WO2017107280A1 - 一种小型宽频微波高温加热装置 - Google Patents

一种小型宽频微波高温加热装置 Download PDF

Info

Publication number
WO2017107280A1
WO2017107280A1 PCT/CN2016/071694 CN2016071694W WO2017107280A1 WO 2017107280 A1 WO2017107280 A1 WO 2017107280A1 CN 2016071694 W CN2016071694 W CN 2016071694W WO 2017107280 A1 WO2017107280 A1 WO 2017107280A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
furnace body
helical antenna
diameter
microwave transmission
Prior art date
Application number
PCT/CN2016/071694
Other languages
English (en)
French (fr)
Inventor
刘新保
贾晓林
刘宇飞
蔡俊明
陈晨
Original Assignee
郑州德朗能微波技术有限公司
刘新保
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郑州德朗能微波技术有限公司, 刘新保 filed Critical 郑州德朗能微波技术有限公司
Publication of WO2017107280A1 publication Critical patent/WO2017107280A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the invention relates to the technical field of microwave heating devices, in particular to a small-scale broadband microwave high-temperature heating device.
  • Microwave has long been known as an efficient heating method and has been widely used. At present, microwave chemistry has become an emerging frontier interdisciplinary subject to study the properties of materials in microwave fields and their interactions. Microwaves can speed up chemical reactions and increase the yield of chemical reactions.
  • Microwave heat treatment is a heat treatment method in which a microwave is used to interact a material with a microwave field, and the microwave is absorbed by the material and converted into heat energy to heat the whole from the inside of the material.
  • the use of microwave for heat treatment has the advantages of energy saving, rapid heating without hysteresis, interaction with substances, etc. Therefore, microwave has been widely used in the fields of heat treatment and synthesis.
  • the microwave heating furnace that uses the waveguide structure to transmit microwaves has a limited frequency band and is too bulky.
  • a microwave heating furnace that uses a coaxial cable to transmit microwaves cannot achieve high temperature heating because impedance matching is difficult and transmission power is too small.
  • the invention aims at the disadvantages of large microwave transmission loss, narrow frequency band, large volume and low power in the prior art, and proposes a small broadband microwave high-temperature heating device with a working frequency bandwidth, small volume and high power.
  • a small broadband microwave high-temperature heating device comprises a heating furnace, a microwave source and a microwave transmission device, the heating furnace comprising a furnace body (1) and a furnace cover (2) disposed at an upper end of the furnace body (1), the furnace body ( 1) inner cavity (1-2) is provided, thermocouple (3) is arranged in inner cavity (1-2), spiral antenna (1-3) is arranged around inner cavity (1-2), spiral antenna The center line of (1-3) is parallel or perpendicular to the axis of the thermocouple (3), and the helical antenna (1-3) passes through the furnace body (1) and is connected to the microwave transmission device, and the microwave transmission device is connected to the microwave source (4).
  • the furnace cover (2) is provided with an intake pipe (2-1) and an exhaust pipe (2-2); an insulation layer (1-1) is provided between the inner cavity (1-2) and the furnace body (1); A sealing device (12) and a microwave shielding device (13) are disposed between the furnace body (1) and the furnace cover (2), and the sealing device (12) is located inside the microwave shielding device (13), and the sealing device (12) Made of rubber sealing ring, the microwave shielding device (13) is made of copper mesh with microwave shielding ring.
  • the center line of the helical antenna (1-3) coincides with or is perpendicular to the axis of the thermocouple (3).
  • the inner cavity (1-2) is a cylindrical cavity, and the inner cavity (1-2) is made of alumina and quartz glass. Quality or mullite material.
  • the microwave source (4) comprises a control circuit (4-1) and a transmitting end (4-2) connected to the control circuit (4-1);
  • the microwave transmitting device comprises a transmitting end resonant cavity (5) And a microwave transmission tube (6), one end of the transmitting end resonant cavity (5) is connected with the transmitting end (4-2), and the other end of the transmitting end resonant cavity (5) is connected with the microwave transmitting tube (6), and the transmitting end resonant cavity (5)
  • a transmitting end transmitting antenna (8) connected to the transmitting end (4-2) is provided, and the other end of the transmitting end transmitting antenna (8) is connected to the microwave transmission center line disposed in the microwave transmitting tube (6) ( 7)
  • the other end of the microwave transmission center line (7) is connected to the helical antenna (1-3).
  • the cross section of the microwave transmission tube (6) is circular, and its inner diameter d 2 is ⁇ 1.0cm ⁇ d 2 ⁇ 2.0cm, and the cross section of the microwave transmission center line (7) is circular, and the outer diameter d 1 is ⁇ 0. .1cm ⁇ d 1 ⁇ ⁇ 0.56cm.
  • the transmitting end resonant cavity (5), the microwave transmitting tube (6) and the microwave transmission center line (7) are all made of metal; the microwave transmission center line (7) is placed at the center of the microwave transmission tube (6). Position, the periphery of the microwave transmission center line (7) is filled with a high temperature resistant insulating layer (9).
  • the furnace body (1) is of a cylindrical type and is made of a metal material having a diameter d of ⁇ 9.34 ⁇ d ⁇ ⁇ 39.38 cm and a height greater than or equal to the diameter thereof;
  • the helical antenna (1-3) is
  • the spiral diameter D is ⁇ 1.98cm ⁇ D ⁇ 8.2cm;
  • the microwave working frequency f of the microwave source (4) is 915MH Z ⁇ f ⁇ 9132MH Z .
  • the furnace body (1) is made of stainless steel, and its diameter d is ⁇ 11.00 cm; the helical antenna D of the helical antenna (1-3) is ⁇ 1.98 cm, and the number of turns of the helical antenna (1-3) is 8.
  • the microwave operating frequency f of the microwave source (4) is 6000 MH Z .
