personnel and property on the vehicle; It is large in quantity and can effectively ensure the convenience and reliability of alcohol and alcohol.
  • the invention relates to a multi-chamber methanol water storage system for a fuel cell automobile and a using method thereof.
  • the multi-box methanol water storage system can not only effectively ensure the convenience and reliability of using alcohol and alcohol, and occurs in a vehicle collision. In the event of a rollover accident or military encounter with bullets and bomb attacks, there will be no explosions to ensure the safety of personnel and property on the vehicle. Therefore, it has industrial applicability.

Abstract

一种燃料电池汽车的多箱体甲醇水存储系统及使用方法,包括主容置箱(2),主容置箱内(2)固设若干防爆甲醇水存储箱体(1),各防爆甲醇水存储箱体(1)通过安设有输送泵(5)的输送道(6)相连通;每一防爆甲醇水存储箱体(1)上设注醇口(14)、出醇口(15)以及通气阀(16),所有注醇口(14)通过液程管道(31)连接到设于主容置箱(2)上的注醇口总成(3);通气阀(16)设于注醇口(14)上,并通过气程管道(41)连通到主容置箱(2)的空间内和/或设于主容置箱(2)上的总通气孔(4);出醇口(15)设于防爆甲醇水存储箱体(1)底部,并通过管道(7)连接燃料电池汽车的制氢设备。上述甲醇水存储系统防爆防燃,在发生车辆相撞、翻车事故或军事上遇到子弹和炸弹袭击等危险状况时不发生爆炸,保证车辆上人员和财产安全。