  • the inner diameter d 2 of the microwave transmission tube (6) is ⁇ 1.0 cm, and the outer diameter d 1 of the microwave transmission center line (7) is ⁇ 0.183 cm.
  • the high temperature resistant insulating layer (9) is a polytetrafluoroethylene layer.
  • the furnace body (1) is made of oxygen-free copper, and its diameter d is ⁇ 13.00 cm; the spiral diameter of the helical antenna (1-3) is ⁇ 4.20 cm, and the number of turns of the helical antenna (1-3) is ring 10, a microwave source (4) of the microwave operating frequency f is 2450MH Z.
  • the inner diameter d 2 of the microwave transmission tube (6) is ⁇ 1.5 cm, the outer diameter d 1 of the microwave transmission center line (7) is ⁇ 0.274 cm, and the high temperature resistant insulating layer (9) is an aluminum oxide ceramic (Alumina ceramics) layer.
  • the furnace body (1) is made of metal aluminum, the diameter d is ⁇ 35.00 cm; the spiral diameter of the helical antenna (1-3) is ⁇ 8.2 cm, and the number of turns of the helical antenna (1-3) is 15 turns
  • the microwave operating frequency f of the microwave source (4) is 915 MH Z .
  • the inner diameter d 2 of the microwave transmission tube (6) is ⁇ 2.0 cm, the outer diameter d 1 of the microwave transmission center line (7) is ⁇ 0.424 cm, and the high temperature resistant insulating layer (9) is a quartz glass layer.
  • the utility model further comprises a PLC (5) and a touch screen (6), wherein the thermocouple (3) and the microwave source (4) are connected to the PLC (5) through a control circuit (4-1), and the PLC passes the data bus and the touch screen.
  • the control circuit (4-1) includes a manual switch, a signal acquisition circuit, and a switch signal circuit connected to the input terminal.
  • the small broadband microwave high-temperature heating device of the invention adopts novel coaxial microwave transmission mode, and uses a helical antenna in a cylinder Radiation is performed in a microwave cavity.
  • the biggest difference between the device and the traditional microwave heating furnace is its working frequency bandwidth. In the case of small size, the device can still effectively ensure the power of the microwave and achieve high temperature heating of the heating object.
  • the microwave transmission device of the present invention transmits the microwave generated by the transmitting end to the helical antenna through the transmitting end resonant cavity, the microwave transmitting tube, and the microwave transmission center line; and then radiates into the cavity of the heating furnace, and the microwave transmission has high efficiency and loss. small.
  • the present invention employs an axial mode helical antenna, and the maximum radiation direction of the antenna is in the axial direction. In this mode, the current distribution on the spiral metal line is close to the traveling wave.
  • the material in the direction of the axis of the spiral antenna receives the maximum intensity of the microwave radiation and is uniform, thereby improving the heating efficiency.
  • the helical antenna and the microwave transmission means arranged different diameters can cover the entire frequency band from 915-9132MH Z, it has a very wide operating frequency of the microwave.
  • the invention adopts a touch screen and a PLC to realize various heating functions through a human-machine interface, and has high automation degree and simple operation.
  • Figure 1 is a schematic view of the structure of the present invention
  • FIG. 2 is a schematic structural view of a transmitting end and a microwave transmission device according to the present invention
  • Figure 3 is a view taken along line A of Figure 2;
  • FIG. 4 is a schematic structural view of a helical antenna according to the present invention.
  • Figure 5 is a schematic view of an axial mode helical antenna of the present invention.
  • Figure 6 is a schematic view of the structure of the second embodiment of the present invention.
  • a small-scale broadband microwave high-temperature heating device includes a heating furnace, a microwave source and a microwave transmission device.
  • the heating furnace includes a furnace body 1 and a furnace cover 2 disposed at an upper end of the furnace body 1, and a furnace cover 2 is provided with an intake pipe 2-1 and an exhaust pipe 2-2.
  • the furnace body 1 is of a cylindrical type and made of an oxygen-free copper material, and has a diameter d of ⁇ 13.00 cm, and the height of the furnace body 1 is the same as the diameter of the furnace body 1.
  • a sealing device 12 and a microwave shielding device 13 are disposed between the furnace body 1 and the furnace cover 2.
  • the sealing device 12 is located inside the microwave shielding device 13, the sealing device 12 is made of a rubber sealing ring, and the microwave shielding device 13 is made of a copper mesh with a microwave. Shielded ring made.
  • the furnace body 1 is provided with a cavity 1-2, the inner cavity 1-2 is a cylindrical cavity and is made of alumina, and the inner cavity 1-2 is provided with thermoelectricity. Even 3, a spiral antenna 1-3 is provided around the inner cavity 1-2.
  • the helical antenna 1-3 is made of a metal material, and has a spiral diameter D of ⁇ 4.20 cm and a number of turns of 10 turns.
  • the center line of the spiral antenna 1-3 coincides with the axis of the thermocouple 3 (see FIG. 1-1), the spiral antenna 1-3 passes through the furnace body 1 and is connected to the microwave transmission device, and the microwave transmission device is connected to the microwave source 3, and the inner cavity (1-2)
  • An insulating layer (1-1) is provided between the furnace body (1).
  • the microwave source 4 includes a control circuit 4-1 and a transmitting end 4-2 connected to the control circuit 4-1.
  • the microwave transmitting device includes a transmitting end resonant cavity 5 and a microwave transmitting tube 6, and one end of the transmitting end resonant cavity 5 and the transmitting end 4 -2 connection, the other end of the transmitting end resonant cavity 5 is connected to the microwave transmission tube 6, the transmitting end resonant cavity 5 is provided with a transmitting end transmitting antenna 8 connected to the transmitting end 4-2, and the other end of the transmitting end transmitting antenna 8 is connected
  • the microwave transmission center line 7 is disposed in the microwave transmission tube 6, and the other end of the microwave transmission center line 7 is connected to the helical antenna 1-3.
  • Microwave source microwave frequency f 4 of the work is 2450MH Z.
  • the transmitting end resonant cavity 5, the microwave transmitting tube 6 and the microwave transmission center line 7 are all made of metal; the microwave transmission center line 7 is placed at the center of the microwave transmission tube 6, and the microwave transmission center line 7 is filled with a high temperature resistant insulating layer 9 .
  • thermocouple 3 and the microwave source 3 are connected to the PLC 10 via the control circuit 4-1, and the PLC is connected to the touch panel 11 via a data bus.
  • the control circuit 4-1 includes a number of manual switches, signal acquisition circuits and switching signal circuits connected to the input terminals.
  • the microwave source 3 is controlled by the PLC 10, so that the device has good heat preservation effect and more uniform heating.
  • the touch screen 11 and the PLC 10 realize various heating functions through the human-machine interface, and the operation is simple and the degree of automation is high.
  • L is the length of the helical antenna
  • D is the helical diameter
  • s is the helical spacing of the spiral.
  • the ratio D/ ⁇ of the diameter D of the helical antenna to the operating wavelength ⁇ of the microwave determines its radiation characteristics.
  • the maximum radiation direction of the antenna is along the axial direction, which is called an axial mode helical antenna (see Figure 5).
  • the operating frequency f of the microwave source 3 is in the frequency range of 915-1782 MH Z , and the maximum radiation direction of the antenna is in the axial direction.
  • the operating frequency of the microwave source 3 1782-3285MH Z f is the direction of maximum radiation of the antenna in the axial direction.
  • Selection of the helical antenna in the frequency range of the diameter D is 1.98 cm, the operating frequency of the microwave source 3 3285-9132MH Z f is the direction of maximum radiation of the antenna in the axial direction.
  • the microwave transmission tube 6, the microwave transmission center line 7 and the high temperature resistant insulating layer 9 constitute a microwave transmission system; for coaxial transmission, see FIG.
  • the characteristic impedance Z 0 can be simplified to:
  • ⁇ r is the dielectric constant of the high temperature resistant insulating layer 9.
  • the impedance of the helical antenna is determined by:
  • the high temperature resistant insulating layer 9 is alumina ceramics (Alumina ceramics), and ⁇ r is 4.5, then:
  • the inner diameter d 2 of the microwave transmission tube 6 is ⁇ 1.5 cm, and the outer diameter d 1 of the microwave transmission center line 7 is ⁇ 0.274 cm.
  • the microwave output power is 300W
  • the temperature is gradually increased from room temperature to 800 ° C for 8 minutes; then gradually cooled from 800 ° C to 500 ° C for 15 minutes;
  • the temperature was gradually increased from 500 ° C to 1000 ° C for 5 minutes; then gradually decreased from 1000 ° C to 700 ° C for 15 minutes; then gradually increased from 700 ° C to 1000 ° C for 3 minutes; finally held at 1000 ° C for 30 minutes.
  • the apparatus of the present embodiment has the advantages of small volume, high heating efficiency, and simple operation.
  • Embodiment 2 The high-temperature heating device is basically the same as the first embodiment, and the same points are not described again. The difference is:
  • the furnace body 1 is made of stainless steel and has a diameter d of ⁇ 11.00 cm.
  • the helical antenna D of the helical antenna 1-3 has a diameter of 1.98 cm and a number of turns of 8 turns.
  • the microwave operating frequency f is 6000 MH Z .
  • the high temperature resistant insulating layer 9 is polytetrafluoroethylene, ⁇ r is 4.5, d 2 /d 1 is 5.47; the inner diameter d 2 of the microwave transmission tube 6 is ⁇ 1.0 cm, and the outer diameter of the microwave transmission center line 7 d 1 is ⁇ 0.183 cm.
  • the center line of the helical antenna 1-3 is perpendicular to the axis of the thermocouple 3 (see Fig. 6).
  • the device of this embodiment adopts the center line of the helical antenna 1-3 and is arranged perpendicular to the axis of the thermocouple 3, so as to avoid the interference of the thermocouple to the microwave radiation direction to the utmost extent.
  • Embodiment 3 The high-temperature heating device is basically the same as the first embodiment, and the same points are not described again. The difference is:
  • the furnace body 1 is made of a metal material and has a diameter d of 23.00 cm.
  • the spiral diameter D of the helical antenna 1-3 is ⁇ 4.20 cm, and the number of turns is 12 turns.
  • the microwave operating frequency f is 2450MH Z .
  • Embodiment 4 The high-temperature heating device is basically the same as the first embodiment, and the same points are not described again. The difference is:
  • the furnace body 1 is made of metal aluminum, and its diameter d is ⁇ 35.00 cm.
  • the spiral diameter D of the helical antenna 1-3 is ⁇ 8.2 cm, and the number of turns is 15 turns.
  • the microwave operating frequency f is 915 MH Z .
  • the high temperature resistant insulating layer 9 is quartz glass, ⁇ r is 3.75, d 2 /d 1 is 4.72; the inner diameter d 2 of the microwave transmission tube 6 is ⁇ 2.0 cm, and the outer diameter d 1 of the microwave transmission center line 7 is ⁇ 0. 424cm.
  • the apparatus of this embodiment employs a large-sized furnace body and a large-diameter helical antenna.
  • Large-diameter microwave transmission tubes can transmit relatively large microwave power, which is very suitable for high-temperature heating and synthesis of materials under low-frequency microwave radiation conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