Description

一种燃料电池汽车的多箱体甲醇水存储系统及使用方法 技术领域
[0001] 本发明涉及电动汽车技术领域,特别涉及一种燃料电池汽车的多箱体甲醇水存储 系统及使用方法。
背景技术
[0002] 氢, 是一种 21世纪最理想的能源之一, 在燃烧相同重量的煤、 汽油和氢气的情 况下,氢气产生的能量最多,而且它燃烧的产物是水, 没有灰澄和废气,不会污染环 境;而煤和石油燃烧生成的主要是 co ^nso 2,可分别产生温室效应和酸雨。 煤和 石油的储量是有限的,而氢主要存于水中,燃烧后唯一的产物也是水,可源源不断地 产生氢气, 永远不会用完。 氢的分布很广泛,水就是氢的大 "仓库 ",其中含有 11% 的氢。 泥土里约有 1.5%的氢;石油、 煤炭、 天然气、 动植物体内等都含有氢。 氢 的主体是以化合物水的形式存在的,而地球表面约 70%为水所覆盖,储水量很大,因 此可以说,氢是"取之不尽、 用之不竭"的能源。 如果能用合适的方法从制取氢,那 么氢也将是一种价格相当便宜的能源。
[0003] 目前,绝大部分汽车都以汽油、 柴油为燃料,不仅消耗了大量的石油资源,而且汽 车尾气造成了严重的大气污染。 为应对此资源问题和环境问题,电动汽车的幵发 变得非常重要。 电动汽车是指以车载电源为动力,用电机驱动车轮行驶的车辆。 电动汽车包括纯电动汽车、 混合动力汽车和燃料电池汽车。 在现有技术中,燃料 电池汽车是指装备了燃料电池作为获得驱动力的电源的电动汽车。 燃料电池在 发电过程中,需要氢作为电化学反应材料。 在现有技术中,燃料电池所使用的氢来 源于氢气承载设备或者制氢设备。
[0004] 现有技术中的燃料电池汽车或是先利用太阳能光伏发电系统发电,然后将电能供 应给制氢系统制氢,接着将制备的氢气储存起来, 再接着将氢气供应给燃料电池 发电, 最后驱动汽车马达工作, 其中, 制氢系统通常为电解水制氢系统。 其中 涉及这一方面的专利包括: 1.中国专利文献: CN201310556749.X—种发明燃料 电池混合动力电动汽车能量管理系统; 2.中国专利文献: CN201010126519.6—种 清洁可持续的燃料电池汽车用氢气的制备方法; 3.中国专利文献: CN201310556 851.X—种燃料电池与太阳能联供型电动汽车; 4.中国专利文献: CN2013105831 06.4—种基于太阳能的汽车用氢燃料制备系统; 5.CN201410238360.5—种集成式 氢能制取存储和循环利用设备。
[0005] 或是利用甲醇水重整制氢技术制氢,甲醇水制氢设备制备氢气后,供应给燃料电 池发电,以驱动汽车马达工作,通过即吋制氢的方式为燃料电池提供氢源。 其中涉 及的专利文献包括
[0006] 中国发明专利申请 CN201410845114.6 (申请日: 2014-12-31, 申请人为本创作 者: 广东合即得能源科技有限公司) 公幵了一种燃料电池汽车,其包括甲醇水制 氢设备、 燃料电池及汽车马达。 甲醇是较为廉价的能源, 同吋也是制备氢气的 主要原料。 因此,采用甲醇水制氢技术的燃料电池汽车是现行以及未来电动汽车 发展之强势
[0007] 然而, 对于上述燃料电池汽车而言, 其燃料的存储, 一是氢的存储, 二是燃料 的存储匹同现有汽车油箱一样, 其存储装置是涉及汽车安全的主要因素。 尤其 是采用甲醇水重整制氢技术的燃料电池汽车, 其甲醇水的存储装置的性能决定 了燃料电池汽车的性能。 现有技术中, 对于燃料电池汽车而言, 其存储装置还 存在以下不足: 一是, 少有燃料电池汽车设计了防爆防炸的甲醇水存储装置; 二是, 现有燃料电池汽车使用的甲醇水存储装置设计较为简单、 防爆性能差或 是直接引用机动车之油箱结构。 在燃料电池汽车发生强烈冲撞、 枪机、 火烧等 情况下, 极易发生爆炸事故, 造成燃料电池汽车使用者人身损伤。
技术问题
[0008] 本发明的解决的技术问题是针对上述现有技术中的存在的缺陷,提供一种用于燃 料电池汽车的多箱体甲醇水存储系统,该甲醇水存储系统不仅能有效的保证用醇 和加醇的方便性及可靠性, 并且在发生车辆相撞、 翻车事故或军事上遇到子弹 和炸弹袭击等危险状况吋不发生爆炸, 保证车辆上人员和财产安全。 与之同吋 , 本发明还提供一种使用该甲醇水存储系统的方法。
问题的解决方案
技术解决方案 [0009] 为解决上述技术问题,本发明采取的技术方案如下:一种燃料电池汽车的多箱体 甲醇水存储系统,包括主容置箱,所述主容置箱内固设若干防爆甲醇水存储箱体,各 所述防爆甲醇水存储箱体通过安设有输送泵的输送道相连通;其中, 每一所述防 爆甲醇水存储箱体上设注醇口、 出醇口以及通气阀,所述注醇口与所述防爆甲醇 水存储箱体为一体式结构,且所有注醇口通过液程管道连接到设于所述主容置箱 上的注醇口总成;所述通气阀设于所述注醇口上,并通过气程管道连通到所述主容 置箱的空间内和 /或设于所述主容置箱上的总通气孔;所述出醇口设于所述防爆甲 醇水存储箱体底部, 并通过管道连接燃料电池汽车的制氢设备, 所述管道上设 多通阀门, 该多阀门连接各所述出醇口集成输出甲醇水。
[0010] 作为对上技术方案的进一步阐述,
[0011] 在上述技术方案中,所述防爆甲醇水存储箱体包括箱体外壳、 若干层防爆层以及 箱体内胆,所述若干层防爆层位于所述箱体外壳和所述箱体内胆之间形成的夹层 上,且所述箱体外壳包覆所述若干层防爆层及所述箱体内胆,所述箱体内胆与所述 注醇口连通;所述若干层防爆层包括依次设置的筋板层、 高强度橡胶层、 防爆剂 填充层、 抑爆材料填充层以及防护网层,且所述筋板层用于连接所述箱体内胆和 所述箱体外壳;所述箱体内胆为甲醇水存储空间,且其内侧涂布抗甲醇腐蚀层。
[0012] 进一步,所述防护网层为带状阻隔防爆铝箔网或球状阻隔防爆铝箔网或是卷状阻 隔防爆铝箔网,所述阻隔防爆铝箔网的厚度为 0.015-0.025mm。
[0013] 进一步,所述箱体内胆为不锈钢箱体内胆,且在其内表涂覆抗甲醇腐蚀剂。
[0014] 进一步,所述防护网层为至少一股阻燃尼龙编制而成的防护网。
[0015] 进一步, 所述抑爆材料填充层内填充有铝合金抑爆材料和 /或多孔泡沫金属材 料。
[0016] 进一步, 所述防爆剂填充层和所述抑爆材料填充层还为真空填充层, 所述防爆 剂填充层和所述抑爆材料填充层分别填充防爆剂和抑爆材料后通过抽真空, 形 成真空防爆缓冲层。
[0017] 在上述技术方案中,所述注醇口总成上端还设有密封盖,该密封盖上还设置有减 压阀。
[0018] 在上述技术方案中,所述主容置箱为钢板主容置箱,所述防爆甲醇水存储箱体通 过焊接与所述主容置箱固结,且所述主容置箱与所述防爆甲醇水存储箱体之间、 各所述防爆甲醇水存储箱体之间的间隙内还填充有防爆剂。
[0019] 在上述技术方案中,所述多通阀门处还设有流量计, 所述多通阀门根据流量计测 量的甲醇水流量幵启匹配数目的阀门; 所述多通阀门的输出端还设输送泵,由该 输出泵将集成输出的甲醇水输送到燃料电池汽车的制氢设备。
[0020] 一种使用上述燃料电池汽车的多箱体甲醇水存储系统的方法: 包括以下步骤: [0021] 步骤 A, 甲醇水存储系统为燃料电池汽车供醇吋, 选定所述若干防爆甲醇水存 储箱体其中之一为主供醇箱体, 通过多通阀门幵启匹配的阀门,使主供醇箱体内 的甲醇水通过输送泵沿管道送到燃料电池汽车的制氢设备;当主供醇箱体内的甲 醇水量减少或耗尽吋,幵启位于各防爆甲醇水存储箱体之间输送道上的输送泵输 送甲醇水至主供醇箱体, 主供醇箱体继续输送甲醇水;或者转换幵闭多通阀门相 应的阀门, 使储存有甲醇水的其它防爆甲醇水存储箱体转换为主供醇箱体, 由 转换后主供醇箱体供醇给燃料电池汽车的制氢设备; 如此, 直至所有防爆甲醇 水存储箱体内的甲醇水耗尽; 在甲醇水消耗或耗尽过程中, 主供醇箱体内形成 负压, 在负压吸力的作用下, 其他各防爆甲醇水存储箱体中的空气通过相连通 的通气阀进入到主防爆甲醇水存储箱体中, 以保证各防爆甲醇水存储箱体压力 相同, 在整个甲醇水存储系统的总体负压达到规定值的吋候, 各个防爆甲醇水 存储箱体的通气阀在负压的作用下自动打幵, 使整个甲醇水存储系统的压力始 终保持在一定范围内, 保障供醇顺畅;
[0022] 步骤 B,为甲醇水存储系统注入醇吋, 打幵注醇口总成, 提供如下两种方式注醇
[0023] 其一, 通过与任意一防爆甲醇水存储箱体相匹配的注醇口液程通道注入甲醇水 , 该防爆甲醇水存储箱体内甲醇水储满吋, 打幵与之相连通的其他防爆甲醇水 存储箱体之间的输送泵, 将该防爆甲醇水存储箱体内的甲醇水输送到其他防爆 甲醇水存储箱体内;