一种小型宽频微波高温加热装置,包括加热炉、微波源(4)及微波传输装置,加热炉包括炉体(1)及设在炉体(1)上端的炉盖(2),炉体(1)内设有内腔(1-2),内腔(1-2)内设有热电偶(3),内腔(1-2)的周围设有螺旋天线(1-3),螺旋天线(1-3)的中心线与热电偶(3)的轴线平行,螺旋天线(1-3)穿出炉体(1)并与微波传输装置连接,微波传输装置与微波源(4)连接;炉盖(2)上设有进气管(2-1)和排气管(2-2);内腔(1-2)与炉体(1)之间设有保温层(1-1);炉体(1)与炉盖(2)之间设有密封装置(12)和微波屏蔽装置(13),密封装置(12)位于微波屏蔽装置(13)的内侧,密封装置(12)采用橡胶密封圈制成,微波屏蔽装置(13)采用铜网带微波屏蔽圈制成。利用螺旋天线(1-3)在圆柱型微波谐振腔内进行辐射,其工作频带宽,在小尺寸的情况下依然可以有效地保证微波的功率。

Description

一种小型宽频微波高温加热装置 技术领域
本发明涉及微波加热装置技术领域,特别涉及一种小型宽频微波高温加热装置。
背景技术
微波作为一种高效的加热方法早已为人们所熟知,并得到了广泛的应用。目前,微波化学已经成为研究微波场中物质特性及其相互作用的一门新兴前沿交叉学科。微波能够加快化学反应速度,提高化学反应的产出率。
微波热处理是利用微波将材料与微波场相互作用,微波被材料吸收并转化为热能,从材料内部对其整体进行加热的一种热处理方法。利用微波进行热处理,具有节能、加热快速无热滞、与物质相互作用等优点,因此微波在热处理、合成等领域得到了越来越广泛的应用。
然而不同的介质在不同的温度下对电磁波的吸收程度不同,这是由于不同介质的介电常数以及损耗角都是随不同工作频率和温度的变化而不同。所以需要设计工作频带宽的微波反应装置,来研究被加热物在不同工作频率、不同温度下对微波的吸收能力。
目前利用波导结构来传输微波的微波加热炉的频带有限,且体积过大。利用同轴电缆来传输微波的微波加热炉,由于阻抗匹配不易和传输功率过小而无法实现高温加热。
发明内容
本发明针对现有技术中微波传输损耗大、频带窄、体积大、功率小的缺点,提出了一种工作频带宽、体积小、功率大的小型宽频微波高温加热装置。
本发明的技术方案:
一种小型宽频微波高温加热装置,包括加热炉、微波源及微波传输装置,所述的加热炉包括炉体(1)及设在炉体(1)上端的炉盖(2),炉体(1)内设有内腔(1-2),内腔(1-2)内设有热电偶(3),内腔(1-2)的周围设有螺旋天线(1-3),螺旋天线(1-3)的中心线与热电偶(3)的轴线平行或垂直,螺旋天线(1-3)穿出炉体(1)并与微波传输装置连接,微波传输装置与微波源(4)连接;炉盖(2)上设有进气管(2-1)和排气管(2-2);内腔(1-2)与炉体(1)之间设有保温层(1-1);所述炉体(1)与炉盖(2)之间设有密封装置(12)和微波屏蔽装置(13),密封装置(12)位于微波屏蔽装置(13)的内侧,密封装置(12)采用橡胶密封圈制成,微波屏蔽装置(13)采用铜网带微波屏蔽圈制成。
优选的,所述的螺旋天线(1-3)的中心线与热电偶(3)的轴线重合或垂直。
优选的,所述的内腔(1-2)为圆柱型腔体,内腔(1-2)为氧化铝材质、石英玻璃材 质或莫来石材质。
优选的,所述微波源(4)包括控制电路(4-1)及与控制电路(4-1)连接的发射端(4-2);所述微波传输装置包括发射端谐振腔(5)及微波传输管(6),发射端谐振腔(5)的一端与发射端(4-2)连接,发射端谐振腔(5)的另一端与微波传输管(6)连接,发射端谐振腔(5)内设有与发射端(4-2)连接的发射端发射天线(8),发射端发射天线(8)的另一端连接设在微波传输管(6)内的微波传输中心线(7),微波传输中心线(7)的另一端与螺旋天线(1-3)连接。微波传输管(6)的横截面为圆形,其内径d2为Φ1.0cm≤d2≤Φ2.0cm,微波传输中心线(7)的横截面为圆形,其外径d1为Φ0.1cm≤d1≤Φ0.56cm。
优选的,所述的发射端谐振腔(5)、微波传输管(6)及微波传输中心线(7)均为金属材质;微波传输中心线(7)置于微波传输管(6)的中心位置,微波传输中心线(7)的周围填充有耐高温绝缘层(9)。优选的,所述炉体(1)为圆柱型,且为金属材质,其直径d为Φ9.34≤d≤Φ39.38cm,高度大于或等于其直径;所述螺旋天线(1-3)为金属材质,其螺旋直径D为Φ1.98cm≤D≤Φ8.2cm;微波源(4)的微波工作频率f为915MHZ≤f≤9132MHZ