[0024] 其二, 由注醇口总成通过液程通道对所有防爆甲醇水存储箱体一一进行直接注 入甲醇水;
[0025] 甲醇水注入过程中, 各注入了甲醇水的防爆甲醇水存储箱体内形成正压, 在正 压的作用下各注入了甲醇水的防爆甲醇水存储箱体中的空气通过对应的注醇口 液程通道或输送道对应排入大气或正在注入甲醇水的防爆甲醇水存储箱体中, 最后由该各注入了甲醇水的防爆甲醇水存储箱体的注醇口液程通道排出, 以保 证各个防爆甲醇水存储箱体内部的空气都能顺利排出, 使各个防爆甲醇水存储 箱体都能顺利的加满甲醇水, 加醇完毕后盖紧主容置箱上的密封盖。
发明的有益效果
有益效果
[0026] 与现有技术相比,本发明的有益效果在于:其一, 通过本发明的甲醇水存储系统 , 填补采用甲醇水作原料的燃料电池汽车无防爆防炸的存储系统的空缺, 提高 燃料电池汽车安全性能, 其二, 通过设置复合层防爆层, 使得储备或存储甲醇 水的箱体具备防爆性能, 在发生车辆相撞、 翻车事故或军事上遇到子弹和炸弹 袭击等危险状况吋不发生爆炸, 保证车辆上人员和财产安全, 其三, 本发明的 存储系统储醇量大, 且能有效的保证用醇和加醇的方便性及可靠性。
对附图的简要说明
附图说明
[0027] 图 1是本发明甲醇水存储系统实施例一示意图;
[0028] 图 2是本发明甲醇水存储系统实施例二示意图;
[0029] 图 3是本发明防爆甲醇水存储箱体结构示意;
[0030] 图 4是本发明甲醇水存储装置侧面示意图及防爆层示意图。
[0031] 图中, 1.防爆甲醇水存储箱体 ,2.主容置箱, 3.注醇口总成, 4.总通气孔, 5.输送泵, 6. 输送道, 7.管道, 8.多通阀门, 9.密封盖, 11.箱体外壳, 12.防爆层, 13.箱体内 胆, 14.注醇口, 15.出醇口 ,16.通气阀, 31.液程管道, 41.气程管道, 121.筋板层, 122.高强度橡胶层 ,123.防爆剂填充层 ,124.抑爆材料填充层, 125.防护网层。
本发明的实施方式
[0032] 下面结合附图对本发明作进一步详细的说明。
[0033] 实施例一, 参考附图 1、 附图 3-4, 一种燃料电池汽车的多箱体甲醇水存储系统, 包括主容置箱 2,所述主容置箱 2内固设四个防爆甲醇水存储箱体 1,四个所述防爆 甲醇水存储箱体 1通过安设有输送泵 5的输送道 6相连通;其中, 每一所述防爆甲醇 水存储箱体 1上设注醇口 14、 出醇口 15以及通气阀 16,所述注醇口 14与所述防爆甲 醇水存储箱体 1为一体式结构,且所有注醇口 14通过液程管道 31连接到设于所述主 容置箱 2上的注醇口 14总成 3;所述通气阀 16设于所述注醇口 14上,并通过气程管道 41连通到所述主容置箱 2的空间内和 /或设于所述主容置箱 2上的总通气孔 4 (需要 说明的是, 其中注醇口 14总成 3和总通气孔 4设置于主容置箱 2上端, 附图并不表 示其设置方式及液程管道 31和气程管道 41轨迹行程) ;所述出醇口 15设于所述防 爆甲醇水存储箱体 1底部, 并通过管道连接燃料电池汽车的制氢设备, 所述管道 7上设多通阀门 8, 该多阀门连接各所述出醇口 15集成输出甲醇水。 所述多通阀 门 8处还设有流量计 (图中未显示) , 所述多通阀门 8根据流量计测量的甲醇水 流量幵启匹配数目的阀门; 所述多通阀门 8的输出端还设输送泵 5,由该输出泵将 集成输出的甲醇水输送到燃料电池汽车的制氢设备。 所述注醇口 14总成 3上端还 设有密封盖 9, 该密封盖 9上还设置有减压阀。 特别地, 所述主容置箱 2为钢板主 容置箱 2,所述防爆甲醇水存储箱体 1通过焊接与所述主容置箱 2固结,且所述主容 置箱 2与所述防爆甲醇水存储箱体 1之间、 各所述防爆甲醇水存储箱体 1之间的间 隙内还填充有防爆剂。