优选的,所述炉体(1)为不锈钢材质,其直径d为Φ11.00cm;螺旋天线(1-3)的螺旋直径D为Φ1.98cm、螺旋天线(1-3)的圈数为8圈,微波源(4)的微波工作频率f为6000MHZ。微波传输管(6)内径d2为Φ1.0cm,微波传输中心线(7)外径d1为Φ0.183cm。耐高温绝缘层(9)为聚四氟乙烯(Polytetrafluoroethylene)层。
优选的,所述炉体(1)为无氧铜材质,其直径d为Φ13.00cm;螺旋天线(1-3)的螺旋直径为Φ4.20cm、螺旋天线(1-3)的圈数为10圈,微波源(4)的微波工作频率f为2450MHZ。微波传输管(6)内径d2为Φ1.5cm,微波传输中心线(7)外径d1为Φ0.274cm,耐高温绝缘层(9)为氧化铝陶瓷(Alumina ceramics)层。
优选的,所述炉体(1)为金属铝材质,其直径d为Φ35.00cm;螺旋天线(1-3)的螺旋直径为Φ8.2cm、螺旋天线(1-3)的圈数15圈,微波源(4)的微波工作频率f为915MHZ。微波传输管(6)内径d2为Φ2.0cm,微波传输中心线(7)外径d1为Φ0.424cm,耐高温绝缘层(9)为石英玻璃层。
优选的,还包括PLC(5)及触摸屏(6),所述热电偶(3)、微波源(4)均通过控制电路(4-1)与PLC(5)连接,PLC通过数据总线与触摸屏(6)连接;所述控制电路(4-1)含有与输入端相连的手动开关、信号采集电路及开关信号电路。
本发明的有益效果:
本发明的小型宽频微波高温加热装置采用新颖的同轴式微波传输方式,利用螺旋天线在圆柱 型微波谐振腔内进行辐射。该装置与传统的微波加热炉最大的不同在于其工作频带宽,在小尺寸的情况下该装置依然可以有效地保证微波的功率,对加热物实现高温加热。
(1)本发明的微波传输装置通过发射端谐振腔、微波传输管、微波传输中心线将由发射端产生的微波传输到螺旋天线;然后辐射到加热炉内腔中,微波传输的效率高、损耗小。
(2)本发明采用轴向模螺旋天线,天线的最大辐射方向在轴线方向。在此模式下,螺旋金属线上电流分布接近于行波。使得处在螺旋天线轴线方向的物料受到的微波辐射强度最大,并且均匀,提高了加热效率。
(3)本发明的加热装置通过配置不同直径的螺旋天线和微波传输装置,可以覆盖从915-9132MHZ整个频带,具有非常宽的微波工作频率。
(4)本发明采用触摸屏与PLC通过人机界面实现各种加热功能,自动化程度高,操作简单。
附图说明
图1为本发明的结构示意图一;
图2为本发明中发射端与微波传输装置的结构示意图;
图3为图2的A向视图;
图4为本发明中螺旋天线的结构示意图;
图5为本发明中轴向模螺旋天线的示意图;
图6为本发明的结构示意图二。
图中:1-炉体、2-炉盖、3-热电偶、4-微波源、5-发射端谐振腔、6-微波传输管、7-微波传输中心线、8-发射端发射天线、9-耐高温绝缘层、10-PLC、11-触摸屏、12-密封装置、13-微波屏蔽装置、14-被加热物料、1-1-保温层、1-2-内腔、1-3-螺旋天线、2-1-进气管、2-2-排气管、4-1-控制电路、4-2-发射端。
具体实施方式
实施例一:参见图1-3,一种小型宽频微波高温加热装置,包括加热炉、微波源及微波传输装置,加热炉包括炉体1及设在炉体1上端的炉盖2,炉盖2上设有进气管2-1和排气管2-2。炉体1为圆柱型,无氧铜材质制作,其直径d为Φ13.00cm,炉体1高度尺寸与炉体1的直径尺寸相同。炉体1与炉盖2之间设有密封装置12和微波屏蔽装置13,密封装置12位于微波屏蔽装置13的内侧,密封装置12采用橡胶密封圈制成,微波屏蔽装置13采用铜网带微波屏蔽圈制成。
炉体1内设有内腔1-2,内腔1-2为圆柱型腔体且为氧化铝材质,内腔1-2内设有热电 偶3,内腔1-2的周围设有螺旋天线1-3。螺旋天线1-3为金属材质,其螺旋直径D为Φ4.20cm、圈数为10圈。螺旋天线1-3的中心线与热电偶3的轴线重合(参见图1-1),螺旋天线1-3穿出炉体1并与微波传输装置连接,微波传输装置与微波源3连接,内腔(1-2)与炉体(1)之间设有保温层(1-1)。
微波源4包括控制电路4-1及与控制电路4-1连接的发射端4-2;微波传输装置包括发射端谐振腔5及微波传输管6,发射端谐振腔5的一端与发射端4-2连接,发射端谐振腔5的另一端与微波传输管6连接,发射端谐振腔5内设有与发射端4-2连接的发射端发射天线8,发射端发射天线8的另一端连接设在微波传输管6内的微波传输中心线7,微波传输中心线7的另一端与螺旋天线1-3连接。微波源4的微波工作频率f为2450MHZ