参考附图 3-4, 其中, 所述防爆甲醇水存储箱体 1包括箱体外壳 11、 若干层防爆 层 12以及箱体内胆 13,所述若干层防爆层 12位于所述箱体外壳 11和所述箱体内胆 1 3之间形成的夹层上,且所述箱体外壳 11包覆所述若干层防爆层 12及所述箱体内胆 13,所述箱体内胆 13与所述注醇口 14连通;所述若干层防爆层 12包括依次设置的筋 板层 121、 高强度橡胶层 122、 防爆剂填充层 123、 抑爆材料填充层 124以及防护 网层 125,且所述筋板层 121用于连接所述箱体内胆 13和所述箱体外壳 11;所述箱体 内胆 13为甲醇水存储空间,且其内侧涂布抗甲醇腐蚀层 (图中未显示) , 所述箱 体内胆 13为不锈钢箱体内胆 13,且在其内表涂覆抗甲醇腐蚀剂。 通过该抗甲醇腐 蚀层 /抗甲醇腐蚀剂, 可延长防爆甲醇水存储箱体 1之箱体内胆 133的使用寿命, 从而延长存储系统及燃料电池汽车的使用年限, 并保证储备的甲醇水清洁, 从 而供燃料电池汽车制氢设备高效制氢。 需要说明的是, 所述若干层防爆层 122的 设置顺序是可以根据需求进行更改设计的,也就是, 在实际中, 并不限定按筋板 层 12121、 高强度橡胶层 12222、 防爆剂填充层 12323、 抑爆材料填充层 12424和 防护网层 12525的顺序设置防爆层 122。 作为优选, 所述防护网层 125为带状阻隔 防爆铝箔网或球状阻隔防爆铝箔网或是卷状阻隔防爆铝箔网,所述阻隔防爆铝箔 网的厚度为 0.015-0.025mm。 其中所述防护网层 125还可选择至少一股阻燃尼龙编 制而成的防护网。 而所述抑爆材料填充层 124内填充有铝合金抑爆材料和 /或多孔 泡沫金属材料。 所述防爆剂填充层 123和所述抑爆材料填充层 124还为真空填充 层, 所述防爆剂填充层 123和所述抑爆材料填充层 124分别填充防爆剂和抑爆材 料后通过抽真空, 形成真空防爆缓冲层。
[0035] 实施例二, 参考附图 2-4, 一种燃料电池汽车的多箱体甲醇水存储系统,包括主 容置箱 2,所述主容置箱 2内通过焊接与所述主容置箱 2固定两平行设置的防爆甲醇 水存储箱体 1,两所述防爆甲醇水存储箱体 1通过安设有输送泵 5的输送道 6相连通; 其中, 每一所述防爆甲醇水存储箱体 1上设注醇口 14、 出醇口 15以及通气阀 16,所 述注醇口 14与所述防爆甲醇水存储箱体 1为一体式结构,且所有注醇口 14通过液程 管道 31连接到设于所述主容置箱 2上的注醇口 14总成 3;所述通气阀 16设于所述注 醇口 14上,并通过气程管道 41连通到所述主容置箱 2的空间内和 /或设于所述主容 置箱 2上的总通气孔 4 (需要说明的是, 其中注醇口 14总成 3和总通气孔 4设置于 主容置箱 2上端, 附图并不表示其设置方式及液程管道 31和气程管道 41轨迹行程 ) ;所述出醇口 15设于所述防爆甲醇水存储箱体 1底部, 并通过管道 7连接燃料电 池汽车的制氢设备, 所述管道 7上设多通阀门 8, 该多阀门连接各所述出醇口 15 集成输出甲醇水。 所述多通阀门 8处还设有流量计 (图中未显示) , 所述多通阀 门 8根据流量计测量的甲醇水流量幵启匹配数目的阀门; 所述多通阀门 8的输出 端还设输送泵 5,由该输出泵将集成输出的甲醇水输送到燃料电池汽车的制氢设备 。 所述注醇口 14总成 3上端还设有密封盖 9, 该密封盖 9上还设置有减压阀。 特别 地, 所述主容置箱 2为钢板主容置箱 2,所述主容置箱 2与所述防爆甲醇水存储箱体 1之间、 各所述防爆甲醇水存储箱体 1之间的间隙内还填充有防爆剂。
[0036] 参考附图 3-4, 其中, 两所述防爆甲醇水存储箱体 1均包括箱体外壳 11、 若干层 防爆层 12以及箱体内胆 13,所述若干层防爆层 12位于所述箱体外壳 11和所述箱体 内胆 13之间形成的夹层上,且所述箱体外壳 11包覆所述若干层防爆层 12及所述箱 体内胆 13,所述箱体内胆 13与所述注醇口 14连通;所述若干层防爆层 12包括依次设 置的筋板层 121、 高强度橡胶层 122、 防爆剂填充层 123、 抑爆材料填充层 124以 及防护网层 125,且所述筋板层 121用于连接所述箱体内胆 13和所述箱体外壳 11;所 述箱体内胆 13为甲醇水存储空间,且其内侧涂布抗甲醇腐蚀层 (图中未显示) , 所述箱体内胆 13为不锈钢箱体内胆 13,且在其内表涂覆抗甲醇腐蚀剂。 通过该抗 甲醇腐蚀层 /抗甲醇腐蚀剂, 可延长防爆甲醇水存储箱体 1之箱体内胆 133的使用 寿命, 从而延长存储系统及燃料电池汽车的使用年限, 并保证储备的甲醇水清 洁, 从而供燃料电池汽车制氢设备高效制氢。 