发射端谐振腔5、微波传输管6及微波传输中心线7均为金属材质;微波传输中心线7置于微波传输管6的中心位置,微波传输中心线7的周围填充有耐高温绝缘层9。
热电偶3、微波源3均通过控制电路4-1与PLC 10连接,PLC通过数据总线与触摸屏11连接。控制电路4-1含有与输入端相连的一定数量的手动开关,信号采集电路和开关信号电路。微波源3通过PLC 10进行控制,使得该装置保温效果好、加热更加均匀。采用触摸屏11与PLC 10通过人机界面实现各种加热功能,操作简单,自动化程度高。
参见图4-5,根据电磁波理论,螺旋天线的性能是由其形状,几何特性决定的,而几何特性又是由其结构参数决定。图4中:L为螺旋天线的长度,D为螺旋直径,s为螺旋的圈间距。
螺旋天线的直径D与微波工作波长λ的比值D/λ决定了它的辐射特性。当0.25≤D/λ≤0.46时,天线的最大辐射方向沿轴线方向,称为轴向模螺旋天线(参见图5)。
选用的螺旋天线的直径D为Φ8.20cm时,则微波源3的工作频率f为915-1782MHZ的频率范围内,天线的最大辐射方向在轴线方向。选用的螺旋天线的直径D为Φ4.20cm时,则微波源3的工作频率f为1782-3285MHZ的频率范围内,天线的最大辐射方向在轴线方向。选用螺旋天线的直径D为1.98cm时,则微波源3的工作频率f为3285-9132MHZ的频率范围内,天线的最大辐射方向在轴线方向。
微波传输管6、微波传输中心线7及耐高温绝缘层9组成了微波传输系统;为同轴传输,参见图3。
根据传输线理论,对于微波信号(工作频率f0远大于200MHZ),此时特性阻抗Z0可简化为:
Z0=138/εr 1/2lg(d2/d1)
其中:εr为耐高温绝缘层9的介电常数。
而螺旋天线的阻抗由下式决定:
ZL=140D/λ,
为了匹配:Z0=ZL,即:
ZL=138/εr 1/2lg(d2/d1),
耐高温绝缘层9为氧化铝陶瓷(Alumina ceramics),εr为4.5,则:
d2/d1=5.47,
微波传输管6的内径d2为Φ1.5cm,微波传输中心线7的外径d1为Φ0.274cm。
如将20克Fe2O3粉末放入本小型微波高温加热装置,微波输出功率300W,从室温逐渐升温至800℃,用时8分钟;然后自800℃逐渐降温至500℃,用时15分钟;再从500℃逐渐升温至1000℃,用时5分钟;然后自1000℃逐渐降温至700℃,用时15分钟;再从700℃逐渐升温至1000℃,用时3分钟;最后在1000℃保温30分钟。
由上述数据可知,本实施例的装置具有体积小、加热效率高、操作简单的优点。
实施例二:高温加热装置与实施例一基本相同,相同之处不再赘述,不同之处是:
1)炉体1为不锈钢材质,其直径d为Φ11.00cm。
2)螺旋天线1-3的螺旋直径D为Φ1.98cm,圈数为8圈。
3)微波工作频率f为6000MHZ
4)耐高温绝缘层9为聚四氟乙烯(Polytetrafluoroethylene),εr为4.5,d2/d1为5.47;微波传输管6的内径d2为Φ1.0cm,微波传输中心线7的外径d1为Φ0.183cm。
5)螺旋天线1-3的中心线与热电偶3的轴线垂直(参见图6)。
本实施例的装置采用螺旋天线1-3的中心线与热电偶3的轴线垂直布置,可以最大限度的避免热电偶对微波辐射方向的干扰。结合小尺寸的炉体和小直径的螺旋天线。非常适合在高频微波辐射条件下对物料的各种变化进行原位测试。
实施例三:高温加热装置与实施例一基本相同,相同之处不再赘述,不同之处是:
1)炉体1为金属材质,其直径d为23.00cm。
2)螺旋天线1-3的螺旋直径D为Φ4.20cm,圈数为12圈。
3)微波工作频率f为2450MHZ
实施例四:高温加热装置与实施例一基本相同,相同之处不再赘述,不同之处是:
1)炉体1为金属铝材质,其直径d为Φ35.00cm。
2)螺旋天线1-3的螺旋直径D为Φ8.2cm,圈数为15圈。
3)微波工作频率f为915MHZ
4)耐高温绝缘层9为石英玻璃,εr为3.75,d2/d1为4.72;微波传输管6的内径d2为Φ2.0cm,微波传输中心线7的外径d1为Φ0.424cm。
本实施例的装置采用大尺寸的炉体和大直径的螺旋天线。大直径的微波传输管可以传输比较大的微波功率,非常适合在频率比较低的微波辐射条件下对物料进行高温加热、合成。

Claims (10)

  1. 一种小型宽频微波高温加热装置,包括加热炉、微波源及微波传输装置,其特征在于,所述的加热炉包括炉体(1)及设在炉体(1)上端的炉盖(2),炉体(1)内设有内腔(1-2),内腔(1-2)内设有热电偶(3),内腔(1-2)的周围设有螺旋天线(1-3),螺旋天线(1-3)的中心线与热电偶(3)的轴线平行或垂直,螺旋天线(1-3)穿出炉体(1)并与微波传输装置连接,微波传输装置与微波源(4)连接;内腔(1-2)与炉体(1)之间设有保温层(1-1);所述炉盖(2)上设有进气管(2-1)和排气管(2-2);所述炉体(1)与炉盖(2)之间设有密封装置(12)和微波屏蔽装置(13),密封装置(12)位于微波屏蔽装置(13)的内侧,密封装置(12)采用橡胶密封圈制成,微波屏蔽装置(13)采用铜网带微波屏蔽圈制成。
  2. 根据权利要求1所述的小型宽频微波高温加热装置,其特征在于,所述的螺旋天线(1-3)的中心线与热电偶(3)的轴线重合或垂直。
  3. 根据权利要求1所述的小型宽频微波高温加热装置,其特征在于,所述的内腔(1-2)为圆柱型腔体,内腔(1-2)为氧化铝材质、石英玻璃材质或莫来石材质。
  4. 根据权利要求1-3任一项所述的小型宽频微波高温加热装置,其特征在于,所述微波源(4)包括控制电路(4-1)及与控制电路(4-1)连接的发射端(4-2);所述微波传输装置包括发射端谐振腔(5)及微波传输管(6),发射端谐振腔(5)的一端与发射端(4-2)连接,发射端谐振腔(5)的另一端与微波传输管(6)连接,发射端谐振腔(5)内设有与发射端(4-2)连接的发射端发射天线(8),发射端发射天线(8)的另一端连接设在微波传输管(6)内的微波传输中心线(7),微波传输中心线(7)的另一端与螺旋天线(1-3)连接。
  5. 根据权利要求4所述的小型宽频微波高温加热装置,其特征在于,所述的发射端谐振腔(5)、微波传输管(6)及微波传输中心线(7)均为金属材质;微波传输中心线(7)置于微波传输管(6)的中心位置,微波传输中心线(7)的周围填充有耐高温绝缘层(9)。
  6. 根据权利要求4-5任一项所述的小型宽频微波高温加热装置,其特征在于,所述炉体(1)为圆柱型,且为金属材质,其直径d为Φ9.34cm≤d≤Φ39.38cm,高度大于或等于其直径;所述螺旋天线(1-3)为金属材质,其螺旋直径D为Φ1.98cm≤D≤Φ8.2cm;所述微波传输管(6)的横截面为圆形,其内径d2为Φ1.0cm≤d2≤Φ2.0cm,微波传输中心线(7)的横截面为圆形,其外径d1为Φ0.1cm≤d1≤Φ0.56cm;微波源(4)的微波工作频率f为915MHZ≤f≤9132MHZ
  7. 根据权利要求6所述的小型宽频微波高温加热装置,其特征在于,所述炉体(1)为不锈钢材质,其直径d为Φ11.00cm;螺旋天线(1-3)的螺旋直径D为Φ1.98cm、螺旋天线(1-3)的圈数为8圈,微波源(4)的微波工作频率f为6000MHZ;微波传输管(6)内径d2为Φ1.0cm, 微波传输中心线(7)外径d1为Φ0.183cm;耐高温绝缘层(9)为聚四氟乙烯层。
  8. 根据权利要求6所述的小型宽频微波高温加热装置,其特征在于,所述炉体(1)为无氧铜材质,其直径d为Φ13.00cm;螺旋天线(1-3)的螺旋直径为Φ4.20cm、螺旋天线(1-3)的圈数为10圈,微波源(4)的微波工作频率f为2450MHZ;微波传输管(6)内径d2为Φ1.5cm,微波传输中心线(7)外径d1为Φ0.274cm;耐高温绝缘层(9)为氧化铝陶瓷层。
  9. 根据权利要求6所述的小型宽频微波高温加热装置,其特征在于,所述炉体(1)为金属铝材质,其直径d为Φ35.00cm;螺旋天线(1-3)的螺旋直径为Φ8.2cm、螺旋天线(1-3)的圈数15圈,微波源(4)的微波工作频率f为915MHZ;微波传输管(6)内径d2为Φ2.0cm,微波传输中心线(7)外径d1为Φ0.424cm;耐高温绝缘层(9)为石英玻璃层。
  10. 根据权利要求7-9任一项所述的小型宽频微波高温加热装置,其特征在于,还包括PLC(5)及触摸屏(6),所述热电偶(3)、微波源(4)均通过控制电路(4-1)与PLC(5)连接,PLC通过数据总线与触摸屏(6)连接;所述控制电路(4-1)含有与输入端相连的手动开关、信号采集电路及开关信号电路。
PCT/CN2016/071694 2015-12-24 2016-01-22 一种小型宽频微波高温加热装置 WO2017107280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201521095280.5U CN205279735U (zh) 2015-12-24 2015-12-24 一种小型宽频微波高温加热装置
CN201521095280.5 2015-12-24