需要说明的是, 所述若干层防爆 层 122的设置顺序是可以根据需求进行更改设计的,也就是, 在实际中, 并不限定 按筋板层 12121、 高强度橡胶层 12222、 防爆剂填充层 12323、 抑爆材料填充层 12 424和防护网层 12525的顺序设置防爆层 122。 作为优选, 所述防护网层 125为带 状阻隔防爆铝箔网或球状阻隔防爆铝箔网或是卷状阻隔防爆铝箔网,所述阻隔防 爆铝箔网的厚度为 0.015-0.025mm。 其中所述防护网层 125还可选择至少一股阻燃 尼龙编制而成的防护网。 而所述抑爆材料填充层 124内填充有铝合金抑爆材料和 / 或多孔泡沫金属材料。 所述防爆剂填充层 123和所述抑爆材料填充层 124还为真 空填充层, 所述防爆剂填充层 123和所述抑爆材料填充层 124分别填充防爆剂和 抑爆材料后通过抽真空, 形成真空防爆缓冲层。 。 需要说明的是, 实际中, 可 以根据需求以及主容置箱 2的形状尺寸决定选用防爆甲醇水存储箱体 1的数目。
[0037] 使用上述两实施例中的燃料电池汽车的多箱体甲醇水存储系统的方法: 包括以 下步骤:
[0038] 步骤 A, 当甲醇水存储系统为燃料电池汽车供醇吋, 选定所述若干防爆甲醇水 存储箱体 1其中之一为主供醇箱体, 通过多通阀门 8幵启匹配的阀门,使主供醇箱 体内的甲醇水通过输送泵 5沿管道 7送到燃料电池汽车的制氢设备;当主供醇箱体 内的甲醇水量减少或耗尽吋,幵启位于各防爆甲醇水存储箱体 1之间输送道 6上的 输送泵 5输送甲醇水至主供醇箱体, 主供醇箱体继续输送甲醇水;或者转换幵闭多 通阀门 8相应的阀门, 使储存有甲醇水的其它防爆甲醇水存储箱体 1转换为主供 醇箱体, 由转换后主供醇箱体供醇给燃料电池汽车的制氢设备; 如此, 直至所 有防爆甲醇水存储箱体 1内的甲醇水耗尽; 在甲醇水消耗或耗尽过程中, 主供醇 箱体内形成负压, 在负压吸力的作用下, 其他各防爆甲醇水存储箱体 1中的空气 通过相连通的通气阀 16进入到主防爆甲醇水存储箱体 1中, 以保证各防爆甲醇水 存储箱体 1压力相同, 在整个甲醇水存储系统的总体负压达到规定值的吋候, 各 个防爆甲醇水存储箱体 1的通气阀 16在负压的作用下自动打幵, 使整个甲醇水存 储系统的压力始终保持在一定范围内, 保障供醇顺畅;
[0039] 步骤 B,为甲醇水存储系统注入醇吋, 打幵注醇口 14总成 3, 提供如下两种方式 注醇:
[0040] 其一, 通过与任意一防爆甲醇水存储箱体 1相匹配的注醇口 14液程通道注入甲 醇水, 该防爆甲醇水存储箱体 1内甲醇水储满吋, 打幵与之相连通的其他防爆甲 醇水存储箱体 1之间的输送泵 5, 将该防爆甲醇水存储箱体 1内的甲醇水输送到其 他防爆甲醇水存储箱体 1内;
[0041] 其二, 由注醇口 14总成 3通过液程通道对所有防爆甲醇水存储箱体 1一一进行直 接注入甲醇水;
[0042] 甲醇水注入过程中, 各注入了甲醇水的防爆甲醇水存储箱体 1内形成正压, 在 正压的作用下各注入了甲醇水的防爆甲醇水存储箱体 1中的空气通过对应的注醇 口 14液程通道或输送道 6对应排入大气或正在注入甲醇水的防爆甲醇水存储箱体 1中, 最后由该各注入了甲醇水的防爆甲醇水存储箱体 1的注醇口 14液程通道排 出, 以保证各个防爆甲醇水存储箱体 1内部的空气都能顺利排出, 使各个防爆甲 醇水存储箱体 1都能顺利的加满甲醇水, 加醇完毕后盖紧主容置箱 2上的密封盖 9
[0043] 本发明的甲醇水存储系统, 填补采用甲醇水作原料的燃料电池汽车无防爆防炸 的存储系统的空缺, 提高燃料电池汽车安全性能; 通过设置复合层防爆层, 使 得储备或存储甲醇水的箱体具备防爆性能, 在发生车辆相撞、 翻车事故或军事 上遇到子弹和炸弹袭击等危险状况吋不发生爆炸, 保证车辆上人员和财产安全 ; 同吋本发明的存储系统储醇量大, 且能有效的保证用醇和加醇的方便性及可 靠性。
[0044] 以上并非对本发明的技术范围作任何限制,凡依据本发明技术实质对以上的实施 例所作的任何修改、 等同变化与修饰,均仍属于本发明的技术方案的范围内。 工业实用性
本发明为一种燃料电池汽车的多箱体甲醇水存储系统及使用方法, 该多箱体甲 醇水存储系统不仅能有效的保证用醇和加醇的方便性及可靠性, 并且在发生车 辆相撞、 翻车事故或军事上遇到子弹和炸弹袭击等危险状况吋不发生爆炸, 保 证车辆上人员和财产安全。 因此, 具有工业实用性。

Claims

权利要求书
一种燃料电池汽车的多箱体甲醇水存储系统,其特征在于:包括主容置 箱,所述主容置箱内固设若干防爆甲醇水存储箱体,各所述防爆甲醇水 存储箱体通过安设有输送泵的输送道相连通;其中,每一所述防爆甲醇 水存储箱体上设注醇口、 出醇口以及通气阀,所述注醇口与所述防爆 甲醇水存储箱体为一体式结构,且所有注醇口通过液程管道连接到设 于所述主容置箱上的注醇口总成;所述通气阀设于所述注醇口上,并通 过气程管道连通到所述主容置箱的空间内和 /或设于所述主容置箱上 的总通气孔;所述出醇口设于所述防爆甲醇水存储箱体底部,并通过管 道连接燃料电池汽车的制氢设备,所述管道上设多通阀门,该多阀门连 接各所述出醇口集成输出甲醇水。
根据权利要求 1所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述防爆甲醇水存储箱体包括箱体外壳、 若干层防爆层以 及箱体内胆,所述若干层防爆层位于所述箱体外壳和所述箱体内胆之 间形成的夹层上,且所述箱体外壳包覆所述若干层防爆层及所述箱体 内胆,所述箱体内胆与所述注醇口连通;所述若干层防爆层包括依次设 置的筋板层、 高强度橡胶层、 防爆剂填充层、 抑爆材料填充层以及防 护网层,且所述筋板层用于连接所述箱体内胆和所述箱体外壳;所述箱 体内胆为甲醇水存储空间,且其内侧涂布抗甲醇腐蚀层。
根据权利要求 2所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述防护网层为带状阻隔防爆铝箔网或球状阻隔防爆铝箔 网或是卷状阻隔防爆铝箔网,所述阻隔防爆铝箔网的厚度为 0.015-0.025 mm。
根据权利要求 2所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述箱体内胆为不锈钢箱体内胆,且在其内表涂覆抗甲醇腐 蚀剂。
根据权利要求 2所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述抑爆材料填充层内填充有铝合金抑爆材料和 /或多孔泡 沫金属材料。
根据权利要求 2所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述防爆剂填充层和所述抑爆材料填充层还为真空填充层, 所述防爆剂填充层和所述抑爆材料填充层分别填充防爆剂和抑爆材料 后通过抽真空,形成真空防爆缓冲层。
根据权利要求 1所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述注醇口总成上端还设有密封盖,该密封盖上还设置有减 压阀。
根据权利要求 1所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述主容置箱为钢板主容置箱,所述防爆甲醇水存储箱体通 过焊接与所述主容置箱固结,且所述主容置箱与所述防爆甲醇水存储 箱体之间、 各所述防爆甲醇水存储箱体之间的间隙内还填充有防爆剂 根据权利要求 1所述的一种燃料电池汽车的多箱体甲醇水存储系统,其 特征在于:所述多通阀门处还设有流量计, 所述多通阀门根据流量计 测量的甲醇水流量幵启匹配数目的阀门;所述多通阀门的输出端还设 输送泵,由该输出泵将集成输出的甲醇水输送到燃料电池汽车的制氢 设备。
一种使用权利要求 1-9任意一项所述的一种燃料电池汽车的多箱体甲 醇水存储系统的方法,其特征在于:包括以下步骤:
步骤 A,甲醇水存储系统为燃料电池汽车供醇吋,选定所述若干防爆甲 醇水存储箱体其中之一为主供醇箱体;
通过多通阀门幵启匹配的阀门,使主供醇箱体内的甲醇水通过输送泵 沿管道送到燃料电池汽车的制氢设备;当主供醇箱体内的甲醇水量减 少或耗尽吋,幵启位于各防爆甲醇水存储箱体之间输送道上的输送泵 输送甲醇水至主供醇箱体,主供醇箱体继续输送甲醇水;
或者转换幵闭多通阀门相应的阀门,使储存有甲醇水的其它防爆甲醇 水存储箱体转换为主供醇箱体,由转换后主供醇箱体供醇给燃料电池 汽车的制氢设备;
如此,直至所有防爆甲醇水存储箱体内的甲醇水耗尽; 其中, 在甲醇 水消耗或耗尽过程中, 主供醇箱体内形成负压, 在负压吸力的作用下 ,其他各防爆甲醇水存储箱体中的空气通过相连通的通气阀进入到主 防爆甲醇水存储箱体中,以保证各防爆甲醇水存储箱体压力相同, 在 整个甲醇水存储系统的总体负压达到规定值的吋候, 各个防爆甲醇水 存储箱体的通气阀在负压的作用下自动打幵, 使整个甲醇水存储系统 的压力始终保持在一定范围内,保障供醇顺畅;
步骤 B,为甲醇水存储系统注入醇吋,打幵注醇口总成,提供如下两种方 式注醇:
其一,通过与任意一防爆甲醇水存储箱体相匹配的注醇口液程通道注 入甲醇水,该防爆甲醇水存储箱体内甲醇水储满吋,打幵与之相连通的 其他防爆甲醇水存储箱体之间的输送泵, 将该防爆甲醇水存储箱体内 的甲醇水输送到其他防爆甲醇水存储箱体内;
其二,由注醇口总成通过液程通道对所有防爆甲醇水存储箱体一一进 行直接注入甲醇水;
其中,甲醇水注入过程中,各注入了甲醇水的防爆甲醇水存储箱体内形 成正压,在正压的作用下各注入了甲醇水的防爆甲醇水存储箱体中的 空气通过对应的注醇口液程通道或输送道对应排入大气或正在注入甲 醇水的防爆甲醇水存储箱体中,最后由该各注入了甲醇水的防爆甲醇 水存储箱体的注醇口液程通道排出 ,以保证各个防爆甲醇水存储箱体 内部的空气都能顺利排出, 使各个防爆甲醇水存储箱体都能顺利的加 满甲醇水,加醇完毕后盖紧所述密封盖。
PCT/CN2016/085834 2015-12-23 2016-06-15 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法 WO2017107407A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2958446A CA2958446C (en) 2015-12-23 2016-06-15 Multi-tank methanol water storage system of fuel cell vehicle
US15/444,337 US10461344B2 (en) 2015-12-23 2017-02-28 Multi-tank methanol-water mixture storage system of fuel cell vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511007430.7A CN105449248B (zh) 2015-12-23 2015-12-23 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法
CN201511007430.7 2015-12-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/444,337 Continuation US10461344B2 (en) 2015-12-23 2017-02-28 Multi-tank methanol-water mixture storage system of fuel cell vehicle

Publications (1)

Publication Number Publication Date
WO2017107407A1 true WO2017107407A1 (zh) 2017-06-29

Family

ID=55559202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085834 WO2017107407A1 (zh) 2015-12-23 2016-06-15 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法

Country Status (2)