Publications (1)

Publication Number Publication Date
WO2017107280A1 true WO2017107280A1 (zh) 2017-06-29

Family

ID=56064303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071694 WO2017107280A1 (zh) 2015-12-24 2016-01-22 一种小型宽频微波高温加热装置

Country Status (2)

Country Link
CN (1) CN205279735U (zh)
WO (1) WO2017107280A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116886A (zh) * 2018-08-20 2019-01-01 江苏和腾热工装备科技有限公司 一种高温电炉用plc和触摸屏组合控温的系统
CN110621096A (zh) * 2019-09-02 2019-12-27 成都亚彦科技有限公司 微波加热装置及系统
CN110823788A (zh) * 2019-12-12 2020-02-21 北京大学 基于激光捕获与微波辐射的单个生物气溶胶颗粒识别系统
CN112074031A (zh) * 2020-10-09 2020-12-11 安徽锐达微波应用科技有限公司 一种微波高温设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509468B (zh) * 2015-12-24 2017-07-14 郑州德朗能微波技术有限公司 一种小型宽频微波高温加热装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051612A1 (en) * 2008-08-29 2010-03-04 Hans Magnus Fagrell Microwave heater and method of heating
CN102415211A (zh) * 2009-03-02 2012-04-11 哈里公司 通过可调模式rf加热天线阵列加热材料的设备和方法
CN104869679A (zh) * 2015-06-09 2015-08-26 内蒙古科技大学 一种实现变频微波加热的装置和方法
CN105509468A (zh) * 2015-12-24 2016-04-20 郑州德朗能微波技术有限公司 一种小型宽频微波高温加热装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100051612A1 (en) * 2008-08-29 2010-03-04 Hans Magnus Fagrell Microwave heater and method of heating
CN102415211A (zh) * 2009-03-02 2012-04-11 哈里公司 通过可调模式rf加热天线阵列加热材料的设备和方法
CN104869679A (zh) * 2015-06-09 2015-08-26 内蒙古科技大学 一种实现变频微波加热的装置和方法
CN105509468A (zh) * 2015-12-24 2016-04-20 郑州德朗能微波技术有限公司 一种小型宽频微波高温加热装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109116886A (zh) * 2018-08-20 2019-01-01 江苏和腾热工装备科技有限公司 一种高温电炉用plc和触摸屏组合控温的系统
CN110621096A (zh) * 2019-09-02 2019-12-27 成都亚彦科技有限公司 微波加热装置及系统
CN110823788A (zh) * 2019-12-12 2020-02-21 北京大学 基于激光捕获与微波辐射的单个生物气溶胶颗粒识别系统
CN112074031A (zh) * 2020-10-09 2020-12-11 安徽锐达微波应用科技有限公司 一种微波高温设备
CN112074031B (zh) * 2020-10-09 2024-05-24 安徽锐达微波应用科技有限公司 一种微波高温设备

Also Published As

Publication number Publication date
CN205279735U (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
WO2017107280A1 (zh) 一种小型宽频微波高温加热装置
CN102374557B (zh) 半导体微波炉的微波馈入结构
WO2019213989A1 (zh) 一种工程岩体大功率微波孔内致裂装置
CN102698683B (zh) 一种顶部开放的频率可调谐振式微波反应腔
CN101502170A (zh) 微波处理装置
JP5682001B1 (ja) 化学反応装置、及び化学反応方法
CN110177405A (zh) 一种多微波源加热系统
CN105932404B (zh) 等离子体柔性天线系统
CN104869679A (zh) 一种实现变频微波加热的装置和方法
CN107917614B (zh) 一种微波压力烧结炉
CN114189973A (zh) 一种具有双微波谐振腔的微波等离子体炬装置及其使用方法
CN105509468B (zh) 一种小型宽频微波高温加热装置
CN107661739A (zh) 一种带反射腔的多位微波反应器制作方法
US20220279629A1 (en) Microwave band induction heating device
CN110062516B (zh) 一种微波等离子体高温热处理丝状材料的装置
CN203545695U (zh) 微波加压合成装置
JP6021881B2 (ja) 化学反応装置、及び化学反応方法
CN204887519U (zh) 一种实现变频微波加热的装置
CN202303515U (zh) 半导体微波炉的微波馈入结构
CN107317077B (zh) 一种高功率毫米波双锥体水负载
CN102744026B (zh) 一种封闭式频率可调谐振式微波反应腔
CN210826464U (zh) 一种用于碳纤维石墨化的微波加热腔体
CN210952312U (zh) 金属粉末成型微波复合烧结设备用加热腔体
CN202655019U (zh) 一种顶部开放的频率可调谐振式微波反应腔
CN108924984A (zh) 一种用于食物加热的表面波加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16877094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16877094

Country of ref document: EP

Kind code of ref document: A1