Country Link
CN (1) CN105449248B (zh)
WO (1) WO2017107407A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413247A (zh) * 2018-02-09 2018-08-17 北京华奥汽车服务股份有限公司 一种仿动物体肺结构的车载储氢罐及其储氢方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449248B (zh) * 2015-12-23 2018-06-19 广东合即得能源科技有限公司 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法
CN106410239A (zh) * 2016-11-02 2017-02-15 上海钧希新能源科技有限公司 一种模块化甲醇水储液容器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009147208A2 (en) * 2008-06-04 2009-12-10 Ird Fuel Cells A/S Method for frost protection in a direct methanol fuel cell
US20100098995A1 (en) * 2006-10-11 2010-04-22 Kurita Water Industries Ltd Direct methanol fuel cell system and portable electronic device
CN104752746A (zh) * 2015-04-03 2015-07-01 广东合即得能源科技有限公司 多组合独立式醇水制氢燃料电池汽车
CN104827927A (zh) * 2015-05-05 2015-08-12 深圳伊腾得新能源有限公司 一种甲醇水重整制氢燃料电池电动汽车
CN105098206A (zh) * 2014-05-19 2015-11-25 吉林师范大学 一种微型甲醇燃料电池燃料储存与供给装置
CN105449248A (zh) * 2015-12-23 2016-03-30 广东合即得能源科技有限公司 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4918826B2 (ja) * 2006-08-31 2012-04-18 株式会社日立製作所 燃料タンク
CN202529835U (zh) * 2012-02-23 2012-11-14 北京全盛虎安防爆科技有限责任公司 可移动的阻隔防爆式燃料存储及加注装置
CN103147890B (zh) * 2013-03-20 2015-05-20 勾昌羽 压气式油箱防爆供油系统
CN104935037A (zh) * 2015-06-05 2015-09-23 广东合即得能源科技有限公司 一种具有多组甲醇水重整制氢发电模组的充电站及方法
CN205452441U (zh) * 2015-12-23 2016-08-10 广东合即得能源科技有限公司 一种燃料电池汽车的多箱体甲醇水存储系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098995A1 (en) * 2006-10-11 2010-04-22 Kurita Water Industries Ltd Direct methanol fuel cell system and portable electronic device
WO2009147208A2 (en) * 2008-06-04 2009-12-10 Ird Fuel Cells A/S Method for frost protection in a direct methanol fuel cell
CN105098206A (zh) * 2014-05-19 2015-11-25 吉林师范大学 一种微型甲醇燃料电池燃料储存与供给装置
CN104752746A (zh) * 2015-04-03 2015-07-01 广东合即得能源科技有限公司 多组合独立式醇水制氢燃料电池汽车
CN104827927A (zh) * 2015-05-05 2015-08-12 深圳伊腾得新能源有限公司 一种甲醇水重整制氢燃料电池电动汽车
CN105449248A (zh) * 2015-12-23 2016-03-30 广东合即得能源科技有限公司 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108413247A (zh) * 2018-02-09 2018-08-17 北京华奥汽车服务股份有限公司 一种仿动物体肺结构的车载储氢罐及其储氢方法
CN108413247B (zh) * 2018-02-09 2023-12-12 华奥安心技术服务(集团)股份有限公司 一种仿动物体肺结构的车载储氢罐及其储氢方法

Also Published As

Publication number Publication date
CN105449248B (zh) 2018-06-19
CN105449248A (zh) 2016-03-30

Similar Documents

Publication Publication Date Title
US6918430B2 (en) Onboard hydrogen storage unit with heat transfer system for use in a hydrogen powered vehicle
US10260680B2 (en) Arrangement and method for operating hydrogen filling stations
CN104875628B (zh) 可避免氢气泄放损失的液氢燃料电池汽车动力系统
CN116249858A (zh) 用于存储,运输,及使用氢的系统和方法
WO2017107407A1 (zh) 一种燃料电池汽车的多箱体甲醇水存储系统及使用方法
US7727492B2 (en) Apparatus for refueling on-board metal hydride hydrogen storage tank
US20110226782A1 (en) Gas temperature moderation within compressed gas vessel through heat exchanger
US10461344B2 (en) Multi-tank methanol-water mixture storage system of fuel cell vehicle
CN206134830U (zh) 一种抛掷式固态硼氢化钠燃料电池供氢系统
CN202510969U (zh) 一种集成内部分层导热构架的固态储氢装置
US20070283623A1 (en) Compartmentalized Hydrogen Fueling System
CN205452441U (zh) 一种燃料电池汽车的多箱体甲醇水存储系统
CN201284083Y (zh) 储存运输油品装置
CN111608795A (zh) 一种氢燃料汽车发动机
CN102623735B (zh) 一种高能蓄电池材料、发动机组及电池电动汽车及其使用方法
US11649927B2 (en) Dual-inlet valve refilling of a single fuel cylinder
CN113386936A (zh) 模块化氢能船舶电传动力系统及方法
CN102971899B (zh) 具有包括向电池提供氧气的氯酸钠分解反应器的燃料电池的电动交通工具
CN204675166U (zh) 加油站油气零排放系统
CN116897258A (zh) 氢传输系统
RU214580U1 (ru) Ёмкость для хранения компримированных газов
WO2022101886A1 (en) Modular cellular solid gas storage platform system
CN107799792A (zh) 一种抛掷式固态硼氢化钠燃料电池供氢系统及方法
US20230408029A1 (en) Energy and hydrogen transport system
Eberle Hydrogen for automotive applications and beyond

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2958446

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877220

Country of ref document: EP

Kind code of ref document: A1